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Abstract
Certifying whether an arbitrary quantum system is entangled or not, is, in general, an
NP-hard problem. Though various necessary and sufficient conditions have already
been explored in this regard for lower-dimensional systems, it is hard to extend them
to higher dimensions. Recently, an ensemble bagging and convex hull approximation
(CHA) approach (together, BCHA)was proposed and it strongly suggests employing a
machine learning technique for the separability-entanglement classification problem.
However, BCHA does only incorporate the balanced dataset for classification tasks
which results in lower average accuracy. In order to solve the data imbalance problem
in the present literature, an exploration of the boosting technique has been carried out,
and a trade-off between the boosting and bagging-based ensemble classifier is explored
for quantum separability problems. For the two-qubit and two-qutrit quantum systems,
the pros and cons of the proposed random under-sampling boost CHA (RUSBCHA)
for the quantum separability problem are compared with the state-of-the-art CHA
and BCHA approaches. As the data are highly unbalanced, performance measures
such as overall accuracy, average accuracy, F-measure, and G-mean are evaluated
for a fair comparison. The outcomes suggest that RUSBCHA is an alternative to the
BCHA approach. Also, for several cases, performance improvements are observed for
RUSBCHA since the data are imbalanced.

B Sk Sazim
sk.sazimsq49@gmail.com

Ram N. Patro
c116009@iiit-bh.ac.in

1 Department of Physics, International Institute of Information and Technology, Bhubaneswar,
Odisha 751029, India

2 Department of ECE, International Institute of Information and Technology, Bhubaneswar,
Odisha 751029, India

3 RCQI, Institute of Physics, Slovak Academy of Sciences, 845 11 Bratislava, Slovakia

4 Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw,
Poland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-024-04469-9&domain=pdf
http://orcid.org/0000-0003-3117-0785


273 Page 2 of 20 S. D. Mohanty et al.

Keywords Entanglement certification · Bagging and boosting classifiers · Convex
hull approximation · Machine learning

Abbreviations
CHA Convex hull approximation
BCHA Bagging-based CHA
RUSBCHA Random under-sampling BCHA
ML Machine learning
PPT Positive partial transpose
SVM Support vector machine
SMOTE Synthetic minority oversampling technique
TP True positive
TN True negative
FP False positive
FN False negative
OA Overall accuracy
AA Average accuracy
OE Overall error
AE Average error

1 Introduction

Nowadays, machine learning (ML) is being employed more to tackle and delve deeper
into the harder problems in quantum information science. In recent years, it has been
applied in state classifications [1–3], state reconstruction [4], parameter estimation [5],
and many others [6–13]. The motivation behind using ML in quantum information is
to get more insights into the problems where usual numerical techniques either fail
or need more resources, eg., the optimization tasks in high constraint or non-convex
scenarios.

To decide whether an arbitrary quantum state is entangled or not is an NP-hard
problem [14]. It is one of the long-standing fundamental issues in entanglement the-
ory. A state of a composite system ρAB is said to be separable if ρAB = ∑

i piρ
i
A⊗ρi

B
for any two subsystems A and B, where pi (≥ 0) represents classical mixing prob-
ability with

∑
i pi = 1. Otherwise, it is an entangled state. There exist numerous

criteria to detect bipartite entanglement;e however, these criteria are less reliable for
higher-dimensional systems. For example, the popular Peres-Horodecki criteria state
that the separable states are positive partial transpose (PPT) [15, 16], meaning for
separable states ρ

TA
AB ≥ 0, where TA denotes transposition on system A. The crite-

ria are necessary and sufficient for dAdB ≤ 6, where d denotes system dimension.
Other extant method includes entanglement witness, reduction criteria, cross-norm, or
realignment criteria to name a few [17]. The most powerful technique is k-extension
hierarchy, but it is notoriously hard to compute due to its exponentially growing com-
plexity with k [18, 19]. Recently, in Ref.[1], it was studied that ML techniques are
instrumental in probing separability-entanglement classification. It was established
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that the ML-based technique is more efficient in terms of speed and accuracy than all
extant methods. A couple more ML-based techniques were well studied for quantum
separable-entanglement classification using artificial neural networks [20, 21].

