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We propose a vertex representation of the tensor network (TN) for classical spin systems on hyperbolic lattices.
The tensors form a network of regular p-sided polygons (p > 4) with the coordination number 4. The response
to multistate spin systems on the hyperbolic TN is analyzed for their entire parameter space. We show that
entanglement entropy is sensitive to distinguish various hyperbolic geometries, whereas other thermodynamic
quantities are not. We test the numerical accuracy of vertex TNs in the phase transitions of the first, second,
and infinite order at the point of maximal entanglement entropy. The hyperbolic structure of TNs induces
noncritical properties in the bulk, although boundary conditions significantly affect the total free energy in the
thermodynamic limit. Thus a developed vertex-type TN can be used for the lowest-energy quantum states on
the hyperbolic lattices.
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I. INTRODUCTION

The classification of phases of matter and phase transitions
belongs to one of the fundamental goals in physics. Multiple
analytic and numerical approaches have been developed to
identify the phases of matter and classify them into univer-
sality classes. Focusing on numerical methods, we select only
those that are suitable for the large number of interacting par-
ticles. In this work, we focus on improving the applicability of
a numerical method that we have generalized to study models
on non-Euclidean lattice geometries. Specifically, we study
phase transitions induced by hyperbolic lattice geometry with
constant negative Gaussian curvatures.

Among those methods, the tensor network (TN) techniques
have been proven as appropriate candidates for simulating
strongly correlated systems. Their popularity still increases
and spreads to various fields of physics, such as condensed-
matter physics [1,2], high-energy physics [3,4,5], quantum
information [6], quantum machine-learning algorithms [7,8],
etc. These techniques describe quantum states by a network
of mutually connected tensors. Each tensor represents a vertex
where a quantum particle (or a collection of particles) resides.
The network of vertices imitates the interaction structure in-
herently incorporated into the quantum state, typically into the
ground state or the lowest-lying ones. The numerical accuracy
of the tensor connections is controlled by an integer parameter
that we call the bond dimension (which denotes the degrees
of freedom of the bond). The higher the bond dimension, the
more accurately the desired quantum state is calculated.

A quantum TN state forms partially contracted tensors of
a rank (r + 1). This is crucial since the TN geometry can
be modified to create a non-Euclidean space. Let the integer
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r represent the number of tensor indices connected with r
nearest-neighbor tensors (we consider a fixed coordination
number). Increasing the degrees of freedom in these bond
tensor indices leads to a longer range of correlations (the
amount of entanglement) in a desired quantum state. The
remaining tensor index is associated with the degrees of free-
dom of real physical particles, spin states, etc., located at
the vertex.

Equivalently to the quantum state, a TN can also represent
the partition function of a physical system described by a
classical Hamiltonian. In this work, we employ this alternative
TN approach to evaluate the thermodynamic properties and
entanglement entropy focusing on the properties of the under-
lying lattice geometry. We develop a generalized numerical
algorithm based on density matrix renormalization to analyze
the network structure by varying the Gaussian curvature and
boundary conditions.

The TN procedure describes a process for creating large
hyperbolic lattices with constant negative Gaussian curvatures
on which we study multistate spin models. We aim to investi-
gate the influence of curved lattices on entanglement entropy
(and other thermodynamic quantities).

In this study, we develop an algorithm with vertex rep-
resentation on the hyperbolic lattices which has not been
formulated yet. Since 2007, we have proposed weight-type
representations of the hyperbolic lattices [9] that were not
compatible with TN algorithms rooted in the projected-
entangled pair states (PEPS) [10,11]. To accomplish the
current task, we derive recurrent relations in the vertex lan-
guage of the corner transfer matrix renormalization group
(CTMRG) method [12]. This work analyzes spin models at
three types of phase transitions subject to the hyperbolic
lattice geometries. In this work, we encountered irregular
behavior of the entanglement entropy along with this study. It
is subject to an extensive analysis that will follow soon [13].
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(4,4) (5,4) (6,4) (15,4)

FIG. 1. The regular tessellation of the squares (4, 4), pentagons
(5, 4), hexagons (6, 4), and “15-gons” (15, 4). The three hyperbolic
lattices with p � 5 are displayed in the Poincaré disk, i.e., the con-
formal representation [15].

The paper is organized into five sections while details are
moved into Appendixes. In Sec. II, we define the two q-state
spin models and an infinite set of hyperbolic lattices made
by a regular tessellation of identical polygons (including the
square lattice for benchmarking). The transformation from
the weight representation into the vertex representation of the
spin models is derived in Sec. III. We specify the tensors of
which hyperbolic lattices are composed, and we set the rules
(recurrent relations) necessary for building up the lattice. The
specific ways of calculating magnetization and free energy are
derived. Section IV contains the analysis of the hyperbolic lat-
tices in the vertex representation, and we compare them with
the weight representation we developed earlier. The results
are summarized and concluded in Sec. V. We provide specific
derivations in Appendixes A–D.

II. LATTICE MODEL

We study a set of lattices classified by a pair of integers
(p, r) known as the Schläfli symbol [14,15]. In Fig. 1, we show
the Euclidean square lattice and three examples of hyperbolic
lattices (5, 4), (6, 4), and (15, 4). We construct the lattices
by the regular tessellation of congruent (uniform) polygons.
The first integer p describes polygons, such as, e.g., squares
(p = 4), pentagons (p = 5), or hexagons (p = 6), etc. The
second integer r is the coordination number describing the
number of polygons meeting at each vertex (we consider
r = 4 fixed throughout this work; generalization to arbitrary
r is straightforward [16]).

In this way, the infinite lattice is made by tiling the identical
polygons p, and four polygons meet at each vertex. The vertex
represents a point on the lattice where a spin is placed and in-
teracts with the r = 4 nearest-neighbor spins. The interactions
are denoted by the lines connecting the vertices. Later on,
we describe a procedure to produce these hyperbolic lattices
(p � 4, 4).

The vertices contain q-state spins represented by vari-
ables σi = 0, 1, . . . , q − 1, where q = 2, 3, . . . . The subscript
i enumerates the position of the spin variable at the vertex.

We consider two spin models with the nearest-neighboring
spins: the q-state clock model with the planar spin-spin inter-
action

Sσiσ j = cos

[
2π

q
(σi − σ j )

]
(1)

and the q-state Potts model with

Sσiσ j = δσiσ j , (2)

where δσiσ j is the Kronecker delta. Then, the two-spin local
Hamiltonian between the adjacent (nearest-neighbor) spins σi

and σ j has the form

Hi j = −JSσiσ j − h

2

(
Sσiϑ + Sσ jϑ

) − bSσiϑ . (3)

The uniform spin interaction J acts between the nearest-
neighboring spins σiσ j . We assume two independent external
magnetic fields h and b that we specify below. The single-state
integer ϑ takes one of the σ values being a reference-spin
direction used when evaluating magnetization (we fix it to be
ϑ = 0 in this work). The two-state clock and the two-state
Potts models coincide with the Ising model after rescaling,
J → J

2 .
The full Hamiltonian Hp is constructed by connecting the

two-spin local Hamiltonians Hi j in Eq. (3) to comply with the
regular p-polygonal tessellation of the entire lattice (p, 4), i.e.,

Hp[σ ] = −J
∑

{{i, j}}p

Sσiσ j − h
∑
{i}p

Sσiϑ − b
∑
{i}b

p

Sσiϑ . (4)

The configuration sum {{i, j}}p is appropriately taken over the
nearest-neighboring spins for each lattice geometry (p, 4). We
denote the second summing notations {i}p for all spins in the
respective lattice geometry, where the constant magnetic field
h is imposed on every spin (vertex), whereas {i}b

p denotes the
sum over the spins located on the lattice boundary only, where
the magnetic field b is imposed. The magnetic field h also acts
on the boundary; cf. Eq. (3).

We introduce a simplified notation in which [σ ] means
grouping a set of all N spins that are used to construct the
entire lattice, i.e., Hp[σ ] ≡ Hp(σ1σ2 · · · σN ). We consider
the thermodynamic limit (N → ∞) since we intend to study
the phase transitions after the symmetry is spontaneously
broken.

To evaluate the partition function, we first define the local
Boltzmann weight Wσiσ j between two adjacent spins,

Wσiσ j = exp

(
− Hi j

kBT

)
, (5)

where kB and T are the Boltzmann constant and thermody-
namic temperature, respectively. Then, the partition function
of the total Hamiltonian reads

Z (W )
p =

∑
[σ ]

e−Hp[σ ]/kBT =
∑
[σ ]

∏
{{i, j}}p

Wσiσ j , (6)

where the sum is taken over all spin configurations [σ ] be-
tween the nearest-neighboring spins.

