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Abstract
We study an analogous Bloch sphere representation of higher-level quantum systems using the
Heisenberg-Weyl operator basis.We introduce a parametrizationmethod that will allow us to identify
a real-valued Bloch vector for an arbitrary density operator. Before going into arbitrary d-level (d� 3)
quantum systems (qudits), we start our analysis with three-level ones (qutrits). It is well known that we
need at least eight real parameters in the Bloch vector to describe arbitrary three-level quantum
systems (qutrits). However, using ourmethodwe can divide these parameters into fourweight, and
four angular parameters, andfind that theweight parameters are inducing a unit sphere in four-
dimension. And, the four angular parameters determinewhether a Bloch vector is physical. Therefore,
unlike its qubit counterpart, the qutrit Bloch sphere does not exhibit a solid structure. Importantly,
this construction allows us to define different properties of qutrits in terms of Bloch vector
components.We also examine the two and three-dimensional sections of the sphere, which reveal a
non-convex yet closed structure for physical qutrit states. Further, we apply our representation to
derivemutually unbiased bases (MUBs), characterize unitalmaps for qutrits, and assess ensembles
using theHilbert-Schmidt and Buresmetrics.Moreover, we extend this construction to qudits,
showcasing its potential applicability beyond the qutrit scenario.

1. Introduction

The Bloch vector representation of two-level systems (qubit) is extremely popular because of its simplicity and
its various applicability, see [1–3]. A qubit can be uniquely represented by a three-dimensional vector so that
every point inside the Bloch sphere corresponds to a physical qubit state. This lends a simplemethod to not only
represent the qubit states but also to identify the dynamics of the qubit. For example, all rotations of the Bloch
sphere correspond to a unitary operation.However, such an extension of all the beautiful properties of the qubit
Bloch sphere is not completely possible for higher dimensional states.

It is known that d2− 1 parameters are needed to characterize arbitrary d-level densitymatrices ind [1].Most
of theworks till nowhave used theGell-Mannoperator basis to characterize the qudits as they admit real numbers
in the Bloch vector elements. This parameterization leads tod2− 1 dimensional geometrywhich is extremely
complex, and intractable even in the case of three-level systems [1, 4–8]. A shortcoming of this feature is that all the
rotations ind 12- donot represent a unitary operation,which is a prominent feature in thequbit Bloch sphere.
Moreover, it is very hard to understand the general evolution of qudit using this geometry, for example, how to
understand the action ofunital channels ind whenever d� 3. To resolve this issue andhave a qubit-like Bloch
representation for higher dimensional quantumstates, there have been several efforts, e.g. constructing a three-
dimensional Bloch sphere representation for qutrits [9] anddeveloping amultiqubit-based parametrization for
qudits [10, 11]. However, thesemethodshave their pros and cons. For instance, in themulti-qubit-based
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solid Bloch spheres for parametrizing the quantumstate space, however,
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the requirement to havemanyqubit Bloch spheresmakes it difficult to study the properties of the qudit state space.
Whereas, Ref. [9] tries to capturemost of the geometric and algebraic properties of the qutrit state space via a three-
dimensional representation, and it is useful in various tasks like representing themixture of qutrit states, the
unitary transformation, and the transformation under action of quantumchannels. If extended tohigher
dimensional qudit states, this approach could be extremelyuseful, however, it is unclear how to extend it beyond
three-level systems. Therefore, the featureswhich are very prominent anduseful in the qubit Bloch sphere are not
present for qudits, with the currently knownparametrizations usingGell-Mannoperator basis.