Ref. [1] employed the convex hull approximation (CHA) to probe the separability-
entanglement boundary using a supervised learning scheme. To reduce the error in
classification using CHA, the bagging method [22] was invoked. This new method is
known as bagging CHA (BCHA). This method increases the speed and accuracy of
data manipulation as it divides the whole process into smaller units, and then runs in
parallel. Ref. [1] demonstrates their results for two-qubits and two-qutrit systems with
fairly high accuracy.

In this work, building on the approaches of Ref. [1], we propose an alternative
method that addresses some important issues with further accuracy improvements
for the separability-entanglement classification using ML. First, a) we notice that
the earlier work does not address the issue of handling data imbalance, and b) did
not explore all extant performance measures in their study. In what follows, we find
that there are some performance measures which are more relevant to the study of
separability problem. Also, we show in this draft that a proper ML classifier with
boosting can handle the class imbalance issue by optimally balancing between bagging
and boosting methods.

2 Setting up the stage

2.1 Supervised learning

Supervised learning is a method of developing artificial intelligence that involves
training a computer algorithm on input data that has been labeled for a certain output
[23]. In order to apply it to real-time data, the model is trained until it can discover
the underlying patterns and relationships between the input data and the output labels,
allowing it to produce accurate classification results.

For supervised learning, the system is supplied with labeled datasets throughout
its training phase, which tell it what output is associated with each specific input set.
The trained model is then evaluated with test data, which is labeled data with the
labels hidden from the algorithm [24]. Further, the unlabeled testing data are used to
determine how well the algorithm performs the classification task [25].

To create the learning dataset,we consider bipartite quantum stateρAB of dimension
dA⊗dB inHA⊗HB . Arbitrary density matrix ρAB ∈ HA⊗HB can be represented by
real vector xi ∈ V (= R

d2Ad
2
B−1) as ρ† = ρ and Tr[ρ] = 1.We call such a vector feature

vector [see Appendix A for detail]. The training dataset is then defined as �train =
{(xi , yi )|i = 1, · · · n}, where xi is the i th sample and yi is its corresponding class
label, which is represented as, yi = 1(0) if it is separable (entangled). Data labeling
for dAdB ≤ 6 is performed by using PPT criteria. However, for higher dimensions,
the labeling is done as per the Appendix-C of Ref. [1].

In supervised learning, the main aim is to find a classifier (indicator function)
� : V → {0, 1} which will fit the training data at best among a class of functions
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F. As the present quantum entanglement is a binary classification problem, the error
expresses the miss classification rate over two classes. For any training data �train
consisting of n samples, each associated with feature vector V and a target class label
yi (∈ {0, 1}); the loss function L for any binary classifier � can be represented as

L(�,�train) = 1

n

n∑

i=1

1[yi �= �(xi )],

where 1[·] is a truth function of its argument. For any test data �test, the value of
function L(�,�test) depicts the generalization error from �train to �test.

It was found that among numerous extant supervised learning algorithms, eg., sup-
port vector machine (SVM) [26], decision tree [27], boosting [28], etc. do not provide
acceptable accuracy for separability problem [1]. This is due to the complex structure
of the set of separable states. This led authors of Ref. [1] to the following consideration.

2.2 Combining CHAwith supervised learning

The set of all separable states, �1, is convex and compact, and its exterior points are
all pure product states. Using this fact, one can sample �1 using convex hull (C) of
m number of product states, {ci } ∈ V, i.e., C := conv{ci |i = 1, . . . ,m}. The C is the
CHA of�1, and one can decide if an unknown state ρ is separable or not by examining
whether its feature vector x is in C. Equivalently, it is the solution of following linear
programming:

max α s.t. αx ∈ C, i.e.,

αx =
|C|∑

i=1

λi ci , λi ≥ 0,
∑

i

λi = 1, (1)

where α has functional dependence on both C and x. If x is in C, then the corre-
sponding state, ρ, is separable, else ρ is an entangled state with high possibility. More
specifically ρ is separable when α ≥ 1 and entangled otherwise.We denote a maximal
α for a chosen m-value as αm

max. If we increase m (to better approximate C), we will
achieve better classification. It is evident that adding more exterior points in convex
approximation will increase the accuracy of the above algorithms, however, it is really
time-consuming. To overcome this, Ref. [1] usedCHA in combinationwith supervised
learning. Now, training data are defined as �train = {(xi , αi , yi )|i = 1, . . . , n} and
the loss function of classifier � is redefined as

