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Abstract

We study an analogous Bloch sphere representation of higher-level quantum systems using the
Heisenberg-Weyl operator basis. We introduce a parametrization method that will allow us to identify
areal-valued Bloch vector for an arbitrary density operator. Before going into arbitrary d-level (d > 3)
quantum systems (qudits), we start our analysis with three-level ones (qutrits). It is well known that we
need at least eight real parameters in the Bloch vector to describe arbitrary three-level quantum
systems (qutrits). However, using our method we can divide these parameters into four weight, and
four angular parameters, and find that the weight parameters are inducing a unit sphere in four-
dimension. And, the four angular parameters determine whether a Bloch vector is physical. Therefore,
unlike its qubit counterpart, the qutrit Bloch sphere does not exhibit a solid structure. Importantly,
this construction allows us to define different properties of qutrits in terms of Bloch vector
components. We also examine the two and three-dimensional sections of the sphere, which reveal a
non-convex yet closed structure for physical qutrit states. Further, we apply our representation to
derive mutually unbiased bases (MUBs), characterize unital maps for qutrits, and assess ensembles
using the Hilbert-Schmidt and Bures metrics. Moreover, we extend this construction to qudits,
showecasing its potential applicability beyond the qutrit scenario.

1. Introduction

The Bloch vector representation of two-level systems (qubit) is extremely popular because of its simplicity and
its various applicability, see [1-3]. A qubit can be uniquely represented by a three-dimensional vector so that
every point inside the Bloch sphere corresponds to a physical qubit state. This lends a simple method to not only
represent the qubit states but also to identify the dynamics of the qubit. For example, all rotations of the Bloch
sphere correspond to a unitary operation. However, such an extension of all the beautiful properties of the qubit
Bloch sphere is not completely possible for higher dimensional states.

Itis known that d* — 1 parameters are needed to characterize arbitrary d-level density matrices in C¢ [1]. Most
of the works till now have used the Gell-Mann operator basis to characterize the qudits as they admit real numbers
in the Bloch vector elements. This parameterization leads to d* — 1 dimensional geometry which is extremely
complex, and intractable even in the case of three-level systems [ 1, 4-8]. A shortcoming of this feature is that all the
rotations in R*~! do not represent a unitary operation, which is a prominent feature in the qubit Bloch sphere.
Moreover, itis very hard to understand the general evolution of qudit using this geometry, for example, how to
understand the action of unital channels in C? whenever d > 3. To resolve this issue and have a qubit-like Bloch
representation for higher dimensional quantum states, there have been several efforts, e.g. constructing a three-
dimensional Bloch sphere representation for qutrits [9] and developing a multiqubit-based parametrization for
qudits [10, 11]. However, these methods have their pros and cons. For instance, in the multi-qubit-based

o d . .
parametrization, although we get #( 5 ) solid Bloch spheres for parametrizing the quantum state space, however,
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the requirement to have many qubit Bloch spheres makes it difficult to study the properties of the qudit state space.
Whereas, Ref. [9] tries to capture most of the geometric and algebraic properties of the qutrit state space via a three-
dimensional representation, and it is useful in various tasks like representing the mixture of qutrit states, the
unitary transformation, and the transformation under action of quantum channels. If extended to higher
dimensional qudit states, this approach could be extremely useful, however, it is unclear how to extend it beyond
three-level systems. Therefore, the features which are very prominent and useful in the qubit Bloch sphere are not
present for qudits, with the currently known parametrizations using Gell-Mann operator basis.

On the contrary, the Heisenberg-Weyl (HW) operators have received much less attention because they are not
hermitian and thereby require complex numbers in Bloch vector components [12, 13]. As such it becomes difficult to
study the parameters and put them to use. There was an attempt to address the issue of complex entries in Bloch
vectors in [13], however, their approach uses a Hermitian operator basis constructed using HW operators such that it
induces a geometry in R* ~!, We will be comparing this with our current approach in the main text. As the HW
operators do provide an alternative way to represent a quantum state, it is worthwhile to study them despite the
presence of complex coefficients as there can be certain tasks where the HW operator-based representation could be
more suitable, such as finding Mutually unbiased bases [ 14], understanding the properties of stabilizer states and
operations [15] etc. In fact, the HW operator-based parametrization has also been used for—a) tomography of
higher-dimensional quantum states [13], and b) developing separability criteria for multi-qudit states [1, 13, 16, 17].

In this work, we use the HW operator basis to represent a qutrit, and importantly, find a way to remove the
presence of complex elements in Bloch vectors. In what follows, we identify four weight and four angular
parameters; and observe that four weight parameters induce a unit sphere in R*. We also obtain the constraints
on the weight and angular parameters, which give a physical qutrit density matrix. It is found that not all the
points inside the sphere in R* correspond to a positive semidefinite matrix. To unveil the geometric structure of
quitrit state space, we study its two-dimensional and three-dimensional sections completely. Our study shows
that these sections are unlike those studied in previous literature (cf[8]). This four-dimensional geometric
representation enables us to retrieve the following properties of qutrits:

+ Thelength of the Bloch vector determines the purity of the state. It is solely determined by weight parameters.

+ Therank of arandomly chosen qutrit state can be guessed to a certain extent. We find that the rank one states
live on the surface of the unit sphere. However, the rank three states live inside the spherical ball of radius 1/2,
whereas, the rank two states live anywhere but the surface of the unit sphere.

+ The conditions for two orthogonal or mutually unbiased vectors are quite similar to the qubit Bloch sphere
under some restrictions.

+ The Hilber-Schmidt distance between qutrit states is equivalent to a factor time of the Euclidean distance in
the sphere for some states.

Further, as a potential implication of our representation, we establish the following properties meaningfully.

+ Weidentify mutually unbiased bases (MUBs) in C? from the geometry of the Bloch sphere in R*.
+ We characterize the unital map acting on qutrit states.

+ We find the representation of ensembles generated from Hilbert-Schmidt and Bures metric.

We were able to extend our method to qudits and show its importance in finding MUBs.

The paper is organized as follows. First, we review the HW operator expansion of a qudit in section 2. Then,
in section 3 we present the Bloch sphere in R* and obtain the constraints on the parameters from one, two, and
three-dimensional sections in section 4. In section 4.2, we have studied a few features of the new Bloch sphere.
The section 5 describes the implications of our representation. After that, in section 6 we describe a way to use a
similar approach for qudits. We present a comparative discussion of our construction with that of [13] in
section 7. Finally, we conclude in section 8 with a summary and future works possible based on our work.

2. Expanding a qudit in the heisenberg Weyl operator basis (HW)

We declare here that all the operations { £, x , < } on the index space are always congruence
modulo d on the set of integers. For example, see equation (1).

2
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Heisenberg-Weyl operator basis is defined as { Uyy = I, Uyylp, q € [0, d — 1], where Uy; = w™ 5 ZpX. HW
operators, U, are unitary operators with several desirable properties which makes them useful in several
applications [18-23]. These operators are constructed from the generalized Pauli operators X and Z, which are
also referred to as boost and shift operators respectively. They can be defined by their action on a pure state in the
computational basis as

X|n) = |n + 1 mod d), Zn) = w"|n), (1)

where w = %™ 4is the d-th root of unity. Using HW basis, we can decompose a bounded density matrix

operatorin C%[1, 13] as

d-1

p= % > bpUp = %(H + D by qu]’ @
p=0,4=0 (p=0=q)

where byg = 1 and by, = Tr pU;q form the Bloch vector components. However, the b,,,’s are complex in general

because U, are not hermitian. Hence, we must find d” — 1 complex numbers to characterize a state completely.