On the contrary, theHeisenberg-Weyl (HW)operators have receivedmuch less attentionbecause they arenot
hermitian and thereby require complexnumbers inBloch vector components [12, 13]. As such it becomesdifficult to
study theparameters andput them touse. Therewas an attempt to address the issue of complex entries inBloch
vectors in [13], however, their approachuses aHermitianoperator basis constructedusingHWoperators such that it
induces a geometry in d 12- .Wewill be comparing thiswithour current approach in themain text.As theHW
operators doprovide an alternativeway to represent a quantumstate, it isworthwhile to study themdespite the
presence of complex coefficients as there canbe certain taskswhere theHWoperator-based representation couldbe
more suitable, such asfindingMutually unbiasedbases [14], understanding theproperties of stabilizer states and
operations [15] etc. In fact, theHWoperator-basedparametrizationhas alsobeenused for—a) tomographyof
higher-dimensional quantumstates [13], andb)developing separability criteria formulti-qudit states [1, 13, 16, 17].

In this work, we use theHWoperator basis to represent a qutrit, and importantly, find away to remove the
presence of complex elements in Bloch vectors. Inwhat follows, we identify four weight and four angular
parameters; and observe that fourweight parameters induce a unit sphere in 4.We also obtain the constraints
on theweight and angular parameters, which give a physical qutrit densitymatrix. It is found that not all the
points inside the sphere in 4 correspond to a positive semidefinitematrix. To unveil the geometric structure of
qutrit state space, we study its two-dimensional and three-dimensional sections completely. Our study shows
that these sections are unlike those studied in previous literature (cf [8]). This four-dimensional geometric
representation enables us to retrieve the following properties of qutrits:

• The length of the Bloch vector determines the purity of the state. It is solely determined byweight parameters.

• The rank of a randomly chosen qutrit state can be guessed to a certain extent.Wefind that the rank one states
live on the surface of the unit sphere.However, the rank three states live inside the spherical ball of radius 1/2,
whereas, the rank two states live anywhere but the surface of the unit sphere.

• The conditions for two orthogonal ormutually unbiased vectors are quite similar to the qubit Bloch sphere
under some restrictions.

• TheHilber-Schmidt distance between qutrit states is equivalent to a factor time of the Euclidean distance in
the sphere for some states.

Further, as a potential implication of our representation, we establish the following propertiesmeaningfully.

• We identifymutually unbiased bases (MUBs) in 3 from the geometry of the Bloch sphere in 4.

• Wecharacterize the unitalmap acting on qutrit states.

• Wefind the representation of ensembles generated fromHilbert-Schmidt and Buresmetric.

Wewere able to extend ourmethod to qudits and show its importance infindingMUBs.
The paper is organized as follows. First, we review theHWoperator expansion of a qudit in section 2. Then,

in section 3we present the Bloch sphere in 4 and obtain the constraints on the parameters fromone, two, and
three-dimensional sections in section 4. In section 4.2, we have studied a few features of the newBloch sphere.
The section 5 describes the implications of our representation. After that, in section 6we describe away to use a
similar approach for qudits.We present a comparative discussion of our constructionwith that of [13] in
section 7. Finally, we conclude in section 8with a summary and future works possible based on ourwork.

2. Expanding a qudit in the heisenbergWeyl operator basis (HW)

Wedeclare here that all the operations {±,× ,÷ } on the index space are always congruence
modulo d on the set of integers. For example, see equation (1).
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Heisenberg-Weyl operator basis is defined as { ∣ [ ]U U p q d, , 0, 1pq00 = Î - , whereU Z Xpq
p q

pq
2w= - . HW

operators,Upq, are unitary operators with several desirable properties whichmakes themuseful in several
applications [18–23]. These operators are constructed from the generalized Pauli operatorsX andZ, which are
also referred to as boost and shift operators respectively. They can be defined by their action on a pure state in the
computational basis as

∣ ∣ ∣ ∣ ( )X n n Z n n1 mod d , , 1nwñ = + ñ ñ = ñ

whereω= e2i π/ d is the d-th root of unity. UsingHWbasis, we can decompose a bounded densitymatrix
operator in d [1, 13] as

⎛

⎝
⎜

⎞

⎠
⎟ ( )