L(�,�train) = 1

n

n∑

i=1

1[yi �= �(xi , αi )]. (2)

Whereαi is the outcome of CHA for i-th random densitymatrix after solving the linear
programming for finding x in C. Note that, CHA uses a threshold α ≥ 1 to classify
as 1(0). The values of α acts as another feature for the classifier to learn the model.
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Fig. 1 Overview of bagging classifier: multiple learners are created by generating additional data points.
The new data points are created randomly with a uniform probability as before. Generally, the created N
learners are parallel and are further averaged to obtain the final learning error defined as e = 1

N
∑N

i=1 ei

In Ref [1] bagging-based classification is performed on this feature space, known as
bagging CHA (BCHA). More information on the bagging and boosting approaches is
discussed further.

2.3 Overview of bagging and boosting classifiers

An ensemble meta-estimator called a bagging classifier fits base classifiers one at a
time to random subsets of the original dataset, and then it aggregates the individual
predictions (either by voting or by averaging) to provide a final prediction. By adding
randomization to the process of building a black-box estimator (such as a decision
tree), a meta-estimator of this kind can often be used to lower the variance of the
estimator.

A training set is created by randomly selecting M instances (or pieces of data)
from the original training dataset (of size N ), and used to train each base classifier in
parallel. Each base classifier’s training set is distinct from the others. In the resultant
training set, many of the original data might be replicated while others might not. An
overview of bagging classifiers is presented in Fig. 1.

A number of weak classifiers are combined in the broad ensemble approach known
as "boosting" to produce a strong classifier. In order to do this, a model is first con-
structed using the training data, and a secondmodel is then developed in an effort to fix
the errors in the first model. The training set is predicted exactly or a predetermined
number of models are added, depending on which comes first. AdaBoost [29] was
the first really successful boosting algorithm developed for binary classification. An
overview of boosting classifiers is presented in Fig. 2.

Both boosting and bagging fall under the category of "ensemble learning." Com-
bining many weak learners to create a hybrid categorization system. Most often,
"ensemble learning" refers to trained weak decision ensemble trees.
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Fig. 2 Overviewof boosting classifier: similar to the bagging approach, the boosting classifier also generates
multiple data points. But, unlike parallel in bagging, the boosting approach sequentially learns the error
from the previous learner and assigns a higher weight to the miss classified data, and random sampling
with weighted replacement is carried out. Also, another set of weights assigned to the learners are further
accumulated to find the final weighted average error defined as e = ∑N

i=1 wi ei

2.4 Imbalanced dataset

Imbalanced dataset refers to an unequal distribution of class samples within a dataset.
Such unequal distribution of class samples reduces the training performance of the
classifiers, and hence the classification results on the testing data are also affected.

In the present context, the volume of entangled states is far more than the separable
states, making the dataset imbalanced. For more details on the experimented datasets,
see Sect. 4.1. From the discussion in Sect. 4.1, we can observe that the prevalence
differences are high for both datasets and hence they are highly imbalanced.

This demands a classifier that can handle data imbalance issues and can be more
suitable for quantum separability-entanglement classification problems. Which is
discussed in the next section.

Also, for such imbalanced datasets, the learning performance of any ML approach
is greatly affected [30] and needs a careful performance evaluation. Such performance
measures are discussed in Sect. 4.2.

2.5 Ensemble classifiers for imbalanced dataset

It has been well studied that, for imbalanced data, the SVM classifier may be biased
toward the majority class [31]. A modification of SVM has already been presented,
incorporating randomunder-sampling (RUS) for an unbalanced dataset [32] by remov-
ing the samples randomly from the training set. For highly unbalanced data, synthetic
minority oversampling technique (SMOTE) [33, 34] has been applied toward classi-
fication, where it generally over-samples the minority class to create synthetic data
points. So further incorporation of SMOTE to boosting approach may be effective for
classification. When oversampling is performed by duplicating examples, it may lead
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to over-fitting [35]. So, further modification by incorporating the under-sampling may
help in the performance improvement of the classifier. Instead of over-sampling the
minority classes, under-sampling the majority classes also may help in improving the
classifier results. The RUS randomly removes examples from the majority class until
the desired class distribution is found [36]. Such integration with boosting is RUS-
Boost [36], which is a hybrid approach combining random under-sampling, SMOTE,
and Adaptive Boost (AdaBoost) classifier.