III. VERTEX REPRESENTATION

There are two equivalent representations in expressing the
partition function. The first representation uses the Boltzmann
weights to build up the entire lattice by taking the product
of W , and the sum runs over all qN spin configurations
[σ ], as defined above in Eq. (6). We name this the weight
representation. The second representation, namely the vertex
representation, expresses the partition function as a product
of rank-r tensors V (defined below) where the sum runs over
all bond configurations (not the spin ones). Then, the partition
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FIG. 2. Graphical visualization of the Boltzmann-weight decom-
position according to Eq. (8).

function is defined as

Z (V )
p =

∑
[a,b,c,d]

∏
i

Vai,bi,ci,di = Tr
∏

Vabcd . (7)

In what follows, we formulate the vertex representation of the
partition function to show that the equivalence Z (W )

p = Z (V )
p

holds. We thus relate the vertices V with the weights W .
Since we restrict our study to the case of r = 4, the rank-

4 tensor Vabcd consists of four bond variables a, b, c, d =
0, 1, . . . , q − 1. Generalization to an arbitrary coordination
number r is easy and leads to vertices as rank-r tensors. We
reserve the Latin letters a, b, . . . to denote the bond variables,
whereas the indexed Greek letter σi refers to the spin variable
used in the weight representation.

We begin by decomposing the two-spin Boltzmann weight
W into the product of two identical matrices Y , either one
having one spin index σ and one bond index a, as depicted in
Fig. 2. The Boltzmann weight Wσiσ j in the weight represen-
tation can be diagonalized since W is a real symmetric q × q
matrix,

Wσiσ j =
q−1∑

a,b=0

Uσi a Dab U †
bσ j

=
q−1∑

a,b=0

Uσi a λaδab U †
bσ j

=
q−1∑
a=0

(
Uσi a

√
λa

)(
Uσ j a

√
λa

) =
q−1∑
a=0

Yσi aYσ j a. (8)

Provided that coupling is ferromagnetic, i.e., J > 0, the
diagonal matrix Dab = λaδab contains only non-negative
eigenvalues λa � 0. Thus, we have decomposed Wσiσ j onto
two identical matrices (rank-2 tensors) Yσ a = Uσ a

√
λa with

two distinct variables: the spin variable σ and the bond vari-
able a to be used for constructing the entire TN.

Equation (8) describes a symmetric decomposition in the
vertex representation [17], where we schematically split the
Boltzmann weight W = YY into the product of two identical
matrices Y . The decomposition holds for symmetric Hamil-
tonians with non-negative eigenvalues of W . If we compare
the decomposition in Eq. (8) with that in Ref. [17], where
W = √

W
√
W , they both become equivalent if

√
W = Y for

boundary magnetic field b = 0.
We intentionally impose b �= 0 on the boundary spins only,

see Eq. (3), to induce a faster spontaneous symmetry break-
ing. This leads to the asymmetric Hamiltonian, and there
are two ways of the decomposition W = YY ′. We use either
the eigenvalue decomposition with Yσa = Uσa|da| and Y ′

σa =
sgn(da)Yσa, or, equivalently, we can use the singular value
decomposition with Yσa = Uσa

√
da and Y ′

σa = Vσa
√

da, where
all singular values are non-negative d � 0 after decomposing
Wσσ ′ = ∑

x UσxdxVσ ′x.

FIG. 3. Visualization of the vertex construction of Vabcd as spec-
ified in Eq. (9).

We can now define the basic vertex tensor

Vabcd =
∑

σ

YσaYσbYσcYσd (9)

by summing up the q-state spin σ = 0, . . . , q − 1 (see the
graphical visualization in Fig. 3). The rank-r tensor V is the
desired vertex required in forming the vertex representation of
TN. The vertex V coincides with the coordination number of
the lattice (here, r = 4). Building up a lattice with an arbitrary
constant coordination number r requires preparing a rank-r
tensor by summing the product of r matrices Y in Eq. (9).
Hence, the weight and vertex representations are equivalent
in the sense of Z (W )

p = Z (V )
p , which are interconnected via

Eqs. (8) and (9). As specified below, we define two types of
tensors: the rank-3 transfer tensor Pabc = ∑

σ YσaYσbYσc and
the corner transfer matrix Cab = ∑

σ YσaYσb, as in Fig. 4 in
analogy to the rank-4 vertex tensor Vabcd .

The construction of the (p, 4) lattices follows an algorithm
with the iterative scheme. Let the integer j = 1, 2, 3, . . . enu-
merate the iteration steps. To start, we prepare two initial
tensors at the first iteration j = 1, namely the rank-3 transfer
tensor [P j=1]abc ≡ Pabc and the rank-2 corner transfer ma-
trix [C j=1]ab ≡ Cab, which are placed on the lattice boundary,
and we define boundary conditions. We reserve the integer
k to describe the final iteration step in the sequence j =
1, 2, 3, . . . , k.

A. Recurrent scheme

Building up the hyperbolic lattice requires deriving re-
current relations which describe the incremental expansion
of the (p, 4) lattices gradually using j. To accomplish this,
we employ the CTMRG method as an iterative algorithm
that gradually expands the lattice size beginning from the
boundary towards the lattice center. At each iteration step j,

FIG. 4. The initialization of the transfer tensor Pabc and the cor-
ner transfer matrix Cab.
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FIG. 5. Expansion process of the corner transfer tensors C j=1 →
C̃ j=2 on the square (4, 4) and hyperbolic (5, 4) lattices.

the CTMRG procedure consists of two parts: extension and
renormalization. The extension forms the tensors [P̃ j+1]abc

and [C̃ j+1]ab that are built using [P j]abc and [C j]ab from the
previous iteration step. The renormalization reduces the ex-
ponentially growing Hilbert dimension in the indices a, b, c,
i.e., it maps the tensors onto the lower-dimensional tensors
[P̃ j+1]abc → [P j+1]abc and [C̃ j+1]ab → [C j+1]ab. This step is
performed by the leading eigenvectors of the reduced density
matrix ρ ′

j while neglecting states of the least probable config-
urations.

In what follows, we simplify the tensor subscript notation
of [P j]abc and [C j]ab by omitting the bond indices a, b, c and
leaving the iteration steps j only. With this simplification, we
focus on the tensor extension process only. The detailed use
of the bond indices in the recurrent expressions is given in
Appendix A.

For instructive purposes, we begin with the recurrent
scheme for the known square lattice (4, 4) followed by the
hyperbolic pentagonal lattice (5, 4); see Fig. 1. Afterward, we
generalize the recurrent relations to the (p � 6, 4) lattices.

Figure 5 depicts the extension of the Euclidean square and
the pentagonal lattices. The thick black crosses represent the
vertex-type tensors V , the thick red corners represent the two-
index corner transfer tensors C, and the thick blue T-shaped
symbols represent the three-index transfer tensor P . The ranks
of the tensors V , C, and P remain identical for all of them. The
lattice geometries (4, 4) and (5, 4) are illustrated by thin black
lines forming congruent squares and pentagons, respectively.
The spins σ sit in the vertices, and the thin lines represent the
nearest-neighbor interactions connecting the vertices.

If we compare the original extension process of the square
(4, 4) lattice [12,18,19] with the current notation (as visual-
ized in Fig. 5), we can express the recurrence relations in a
simplified form C̃ j+1 = VP2

j C j and P̃ j+1 = VP j on the square

lattice. Using this analogy, the expansion of the hyperbolic
pentagonal (5, 4) lattice obeys the rules C̃ j+1 = VP2

j C3
j and

P̃ j+1 = VP jC j ; cf. Fig. 5.
Having considered the geometric structure of all hy-

perbolic lattices (p, 4), including the Euclidean (4, 4), we
can generalize the complete class of the lattices for p =
4, 5, 6, . . . to derive the recurrence relations

C̃ j+1 = VP2
j C

2p−7
j , P̃ j+1 = VP jC

p−4
j . (10)

These recurrence relations of TN are expressed concisely
in Eq. (10). They represent tensor contractions, as specified
in Appendix A. [There are minor differences between the
vertex recurrence relations in Eq. (10) and the weight-type
ones [16].]