( )


d
b U

d
b U

1 1
, 2

p q

d

pq pq
p q

pq pq
0, 0

1

0
å år = = +

= =

-

¹ ¹

where b00= 1 and †b UTrpq pqr= form the Bloch vector components. However, the bpqʼs are complex in general
becauseUpq are not hermitian.Hence, wemustfind d2− 1 complex numbers to characterize a state completely.
One can see that for ρ†= ρ, the coefficients, b e bpq

pq
p q

2 i
,* = p-

- - . Also, the restriction [ ] Tr 12r implies the

length of vector b≔ {bpq} is ∣ ∣ b d 1- .
Now to summarise, we notice two crucial avenues to improve from the above formalism:—a)Canwefind a

way to have real entries in Bloch vectors, and b) reduce the number of relevant parameters for Bloch sphere-like
representation?. A solution for (a)was suggested in [13] by introducing a hermitian generalization of theHW
operators tomake the Bloch vector components real, however, the relevant Bloch sphere parameters remained
equal to d2− 1. In the next section, we suggest an alternate approach to address these issues.

3. 4 Bloch sphere representation of a qutrit

In this section, we propose a Bloch sphere-like geometric construction in 4 for qutrits. UsingHWbasis, an
arbitrary qutrit can be expanded as

( ) ( ) b U b U b U b U b U b U b U b U
1

3
. 301 01 10 10 11 11 02 02 20 20 12 12 21 21 22 22r = + + + + + + + +

Using the property, ρ†= ρ, wefind that the coefficients bpqmust obey the following relations

( )
b n e b n e b n e b n e

b n e b n e b n e b n e

, , , ,

, , , , 4

i i i i

i i i i
01 1 02 1 10 2 20 2

12 3 21 3 22 4 11 4

1 1 2 2

3 3 4 4

= = = =
= = = =

q q q q

q q q q

- -

- -

where n ,i iq Î . Thus, we can rewrite the expansion of ρ as

[ ( ) ( )

( ) ( )] ( )

 n e U e U n e U e U

n e U e U n e U e U

1

3
. 5

i i i i

i i i i

1 01 02 2 10 20

3 12 21 4 22 11

1 1 2 2

3 3 4 4

r = + + + +

+ + + +

q q q q

q q q q

- -

- -

Now, fromequation (5), weobserve that one candefine a set ofmatrices {Hi}, where H e U e U1
i

01
i

02
1 1= +q q- ,

H e U e U2
i

10
i

20
2 2= +q q- , H e U e U3

i
12

i
21

3 3= +q q- and H e U e U4
i

22
i

11
4 4= +q q- . Thematrices,Hi, are

Hermitian, traceless, and [ ]H HTr 6i j ijd= for all values ofθi. Then, a state ind= 3 can bewritten in the following
form

[ ] [ ] ( ) n H n H
1

3
. , with

1

2
Tr . 6i ir r= + =

where n is a real vector in 4 with |n|2� 1. Therefore, we find that the construction in equation (5) is analogous
to the qubit Bloch sphere.We note here that the angle parameters θis are determiningwhich states within the
sphere in 4 are valid. An implication of using the Bloch vector representation in 4 is thatmore than one state
lies at the same point in the sphere. The states lying on the same point are distinguished only by the angular
parameters θi. These states are equivalent under the action of some unitary operators. It would be interesting to
identify these unitary operators. Later, wewill shed some light on this fact.

4. Constraints on the bloch vector and angular parameters—for d= 3

It is clear that ρ is hermitian, which is guaranteed by the choice of expansion coefficients.Moreover, [ ]Tr 1r =
as theHWmatrices are traceless except for U00 = . The only condition that remains to be satisfied is the positive
semi-definiteness of ρ, i.e. xi� 0, where xiʼs are the eigenvalues of ρ. In order to do this, we construct the
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characteristic polynomial Det ( x r- ), of the densitymatrix ρ. The necessary and sufficient condition for the
eigenvalues xi to be positive semi-definite is that the coefficients aiʼs of the characteristic polynomial are also
positive semi-definite [4]. The characteristic polynomial has the following form

( ) ( ) ( ) ( )x x x a xDet 1 0. 7
i

N

i
j

N
j

j
N j

1 0
 år- = - = - =
= =

-

Notice that a0= 1 by definition.Now,we applyNewton’s formulas tofind the values of other coefficients ais(for
details please see [4]). Newton’s formulas relate the coefficients ai and the eigenvalues xi as

( ) la C a l N, 1 ,l
k

l

N k l k
1

,å=
=

-

where C xN k i
N k

, 1= å = . Using the results directly from [4], we get the following expressions for aiʼs in terms of ρ
in d= 3 as

[ ] ( [ ])
!