One can see that for pJr = p, the coefficients, b;; = e*ZPq”ib_p,_q. Also, the restriction Tr[p?] < 1implies the

length of vector b := {b,,} is |b| < ~/d — 1.

Now to summarise, we notice two crucial avenues to improve from the above formalism:—a) Can we find a
way to have real entries in Bloch vectors, and b) reduce the number of relevant parameters for Bloch sphere-like
representation?. A solution for (a) was suggested in [13] by introducing a hermitian generalization of the HW
operators to make the Bloch vector components real, however, the relevant Bloch sphere parameters remained
equal to d* — 1.In the next section, we suggest an alternate approach to address these issues.

3. R*Bloch sphere representation of a qutrit

In this section, we propose a Bloch sphere-like geometric construction in R* for qutrits. Using HW basis, an
arbitrary qutrit can be expanded as

1
p= E(H + b Ui + bioUio + b1 Uiy + boa Una + bagUsg + biaUny + b Usy + bya Usy). (3

Using the property, p' = p, we find that the coefficients b,,, must obey the following relations
boy = me™, boy = me™,  big = me, byy = me %,

by = n3e”s, by = nse %, by = nye™, by = nge ™, 4)

where n;, 6; € R. Thus, we can rewrite the expansion of p as

1 . . . .
p= E[H + m(e?Up + e Up) + my(e™ U + e 2 Us)

+ n3(e® Uiy + e Uy) + ny(e™ Uy + e Uy ©)

Now, from equation (5), we observe that one can define a set of matrices { H;}, where H, = ¢ Uy, + e U,
H, = e%Uyy 4+ e %2U,y, Hy = €% U}, + e % Uy and Hy = €% U,, + e % U;,. The matrices, Hj, are
Hermitian, traceless, and Tr[H; Hj] = 66;; for all values of 0;. Then, a state in d = 3 can be written in the following
form

p= %[]1 + n.H], with n; = %Tr[pHi]. (6)

where nis a real vector in R* with |n|> < 1. Therefore, we find that the construction in equation (5) is analogous
to the qubit Bloch sphere. We note here that the angle parameters 6;s are determining which states within the
sphere in R* are valid. An implication of using the Bloch vector representation in R* is that more than one state
lies at the same point in the sphere. The states lying on the same point are distinguished only by the angular
parameters 6;. These states are equivalent under the action of some unitary operators. It would be interesting to
identify these unitary operators. Later, we will shed some light on this fact.

4. Constraints on the bloch vector and angular parameters—for d = 3

Itis clear that p is hermitian, which is guaranteed by the choice of expansion coefficients. Moreover, Tr[p] = 1
as the HW matrices are traceless except for Upy = 1. The only condition that remains to be satisfied is the positive
semi-definiteness of p, i.e. x; > 0, where x;’s are the eigenvalues of p. In order to do this, we construct the

3
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characteristic polynomial Det(xI — p), of the density matrix p. The necessary and sufficient condition for the
eigenvalues x; to be positive semi-definite is that the coefficients a;’s of the characteristic polynomial are also
positive semi-definite [4]. The characteristic polynomial has the following form

N N
Det(xI — p) = [] (x — x) =D (—1DiajxN7 =0. (7)
=1 i=0

Notice that ay = 1 by definition. Now, we apply Newton’s formulas to find the values of other coefficients a;s(for
details please see [4]). Newton’s formulas relate the coefficients a; and the eigenvalues x; as

]
lay =" Cysar—r, (1 < I < N),
k=1

where Cyx = SN | x. Using the results directly from [4], we get the following expressions for a;’s in terms of p
ind=3as

— 2 _ 2 3
(1 — Trlp ])’ and a5 — 1 3Tr[p]+2Tr[p]’
2! 3!
where by construction, a, = 1,and a, > 0 imposes the constraint |n|> < 1. This constraint simply states that the

physical states must lie inside a sphere of radius one in R%. The only condition remaining to be satisfied now is
as > 0, which simplifies to the following form after simple algebra,

ap =1, a =Tr[p], a, =

®

4
1 — 3|n]> + 22 n? cos 36; + 6{mmynzcos(, — 0, + 03 — w/3) — mnsnycos(f, — O3 — 6y)
i=1
+ mynzngcos(0, + 03 — 0, + w/3) + mmnyngcos(6y + 0, + 64 + w/3)} > 0. )
In the above form, it is difficult to picture the set of valid states inside the sphere. We take the one, two, and three-
dimensional sections passing through the center to get a better understanding of the allowed space inside the
spherein R*.

4.1. Different sections of bloch sphere
The condition for weight parameters, 3, n < 1, for qutrit implies that the induced Euclidean geometry is a
sphere in R*. However, the restriction posed by equation (9) makes it hard to understand whether the space is
solid or not. To understand it, we consider some special cases (sections). To warm up, we would start with the
one-section itself to see along an axis, say n;, how the angular parameter is restricting it.

One-dimensional sections.—One-dimensional sections (one section) passing through the center can be
obtained by setting three out of four ;s as zero, in equation (9). We find that the expressions of one section of a5
are the same with respect to all ;5. Then, the condition for positivity is given by

1 — 3n? + 2n cos36; > 0. (10)

Therefore, these one-dimensional sections are symmetric with respect to the four axes. If we rearrange the
equation (10), weget1 — n?(3 — 2ncos36) > 0.Clearly, 1 — n* > 0 confirms that —1 < n < 1, however, the
parametric equation, n = (3 — a)/2 cos 36 behaves as an envelope restricting the allowed values of n, where
a € R.Theone sections based on non-negativity constraint are:-

* Theline —3 < n; < 5 is valid forall ;.
* The points n; = = 1 is valid when 0; satisfy equation (16). These points correspond to the pure states.

« Thelines :F% < n; < £1arevalid when cos 36; = +£1. Along these two disjoint lines, the density matrices are
diagonal in the computational basis.

It can be also observed (see figure 1) that the range of allowed values of 6; is gradually reducing as we move away
from the origin along the n;, axis after |n;| > 0.5.

4.1.1. Two-dimensional sections

A two-dimensional section(two sections) centered at the origin can be obtained by setting two out of four #;’s to
be zero in equation (9). The positivity constraint for all the two-dimensional sections have the following same
form

1 - 3(”i2 + n}z) + Z(nf cos 30; + n]3 cos39j) > 0. (11)
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1.0F ]

0.5

-0.5

Figure 1. The shaded region depicts the allowed values of n;and 6, for a physical state lying on the #; axis. As can be easily seen that for
—0.5 < n; < 0.5, all values of §; correspond to a physical density matrix.

Some observation based on equation (11) is in order. Rearranging the equation, we find

1 — n12(3 — 2m, cos 30,) — n22 (3 — 2mp cos 36,) > 0. Clearly, in general, we have a circle of radius one,
however, the parametric equations, {n;, = (3 — a)/2cos36,, n, = (3 — b)/2 cos 36,} actas an elliptic
envelope dictating the allowed region, where a, b € R. Similar to the one-dimensional sections, we see that the
two-dimensional sections are also symmetric with respect to the four axes. We point out that this is unlike the
Gell-Mann basis-based Bloch vector representation of a qutrit, where there exist four different types of such two
sections [4], which are asymmetric with respect to the axes.

Now, we are interested in obtaining the region in the two-dimensional section which corresponds to
physical qutrit states, i.e. there exist values of §;and 0; so that the inequality in equation (11) is satisfied. Some
special cases of the inequality in equation (11) are plotted in figure 2, where it shows that allowed states are all
inside the shaded colored regions.