Now we describe how the extended tensors of rank-4 C̃ j+1

and rank-5 P̃ j+1 are transformed back onto the original rank-2
C j+1 and rank-3 P j+1 tensors by renormalization processes.
We do this using the isometry Uj+1 (originating in the reduced
density matrix), which is a unitary projection U †

j+1Uj+1 = 1
that reduces the exponentially increasing spin degrees of free-
dom, i.e.,

C j+1 = Uj+1C̃ j+1U
†
j+1, P j+1 = Uj+1P̃ j+1U

†
j+1. (11)

This transformation process originates in the density ma-
trix renormalization [20–22]. The computational cost of the
optimized CTMRG code is O(pq3m3) only. The details are
provided in Appendix A.

The renormalization is accomplished by constructing the
reduced density matrices at the iteration step j from the p
extended C̃ j+1,

ρ ′
j+1 = Tr′(C̃ p

j+1

)
, (12)

as the partial trace is taken over the environment degrees of
freedom, i.e., all the spins except those on the cut depicted
in Fig. 6. The isometry matrices Uj+1 are subsequently con-
structed from the reduced density matrix ρ ′

j+1. The isometries
contain selected eigenvectors of ρ ′

j+1 corresponding to the m
largest eigenvalues. The integer m � q controls the numerical
accuracy and is referred to as the bond dimension or the
number of states kept [20–23].

A remark on the Hermiticity of the reduced density matrix
ρ ′ is needed at this stage. For hyperbolic lattices (p, 4), ρ ′ is
Hermitian for even integers p = 4, 6, 8, . . . . From Fig. 6, we
can see that the lattice can be divided into two identical halves
only if p is even, and each half of the lattice consists of p/2
corner transfer matrices. Their partial sum approximates the
state |�〉 = ∑′ C̃ p/2 so that

ρ ′ = Tr′(C̃ p) = Tr′(C̃ p/2C̃ p/2) = Tr′|�〉〈�|. (13)

We keep the state normalized, i.e., 〈�|�〉 = 1, for evaluating
entanglement entropy correctly.

The odd values of p lead to ρ ′, which is non-Hermitian, and
we use such a construction that involves the least asymmetry
(and demands normalization 〈	|�〉 = 1), i.e.,

ρ ′ = Tr′(C̃ p) = Tr′(C̃ (p−1)/2C̃ (p+1)/2) = Tr′|�〉〈	|. (14)

In Ref. [24], we studied hyperbolic lattices with non-
Hermitian ρ ′ implementing three distinct approaches: (i)
diagonalization of nonsymmetric matrices, (ii) singular value
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FIG. 6. A schematic visualization of the tensor extensions P j →
P̃ j+1 and C j → C̃ j+1 in agreement with Eq. (10) for the lattices (4, 4),
(5, 4), and (6, 4). The TN is made of tensor tessellations of the rank-4
[V]abcd (in black), the rank-3 tensor [P j]abc (in blue), and the rank-2
tensor [C j]ab (in red). The reduced density matrix is visualized as a
cut (in light blue) in the tensor network formed by the p extended
corner transfer matrices C̃ j+1, as in Eq. (12).

decomposition, and (iii) diagonalization of symmetrized ρ ′
sym.

We encountered numerical instabilities in the cases (i) and
(ii), which prevented the algorithm from converging. In case
(iii), the diagonalization of the symmetrized reduced density
matrix ρ ′

sym = 1
2 (|�〉〈	| + |	〉〈�)|) always resulted in nu-

merically stable solutions. This transform yields the optimal
isometries U with systematic and stable behavior of the algo-
rithm.

All numerical quantities, including the correct phase tran-
sition temperatures of the current vertex TN, completely
coincide with the weight representation of the TN [16,25]
where the hyperbolic lattices (p, 4) always lead to the Hermi-
tian (symmetric) construction of ρ ′. Alternatively, discovering
a dual set of biorthonormal bases (corresponding to the left
and right eigenvectors) can be a possible choice to reproduce
the current results [26].

B. Thermodynamic quantities

After reaching the kth iteration step, we calculate the
partition function, magnetization, and other thermodynamic
quantities. The partition function Zp,k has the form

Zp,k = Tr
(
C p

k

) =
∑

σ1σ2···σNp,k

exp

[
−Hp(σ1σ2 · · · σNp,k )

kBT

]
,

(15)
where Np,k is the number of all spins on the (p, 4) lattice after
k iterations.

The spontaneous magnetization Mp = 〈Sσc,ϑ=0〉p (the or-
der parameter in the bulk) is calculated as the mean value of
the spin σc placed in the lattice center (the bulk) to eliminate
the boundary effects. In the thermodynamic limit (k → ∞,

i.e., Np,k → ∞), we can evaluate the magnetization through
the expression

Mp = lim
k→∞

∑
σ1···σNp,k

Sσc,0 exp
[ − Hp(σ1σ2···σNp,k )

kBT

]
∑

σ1σ2···σNp,k
exp

[ − Hp(σ1σ2···σNp,k )

kBT

] . (16)

This is equivalent to the expression

Mp = Tr
[
I1 P4

∞C4(p−3)
∞

]
Tr

[
V P4∞C4(p−3)

∞
] (17)

which is designed for CTMRG on the (p, 4) lattices. The
central spin Sσc,ϑ is absorbed into a rank-4 impurity tensor

Iabcd =
∑
σc

Sσc,ϑYσcaYσcbYσccYσcd . (18)

Further details are discussed in Appendix B.
It is also useful to examine the type of phase transition

by analyzing the entanglement entropy. After constructing the
reduced density matrix in the thermodynamic limit (ρ ′

k→∞ =
ρ ′), we compute the entanglement entropy

Ep = −Tr (ρ ′ ln ρ ′) = −
m∑

i=1

ωi ln ωi, (19)

where we consider the m largest eigenvalues ωi. For all hy-
perbolic lattices (p > 4), we use a sufficiently large bond
number m to ensure that the truncation error is as small
as 1 − ∑m

i=1 ωi < 10−30 (within the 128-bit numerical preci-
sion).

An additional remark on quantum entanglement entropy
for classical spin systems is in place. We can ascribe classical
spin models to quantum spin models using a quantum-
classical correspondence [27,28]. The correspondence maps a
D-dimensional quantum system onto a (D + 1)-dimensional
classical one due to the equivalence of their partition func-
tions. The extra dimension in classical systems originates in
the imaginary-time evolution via the Suzuki-Trotter expan-
sion [29–31].

In summary, the classical spin models in this work [studied
on various two-dimensional (2D) lattice surfaces] could be
related to 1D quantum spin systems. For instance, the von
Neumann entanglement entropy computed for the classical
Ising model is identical to the associated quantum Ising model
(after rescaling the transverse magnetic field h → h/hc and
temperature T → T/Tc in the corresponding classical model).

Finally, the free energy normalized per spin,

Fp,k = − kBT

Np,k
lnZp,k, (20)

can also be evaluated with high precision, allowing us to
take the second derivative with respect to temperature or the
magnetic field [16,24]. The free energy per spin is a well-
defined (nondiverging) quantity in the thermodynamic limit.
In Appendix C, we provide a derivation of the number of spins
Np,k and free energy lnFp,k we used in the numerical analysis.
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FIG. 7. The magnetization M5 for the two-state clock (Ising)
model on the pentagonal lattice (5, 4) with the bond dimension as
small as m = 4. The dot-dashed lines (on the left) are guides for the
eye exhibiting the linearity M2

5 ∝ t in the limit t → 0 (at h = 0) and
M3

5 ∝ h if h → 0 (at t = 0). The mean-field exponents β = 1
2 and

δ = 3 are confirmed in the graphs on the right side.

IV. RESULTS

We selected the clock and q-state Potts models because
they exhibit first-order (discontinuous), second-order (con-
tinuous), and infinite-order Berezinskii-Kosterlitz-Thouless
(BKT) [32–34] transitions on the square lattice (4, 4). How-
ever, the hyperbolic geometry affects the above results since
the Hausdorff dimension of the hyperbolic lattices is infinite.
To verify the vertex representation of TN on the hyperbolic
lattices, we classify the spin models by phase transition, as
stated by the weight representation [9,16,35]. We proceed with
the following:

(A) Confirm the mean-field universality for the vertex TN
on the pentagonal (5, 4) lattice.

(B) Check the convergence of phase-transition tempera-
tures in the sequence of hyperbolic lattices {(p, 4)}∞p=5 to the
Bethe lattice (∞, 4).

(C) Investigate the impact of higher-state spins (q > 2) on
the hyperbolic pentagonal lattice.

(D) Analyze the multiparametric properties of the free
energy for the vertex TN on (p, 4) lattices.