[ ] [ ]
!

( )a a a a1, Tr ,
1 Tr

2
, and

1 3 Tr 2 Tr

3
, 80 1 2

2

3

2 3

r
r r r

= = =
-

=
- +

where by construction, a1= 1, and a2� 0 imposes the constraint |n|2� 1. This constraint simply states that the
physical statesmust lie inside a sphere of radius one in 4. The only condition remaining to be satisfied now is
a3� 0, which simplifies to the following form after simple algebra,

∣ ∣ { ( ) ( )

( ) ( )} ( )

n n n n n n n n

n n n n n n

1 3 2 cos 3 6 cos 3 cos

cos 3 cos 3 0. 9
i

i i
2

1

4
3

1 2 3 1 2 3 1 3 4 1 3 4

2 3 4 2 3 4 1 2 4 1 2 4

å q q q q p q q q

q q q p q q q p

- + + - + - - - -

+ + - + + + + +
=

In the above form, it is difficult to picture the set of valid states inside the sphere.We take the one, two, and three-
dimensional sections passing through the center to get a better understanding of the allowed space inside the
sphere in 4.

4.1.Different sections of bloch sphere
The condition forweight parameters, n 1i i

2å , for qutrit implies that the induced Euclidean geometry is a
sphere in 4. However, the restriction posed by equation (9)makes it hard to understandwhether the space is
solid or not. To understand it, we consider some special cases (sections). Towarmup, wewould start with the
one-section itself to see along an axis, say ni, how the angular parameter is restricting it.

One-dimensional sections.–One-dimensional sections (one section) passing through the center can be
obtained by setting three out of four niʼs as zero, in equation (9).Wefind that the expressions of one section of a3
are the samewith respect to all nis. Then, the condition for positivity is given by

( )n n1 3 2 cos 3 0. 10i i i
2 3 q- +

Therefore, these one-dimensional sections are symmetric with respect to the four axes. If we rearrange the
equation (10), we get ( ) n n1 3 2 cos 3 02 q- - . Clearly, 1− n2� 0 confirms that−1� n� 1, however, the
parametric equation, ( )n a3 2 cos 3q= - behaves as an envelope restricting the allowed values of n, where

a Î . The one sections based on non-negativity constraint are:-

• The line  ni
1

2

1

2
- is valid for all θi.

• The points ni=± 1 is validwhen θi satisfy equation (16). These points correspond to the pure states.

• The lines  n 1i
1

2
  are validwhen cos 3 1iq =  . Along these two disjoint lines, the densitymatrices are

diagonal in the computational basis.

It can be also observed (see figure 1) that the range of allowed values of θi is gradually reducing aswemove away
from the origin along the ni, axis after |ni|� 0.5.

4.1.1. Two-dimensional sections
A two-dimensional section(two sections) centered at the origin can be obtained by setting two out of four niʼs to
be zero in equation (9). The positivity constraint for all the two-dimensional sections have the following same
form

( ) ( ) ( )n n n n1 3 2 cos 3 cos 3 0. 11i j i i j j
2 2 3 3q q- + + +
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Some observation based on equation (11) is in order. Rearranging the equation, we find
( ) ( ) n n n n1 3 2 cos 3 3 2 cos 3 01

2
2 1 2

2
2 2q q- - - - . Clearly, in general, we have a circle of radius one,

however, the parametric equations, { ( ) ( ) }n a n b3 2 cos 3 , 3 2 cos 31 1 2 2q q= - = - act as an elliptic
envelope dictating the allowed region, where a b, Î . Similar to the one-dimensional sections, we see that the
two-dimensional sections are also symmetric with respect to the four axes.We point out that this is unlike the
Gell-Mann basis-based Bloch vector representation of a qutrit, where there exist four different types of such two
sections [4], which are asymmetric with respect to the axes.