Case.1.—~We consider (cos 6 = £1, cos ; = £1). Then, the equation (11) reduces to

n?(3 F 2n) + n;(3 F 2n) = L.

These four parabolas are truncated by one of the lines defined by the points (0, £ 1), (£ 1, 0) accordingly. One
such parabola is shown in panel (a) of figure 2.

Case.2.—We consider (cos 0; = 0, cos ) = £1) or (cos §; = 1, cos 0); = 0). Then, the equation (11)
reduces to

3ni2 + n]-2(3 F2n) =1 or ni2(3 F 2n;) + 3nj2 =1,

respectively. These are four ellipses stretched to one of the points (0, = 1), ( £ 1, 0) accordingly. One such ellipse
is shown in panel (b) of figure 2.

Case.3.—We consider (cos §; = ++/3 /2, cos i = £1)or (cost; = £1,cos; = i\/g/Z). Then, the
equation (11) reduces to

V3ni(3 F ) +ni3 F2n) =1 or, n}(3F 2m) +B3ni(V3 Fny) =1,

respectively. These are four deformed parabolas akin to Case. 1, touching to the circle, n} + njz = l,atonlyone
of the points (0, £ 1), (£ 1,0) accordingly (see panel (c) of figure 2 for one such region).
Case.4.~We consider (cos 6); = cos ; = 0). Then, the equation (11) reduces to

3(111-2 + njz) = 1.

This is a circle of radius 1/+/3 which is plotted in panel (d) of figure 2.

Further, it is informative to see the allowed values of 0;and ¢; in different directions in the two-dimensional
section as we move away from the center in the sphere (R*). To do this, we replace with #; = r cos avand
n; = r sin o in equation (11), so that
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1.0 1.0
0.5- 0.5-
o o
c c
-0.5- -0.5-
-1.04 : ‘ : A -1.0k : : A
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
ni ni
(@) (b)
1.0 1.0
0.5- 0.5-
P Y 0.0f
-0.5- -0.5-
-1.04 : ‘ : A -1.0k : ‘ : A
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
ni ni
(c) d
Figure 2. Four different views of the two sections: Blue regions are defined by—(a) (cos 36, = 1, cos 30, = 1), (b) (cos 36, = 0,
0530, = —1),(c) (cos 30, = —~/3 /2, cos 30, = 1)and (d) (cos 30, = 0, cos 30, = 0). Allowed qutrit density matrices to live inside
blue regions. The red circle with a radius of 1/2 is contained inside the blue regions in all cases.

1—3r2+2r (0, a) >0, (12)

where f (6, o) = cos’ o cos 30; + sin® o cos 30;and —1 < f(0, o) < 1. This equation captures all the allowed
density matrices in the two sections. Let us list the important class of states below,

* Ifr <1/2,theequation (12) reduces to 1 + f(6, o) > 0, which is valid for all values of 6;, ;and . That means
all the states inside this ball are valid density matrices.

« Forr < 1/+/3,wehave f(8, @) > 0, which means all the states inside this ball are not valid.

+ Allowed pure states (r = 1) implies that f(6, o) = 1.

To see all these items, we numerically generated 10° random qutrits which satisfy equation (11) and plotted them
in figure 3. This again confirms our theoretical findings.

4.1.2. Three-dimensional sections

Next, we consider the three-dimensional sections (three sections) centered at the origin inside the sphere (in
R*). There are four such three-dimensional sections possible which can be obtained by setting one of the 7;’s as
zero in equation (9). However, unlike the one and two-dimensional sections, the three-dimensional sections are
all different, with the following expressions.
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radius
—0.9
: 0.7
0.5
0.3

0.1

05 00 05 1.0

Figure 3. Two section of Qutrit state space.—Numerically generated qutrits satisfying equation (11). See that within the r = 1/2, we have
concentric circles with no truncation. However, beyond r > 1/2 concentric circles are truncated by the lines (approximated)
connecting (0, £ 1), ( & 1, 0). This figure motivates us to imagine the schematic in figure 5.

Qu—oy =1 — 3|n> 4+ 2(n13 cos 36, + ng’ cos 36, + n33 cos 303) + 6mmnyn; cos(01 — 0, + 05 — g),

Q0 = 1 — 3|n* + 2(;113 cos 30, + n23 cos 36, + nf cos 30y) + 6m 11y COS (01 + 0, + 0, + g),
Quy—0y = 1 — 3|n> + 2(nl3 cos 36, + n33 c0s 305 + n; cos 305) — 6mnzny cos (0 — 03 — 0y),

Qo) =1 — 3|n|* + 2(1123 c0s 30, + n; cos 303 + n; cos 30y) + 6mynzny cos (02 + 03 — 0, + g) (13)

It seems that these three-dimensional sections are not symmetric with respect to the axes as they have
different forms in equation (13). Therefore we need to find the regions for which the expressions in
equation (13) are non-negative. To find the non-negative regions (),,—o) > 0) of the three-dimensional
sections means to find out whether for a given triple of n;, n;and ny, a corresponding ¢;, 0, and 0 exists which
gives a non-negative value of terms in equation (13). It is difficult to do so analytically. As we can see from
figure 4 that the different faces have different forms WLOG, we pick three section €2, —o) and plotted it for
different 6-values.

Case.1.—Panel (a) of figure 4 depicts the three section with (cos 30, = —1,i=1, 2, 3). The plot reminds us of a
three-dimensional parabola with bulges at different points (1, 115, 113). The bulges corresponding to pure states
are (—1,0,0),(0, — 1,0), (0,0, — 1)and (1/3, — 2/3, — 2/3)+permutations. There are other bulges
corresponding to mixed states, eg., (1/3, — 2/3, — 1/6),(1/3, — 0.744, — 0.455), and (1/3, 0.41, 0.122) plus
permutations.

Notice that one will have three more similar paraboloids for the choices (cos 36, = —1,
cos 30, = cos 30; = 1)+permutations. The sphere of r = 1/2 is always contained inside the paraboloid.

Case.2.~If we choose (cos 30; = cos 36, = —1, cos 30, = 1) instead, we get an ellipsoid with three peaks at
points (—1,0,0), (0, — 1,0) and (0, 0, 1) which are all pure states. This ellipsoid is depicted in panel (b) of figure 4.
The sphere of r = 1/2 is always contained inside the ellipsoid.

Also, there are three more such ellipsoids with the choices (cos 30; = cos 36, = 1, cos 365 = —1)
+permutations and (cos 36, = 1,i=1,2,3).

Case.3.—Now the choice that two out of three cos 36, is set to zero and the remaining one is equal toz1 will
yield an ellipsoid stretched to meet the sphere n? + n7 + ni = 1atonly one point. One such example
(cos 30; = 1)is shown in panel (c) of figure 4. The pure state corresponding to this example is (1, 0, 0).

Case.4.—In the panel (d) of figure 4, the ellipsoid is considered when all (cos 36, = 0,i= 1,2, 3). Then the
ellipsoid is the generalization of circle 3(n? + n7) = 1 (see, two-section Case.4), as,

3(7112 + n22 + n32 — \/gf’llflzf’h) =1

However, the circle of radius 1,/+/3 is generalized to an ellipsoid instead of a sphere. A sphere of r = 1,/2 is
contained inside this ellipsoid also. The points at which the ellipsoid is peaked are (1/+/3 , 0, 0) plus
permutations.
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(d)

Figure 4. Four different views of the three section £)(,,—¢): Yellow regions are defined by—(a) (cos 30; = —1), (b) (cos 3¢; = 1),(c)
(cos 360, = 1, cos30, = 0, cos 305 = 0)and (d) (cos36; = 0), wherei = 1, 2, 3. Allowed qutrits to live inside the yellow regions. The
red sphere with a radius of 1/2 is contained inside the yellow region in all cases.