A. (5,4) lattice

We begin with the Ising (two-state clock) model on the
pentagonal (5, 4) lattice. In Fig. 7, we analyze the Ising
model and detect its phase-transition temperature T (5,4)

pt in
the limit k → ∞. We evaluate the temperature dependence of
spontaneous magnetization Mp=5 at zero-field magnetic field
(h = 0) and also the field-dependence of M5 at the phase-
transition temperature T (5,4)

pt . We aim to accurately calculate

the phase-transition temperature T (5,4)
pt and the associated

magnetic exponents β and δ. We chose the phase-transition
region where the vertex TN is subject to the lowest numerical
accuracy due to the strongest correlations.

In the left top graph, we display the dependence of the
squared spontaneous magnetization M2

5 when linearly ap-
proaching the phase-transition temperature from the ordered
ferromagnetic phase (this behavior is common for any p � 5
and will be shown later). Therefore, the spontaneous magneti-
zation in the close vicinity of the phase-transition temperature
satisfies the scaling Mp ∝ (T (p,4)

pt − T )β .
As an example, we evaluate the temperature-dependent

effective exponent βeff calculated just below the phase-
transition temperature. Let t = T (5,4)

pt − T be a small non-
negative relative temperature such that t → 0 at the phase
transition. We calculate the effective exponent βeff (t ) at h =
0 by taking the logarithmic derivative of the spontaneous
magnetization M5 = const tβeff (t ). The accurate magnetiza-
tion data are necessary to obtain a smooth dependence of
βeff on t resulting in the phase-transition temperature T (5,4)

pt =
2.799 083. We set a nonzero magnetic field b imposed on the
boundary to force the spontaneous symmetry breaking such
that M5 > 0 in the ordered ferromagnetic phase 0 � T <

T (5,4)
pt . If βeff is plotted as a function of t , we confirm the

mean-field exponent [35] β → 1
2 (for p = 5) on the right top

graph,

β = lim
t→0+

βeff (t ) = lim
t→0+

∂ lnMp(t, h = 0)

∂ ln(t )
= 1

2
. (21)

At the bottom of Fig. 7, we show the mean-field exponent
δ by taking the limit of the effective exponent δeff (h) which
is featured in the scaling relation M5 ∝ h1/δ measured at
T = T (5,4)

pt for 0 � |h| � 1 and the boundary field b = 0. Ac-
cording to this relation, the cubed spontaneous magnetization
M3

p decreases to zero. In the bottom left graph, we display
the linearizing dependence of the cubed spontaneous magne-
tization in direction h → 0 confirming the exact mean-field
exponent

δ = lim
h→0

δeff (h) = lim
h→0

[
∂ lnMp(t = 0, h)

∂ ln(h)

]−1

= 3, (22)

as plotted in the right bottom graph on (5, 4). To summarize,
as we approach the singularity, the linearity close to the phase
transition of M2

5 versus T and M3
5 versus h, respectively,

yields the mean-field exponents β = 1
2 and δ = 3. These re-

sults agree with the exact mean-field exponents and the weight
representation of the TN [24,36].

In general, the mean-field universality, expressed via the
exponents β and δ, holds for arbitrary hyperbolic lattices
(p, r) such that (p − 2)(r − 2) > 4 since the Hausdorff di-
mension of such a curved lattice surface is infinite [36].
In other words, the mean-field universality observed on the
hyperbolic lattices [16,24,25] is not a consequence of the
mean-field approximation because we have not introduced
any such approximation into the CTMRG algorithm. Instead,
the mean-field universality originates in the hyperbolic geom-
etry itself since the Hausdorff dimension dH is infinite in the
thermodynamic limit, i.e., if Np,k → ∞. Recall that classi-
cal systems exceeding Hausdorff dimension dH = 3 display
mean-field universality [35].

Lastly, even at the phase transition, the correlation function
decays exponentially [24] and the correlation length ξ < 1
does not diverge [37–39]. Therefore, it is sufficient to perform
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FIG. 8. The temperature dependence of the spontaneous magne-
tization towards the asymptotic Bethe lattice geometry (∞, 4) with
the bond dimension m = 4. The left inset shows the fast asymptotic
convergence of the entanglement entropy to the Bethe lattice. The
right inset demonstrates the linearity, M2

p ∝ T , leading to the mean-
field exponent β = 1

2 .

the calculations with the bond dimension as small as m = 4.
An additional increase of m does not affect the results since
the improvement is negligible and of the order of numerical
round-off errors [13]. [This is not the case for the models on
the Euclidean lattices. The numerical precision at the phase
transition further improves, and with increasing m leads to
the exactly known results of T (4,4)

c = 2/ ln(1 + √
2), β = 1

8 ,
and δ = 15 only if the bond dimension grows accordingly, i.e.,
m = qk .]

B. (p, 4) lattice

Now we check if the vertex representation of TN is
correctly constructed. We calculate the phase-transition tem-
perature of the Ising model for the Bethe lattice. The Bethe
lattice with the coordination number r = 4 can be accessed
via the set of hyperbolic lattices and is equivalent to (∞, 4),
as also examined in Refs. [16,24,36]. The phase-transition
temperature is exactly known [35] to be T (∞,4)

pt = 2/ ln(2).
The convergence to the Bethe lattice is common for both the
quantum and the classical spin models we have studied in our
earlier works by the weight representation only [25,40–42].

In Fig. 8 we plot multiple curves of spontaneous magne-
tization Mp by gradually expanding the size of the polygons
p = 4, 5, 6, . . . , 50 corresponding to the lattices (4, 4), (5, 4),
(6, 4), . . . , (50, 4). As p increases, we observe a rapid asymp-
totic convergence to the phase-transition temperature of the
Bethe lattice (∞, 4). We notice that Mp for p � 20 are nu-
merically indistinguishable from the Bethe lattice [25]. The
inset (on the right side) shows the linear decrease of M2

p down
to the phase-transition temperatures supporting the mean-field
universality with β = 1

2 .
The inset on the left in Fig. 8 depicts the entanglement

entropy Ep versus T and p. We can clearly distinguish the
(p, 4) lattices by the entanglement entropy because Ep de-
creases as p grows, and its sharp (nondiverging) maximum
refers to T (p,4)

pt . Surprisingly, the entanglement entropy re-

FIG. 9. The entanglement entropy vs temperature in lin-log scale
for lattices (p, 4), where 4 � p � 50 with the bond dimension m =
4. The asymptotic convergence of T (p,4)

pt to the Bethe lattice is well
visible on the sharp maxima of Ep.

mains sensitive to distinguishing the lattice geometries with
p > 20. On the other hand, the magnetization and all other
normalized thermodynamic quantities exhibit quantitatively
indistinguishable bulk properties from p � 20.

Therefore, we show Fig. 9 to display the entanglement
entropy in the semilogarithmic scale to emphasize the differ-
ences among the various (p, 4) lattices. The decreasing peaks
of Ep completely coincide with the transition temperatures
in Mp. In both cases, Mp and Ep approach the exact value
T (∞,4)

pt = 2/ ln(2) equally rapidly on the Bethe lattice.
It is numerically more convenient to analyze (20, 4) than

(50, 4) if treating the Bethe lattice (∞, 4). Therefore, we plot
Fig. 10 with the squared magnetization M2

20 in the vicinity of
phase-transition temperature T (20,4)

pt . The inset shows a highly
detailed linear behavior of M2

20 versus shifted temperature

FIG. 10. The Ising model (q = 2 clock model) calculated on
the hyperbolic (20, 4) lattice is numerically indistinguishable from
the Bethe lattice. If fitting the mean-field exponent, we obtain β =
0.000 02, as can be read off from the linear decrease of M2

20. The
data points (asterisks) shown in the inset required k > 1011 iteration
cycles to converge at bond dimension m = 2.
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FIG. 11. The entanglement entropy E5 vs temperature for the q-
state clock models on the lattice (5, 4) with the bond dimension
m = q2. The inset shows the temperature dependence of spontaneous
magnetization M5 for the q-state clock models (lines) that coincides
with the results of the weight-type TN, shown by the symbols (∗).