Now,we are interested in obtaining the region in the two-dimensional sectionwhich corresponds to
physical qutrit states, i.e. there exist values of θi and θj so that the inequality in equation (11) is satisfied. Some
special cases of the inequality in equation (11) are plotted infigure 2, where it shows that allowed states are all
inside the shaded colored regions.

Case.1.–Weconsider (cos 1iq =  , cos 1jq =  ). Then, the equation (11) reduces to

( ) ( )n n n n3 2 3 2 1.i i j j
2 2 + =

These four parabolas are truncated by one of the lines defined by the points (0,± 1), (± 1, 0) accordingly. One
such parabola is shown in panel (a) offigure 2.

Case.2.–Weconsider (cos 0iq = , cos 1jq =  ) or (cos 1iq =  , cos 0jq = ). Then, the equation (11)
reduces to

( ) ( )n n n n n n3 3 2 1 or, 3 2 3 1,i j j i i j
2 2 2 2 + = + =

respectively. These are four ellipses stretched to one of the points (0,± 1), (± 1, 0) accordingly. One such ellipse
is shown in panel (b) offigure 2.

Case.3.–Weconsider (cos 3 2iq =  , cos 1jq =  ) or (cos 1iq =  , cos 3 2jq =  ). Then, the
equation (11) reduces to

( ) ( ) ( ) ( )n n n n n n n n3 3 3 2 1 or, 3 2 3 3 1,i i j j i i j j
2 2 2 2   + = + =

respectively. These are four deformed parabolas akin toCase.1, touching to the circle, n n 1i j
2 2+ = , at only one

of the points (0,± 1), (± 1, 0) accordingly (see panel (c) offigure 2 for one such region).
Case.4.–Weconsider (cos cos 0i jq q= = ). Then, the equation (11) reduces to

( )n n3 1.i j
2 2+ =

This is a circle of radius 1 3 which is plotted in panel (d) offigure 2.
Further, it is informative to see the allowed values of θi and θj in different directions in the two-dimensional

section as wemove away from the center in the sphere (4). To do this, we replacewith n r cosi a= and
n r sinj a= in equation (11), so that

Figure 1.The shaded region depicts the allowed values of ni and θi for a physical state lying on the ni axis. As can be easily seen that for
−0.5 � ni � 0.5, all values of θi correspond to a physical densitymatrix.
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( ) ( )r r f1 3 2 , 0, 122 3 q a- +

where ( )f , cos cos 3 sin cos 3i j
3 3q a a q a q= + and−1� f (θ,α)� 1. This equation captures all the allowed

densitymatrices in the two sections. Let us list the important class of states below,

• If r� 1/2, the equation (12) reduces to 1+ f (θ,α)� 0, which is valid for all values of θi, θj andα. Thatmeans
all the states inside this ball are valid densitymatrices.

• For r 1 3 , we have f (θ,α)� 0, whichmeans all the states inside this ball are not valid.

• Allowed pure states (r= 1) implies that f (θ,α)= 1.

To see all these items, we numerically generated 105 randomqutrits which satisfy equation (11) and plotted them
infigure 3. This again confirms our theoretical findings.

4.1.2. Three-dimensional sections
Next, we consider the three-dimensional sections (three sections) centered at the origin inside the sphere (in
4). There are four such three-dimensional sections possible which can be obtained by setting one of the niʼs as
zero in equation (9). However, unlike the one and two-dimensional sections, the three-dimensional sections are
all different, with the following expressions.