A few remarks from the study of the one, two, and three sections are in order.

1. Itis possible to approximately construct the three sections from the knowledge of the two sections, which is
not the case in the representation using Gell-Mann operator-based representation.

2. Itlooks like from the numerical plots, that the three sections’ structure is not convex. This could be because
of the presence of complex coefficients.

3. Itis also clearly visible how the one section arises from the two sections and the two sections from the three
sections.

Based on the above studies, we are ready to state the following fact of qutrit state-space in R%.

Observation- All the points inside spherical Ball of radius r < 1/2 are physical states for all the angular
parameter values of 6;’s. However, all points beyond r > 1/2 are not valid qutrits.

Proof of this fact has been furnished in appendix B. An implication of this result is that a rotation in the Bloch
sphere does not always correspond to a unitary operation, unlike the qubit Bloch sphere.
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4.2. Features of the Bloch sphere—ford = 3
In this section, we discuss several features of the Bloch sphere for qutrits and discuss the difference with the qubit
Bloch sphere.

4.2.1. Mixed and pure states
The purity of a density matrix operator is defined as

1
Tr[p?] = g(1 + 2(nf + n3 + n3 + np)). (14)

Thus, we find that the length of the Bloch vector determines the purity of the qutrit state. Further,
Tr[p?] = lforn? + nj + n{ + nj = 1,i.e., the pure states lie on the surface of the unit sphere. Also,
Tr[p?] = Oonlywhen n? + n; + ny + ni = 0, i.e., the maximally mixed state lies at the center of the sphere.
Also, the purity increases as we move away from the center of the sphere.

To characterize the set of pure states in d = 3, one needs to find the states which satisfy p> = p. As p*isa
Hermitian matrix, we find its components by considering the terms nbﬁz) = Tr[p?Hy] / V2 and one of the
elements is given by,

rz;Z) = é{4nf + 2n} cos 360, + 2f (g, 0)3, (15)
where f (71 ,.) = mnz cos(0; — 0, + 05 + 7/3) + mnycos(d, + 6, + 63 — w/3) + nsnycos(6, + 05 — 6, — w/3)

and so on. Therefore, suitable conditions on 71, and 8, determine the set of pure states. For example, if iy = 0, then
the condition for pure density matrix reduces to

ny, =1 and Q,f:zmTﬂ-,
2
nf:_l and QKZM,

where m € Z". These states live on the boundary of sphere |n| = 1 (outer sphere). However, these states are not
only extremal states. Some other solutions from equation (15) might yield pure states (see examples in the three-
dimensional section).

Itis safe to assume that the states that live on the boundary of the states space are singular, i.e.,
Det[l 4+ n.H] = 0.Itisdifficult to understand the structure of the boundary from the expression of the
determinant. However, itis clear thatto I 4+ n.H to be singular, n. H should have eigenvalues equal to —1. Now,
tracelessness of n. H forces other two eigenvalues to A\, 1 — \. Also, we can easily verify that the restriction |n| < 1
implies that the square of eigenvalues of n. His bounded by 6, i.e.,

1L+ N+ (1 - M6,

which forces Atobe —1 < A < 2. Itshould be noted here that the eigenvalues of the matrices H, lie in the same
range. Now, norm of n is

In| = /éTr[(n.H)z] _ {%[1 EX 40— N } a7)

whose minimum is 1/2 when A = 1/2. This is exactly the midpoint of the values A = — 1, 2 at which |n| = 1.
Hence, if nis a boundary point then —(1/2)n is also a boundary point, heralding that the boundary points of the
outer sphere (|| = 1) are dual to the boundary points of the inner sphere (|n| = 1/2).

Now one can easily see that there exists another sphere for which n. His also singular, i.e., for A=0or 1. And
midpoint of these values also defines the inner sphere (|| = 1/2). With these A values, one finds a new sphere of
radius |n| = 1/+/3 which is self-dual, i.e., antipodal point of nis —n.

4.2.2. Rank of a qutrit state
A closely related concept to purity/mixedness is the rank of a physical state. Let us now recall the following
equation which is equivalent to Det(p),

Q =1- 3r2 + 273f(91, 92) 93) 04; Qq, O, (3, 0[4)-

Asf(-, ) €[ —1,1],wefind that Q > 0 has a unique solution, i.e., 7 < 1/2. Notice also that the surface of the
Ball (r = 1/2) corresponds to €2 > 0 as well as 2 = 0. Therefore, some rank 2 qutrits also live on the surface of
this Ball. Now rank 1 and 2 qutrits corresponds to 2 = 0. And we know that rank 1 states are all situated on the
surface of a sphere in R* (see equation (16)). The following list summarizes our findings (see also the figure 5),
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® Antipodal to
pure states

@ Pure
qutrits

“ > Rank 2 qutrits

Figure 5. 2D projection of Qutrit state space.—The blue Ball (r = 1/2) contains rank 3 states and rank 2 on its surface. Points inside the
orange curve regions depict rank 2 qutrits. Red points are the pure qutrits (r = 1). The other regions are empty. (Note thatitisa
representative figure only for understanding qutrit state space, not the actual one).

+ Surface of sphere in R* (r = 1) contains rank 1 qutrits.

+ Region % < r < 1contains all rank 2 qutrits.

+ Inside theBall r < % all of rank 3 qutrit lives.

4.2.3. Orthogonal states and mutually unbiased states
Let us consider two pure states p;: (n, 8) and p,: (m, ¢) and expand it in the form of equation (5)

= %(H 4 VZnH®), and p, = %(11 + Zm.H($)).

The orthogonality condition can simply be checked by Tr[p, p,] = 0.In general, the orthogonality condition for
two qutrits is given by

4 1 27
Zcos(@,- — Q)nim; = 3 = cos(?). (18)
i=1

This condition is far more complex than the qubit case. The most simple solution exists whenever
cos(; — ¢,) = 1 Vi, andin that case the condition (18) reduces to

nm = _1 = cos (2—7T) (19)
2 3

In this context, we remind our reader that Bloch vectors for two orthogonal qubit states
obey,n - m = —1 = cos(m).

For two mutually unbiased state vectors in C%, Tr[p, p,] = 1/3. Generally, two mutually unbiased qutrit
will satisfy,

4
> cos(b; — ¢nim; = 0 = cos%. (20)
i=1

Notice that if cos(6; — ¢,;) = t foralli, where t = 0 is areal number, then it implies

nm = 0 = cos g (21)

Therefore, in this case, the Bloch vectors corresponding to mutually unbiased state vectors are orthogonal to
each other, which is similar to mutually unbiased qubits.

4.2.4. Distance between density matrices
Let us consider two states p;: (n, 8) and p,: (m, ¢). The Hilbert-Schmidt (HS) distance between them is defined
as[24]

10



10P Publishing

Phys. Scr. 99 (2024) 045105 G Sharmaetal

Dl%ls(pp py) = (Trlp, — Pz]z)- (22)

HS distance defines the distance between two density matrices in induced Euclidean space [25]. We obtain the
Hilbert-Schmidt distance between two arbitrary qutrits,

54
Dés[pl, Pl = 5Z:{niz + miz — 2n;m;cos(6; — ¢;)}. (23)
i=1
This induced distance depends on the angular parameters nontrivially. Whenever cos(6; — ¢,) = 1 Vi, the
Hilbert-Schmidt distance reduces to the Euclidean distance in R%, i.e.

Duslpy, pyl = %Z(Tli — mj)?.