T (∞,4)
pt − T , and we obtained the phase-transition tempera-

ture T (20,4)
pt = T (∞,4)

pt − 5 × 10−9 = 2.885 390 077 for m = 2
only. The exact Bethe lattice transition temperature [35] oc-
curs at T (∞,4)

pt = 2/ ln(2) = 2.885 390 082.
We set m = 2 because of the fast decaying spectrum of

the reduced density matrix ρ ′
j . The eigenvalue spectrum of

ρ ′
j decays faster with increasing p. Thus, such a low value

of the bond dimension m suffices and results in the small en-
tanglement entropy referring to extremely weak correlations
at the phase transition. Thus, the additional increase of the
bond dimension to m = 4 does not improve T (20,4)

pt . The inset
highlights that the lattice (20, 4) can retrieve the Bethe-lattice
properties with a relative error for the temperature as small as
2 × 10−7 %. Computing the data in the inset by the vertex-
type TN required an extremely long time to reach the full
convergence to the thermodynamic limit (k > 1011).

C. Multistate spin models

Increasing the spin degrees of freedom enriches the vari-
ability of phase-transition types. For this purpose, we use the
q-state clock and q-state Potts models. We select the range
2 � q < 10 since these values are sufficient for covering the
three basic types of phase transitions: the first, second, and
∞th orders. We test the multistate spin models because the
vertex TN displays the strongest long-range correlations lead-
ing to the lowest numerical efficiency.

In Fig. 11, we classify the phase transitions by entan-
glement entropy Ep=5 and spontaneous magnetization Mp=5

in the q-state clock models on the pentagonal (5, 4) lattice
(because there are no qualitative differences for p > 5 and
q > 9 in such systems.) The infinite Hausdorff dimension
of the hyperbolic structure of TN still affects the types of
phase transitions and differs from those on the Euclidean
lattice (4, 4).

We detect the second-order phase transitions (belonging to
the mean-field universality class) for q = 2 (the Ising model)
and q = 4 (two decoupled Ising models). At q = 3, however,

we observe a phase transition of the first order, although the
three-state clock model exhibits the second-order transition on
the square lattice belonging to the three-state Potts universal-
ity class [43]. The first-order discontinuity occurs on (5, 4)
because the three-state Potts universality in dimensions d � 3
has to be of the first order.

We point out the nondiverging entropy E5 in the clock
model for q � 5, as plotted in Fig. 11. Recall that E4 for
the q-state clock models with q � 2 on the Euclidean (4, 4)
lattices logarithmically diverges at phase transitions [44–46].
On the other hand, phase transitions on the hyperbolic lattices
are always noncritical [24,36] since the correlation length ξ

does not diverge [37], reaches a maximal sharp peak, and is
small (ξ < 1).

Entanglement entropy at phase transition for h = b = 0
diverges logarithmically (E4 ∝ 1

12 ln k) on the Euclidean two-
dimensional lattices [46], while Ep�5 is always finite on
the hyperbolic lattices 0 < Ep�5 � 1. The correlations de-
cay exponentially if measured between the bulk and the
lattice boundary. However, the correlations on the lattice
boundary always decay as a power law, and the system
is critical on the hyperbolic boundary [47]. Comparing the
qualitative similarity between the nondiverging E5 with the
logarithmically diverging E4 on the square lattice [44], we
can conjecture a noncritical BKT-like phase that exists in
bulk only. However, no BKT phase transition is present
for p � 5.

Spontaneous magnetization M5 for the clock model is
plotted in the inset of Fig. 11. It is nonzero in the ordered fer-
romagnetic (2 � q � 4) phase, zero in the disordered phase,
and drops to zero at the phase transition. The phase-transition
discontinuity at q = 3 confirms the first transition as the same
discontinuity in E5. For q � 5 at T < T (5,4)

pt , the spontaneous
magnetization M5 exhibits a small ripple indicating the pres-
ence of an intermediate BKT phase, which separates the low-
temperature ferromagnetic phase from the high-temperature
paramagnetic phase. Tiny magnetization ripples in the inter-
mediate BKT region are typical in M4 on the square (4, 4)
lattice.

In the inset of Fig. 11, we compare M5 in the current
vertex-type TN study (full lines) with our earlier work on the
weight-type TN (asterisks). The data fully coincide, including
the free energy and other derived thermodynamic properties,
such as internal energy, specific heat, and susceptibility (not
shown). There is, however, a significant difference in the
entanglement entropy between the vertex and weight repre-
sentations of TN, which deserves deeper analysis and is to be
thoroughly studied else where [13].

Figure 12 displays the entanglement entropy for the q-
state Potts model on the (5, 4) lattice. The 2-Potts and Ising
models are identical after rescaling J → 2J . The q-state
Potts models on the square (4, 4) lattice [44] exhibit the
second-order phase transition q = 2, 3, 4, whereas the first-
order (discontinuous) transition is present for q � 5. On
the lattices with dimension d � 3 (including the hyperbolic
lattices with d → ∞), the first-order transition occurs for
q � 3 [35,43]. The discontinuous jumps refers to the first-
order transition in E5 and M5 (inset) at phase-transition
temperatures T (5,4)

pt .
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FIG. 12. The entanglement entropy E5 vs temperature for the
q-state Potts models on a (5, 4) lattice with the bond dimension
m = q2. We emphasize the emergence of the first-order transition
for q � 3 on the hyperbolic lattices. The circles denote the phase-
transition temperatures where the curves become discontinuous. The
inset shows the equivalence of spontaneous magnetization M5 be-
tween the vertex TNs (lines) and the weight TNs (∗).

D. Free energy

When analyzing the free energy on (p, 4), as mentioned in
Sec. III B, every vertex of the TN contributes to F , mainly
those on the lattice boundary. Moreover, F depends on the
spin model (specified by spin type S), temperature T , interac-
tion J , magnetic field h and boundary field b, lattice geometry
(p, r), and the number of spin states q. To check whether the
vertex-type TN has been correctly constructed, we examine
zero-temperature and high-temperature limits for which F
acquires analytical expressions; see Appendix D.

Recalling the full Hamiltonian in Eq. (4), we primarily
examine the response of the boundary magnetic field b on the
entire system described by F . We do so because the number
of boundary spins on the hyperbolic lattices is larger than
the number of the remaining inner spins for any k (even in
the thermodynamic limit). The field b significantly affects the
bulk properties and suppresses the existence of phase transi-
tions in the bulk. This is certainly true if extracting the specific
heat after taking the second derivative of the free energy with
respect to temperature [16]. However, this is not the case for
the Euclidean lattices where the ratio between the boundary
and inner spins tends to zero in the thermodynamic limit.

In Fig. 13 we plot the functional dependence of the free
energy on the temperature on (p, 4) lattices with 4 � p �
1000 parametrized by the boundary field b. Setting b = 0
corresponds to the free boundary conditions while the fixed
boundary conditions apply for nonzero b. The larger the field
b (in the absolute value), the stronger the observable impact
on the lattice system. We have analytically derived the low-
and high-temperature limits of free energy in the vertex TN
that satisfy the numerical results shown in the graph (see
Appendix D).

In the low-temperature limit, free energy per spin acquires
only negative values. For instance, Fp=4,k→∞ = −2 on the
square (4, 4) lattice at b = 0, whereas on the Bethe lattice

FIG. 13. The temperature dependence of the free energy for the
Ising model (q = 2) on (p, 4) lattices when imposing the boundary
field b = 0 and b = ±2 (at h = 0). Calculated for the bond dimen-
sion m = q2. The free energy does not depend on the boundary field
b on the square (4, 4) lattice. The upper inset depicts a strictly linear
dependence of the free energy on b and h at T → 0 if studied on the
Bethe lattice. The lower inset confirms the high-temperature regime
of the thermodynamic entropy Sth → ln(q). The full and dashed lines
correspond to the q-state clock and Potts models, respectively.

we get Fp→∞,k→∞ = −1 for b = 0 and Fp→∞,k→∞ = −3
at b = ±2; for all cases we used h = 0 and T < 0.01. We
simulated the Bethe lattice (1000, 4) at low temperatures after
setting the 128-bit numerical precision (the quartic precision
up to 34 digits).

In the top right inset of Fig. 13, we show a linear depen-
dence of the free energy versus the boundary magnetic field b.
To prove the correctness, we have derived the free energy at
zero temperature on the square lattice (4, 4),

lim
T →0

F (S, T, J, h, b, p = 4, r, q) = −2J − |h|. (23)

On the Bethe lattice (∞, 4), we get

lim
T →0
p→∞

F (S, T, J, h, b, p, r, q) = −J − |h| − |b|. (24)

A concise, analytic derivation of F is given in Appendix D 1,
agreeing with the data shown in the graph.