For ensemble learning, bagging and boosting are generally applied (see Figs. 1
and 2). Already the bagging-based CHA (BCHA) is proposed [1], reporting higher
accuracy than CHA. But, as the data are highly unbalanced, the accuracy evaluation
should be twofold– 1) overall accuracy (OA) and 2) average accuracy (AA). For more
details on the performancemeasuresOAandAA, see 4.2.OA is the number of correctly
classified test samples per total samples under test while AA is the sum of accuracy
for each class predicted per the total number of classes (average of each accuracy per
class). Hence, although the reported OA [1] is higher, we evaluated the AA of BCHA,
which is of less margin than the CHA approach. This demands further improvement in
the classifier which can take care of both theOA andAA for separability-entanglement
classification.

As the experimented dataset is highly unbalanced (refer Sect. 4.1), the RUSBoost
approach is explored for separability-entanglement classification and is validated
over the state-of-the-art approaches. The subsequent section describes the RUSBoost
ensembled CHA classifier.

3 RUSBoost CHA (RUSBCHA)

Initially, all examples in the training dataset are assigned equal weights. During each
iteration of AdaBoost, a weak hypothesis is formed by the base learner. The error asso-
ciated with the hypothesis is calculated, and the weight of each example is adjusted
such that wrongly classified examples have their weights increased while correctly
classified samples have their weights decreased. Therefore, subsequent iterations of
boosting will generate hypotheses that are more likely to correctly classify the previ-
ously mislabeled examples. After all, iterations are completed, and a weighted vote of
all hypotheses is used to assign a class to the unlabeled samples.

Data sampling techniques attempt to alleviate the problem of class imbalance by
adjusting the class distribution of the training dataset. This can be accomplished
by either removing examples from the majority class (under-sampling) or adding
examples to the minority class (oversampling).

SMOTEadds newartificialminority examples by extrapolating betweenpreexisting
minority instances rather than simply duplicating original examples. The newly created
instances cause the minority regions of the feature space to be fuller and more general.

The RUSBoost takes advantage of all these approaches by combining them. A
detailed discussion on the RUSBoost approach can be found in [36].

Although significant classifier performance improvement is observed [1] in the
case of BCHA as compared to standalone CHA, some limitations exist which are
discussed in Sect. 1. So, it can be further improvised in two ways 1) by replacing the
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Table 1 Various experimented classifiers with their associated feature space (dimensions)

BAGGING BOOSTING CHA BCHA RUSBCHA

Feature space d2-1 d2-1 d2-1 d2 d2

Two qubit 15 15 15 16 16

Two qutrit 80 80 80 81 81

Fig. 3 Data space � as a combination of entangled �0 and separable �1 subspaces. ci represents the pure
product states

classifier and 2) by increasing the feature space by proper feature extraction technique.
Presently the first case is explored by incorporating the RUSBCHA classifier for
possible improvement in the classification results leaving scope to explore the feature
extraction techniques as future work.

4 Experimental setup

All the classifications were carried out on two kinds of feature spaces 1) vector rep-
resented ρ (d2 − 1-dimensional feature space), 2) vector represented ρ with CHA
calculated αm

max for a specific m (d2-dimensional feature space). The experiments are
carried out for both the two-qubit and two-qutrit systems. Five different techniques
such as bagging and boosting were tested on raw d2-1-dimensional (for two-qubit
system d=4 and for two-qutrit system d=9) feature vector x, CHA with only one
αm
max, while the BCHA and RUSBCHA are trained with both the x, and αm

max. Their
associated feature spaces are presented in Table 1.

The dataset details and the performance evaluators are presented below.