In the qubit Bloch sphere also, the Hilbert-Schmidt distance between two density matrices is proportional to the
Euclidean distance between them [24].

5. Implications of qutrit bloch sphere construction

5.1. Employing the Bloch sphere geometry to find MUBs in three dimensions

It is known that in prime or power of prime dimension d = p”, where p is a prime number and # is an integer
greater than zero, there exist a maximum of d + 1 MUBs [14]. For the qubit, the existence of three MUBs can be
very easily explained through the qubit Bloch sphere, but such an explanation is difficult in higher-level
quantum systems. In this section, we show that the qutrit Bloch sphere geometry restricts the maximum number
of MUBs to four.

MUB:s in 2 dimensions- The qubit Bloch sphere is a three-dimensional sphere, in which the Bloch vectors
corresponding to orthonormal basis kets lie on the antipodal points on the sphere, i.e. they lie along the line
passing through the center. Also, the Bloch vectors corresponding to mutually unbiased kets are orthogonal to
each other [26]. As, there can be only three such orthogonal lines passing through the center, which explains why
there are only three possible mutually unbiased bases in dimension 2.

MUBs in 3 dimensions.—To find the qutrit MUBs, we first fix one of the orthonormal basis to be the eigenbasis
of HW operator Z or the computational basis. The eigenvectors of Z have the following Bloch vector and angular
parameters

(m =1, 6, = 0) — [0), (n2 — 1,6, — g) ~J1), and (nzz 1,6, — 2?”) ~ ).

Notice, here that the pairs (11, 8,) in finding computational basis are not only choices, but they are also one of the
possible combinations (see equation (16)).

According to equation (21), any pure qutrit which is mutually unbiased to all the computational basis must
have n, = 0. However, finding such pure states are straight forward as is seen from equation (16). We list the
other three MUBs below,

T

2
(nk =1, 0 = 0) — |+, (ﬂk =-1,0= g) — | =), and (nk =1,0k= %) — |w),

where k = 1, 3, 4. One can easily find their expressions by putting these values in the general expression of the
qutrit density matrix.

5.2. Characterization of unital maps

In this section, we characterize the unital maps acting on the qutrit states. Unital maps are quantum operations
that preserve the identity matrix or the maximally mixed density matrix. It is known that the unital maps acting
on a qubit density matrix are characterized by a convex tetrahedron [27, 28].

To analyze the unital channels acting on a qutrit density matrix p = %Z;) 4 bpg Upq with Bloch vector l_;pq (see
equation (2)), we note that a linear quantum map can be written in the form of an affine transformation acting
onthe d* — 1 = 8 dimensional Bloch vector. Thus, every linear qutrit quantum map ®: C>*3> — C?canbe
represented usinga 9 x 9 matrix £ acting on the column vector {1, qu}. The action of the quantum channel
p— P(p) = %Z;)q b’ g Upq can be written as

e T _ (1 0 )
b—Vb=Lb+ 1, with £ = ,
I'L
where Lisan 8 x 8 matrix and /is a column vector containing eight elements. By observing equation (4), it can be
seen that to make sure that b’ corresponds to a hermitian density matrix £(p), itis necessary that 1) Lisa
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diagonal matrix with eigenvalues { Ag1, Ao2,. .-, A22} and 2) the eigenvalues must be of the following form

Aot = N, Agp = NeT 9, Ng = \e2, Ay = Ae 2
Az = A3es, Mg = Ase 7%, Ay = Mg, Np = Age

Next, we note that to preserve the identity matrix, I =0. Now, to do the complete characterization of the map

L we impose the complete positivity requirement via Choi’s theorem which requires that Choi Matrix

C = (I ® ®)(IQ)(Q) is positive semidefinite, where |Q) = Y',ii). To simplify the problem, we find the

eigenvalues when the angles ¢; = 0. The constraints on the parameters { \;}’s are given by
1+2)\1*)\2*>\3*)\4>0, 1*)\14’2)\2*)\3*)\420, 1*)\1*)\24’2)\3*)\420,
1—A1—)\2—)\3+2)\4>0, and 1+2)\1+2)\2+2)\3+2>\4>0

One can easily generalize this result for arbitrary ¢ values by noticing that the change in H,’s are happening by
2 6)qu +e! HU,p,, = e.l( o+ ."*’) Upy+e ™ Iy p—g which preserves jthe Hermiticity and trace orthogonality
of H,. The above constraint gives a convex polygon space with five vertices

- 1 1 11 11 1 1
n={1lLvn=3,——=¢m=3——1,—— ——=t, u=9—— ——, 1, ——p,andvs = q——, L.
= { 2} ’ { 2 2 2} ) { 2 2 2} ’ { 2 }

Itis anirregular polygon with 8 edges, out of which 4 edges have Euclidean length M and 4 other edges have
Euclidean length /27 /4.

Itis insightful to visualize the effect of the action of the channel on a state in the sphere R*. The parameters
{ \;} reduce the length of each Bloch vector component from #; to A;n;, thus bringing the state closer to the
origin.

5.3. Characterization of randomly generated density matrices

In this section, we characterize the structure of the state space of randomly generated density matrices, using the
Bloch sphere in R*. Specifically, we show the representation of ensembles generated by Hilbert-Schmidt and
Bures metrics [29, 30]. The infinitesimal Hilbert-Schmidt (equation (23)) distance between p and ép, has a very
simple form given as ds = Tr[(6p)?]. In n-dimensions, the probability distribution induced by this metric,
derived by Hall [31] is given by

Prs( N5 An) = CH55(1 -> /\i) IT =204 (24)
i=1 j<k

where );’s are the eigenvalues of p and Cgg is determined by the normalization.
For mixed quantum states, there is another useful distance measure known as the Bures distance [32, 33]

Di(py, p2) = 201 = Tr [ 019,01 D-
Similar to the Hilbert-Schmidt case, there exists the infinitesimal form Bures metric derived by Hubner [34]

1 1(ldplk) P
2=Ly (7loplk)
2j,k:1 )\j + Ak

>

where again A and |k) are respectively the eigenvalues and eigenvectors of p. For this metric also, the probability
distribution was derived by Hall [31], which is given by
(Aj — A)?

O A A2 5 A+ A

Pg(Np,..5) = Cp

where Cpis again determined by the normalization. In equations (24) and (25), we have the probability
distributions defined on the simplex of eigenvalues. However, we want to see how this probability distribution
picks out the states from the Bloch sphere. For a two-dimensional state p = (1/2)(I + 7 - o), we can translate
the eigenvalues to Bloch sphere parameters using the simple formulas A\; = (1 4+ r)/2 and A, = (1 — r)/2, where
A1, Az are the two eigenvalues of p. By substituting these in equations (24) and (25), we get the following
probability distributions in terms of Bloch sphere parameters [31]

4
Tl — Pz

We can see that both probability distributions are dependent only on the radial parameter . While the HS
distribution is uniform over the Bloch sphere while the Bures distribution is sharply peaked at the surface of the
Bloch sphere.