The free-energy slopes for q = 2 become identical in the
high-temperature limit, as depicted in Fig. 13. This feature is
robust for a wide range of parameters. Taking the limit T →
∞, the thermodynamic entropy Sth = −dF/dT for the vertex
representation of TN gives (for details, see Appendix D 2)

lim
T →∞

− d

dT
F (S, T, J, h, b, p, r, q) = ln (q), (25)

which agrees with the results of the weight-type algo-
rithm [16,48]. We have numerically verified that the asymp-
totics of F (S, T, J, h, b, p, r, q) does not depend on the spin
model S , the spin-spin interaction J , both magnetic fields h
and b, or the lattice geometry (p, r) satisfying (p − 2)(r −
2) � 4. To emphasize, we verified the (p, 4) lattices by the
vertex-type TN, and the remaining lattices (p, r) with r �=
4 have been confirmed by the weight TN calculations; see
Ref. [16].
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We have numerically verified (not shown) that the free
energies for the vertex and weight representations are identical
for arbitrary q-state clock and Potts models on any (p, 4)
lattices, provided that h = b = 0. If we impose nonzero mag-
netic fields h and b, the free energies calculated for the vertex
and weight TNs differ by construction because the hyperbolic
structure of the lattices leads to unequal numbers of boundary
spins for any k.

Contrary to the lattices in the Euclidean spaces, the mag-
netic field b applied to the boundary spins on the hyperbolic
lattices strongly affects global physical properties even in
the thermodynamic limit. This is so because the number of
boundary spins prevails over the remaining spins [36]. Hence,
no phase transition exists on the entire lattice (no sponta-
neously broken symmetry leads to the ordered ferromagnetic
phase). In other words, the specific heat c = −T ∂2F/∂T 2

on hyperbolic lattices does not result in a diverging peak
at phase transition T (p,4)

pt . Instead, a broadened maximum at
much lower temperatures occurs [16]. The phase transition
on the hyperbolic lattices exists in the deep bulk only, i.e.,
infinitely far from the boundaries, as stated for the Bethe
lattice in Ref. [35].

V. CONCLUSION

We proposed the vertex representation of tensor networks
modeled on the specified class of hyperbolic lattices (p, r)
with the fixed coordination number r = 4. The extension for
arbitrary r is straightforward. We have tested the vertex TN on
the exactly solvable Bethe lattice to confirm the correctness of
the (p, 4) constructions, and, at the same time, we confirmed
that the vertex TN exhibits identical results to the weight-type
TN [16]. We did not perform calculations with fixed p while
varying r since we conjecture the equivalent behavior with the
weight representation, i.e., as r increases, the phase transition
temperature linearly increases (T (p,r)

pt ∝ r for r > p as in our
earlier work [16]).

We verified the mean-field nature of the vertex-type TN
as expected on the hyperbolic geometry by calculating the
critical exponents β = 1

2 and δ = 3. In analogy to the weight-
type TN [16], we have again observed a fast convergence of
the sequence of hyperbolic lattices {(p, 4)}∞p=5 to the Bethe
lattice (∞, 4). We found out that the hyperbolic lattice (20, 4)
(i.e., p � 20) becomes numerically indistinguishable from the
exact solution on the Bethe lattice [35]. We compared the
phase-transition temperature of the Ising model on the Bethe
lattice showing the agreement with the nine valid digits. The
uniqueness of entanglement entropy lies in the sensitivity to
detect differences in the lattice geometry (p, r), while the
other quantities saturate and become insensitive.

We have tested the vertex TN on the q-state spin models.
On the hyperbolic lattices, the higher-spin models showed
qualitative agreement with the models in the three or higher
dimensions when dealing with the first- and second-order
phase transitions. The BKT-like phase seems to be present
deeply in the bulk only. All thermodynamic quantities on
the hyperbolic lattices are noncritical, i.e., the correla-
tion length, specific heat, and entanglement entropy do not
diverge at phase transitions, including the correlation func-
tion, which decays exponentially at phase transition along

geodesics [25,36–39]. We have observed an exceptional be-
havior in the entanglement entropy that deserves special
attention and will be published soon [13].

If we compare the current results via the vertex repre-
sentation of the TN with the earlier weight representation
of TN [16,25], we can confirm the full agreement between
the two representations. Moreover, our results for the Ising
model on the (5,4) lattice also agree with Monte Carlo (MC)
simulations on a (5, 5) hyperbolic lattice [49], where the
authors also confirm the mean-field universality specifying
phase-transition temperature.

The numerical accuracy using the CTMRG method pre-
vails over the MC simulations for 2D lattices. While the
outermost spin layers must be removed using MC, the
CTMRG algorithm neglects boundary effects describing the
bulk properties. Moreover, the authors [49] numerically cal-
culated the mean-field universality exponent β = 0.46 ± 0.5,
whereas we achieved the exponent β = 0.500 002 almost
reaching the exact value β = 1

2 . The deviations in MC arose
due to finite-size scaling and the necessity to subtract a couple
of boundary layers, which significantly affect the bulk proper-
ties. In contrast, the most relevant errors in CTMRG originate
from the round-off errors due to the large number of iterations
(since the hyperbolic systems are off-critical, and setting the
bond dimensions m ≈ q2 is sufficient due to the exponential
decay of density matrix eigenvalues [13]).

Having compared the most similar hyperbolic lattices
(5, 5) calculated by MC and (5, 4) by CTMRG, we see that
MC yields the phase-transition temperature Tc/J = 3.93 ±
0.03 on the (5, 5) lattice while CTMRG results in the phase
transition Tc/J = 2.799 083 for the (5, 4) lattice. The phase-
transition temperature by CTMRG can be further improved
if more iterations are taken, as demonstrated on the Bethe
lattice in Fig. 10. Away from the phase transition, the nu-
merical accuracy of all physical quantities reaches machine
precision. On the other hand, the MC simulations have been
successfully applied in 3D hyperbolic space, and we hope to
make improvements in the future. We notice that CTMRG is
not accurate for the 3D cubic lattice where substantially large
bond dimensions are necessary [50].

We aimed to develop the vertex representation because
its implementation can be used for quantum systems by
PEPS [10] construction on the hyperbolic lattices. The im-
plementation is straightforward by adding an extra physical
index x into the optimized tensors, which represent the PEPS
on the hyperbolic lattices such that

|ψ〉(p,4) =
qN∑

x1x2···xN =0

Tr ([V]x1 [V]x2 · · · [V]xN )|x1x2 · · · xN 〉

=
qp∑

xV=0

q2p∑
xP=0

qp(2p−7)∑
xC=0

Tr([V]xV [P]xP [C]xC )|xVxPxC〉.

The trace goes over the multiple tensors V , P , and C that
are combined to form (p, 4) lattices, as depicted in Figs. 5,
and 6, and 15. In the CTMRG language, the PEPS requires
the following extension of the tensor indices:

[V]abcd → [V]
xV
abcd , [P]abc → [P]

xP
abc, [C]ab → [C]

xC
ab .
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FIG. 14. Graphical representation of the extension and renormal-
ization processes joined together, as separately defined in Eqs. (10)
and (11), respectively. The upper panel depicts Eqs. (A1) and (A3)
for the square (4, 4) lattice and the lower panel illustrates Eqs. (A2)
and (A3) for the hyperbolic pentagonal (5, 4) lattice. The isometry U
is associated with the reduced density matrix in Eq. (12).

The number of the physical spin indices xV , xP , xC depends on
the TN structure, that is, p, 2p, and p(2p − 7), respectively, in
accord with the right-hand side of Fig. 15. Such a construction
is inevitable for the calculation of 〈ψ |H|ψ〉(p,4) and other
observables on hyperbolic lattices.
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APPENDIX A: EXTENSION AND RENORMALIZATION

Here we describe the extension process using both the bond
indices a, b, c and the iteration step index j in the tensors
[P j]abc and [C j]ab. Reviewing the extension part for the Eu-
clidean square (4, 4) lattice means considering the following
construction (see the upper panel in Fig. 14):

[C̃ j+1]eh f g =
∑
abcd

[V]cde f [P j]gca[P j]bdh [C j]ab,

[P̃ j+1]ebca f =
∑

d

[V]cde f [P j]adb. (A1)

On the hyperbolic pentagonal (5, 4) lattice, we get (see the
lower panel in Fig. 14)

[C̃ j+1]eh f g =
∑
abcd

[V]cde f [P j]xcy[P j]bdh[C j]ab[C j]ya[C j]gx,

[P̃ j+1]ebca f =
∑
xd

[V]cde f [P j]xdb[C j]ax. (A2)

Thus the extended rank-4 tensor [C̃ j+1]eh f g and the rank-5

tensor [P̃ j+1]ebca f enter the renormalization transformation.
After applying the isometry Uj+1, we obtain

[C j+1]a′b′ =
∑
e f gh

[U j+1]a′gf [C̃ j+1]eh f g [U†
j+1]

he b′ ,

[P j+1]a′ f b′ =
∑
abce

[U j+1]a′ac[P̃ j+1]ebca f [U†
j+1]

be b′ , (A3)

and the extended and renormalized tensors transform back to
the rank-2 tensor [C j+1]a′b′ and the rank-3 tensor [P j+1]a′ f b′ ,
regardless of the lattice geometry (p, 4), as graphically de-
picted in Fig. 14.