4.1 Dataset preparation

The total data space � is a combination of the separable subspace �1 and entangled
subspace �0; such that � = �1 ∪ �0 and �1 ∩ �0 = ∅ (see Fig3). Two datasets,
representing the feature vectors of random density matrices for two-qubit and two-
qutrit systems, respectively, are supplied with their class labels in [37]. The procedure
for creating the random separable and entangled states can be referred to in the BCHA
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Table 2 Dataset description of
experimented training, testing,
and total samples for two-qubit
systems

Class (label) Total Training Testing

Separable (1) 2814 1388 1426

Entangled (0) 37186 18612 18574

All sample 40000 20000 20000

Table 3 Dataset description of
experimented training, testing,
and total samples for two-qutrit
systems

Class (label) Total Training Testing

Separable (1) 6751 3338 3413

Entangled (0) 13249 6662 5687

All sample 20000 10000 10000

manuscript [1]. The total and class-specific training and testing sample information
for the pair of the experimented datasets, namely two-qubit and two-qutrit system,
are presented in Table 2 and Table 3, respectively. Approximate 50% samples are
randomly selected for training and the remaining 50% samples are used for testing to
evaluate the performances of ML algorithms.

The maximized parameter, αm
max for CHA (with varying m) of 1) two-qubit

system with m = [1000, 2000, .., 10000], and 2) two-qutrit system with m =
[10000, 20000, .., 100000]) were also obtained from [1, 37]. The minimization was
made by solving the linear programming defined in Eq.(1).

FromTables 2 and 3, we can observe that the class samples are unequally distributed
within the dataset. A prevalence difference for a binary classification represents the
degree of imbalance in the dataset. The dataset-specific prevalence difference of class
samples can be interpreted as, for:

• Two-qubit dataset (Table 2):
∣
∣ 2814
40000 − 37186

40000

∣
∣ = 0.8593.

• Two-qutrit dataset (Table 3):
∣
∣
∣ 6751
20000 − 13249

20000

∣
∣
∣ = 0.3249.

For a balanced dataset, the prevalence difference must approach 0. However, we
can observe that the prevalence difference for the two-qubit dataset is high (0.86)
and for the two-qutrit dataset, it is comparatively low (0.32). This clearly signifies
that the experimented dataset is highly imbalanced. For such imbalanced datasets, the
learning performance of any ML approach is greatly affected [30] and needs a careful
performance evaluation. Such performance measures are discussed further.

4.2 Performancemeasures

For ease of understanding the binary classification, the confusion matrix is presented
in Fig. 4. In the figure, columns represent the original class labels (supplied with the
data) as true and false; similarly each row represents the outcome of the classifier.

True positive (TP) and true negative (TN) are defined as both the original (ground
truth) and the obtained (classified) class labels are true and false, respectively. The
contradictions are presented as false positive (FP) and false negative (FN) which
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Fig. 4 Confusion matrix for
binary classification

are off-diagonal in the confusion matrix. Let N number of samples be tested, i.e.,
N = ∑

(TP + TN + FP + FN). So, higher TP and TN values lead to better accuracy;
on the contrary, higher FP and FN values reject the classifier.

Now we can define overall accuracy (OA) as

OA = TP + TN

N
,

and the overall error (OE) as OE=1-OA.
For binary classification, let, out of N tested samples, there are N1 and N2 samples

labeled as true and false, respectively (where N = N1 + N2). The average accuracy
(AA) is the mean accuracy obtained for each class and is defined as

AA = 1

2

(
TP

N1
+ TN

N2

)

.

and the average error (AE) as AE=1-AA.
Similarly, other important measures such as sensitivity (s = TP

TP+FN), specificity

(r = TN
N ), Precision (k = TP

TP+FP ), F-measure and G-mean can be incorporated for
validating the classification results. We will use the following two for our analysis:

F-measure = 2

(
k × s

k + s

)

, and G-mean = √
s × r .

Higher values of OA, AA, F-measure, and G-mean are desirable for evaluating the
performance of a classifier.

5 Results and discussion

We used both the datasets (see Sect. 4.1) and all the performance measures described
in Sect. 4.2, to compare the proposed RUSBCHA and other state-of-art classifiers in
terms of figures. For the robust representation of performances on the experimented
data, all the classification performance measures are averaged over 30 independent
evaluations.