Next, we derive the form of these probability distributions with respect to our representation of qutrit states.
For a qutrit state p, its eigenvalues A;, A, and A; can be written directly in terms of the Bloch sphere parameters

Pus(®) = —, and Py(F) = (26)
47
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n;’s and angular parameters 0, However, a direct approach will lead to cuambersome calculations. Instead, we
write the eigenvalues \;’s in terms of the characteristic equation coefficients a;’s from equation (7) and substitute
in the equations (24) and (25) which gives us the following

CgF(p)

27r3(% — Det(p))\/Det(p) ‘

pHS(?) Qi 91) =

CysF gp) @7)

> and PB(?) Ci) 91) -

where F(p) = {(r — 1)>2r + 1) — 27 Det(p)} {(r + 1)>(2r — 1) + 27 Det(p)} and we have switched

to the polar representation with #; = r cos oy, 1, = r sin ay cos oy, 13 = 1 sin ¢y sin a; cos iz and

ny = r sin oy sin oy sin a;. Also, Cygand Cp are constants and are determined by normalization. In this form,
these probability distributions don’t give much information about the states in the Bloch sphere because of
dependence on the angular parameters 6;’s which are not a part of the sphere in R*. We can obtain a distribution
for a subset of states by fixing the 6;’s and then analyze the probability distributions. After fixing all the 8;’s values
(say all zero), we get Det (p) = f(r, cv). The distributions in equation (27) are not invariant with respect to unitary
operations unlike in the qubit scenario. This is a signature of the fact that all points inside the Bloch sphere in R*
don’trepresent physical states.

After some algebraic calculations, it is found that the HS distribution in equation (27) is always positive
irrespective of Det(p) being positive or negative. Whereas the Bures distribution in equation (27) is positive if
and only if Det(p) > 0, hence picking out the closed structure of the qutrit states inside the Bloch sphere.
Moreover, the HS distribution is non-decreasing with respect to the radial parameter r, everywhere. Whereas,
the Bures distribution is non-decreasing with respect to r in the region where the Det(p) > 0. It can also be seen
that the Bures distribution is sharply peaked whenever the denominator vanishes. While Det(p) = 0 for rank-2
or rank-1 states, the {(1 — r2)/3} — Det(p) = 0 onlyat the surface of the Bloch sphere or beyond.

Thus if we fix the 6;’s, both these distributions are localized closer to the surface of the Bloch sphere. For the
HS distribution, this is unlike what happens in the qubit scenario where it is uniform all over the sphere.
Whereas, the Bures distribution is sharply peaked near or at the surface of the Bloch sphere. It is similar to the
behavior of the Bures distribution in the qubit scenario, where the Bures distribution is sharply peaked on the
surface. These results are matching with the plots presented in Figure 2 of [30], which depicts the plots in the
simplex of eigenvalues.

As an example, we fix the all ; = 0’ and all polar angles o;’s as «; = /3, i, = 0, a3 = /7, to see the
dependence on the radial parameter r, and obtain the following

162(6 — /3)r?
(V4 — 1272 + 6.1973) (=32 + 2412 + 6.191%)

(28)

6 — 3
Pps(r) = CHS7—2r3) Pg(r) = Cp

We see that in the chosen direction, HS distribution is peaked on the surface of the Bloch sphere and it is
everywhere positive. While the Bures distribution sharply peaked at r = 0.73 and while is negative for r > 0.73. It
simply tells that for the chosen 6;’s there are no more physical states beyond r = 0.73 in the chosen direction and
also that there is a rank 2 state at r ~ 0.73. The other singularity of the Bures distribution lies at r ~ 1.02, but Py(r)
is negative after r=0.73 and hence we ignore it.

In appendix A, for completeness, we analyze the HS and Bures distributions also for the qutrit states
represented by Gell-Mann operators. In this case, we observe similar patterns, i.e., (1) The HS distribution is
always positive whereas the Bures distribution is positive iff Det (p) > 0. (2) HS distribution is non-decreasing
with respect to the radial parameter and hence the states are localized on the surface of the convex structure of
the states and (3) Bures distribution is non-decreasing for Det (p) > 0 and it also blows up at the surface of the
Bloch sphere or for the rank-2 states.

6. Extentiontod >4

In this section, we extend the above analysis to d > 4. Our aim is to find the dimension of Bloch sphere geometry
in these dimensions. We find that (1) for prime d, the Bloch sphere lives in R@ ~1/2 however, (2) for non-prime
d, itishard to tell precisely.

We find that it is possible to find such a group of Hermitian matrices from the HW basis. Below, we describe
our method in detail. Our aim is to find two properties of HW operators { U, }, namely,

1. The conditions that pairs of HW matrices are complex-conjugate to each other,

2. The conditions that some HW matrices are forming a coset of pairwise commuting matrices.
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To find the complex-conjugate of U,,,, we recall the relation that U;q = wPU_, _,. This means that the HW
matrix Uy ,,,, which will be equal to U;q, should satisfy the relation that £ + p = m + q = nd, wheren =0,...,

d — 1. Clearly, it is always possible to find complex conjugates of U,, within the set of HW matrices, { U,,}. Now,
let us consider that the coset { U,,,} that are mutually commuting, then they should satisty the following
property

0= Ufme’m’ - Uf’m’Ufm

7fm§//me+ m' zt+¢! (wfm’ _ wf’m).

Therefore, for mutual commutavity, £m’ = +¢'m, where & is modulo d. This condition can compactly be
writtenas £m =nd + k < (d — 1)2, where k = 0,...,d — 1. Thelast inequality comes from the fact that both

(¢, m) can have maximum value d — 1. How many such cosets exist? If we count the possible k values, the
number of cosets are always d + 1, as ‘k = 0’ can come from two distinct possibilities (£, 1) = (0, q) and (p, 0).
However, note that k = 0 can come from £m = nd also, and we hoped that these elements might be distributed
inside one of the cosets {(0, g)|g = 1,..,d — 1} and {(p, 0)|p = 0,...,d — 1} depending with which coset they
commute. However, we find that this is never the case in general for tractable dimensions. Therefore, we ask:
How many elements exist in each coset? Naturally, the answer to this isn’t straightforward. We will answer this
question in the following sections.

6.1. R@~1/2 Bloch sphere representation for qudits with prime d
For prime power dimensions, below, we state a known result in the literature:

Claim.1: There exists d + 1 cosets consisting of d — 1 mutually commuting HW matrices.
Along with the above claim, we observe that
Corollary: Within each cosets —

1. for all prime d, individual cosets contains the pairs { Uz,,, Uy} which are each others complex-conjugate.
That means (d — 1)/2 such pairs exist in a coset.

2. for prime d, there exists no Uy, such that U;m = Upp.

Now if we recall equation (2), and apply the above properties, we can conclude that for pair of commuting
HW matrices, U;m = Uy, such that by, = n;el? = b}k/m/, where (n;, 6;) € R. This means one finds terms like
b U + bgty Upry inside p, which can be rewritten as n;H;, where H; = €% Uy, + e % Uy, Note that all
{H;} satisfyboth H i"' = Hj,and Tr[Hij] = 2d06;;. This means, for prime d, we find a group of (d* — 1)/2 trace-
orthogonal and Hermitian matrices { H;}. Notice that these matrices are no longer unitary. Then any density
matrices in prime d can be written as

p= %[]I + n.H], with n, = %Tr[ka], (29)

where nisa (d* — 1)/2-dimensional real vectors with |n\2 < (d — 1)/2. We call n;s the weight parameters. It
should also be noted that the angular parameters (6;s) can be estimated by the following formula

0; = arccos [ i Re (Tr[pUzn]) ] (30)

1

Comment:—Our construction is inducing a Bloch sphere in R~ 1/2, Effectively, we are reducing in terms of
the dimension of Euclidean space. However, we are having (d° — 1)/2 number of @ parameters which induces an
envelope in the state-space dictating valid regions.