The reduced density matrix ρ ′
j+1 defined in Eq. (12) is

formed for the extended C̃ j+1, where j enumerates the it-
erations j = 1, 2, 3, . . . , k. For brevity, let j′ = j + 1. The
dimension of ρ ′

j′ would grow exponentially as q j+1 if the
tensors were not renormalized. Recall that ρ ′

j′ is defined along

the geodesic between any two adjacent C̃ j′ ; see Fig. 6. For
instance, the reduced density matrix [ρ ′

j′ ]ab ≡ [ρ ′
j′]a1a2b1b2 on

the (5, 4) lattice has the form

[ρ ′
j′ ]a1a2b1b2 =

q∑
c1d1
e1 f1

=1

n j∑
c2d2
e2 f2

=1

[C̃ j′]b1b2c1c2
[C̃ j′]c1c2d1d2

× [C̃ j′]d1d2e1e2
[C̃ j′]e1e2 f1 f2

[C̃ j′] f1 f2a1a2
, (A4)

where a1, b1 = 1, 2, . . . , q, a2, b2 = 1, 2, . . . , n j , a =
n j (a1 − 1) + a2, and b = n j (b1 − 1) + b2. To prevent
computational overflow in the numerical calculations, a
maximal bond dimension m restricts the growing spin degrees
of freedom [20–22]. Hence, we restricted the exponential
growth by setting nj = min(q j, m).

This restriction of the Hilbert-space dimension is carried
out by selected eigenstates of ρ ′

j′ . Having diagonalized the
reduced density matrix

[ρ ′
j′ ]ab =

qn j∑
i=1

[U j′]ai[ω j′ ]i [U†
j′]ib

, (A5)

we get eigenvalues [ω j′]i � 0 and their corresponding col-
umn eigenvectors in matrix U (let the eigenvalues be ordered
decreasingly, i.e., [ω j′]1 � [ω j′]2 � · · · � [ω j′]qn j

). By addi-

tional local normalization of C̃ j′ , we can prepare such ρ ′
j′ that

satisfies Tr ρ ′
j′ = ∑qn j

i=1 [ω j′ ]i = 1, where dim(ρ ′
j′ ) = qn j . By

construction, ρ ′
j′ is a real nonsymmetric matrix for odd num-

bers of p and has to be symmetrized: 1
2 ([ρ ′

j′]ab
+ [ρ ′

j′]ba
) →

[ρ ′
j′ ]ab

to prevent having isometry in complex algebra.
To specify the renormalization isometry U j′ , we keep such

eigenvectors
∑qn j

a=1 [U j′]ai|a〉 that correspond to the n j largest
eigenvalues of ρ ′

j′ . Hence, the isometry

U j′ =
qn j∑
a=1

n j∑
i=1

[U j′]ai|a〉〈i| (A6)

fixes the exponentially growing Hilbert space to be bounded
by m after a couple of initial iterations.
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FIG. 15. Two examples of the spontaneous-magnetization cal-
culation on the square (4, 4) and the pentagonal (5, 4) lattices as
expressed in Eq. (B1). The first part of the two expressions M4 and
M5 uses a single impurity tensor I1 in the numerator to measure
Mp at the central spin only. (The denominator is the normalizing
partition function.) The first expression makes the CTMRG algo-
rithm substantially faster than the second. Both lead to identical
magnetizations in the thermodynamic limit.

Finally, we renormalize the extended tensors C̃ j+1 and P̃ j+1

by applying the isometry U j+1 (being a rectangular qn j × n j

matrix of the ρ ′
j+1 eigenstates) as in Eq. (A3).

APPENDIX B: SPONTANEOUS MAGNETIZATION

We can specify many ways to calculate the spontaneous
magnetization Mp. In Fig. 15, we provide a graphical in-
terpretation of obtaining two of them, M4 (top) and M5

(bottom). The red and blue symbols refer to Ck and Pk ,
respectively. The equivalent expression for the spontaneous
magnetization (equivalent to that shown in Fig. 15) for arbi-
trary (p, 4) is

Mp = Tr
[
I1 P4

k C
4(p−3)
k

]
Tr

[
V P4

k C
4(p−3)
k

] ≡ Tr
[
I1 V p−1 P2p

k C p(2p−7)
k

]
Tr

[
V p P2p

k C p(2p−7)
k

] , (B1)

where the central spin Sσ,ϑ has been absorbed in the impurity
tensor defined in Eq. (18) of the vertex structure of TN [51]. If
we focus on the (5, 4) lattice, the magnetization M5 expressed
on the left has a lattice geometry where the lattice has a spin
vertex V in its center while the lattice center forms a poly-
gon (pentagon) on the right. Each one has strong and weak
properties. Whereas the expression shown on the left-hand
side is computationally more efficient and requires much less
time to evaluate M5, the one on the right side follows the
expansion scheme in Fig. 5 and can be used to calculate the
nearest correlations, such as the internal energy, etc.

For the calculation of Mp, we used the one on the left. To
calculate the identical magnetization, the position of the impu-
rity tensor I� can be arbitrarily placed on the central polygon
where � = 1, 2, . . . , p, as illustrated in Fig. 15 and Eq. (B1)
on the right-hand sides. The remaining vertices occupy the
polygon by the vertex-type tensors V . To point it out again, the
two approaches yield identical results for Mp as the number
of iterations grows.

If we increase the number of impurity tensors I�, we
can evaluate two-, three-, up to p-body correlation functions

around the central polygon. For instance, the bulk internal
energy per spin on the (p, 4) lattice is proportional to the
nearest-neighbor (two-body) correlation function

〈Sσ1σ2〉 ∝ −J
Tr

[
I1I2 V p−2 P2p

k C p(2p−7)
k

]
Tr

[
V p P2p

k C p(2p−7)
k

] . (B2)

The specific heat corresponds to the derivative of the internal
energy 〈Sσ1σ2〉 with respect to temperature T . The nonanalyt-
icity at the specific-heat maximum is associated with the phase
transition [16].

APPENDIX C: FREE-ENERGY CALCULATION

As briefly sketched in Sec. III B, we now derive the free
energy per spin by calculating the partition function and the
number of spins at each iteration step j. The partition func-
tion diverges extremely fast with the increasing lattice size,
especially in the hyperbolic geometry where the number of
spins grows exponentially with j.

Normalizing P j and C j at each iteration step j is thus
an inevitable condition. Following the ideas of the weight
representation [16], we normalize the corner transfer tensors
C̄ j = C j/||C j ||max and the transfer tensor P̄ j = P j/||P j ||max at
each iteration step j = 1, 2, 3, . . . , k. We use the maximum
norm || · ||max that searches all the tensor elements and finds
the largest element in absolute value x j = ||C j ||max and y j =
||P j ||max. The maximum norm is applied to the extended and
renormalized tensors [C j+1]a′b′ and [P j+1]a′ f b′ to obtain x j+1

and yy+1, respectively; cf. Fig. 14.
Consider the corner transfer tensor at the third iteration

step C3 on the (5, 4) lattice. Using the recurrence relations in
Eq. (10) for p = 5, the corner transfer tensor at the third itera-
tion step is recursively traced back to the initial tensors C1 and
P1 to retrieve all the normalization values x1, x2, x3, y1, y2,

and y3. Then, we find

C̄3 = C3

x3

= VP̄2
2 C̄3

2

x3

= VP2
2C3

2

y2
2x3

2x3

= V (VP̄1C̄1)2
(
VP̄2

1 C̄3
1

)3

y2
2x3

2x3

= V6P8
1C11

1(
y8

1y2
2y0

3

)(
x11

1 x3
2x1

3

) . (C1)

Let us recall that the initial tensors V , P1, and C1 are associ-
ated with the single spin (see Fig. 5). Therefore, the sum of
their powers in the numerator of the bottom line in Eq. (C1)
yields 6 + 8 + 11 = 25. This corresponds to the corner tensor
C̄k=3 containing 25 spins. (We can also get the identical result
with 25 spins if we sum the powers of x j and y j in the
denominator.)