The bagging and boosting classifier only incorporates the d2-1-dimensional feature
vector x. The classification performance as; AE, F-measure, G-mean, andOE; for two-
qubit and two-qutrit systems are presented in Fig. 5 a, b, respectively. For the two-qubit

123



Trade-off between bagging and boosting... Page 11 of 20 273

Fig. 5 Classification results of the rawdatawithout considering theCHA(α) for a two-qubit and b two-qutrit
system

Fig. 6 Classification results of the two-qubit system, considering the CHA (α)

system (Fig. 5 a), it is observed that the proposed boosting approach outperforms the
bagging approach in terms of F-measure, G-mean, and AE. While marginal deviation
is observed for OE. Similarly, for the two-qutrit system (Fig. 5 b), improvement is
observed for G-mean and AE.

According to both the CHA and BCHA approaches, if αm
max ≥ 1, x is separable;

else, x is highly possible to be an entangled state. Hence, our proposed RUSBCHA
classifier also incorporates both the feature vectors x and αm

max. To find the trade-off
between the state-of-the-art BCHA and the proposed RUSBCHA approach, further
experiments are made on both two-qubit and two-qutrit datasets. These experiments
include:

• Experiment 1: Performance evaluation of classifiers over varying m.
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Fig. 7 Classification results of the two-qutrit system, considering the CHA (α)

Fig. 8 Obtained overall accuracy and average accuracy for the two-qubit system over varying percentage
(%) of training samples (m=2000)

• Experiment 2: Performance evaluation of classifiers over varying percentages of
training and testing samples.

• Experiment 3: Performance evaluation of classifiers on varying prevalence
difference of dataset.

5.1 Experiment 1

In this experiment, the CHA, BCHA, and proposed RUSBCHA classifiers are com-
pared over varying m for both two-qubit and two-qutrit datasets. Experimental results
are shown in Figs. 6 and 7.

For a two-qubit system, from Fig. 6b, it can be observed that the AE of BCHA
is higher for all values of m as compared to CHA and RUSBCHA approaches. The
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Fig. 9 Obtained overall accuracy and average accuracy for the two-qutrit systems over varying percentage
(%) of training samples (m=20000)

BCHA performance has almost 40% error for the lower value of m. It can also be
observed that, for lower values of m, the performances of CHA and RUSBCHA are
similar, while for higher values of m RUSBCHA has lower AE values. This clearly
signifies that the proposed RUSBCHA is less biased to themajority classes, and hence,
the average accuracy is higher in comparison with other state of approaches. A similar
interpretation also can be seen in Fig. 6d.

From Fig. 6a, it can be observed that the OE of BCHA has lower values, and
hence its performance is better for lower values of m in comparison with RUSBCHA
and CHA approaches. While the proposed RUSBCHA has intermediate performance
in comparison with other state of approaches. However, in Fig. 6c, the F-measure
performances are equivalently similar for all approaches.

On theother hand, for the two-qutrit system (Fig. 7), both theBCHAandRUSBCHA
have similar performances over varyingm with significant performance improvements
as compared to the state-of-art CHA approach.

In this experiment, you can observe better performance of proposed RUSBCHA
approach for two-qubit dataset in comparison with BCHA and CHA approaches while
similar performances are observed for both RUSBCHA and BCHA for two-qutrit
datasets. To find the rationale for performance differences of these two datasets, further
experiments are carried out.

5.2 Experiment 2

In literature, it is proved that several machine learning techniques such as neural
network and deep learning require a large number of samples to train. The above
problem may occur due to the sensitivity of the classifier to the percentage of training
samples. In experiment 1, 50% of samples are trained and the rest are tested. Hence,
further validation of the approaches is carried out with varying training (10–50%)
and testing (50–90%) scales, and the performances are presented in Figs. 8 and 9 for
two-qubit and two-qutrit systems, respectively. Note that, for this experiment, the total
samples are the same as Tables 2 and 3 for the respective datasets. In this experiment,
m is set as 2000 and 20000 for two-qubit data and two-qutrit data, respectively.
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Fig. 10 Overall accuracy and average accuracyofBCHAandRUSBCHAover varyingprevalence difference
of the two-qubit data

Fig. 11 Overall accuracy and average accuracyofBCHAandRUSBCHAover varyingprevalence difference
of the two-qutrit data