6.1.1. Bloch sphere representation of astateind =5

For the states in d = 5, there are six possible cosets; { Upo|p = 1,..,4}; {Uop|p = 1,...,4}; { Uy, Uaz, Usa, Usa}s
{U12, Usy, Usy, Uys}s { Uss, Usy, Usy, Uy b and { Uy, Upy, Uss, Uy . Using the same analysis from the previous
subsection, we find that we can consider a set of Hermitian, traceless, trace-orthogonal matrices { H;} of the form
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Table 1. Coset for d = 4.- Here p = 1, 2, 3. Notice that for k = 0 there
exists three distinct cosets. The lone coset {(2,2)} is compatible with
the coset for k = 1, forming a perfect coset with d — 1 elements. This
indicates that we might find atleast 3 MUBs.

Cosets (d = 4)

k nd + k
{(p,0)};{(0,p)} (2,2)
{(1,1),(2,2),(3,3)}
{(1,2),(2,1),(2,3),(3,2)}
{(1,3), 3, D}

[SVI SR e

H = Uy + e Uy, Hy=e"2Uy + e U3, Hy = €Uy + e % Uy,
H, = ei94U02 + e~ i Ups, Hs = eiHSUn + €_i95U44, Hg = €i96U23 + 6_106U32,
H, = €Uy, + e7U, Hy = e®Uyy + e %Usy, Hy = e®Ujs + e U,
Hyp = €Uy + e 00Uy, Hyy = eUy + e 91Uy, Hpp = e¥2Uy + e 0:2Us;,

where 6; € R. Therefore, one can write the statein d = 5 as
1 . 1
p= g[]I + n.H], with n; = ETr[pHi], (31)
where nis areal vector in R2. Note here that like qutrit, these six cosets are related to six MUBs.

6.2. Bloch sphere representation of qudit when d is non-prime

Claim.2: There exists d + 1 such cosets of HW matrices plus some extra cosets from the relation
¢m = nd + 0 whenever £or m = 0.

Corollary: Within such cosets —

1. for all non-prime d, individual cosets contains the pairs { Uz, Ugr,v} which are each others complex-
conjugate.

2. for non-prime d, there exist at most three Uy, such that U;m = Uy, and theyare (¢, m) = {(d/2,0), (0, d/2),
(d/2,d/2)}. For some non-prime d, there exists none, eg., d = 9, 25, 27,... etc.

3. acosetcan contain at least one HW matrix.

Notice that arbitrary density matrix in non-prime d will also be concisely written as equation (29), however,
the dimension of the Bloch vector is not precisely known as is shown in the below examples.

6.2.1.d =4

There are five (stx) possible cosets for d = 4 and they are listed in table 1. In this case, there are exactly three
Hermitian HW matrices, Up,, Usg, and Us,. Using the property of density matrix, p” = p, we find that there exist
Hermitian, trace-orthogonal matrices { H;}, with self-adjoint ones

Gl: H, = Uy, Hy= Uy, Hs= Up,
where Tr[H;H;] = 4 §; for H; € G1,and the expression for other H;’s are defined as
G2: Hy=e%Uyp + e Uy, Hs = e%Uy + e U, Hs = €Uy + e % Us,
H; = Uy, 4+ e 9702Us,, Hg = e%U,; + e %w2Uys, Hy = Uz + e % Us,
where n;, 0; € R and Tr[H;H;] = 8 ¢ for H; € G2. Note that we multiplied w?in front of U3 and Us, to get the

desired properties. Notice also that there are only six angular parameters, ;. Therefore, the state in d = 4 can be
expressed as

1 1
p = Z[I[ + n.H], n; = mTI‘[H;p], (32)

where f(H;) = 1if H; € G1, otherwise 0, and nis areal vector in R’ with 3°, 2! =/ ) |12 3.
6.22.d=6

In d = 6, atotal of nine cosets exist and they are listed in table 2. Here also, we find that exactly three Hermitian
HW matrices exist, which are Uy, Uz, and Uss. Notice that the the cosets {(2, 3), (4,3)} and {(3, 2), (3,4)} do
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Table 2. Coset for d = 6.- Here p = 1,..5. Notice that for

k = 0 there exists four distinct cosets. We find that there
exists 3 perfect cosets, k = 0 (x2), and k = 3, indicating the
existence of at least 3 MUBs.

Cosets (d = 6)

k nd + k
{(,0)};{(0,p)} {(2,3),(4,3)1{(3,2),(3,4)}
{(1,1),5,5)}
{(1,2),(2,1),(2,4),(4,2),(4,5), 5, ) }
{(1,3),(3,1),(3,3), (3,5), (5,3)}
{(1,4),(4,1),(2,2),(2,5),(5,2), (4, D)}
{(1,5), 5, 1)}

[ I N S N S =

not commute with any other cosets from table 2. By a similar argument, we find that there exist Hermitian,
trace-orthogonal matrices { H;}, with

Gl: H; = Uy, Hg= Uy, Hg= Us;s,

where Tr[H;H;] = 66;; for H; € G1, and the expression for other H;’s are defined as

G2: Hy = Uy + e Usp, Hy = €% Uyy + e Uy, Hy = e Up; + e % Ups,

Hs = ¢%Uy, 4+ e % Uy, H, = €7U3 + e %7 Uss, Hy = €% Uy, + e % Uss,

Hyp = iUy, + e 00w3Usy, Hyy = €U, + e 1wiUys, Hyp = 92Uy + e7102U,,
Hp; = e Uy + e %2 Uss, Hiy = €94 Uys + e 4 Us), His = e%5Us3 + e 15w Ups,
Hs = €Uy + e %5w3Usy, Hiy = €Uy + e %7w3Uys, Hig = €Uy, + e Uy,
Hyg = e%5Us; + e 003U,

where 0; € R and Tr[H;H;] = 126;; for H; € G2. Note that we multiplied " in front of certain HW matrices to
get the desired properties. Therefore, the density matrix in d = 6 can be written as

1 1
p = E[I[ + n.H], n; = mTI‘[H,p], (33)

where f(H;) = 1if H; € G1, otherwise 0, and nis areal vector in R with 3=, 2! /) |,|2 < 5.

6.3. Finding MUBs in non-prime d
For completeness, we extend the analysis of finding the MUBs to non-prime d using our construction. Note that
in every dimension, the presence of a coset with d — 1 HW matrices might imply that there existsa MUB.

MUBs in 4 dimensions.—From table 1, we know that it is possible to find 3 MUBs in d = 4. Then we have the
computational basis below with the notation, (1, n,, 1) — |k):

(Bl) (1) 1) 0) - |0>) (_1) _1) g) - |1>) (1) 1) 7T) - |2>> and (1) _1) %) - |3>

From the other two complete cosets from table 1, we have the two more MUBs below with the notation, (713, 114,
05) — |k) for B2 and (ny, ns, s) — |k) for B3:

B2 (1, 1,0) — |+), (—1, —1, g) — |w, (1, —1, g) — |w)y, and (=1, 1,0) — |—);

B3 (1,1,0) — 1), (1,f1,§)ﬂ 1, (71,f1,§)ﬂ 1), and (=1, 1, 0) — ||).

To find the other two MUBs using our analysis, we need to search numerically over the entire pure state space.
We will pursue this in our future research.