Analogously, C̄2 = V1P2
1C3

1/(y2
1y0

2x3
1x1

2 ) contains six spins,
which agrees with Fig. 5 enclosed by the dotted line. The
number of spins at a given step k and lattice geometry (p, 4)
has to be multiplied by p. Thus, the normalization factors and
their powers are used to calculate the partition function, and
information in the powers can be used to get the number of
spins.

Let ak+1− j and bk+1− j denote the powers of x j and y j ,
respectively, recalling that j = 1, 2, . . . , k. For instance, the
index ordering in Eq. (C1) corresponds to the exponents
yb3

1 yb2
2 yb1

3 xa3
1 xa2

2 xa1
3 . We thus obtained the second set of recur-
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rence equations for the (5, 4) lattice,

a j+1 = 3a j + b j, b j+1 = 2a j + b j . (C2)

After a longer analysis, we can further generalize the second
set of recurrence equations to get them for an infinite class of
the lattices (p � 4, 4),

a j+1 = (2p − 7)aj + (p − 4)b j,

b j+1 = 2a j + b j .
(C3)

We initialize them with a1 = 1 and b1 = 0 irrespective of p.
These powers are necessary for evaluating the number of all
spins on the (p, 4) lattice after k iterations, i.e., we count the
number of the vertices (tensors V)

Np,k = p
k∑

j=1

(a j + b j ), (C4)

where the prefactor p corresponds to dividing the lattice into
identical p parts (corners) ascribed to the corner transfer ten-
sors Ck , as shown in Fig. 6.

Equations (10), (C3), and (C4) are required for evaluating
the free energy per spin,

Fp,k = − kBT

Np,k
lnZp,k . (C5)

Following Eqs. (10), (15), and (C1), we can calculate lnZp,k

recursively by means of the norms and their associated powers
x

ak− j+1

j and y
bk− j+1

j ,

lnZp,k = ln
∑

a1a2···ap

[Ck]a1a2
[Ck]a2a3

· · · [Ck]apa1

= ln Tr
(
C p

k

) = ln Tr
[
VP2

k−1C
2p−7
k−1

]p = · · ·
= ln Tr

[(
VnvPnp

1 Cnc
1

)]p

= ln Tr
[
C̄k

(
ybk

1 ybk−1
2 · · · yb1

k xak
1 xak−1

2 · · · xa1
k

)]p

= ln Tr
(
C̄ p

k

) + p
k∑

j=1

bk− j+1 ln(y j ) + ak− j+1 ln(x j ).

(C6)

Notice that p(nv + np + nc) = Np,k from Eqs. (C1) and (C4).
The first term in the bottom line in Eq. (C6) is a small
real number with upper bound 0 < ln Tr (C̄ p

k ) � 2p ln(qm).
If the first term in Eq. (C5) enters the free energy, the ratio
N−1

p,k ln Tr (C̄ p
k ) → 0 exponentially fast (the max norm applied

to the tensor C̄k).

APPENDIX D: FREE-ENERGY ASYMPTOTICS

1. Low-temperature limit

The uniform ferromagnetic ordering (J = 1) at zero tem-
perature leads to q-fold degeneracy (unless the degeneracy is
removed by spontaneous symmetry breaking in the thermo-
dynamic limit). Equivalently, the symmetry can be broken by
imposing small magnetic fields h and b (including numerical
round-off errors). Then, one of the q uniform orderings is cho-
sen. The contribution to the q-state clock/Potts Hamiltonians
enters as the number of bonds for the spin-spin interaction and
the number of spins associated with the magnetic fields.

To evaluate the free energy as a function of the iteration
step k, we compute the total number of spins Np,k , the number
of spins on the boundary shell nBS

p,k , and the total number of
bonds Bp,k as a function of the iteration step k. We can also
ascribe k to the number of shells, with k being the outermost
spin shell and the first layer in the lattice center.

As derived in Appendix C, the construction of a (p, 4)
lattice is described by the recursive relations in Eq. (C3). The
total number of spins, derived in Eq. (C4), is

Np,k = p
k∑

j=1

(a j + b j ) = p(ak + bk )︸ ︷︷ ︸
nBS

p,k

+p
k−1∑
j=1

(a j + b j ),

(D1)
where nBS

p,k is the number of spins on the outermost boundary
shell (BS) at the final iteration step k. The total number of
bonds, Bp,k , is given by the number of bonds on all shells
(which is equal to the number of spins on the shells Np,k)
and the bonds connecting the shells. Between two shells cor-
responding to iteration steps j and j + 1, there is one bond
per each tensor P j and two bonds per each tensor C j . Thus,
the total number of bonds at iteration step k is

Bp,k = Np,k + p
k−1∑
j=1

(2a j + b j ). (D2)

On the square lattice, (p = 4), the recursive relations in
Eq. (C3) reduce to a j+1 = a j = 1 and b j = 2 j − 2. Hence

nBS
4,k = 4(2k − 1),

N4,k = 4
k∑

j=1

(a j + b j ) = 4
k∑

j=1

(2 j − 1) = (2k)2,

B4,k = 4
k∑

j=1

(2 j − 1) + 4
k−1∑
j=1

2 j = 4k(2k − 1). (D3)

Now, we take the limit of the Bethe lattice (p � 1). The
recurrence relations are aj+1 = p(2a j + b j ) = p b j+1. Then,

a j = p b j = 2p(2p + 1) j−2 p≫1−→ (2p) j−1 and we get

nBS
p,k = 1

2
(2p)k,

Np,k = 1

2
(2p)k +

k−1∑
j=1

c j

(2p) j

p≫1−→ 1

2
(2p)k,

Bp,k = 1

2
(2p)k +

k−1∑
j=1

d j

(2p) j

p≫1−→ 1

2
(2p)k, (D4)

where c j and d j are non-negative real numbers. With the re-
sults listed in Eqs. (D4) and (D3), we evaluate the free energy
per spin in the thermodynamic limit (k → ∞) and at zero
temperature T → 0. The spontaneously broken ferromagnetic
spin alignment is uniformly ordered, and the Hamiltonian
from Eq. (4) reduces to

Hp[σ ] = −JBp,k − hNp,k − b nBS
p,k, (D5)

where the interaction term J acts on all the lattice bonds B4,k ,
the uniform magnetic field h is applied to all spins N4,k , and
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the field b is imposed on the boundary spins nBS
4,k only. The

free energy per spin for the square lattice (4, 4) in Eq. (20)
asymptotically (T = 0) becomes

F4,∞ = lim
k→∞

− kBT

N4,k
lnZ4,k

= lim
k→∞

− kBT

N4,k
ln

∑
[σ ]

exp(−Hp[σ ]/kBT )

= lim
k→∞

−JB4,k + |h|N4,k + |b| nBS
4,k

N4,k

= −2J − |h|. (D6)

The boundary field b does not affect the free energy in the
thermodynamic limit because nBS

4,k grows linearly and b is
irrelevant on the Euclidean lattices.

Substantially different behavior occurs on the hyperbolic
lattices. For the Bethe lattice (∞, 4) we obtain

F∞,∞ = lim
k→∞
p→∞

− kBT

Np,k
lnZp,k

= lim
k→∞
p→∞

−JBp,k + |h|Np,k + |b| nBS
p,k

Np,k

= −J − |h| − |b|. (D7)

Finally, the asymptotic behavior of free energy at zero
temperature is confirmed and agrees with the data shown in
Fig. 13. For the ferromagnetic interaction J = 1 and field
h = 0, we get F4,∞ = −2 and F∞,∞ = −1 − |b|.

2. High-temperature limit

Thermodynamic entropy Sth is related to the temperature
derivative of the free energy [see Eqs. (20) and ((25),

Sth = lim
T →∞

− d

dT

(
− kBT

Np,k
lnZp,k

)
. (D8)

To evaluate the partition function, we realize that
exp(−Hp/kBT ) → 1 in the limit T → ∞ irrespective of
the type of Hamiltonian and lattice. Then the partition
function reads

Zp,k = lim
T →∞

∑
σ1

∑
σ2

· · ·
∑
σNp,k︸ ︷︷ ︸

qNp,k configs

exp

(
−Hp[σ ]

kBT

)
= qNp,k .

(D9)
The partition function grows exponentially with the number of
spins Np,k for the q-state spin σ j = 0, 1, . . . , q − 1. At high
temperatures and kB = 1, we obtain exp(Sth ) = q, as plotted
in the inset of Fig. 13.
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