From Fig. 8a, it can be observed that OA of BCHA is 2.5% more than RUSBCHA,
while in Fig. 8b AA of RUSBCHA is more than 15% better than BCHA. However, the
results of these classifiers do not vary by the variation in training percentages. There-
fore, performance of both the classifiers is not sensitive to the number of training
samples. For the two-qutrit data, in Fig. 9a and Fig. 9b, you can also observe similar
results. However, the AA performances in Figs. 8b and 9b suggests that the RUS-
BCHA performs better than BCHA, specifically for two-qubit dataset. Note in this
respect that the prevalence difference of the two-qutrit dataset (0.3249) which is com-
paratively low referring to the prevalence difference of the two-qubit dataset (0.8593)
for this experiment. This further suggests that doing further experiments to test both
the classifiers with varying prevalence difference ratios might provide us some clue
on how these classifiers work for imbalanced datasets.

5.3 Experiment 3

The above experiments were performed with two-qubit and two-qutrit datasets as
mentioned in Table 2 and Table 3, respectively. From these tables, you can observe
that the separable samples are only 7% and 33% of the total samples for two-qubit
and two-qutrit datasets, respectively. To test the performance of classifiers for dif-
ferent prevalence differences, we created imbalanced datasets of different prevalence
differences for both two-qubit and two-qutrit.
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Table 4 Description of
imbalanced datasets created
from the original two-qubit
dataset of Table 2

Number of samples Prevalence difference
Separable Entangled Total

1800 37186 38986 0.907

2814 33000 35814 0.842

2814 18000 20814 0.729

2814 14000 16814 0.665

2814 10000 12814 0.560

2814 8000 10814 0.479

2814 5500 8314 0.323

2814 4500 7314 0.230

2814 3500 6314 0.108

2814 3000 5814 0.031

Table 5 Description of
imbalanced datasets created
from the original two-qutrit
dataset of Table 3

Number of samples Prevalence difference
Separable Entangled Total

600 13249 13849 0.913

1380 13249 14629 0.811

2200 13249 15449 0.715

3200 13249 16449 0.610

4200 13249 17449 0.518

5500 13249 18749 0.413

6751 13000 19751 0.316

6751 10500 17251 0.217

6751 8500 15251 0.114

6751 7000 13751 0.018

Table 4 shows the description of created imbalanced datasets for two-qubits. In
this table, each row describes a dataset which is a subset of the dataset described in
Table 2. For each created dataset subset, its number of separable, entangled, and total
samples are represented. Also for each entry in the table, the prevalence difference
of the respective dataset is mentioned. One notices the prevalence difference values
range approximately from 0 to 0.9. The value 0 represents the dataset is balanced, and
value 0.9 represents the dataset is highly imbalanced. A similar interpretation for the
two-qutrit dataset can be done from Table 5.

Figure10 shows the classifier performances over the varying prevalence of two-
qubit data. In the figure, the performances are averaged over 30 iterations, and in each
iteration, a new subset of the dataset is created with varying prevalence differences
(Table 4). For this experiment, we fixed these parameters m=2000, and 50% training
samples.

It is observed from Fig. 10a that the OA of both BCHA and RUSBCHA are similar
up to 0.6 prevalence difference. However, afterward, there is a minor improvement of
OA for BCHA approach in comparison with RUSBCHA approach. From Fig. 10b, it
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can be observed that both BCHA and RUSBCHA performances are similar up to 0.5
prevalence difference. However, afterward, there is a sharp decline of AA for BCHA
in comparison with RUSBCHA.

Figure11 shows the classifier performances over the varying prevalence of two-
qutrit data. In the figure, the performances are averaged over 30 iterations, and in each
iteration, a new subset of the dataset is created with varying prevalence differences
(Table 5). For this experiment, we fixed these parameters m=20000, and 50% training
samples.

It is observed from Fig. 11a that the OA of both BCHA and RUSBCHA are similar
up to 0.3 prevalence difference. However, afterward, there is a minor improvement of
OA for BCHA approach in comparison with RUSBCHA approach. From Fig. 11b, it
can be observed that both BCHA and RUSBCHA performances are similar up to 0.25
prevalence difference. However, afterward, there is a sharp decline of AA for BCHA
in comparison with RUSBCHA.

From the results in Fig. 10 and Fig. 11, it can be observed that the performance of
the proposed RUSBCHA approach is consistent (almost a straight line) over vary-
ing prevalence differences of data. So, it can be concluded that the performance of
RUSBCHA is not heavily affected by the data imbalances.