MUBs in 6 dimensions.—From table 2, we should find 3 MUBs in d = 6 easily. However, it is not the case. We
only find two MUBs from our construction. We have the computational basis with the notation, (#;, n,, 113, 01,
6,) — |k) and the other one, 32 with the notation, (14, 115, 116, 04, 65) — | k) below.
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(B1): (1,1,1,0,0) — 0}, (=1,1, —1,0,0) — |1), (1, —1, -1, —%, 1) - 2),

(_1)_1) 1) Z) _Z)_>|3>’ (_1) _17 1)_7T) 7T) |4> (1)_1)_1) I) _Z)_)|5>~
3 3 3 3 3 3

(62) (1a 1) 1) 0) 0) - |+>) (_1) 1) _17 01 0) - |_>) (1) _1) _1) T %) - |w>17

e T ™ Y e
1, -1, =, —— | = W, [, =1, 1, =2, 2 ) = jw)s, (1, =1, =1, =, == | = |w)s.
( -2 = ke, (- =2 e % -2) — ol

Note that another MUB (I3 3) can be found from any of the coset {(XZ™)?|p € [1, 5]}, wherem € [1, 5]
[14, 35, 36]. Note that other properties of qudits can also be determined using Bloch parameters using our
construction similar to qutrit.

7. Discussion on the relevance of the present study with that of [13]

Before concluding, it is important for us to discuss a work ([13]) related to our present study. The authorsin [13]
consider modified HW operator basis to represent a d-dimensional quantum states (qudits). The modified
operator basis are defined as

qu = Xqu + X Ul;q)

where x = (1 & i)/2 and U, are usual HW operators. Notice that the modified operators are by construction
Hermitian and satisfy the followmg properties, Dyg = 1and Tr[Dj,Dyry1] = dbypr gy . Therefore, these operators
(1 plus d* — 1 operators) form a basis acting on a d dimensional Hilbert space. Thus one can decompose any d-
dimensional density matrix as
] -1
= > dpgDpgs with  dpy = Tr[pDpgl,
pq=0

where the Bloch parameters d,,, are real. First, notice that this construction induces a geometry in R-1,
Whereas, our construction 1nduces ageometry in R ~1/2 which makes it easy to visualize at least in lower
dimensions. Also, we find that there is a nontrivial connection between this representation with ours by noticing
that by, = xdp, + X "w??d_, _,. Further notice that in our construction, we combine two contributions,

bpgUpq + b_p—qU_p g toget nj(e U,y + e iwPiU,, _,). By plugging one can see that n; = dyy + d_,_,,
whereas solutions for 6; comes from

X + x*whl = el 4 e~ ira,

Itis now easy to see the connection between the present work and the construction presented in [13].
Furthermore, the aim of the [13] was not to study the geometry induced by their construction, rather they
dedicated their study to investigate the witnessing of higher-dimensional entangled states and the discritization
of continuous variable systems. Therefore, our study in this perspective can be treated as a companion of
the[13].

8. Conclusion

To conclude, we have used the HW operator basis to represent a qutrit state. In doing so, we identified eight
independent parameters consisting of four weight and four angular parameters. We find that the four weight
parameters induce a Bloch sphere-like structure in R* for qutrits. Further, we have obtained the constraints
which must be satisfied for the parametrization to represent a physical qutrit. To understand the geometry of
state space, we study its one, two, and three sections in detail. Our study shows that these projections are unlike
those studied in the previous literature [8].

We have applied our Bloch vector representation to show that there can be a maximum of four MUBs in
three dimensions. The characterization of unital maps acting on qutrits is also demonstrated using our
representation. We also did a characterization of randomly generated density matrices, when the probability
distributions are induced by Hilbert-Schmidt and Bures distances. Lastly, we have mentioned the basic steps
required to extend this representation in dimensions greater than three.

As we have shown in this paper that the geometry of the Bloch sphere limits the existence of the number of
MUBSs in qubits and qutrits. This approach can be used to study the existence of MUBs in C®, where the
maximum number of MUBs is not known yet [35, 37, 38]. An extension to the characterization of unital maps
would be to characterize qutrit entanglement breaking channels similar to qubit entanglement breaking
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channels [22]. Similar to the characterization of ensembles generated by HS and Bures metric, another
interesting study could be to identify the form of the Fubini-Study metric and the corresponding volume
element [39]. Such an analysis could be useful for sampling pure qutrit states and averaging over them.

Our sphere representation in R* could also have significant applications in studying the dynamics of qudit
states and finding the constants of motion in d-level systems. It can also be used to detect the entanglement of
bipartite systems and identify the reachable states in open system dynamics. We hope that this approach leads to
better insight into the study of qudit systems and their dynamics.
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Appendix A. random Density matrices in Gell-Mann operator representation

Using the Gell-Mann operator basis, one can also write a arbitrary qutrit state in the following way [1]
1 d*—1
P=3 I+ > ghil (A1)
i=1

where A; are the Gell-Mann operators in three dimensions and g, = Tr(A;p) form the components of the eight-
dimensional (eight-D) Bloch vector g. The eight Gell-Mann operators in three dimensions contain diagonal,
symmetric, and anti-symmetric matrices, but for simplicity, we denote all of them with A;. Using a similar trick
as in the case of Weyl operator representation, we can get the HS and Bures distribution in terms of the Bloch
vector parameters g; as follows

Ch.

r7SG Fs(p), Ppg(r, a;) = BcFG(p)

[3 — 12 — 9Det(p)] /Det(p)

where F5(p) = (1/729)(r? — 3)?(4r* — 3) + [2 — 2r? — 27 Det(p)]Det(p). Notice that we have switched to
polar representation to represent a pont inside the eight-D sphere where r represents the radial distance inside
the sphere and «;’s being the seven polar angles. Cyysg and Cpg are constants determined by the normalization.
Asin the Weyl representation, here also, the HS distribution is always positive inside the eight-D Bloch
sphere irrespective of Det (p) being positive or negative. Also, it is non-decreasing with respect to r. Thus the
states chosen are localized at the surface of the Bloch sphere.
The Bures distribution also behaves similarly to the Weyl representation. It is positive if and only if

Prsa(r, o) = (A2)

Det (p) > 0 and also it is non-decreasing for Det (p) > 0.The singularity in Pyg (7, ;) occurs either at

[3 — 2 — 9Det(p)] = 0 or when Det(p) = 0. The first condition is only possible at or beyond the surface of
the eight-D sphere. Whereas, Det(p) = 0 can happen for rank-1 or rank-2 states, i.e., at the surface of the
structure formed by the qutrit states. Thus, Hpg is sharply localized at the surface of the convex structure formed
by the qutrit states.

Appendix B. Outside of the ball of radius r = 1/2

One can prove that inside the Bloch sphere of radius r < 1/2, Q2 is positive for all the values of angular parameters
0;. This can be proven by using the polar coordinate forms of ;’s in equation (9), i.e. we replace with
1] = 1 COSQy, My = T SINQy COS iy, N3 = T SiN qy SIN v, COS (i3, 1y = 7 SIN (y SN Ay SiN 3 COS ay in equation (9),
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where o, o, a3 and oy are the polar angles. Then €2 can be written in the following simple form
Q=1-=3r24 2% (0), 05, 03, 04, 1, 2, 3, vg). (B.1)

wherefe [ — 1, 1]isa function of §;s and «;’s. It is straightforward to see from the above equation that any
points inside the Ball of radius, r = 1/2, corresponds to a physical qutrit.

Next, we ask whether this boundary is sharp, i.e., if we increase the boundary by e < < 1, do all the points
on the stretched boundary still corresponds to physical qutrits? If we do little algebra, we find by putting r =
(1/2) + €in the above expression (assuming €%, € & 0),

1 2 1 3
Q(€,f):1 — 3(5 + 6) + 2(5 + f)f(e, a),

— 3¢+ %(% + 3e)f(0, ),

~
~

1
4
=Sl + /6, @)} = 3¢ 1~ (0, ).

As 1+ f(0, o) > 0 always, we look into the second term in the RHS of the last line of the above equation and find
that a valid solution (=0) exists only when (6, ) = 1. This means that for arbitrary small € (>0), we no longer
have a solid Ball.
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