Referring to our earlier observations, for Fig. 6, the reason for having good AA
of proposed RUSBCHA over BCHA, and for Fig. 7, the reason for having similar
performances of both RUSBCHA and BCHA can now be justified using Fig. 10 and
Fig. 11, respectively. Since the prevalence difference of two-qubit data is 0.8593 our
proposed RUSBCHA performs better than BCHA. While the prevalence difference
of two-qutrit data is 0.3249, hence, both BCHA and RUSBCHA performances are
similar.

Hence, we can conclude that the RUSBCHA can be an alternative to the BCHA
approach and also can be a better classifier to deal with highly imbalanced datasets.
Overall, the ensemble learning is helpful for better understanding of separability-
entanglement problem, when compared to the stand-alone CHA approach.

6 Conclusion

The necessity of a separability-entanglement classifier is well known in the quantum
information forum. Although various necessary and sufficient criteria like PPT have
been proposed in the past, still, they cannot be generalized for higher dimensions. The
ML approaches are vastly exploited in the general data-mining perspective, while the
discussions and applications are limited in quantum information processing. Similar to
BCHA, we proposed RUSBCHA as an alternativeML-based solution for the quantum
separability problem. The proposed RUSBCHA approach for quantum separability
problem shown improvements in AE for the two-qubit system, while having similar
responses for the two-qutrit systems in comparison with CHA. As the data are highly
unbalanced, standard performance measures like OE, AE, F-measure, and G-mean
are evaluated. The results suggest incorporating a proper ML approach to classify
the separability-entanglement criteria with proper performance matrices. Also, the
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proposedRUSBCHAcan be an alternative toCHAwhich can dealwith the unbalanced
dataset that may reduce the over-fitting error of the classifier.

In order to evaluate the effectiveness of the classifier, the feature extraction is
unexploited here; however, this can be a further direction of research to improve the
classification performance. Also, other ML approaches can be exploited and validated
further.

Appendix A: Feature vector

To illustrate what is feature vector x, we consider the following example. We know
a quantum state (ρd ) in d-dimensional Hilbert space can be represented by a d × d
density matrix using generalized Gell-Mann matrices, σi ∈ SU (d) as

ρd = 1

n

(

I +
√
d(d − 1)

2
x.σ

)

, (A1)

where x ∈ R
d2−1 is the feature vector which satisfies xi =

√
d

2(d−1)Tr[ρdσi ]. This is
possible as ρ is Hermitian and has trace unity.

In our analysis, we consider quantum systems in dA ⊗ dB-dimensional Hilbert
spaceHA ⊗ HB which are represented by dAdB × dAdB density matrices. Hence, to
represent using feature vectors, we need Gell-Mann matrices σi ∈ SU (dAdB), i.e.,
the x ∈ R

d2Ad
2
B−1.

Appendix B: Generating random density matrices in the code

Most of the contents in the appendix are elaborately discussed in Ref.[1]. We will
discuss the methods of producing random density matrices for specific dimensions in
a nutshell.

To produce random bipartite density matrices of any rank numerically, we use the
probability distribution p(μ, θ, d) = μ × �θ , where μ is the uniform distribution on
U (d) according to the Haar measure, �θ is the Dirichlet distribution

�θ (	1, · · · , 	d) := Cθ

d∏

i=1

	−θ
i (B1)

defined on the simplex
∑d

i 	i = 1, where θ > 0 is a parameter and Cθ is a nor-
malization constant. We set θ = 1

2 for sampling both the two-qubit and two-qutrit
states.

Note that our dataset is exactly the same as is used in Ref.[1]. The Ref.[1] observed
the following trends during training using the generated samples:

• For the two-qubit case, approximately 7% of the states among 5 × 104 are PPT,
i.e., separable state.
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• Among fairly large samples (randomly generated) of two-qutrits, only 2.2% are
PPT. After rejecting all the states with negative partial transpose while sampling
as they are assumed entangled (prior information), the total collected PPT states
are a total of 2× 104 samples. Among PPT states, at least 66.24% are found to be
separable using CHA. However, note that during the testing, NPT states are also
included.

The authors in Ref.[1] observe that these trends are consistent with the previously
predicted ones in Ref.[38].
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