Figure 2. Four different views of the two sections: Blue regions are defined by—(a) (cos 3 11q = , cos 3 12q = ), (b) (cos 3 01q = ,
cos 3 12q = - ), (c) (cos 3 3 21q = - , cos 3 12q = ) and (d) (cos 3 01q = , cos 3 02q = ). Allowed qutrit densitymatrices to live inside
blue regions. The red circle with a radius of 1/2 is contained inside the blue regions in all cases.

6
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It seems that these three-dimensional sections are not symmetric with respect to the axes as they have
different forms in equation (13). Thereforewe need tofind the regions for which the expressions in
equation (13) are non-negative. Tofind the non-negative regions ( ( )ℓ  0n 0W = ) of the three-dimensional
sectionsmeans tofind outwhether for a given triple of ni, nj and nk, a corresponding θi, θj, and θk exists which
gives a non-negative value of terms in equation (13). It is difficult to do so analytically. Aswe can see from
figure 4 that the different faces have different formsWLOG,we pick three section ( )n 04

W = and plotted it for
different θ-values.

Case.1.–Panel (a) offigure 4 depicts the three sectionwith (cos 3 1iq = - , i= 1, 2, 3). The plot reminds us of a
three-dimensional parabola with bulges at different points (n1, n2, n3). The bulges corresponding to pure states
are (−1, 0, 0), (0,− 1, 0), (0, 0,− 1) and (1/3,− 2/3,− 2/3)+permutations. There are other bulges
corresponding tomixed states, eg., (1/3,− 2/3,− 1/6), (1/3,− 0.744,− 0.455), and (1/3, 0.41, 0.122) plus
permutations.

Notice that onewill have threemore similar paraboloids for the choices (cos 3 11q = - ,
cos 3 cos 3 12 3q q= = )+permutations. The sphere of r= 1/2 is always contained inside the paraboloid.

Case.2.–If we choose (cos 3 cos 3 11 2q q= = - , cos 3 12q = ) instead, we get an ellipsoidwith three peaks at
points (−1, 0, 0), (0,− 1, 0) and (0, 0, 1)which are all pure states. This ellipsoid is depicted in panel (b) offigure 4.
The sphere of r= 1/2 is always contained inside the ellipsoid.

Also, there are threemore such ellipsoids with the choices (cos 3 cos 3 11 2q q= = , cos 3 13q = - )
+permutations and (cos 3 1iq = , i= 1, 2, 3).

Case.3.–Now the choice that two out of three cos 3 iq is set to zero and the remaining one is equal to±1will
yield an ellipsoid stretched tomeet the sphere n n n 11

2
2
2

3
2+ + = at only one point. One such example

(cos 3 11q = ) is shown in panel (c) of figure 4. The pure state corresponding to this example is (1, 0, 0).
Case.4.–In the panel (d) offigure 4, the ellipsoid is consideredwhen all (cos 3 0iq = , i= 1, 2, 3). Then the

ellipsoid is the generalization of circle ( )n n3 11
2

2
2+ = (see, two-sectionCase.4), as,

( )n n n n n n3 3 1.1
2

2
2

3
2

1 2 3+ + - =

However, the circle of radius 1 3 is generalized to an ellipsoid instead of a sphere. A sphere of r= 1/2 is
contained inside this ellipsoid also. The points at which the ellipsoid is peaked are ( )1 3 , 0, 0 plus
permutations.

Figure 3.Two section of Qutrit state space.–Numerically generated qutrits satisfying equation (11). See that within the r = 1/2, we have
concentric circles with no truncation. However, beyond r > 1/2 concentric circles are truncated by the lines (approximated)
connecting (0,± 1), ( ± 1, 0). Thisfiguremotivates us to imagine the schematic infigure 5.
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A few remarks from the study of the one, two, and three sections are in order.

1. It is possible to approximately construct the three sections from the knowledge of the two sections, which is
not the case in the representation usingGell-Mann operator-based representation.

2. It looks like from the numerical plots, that the three sections’ structure is not convex. This could be because
of the presence of complex coefficients.

3. It is also clearly visible how the one section arises from the two sections and the two sections from the three
sections.

Based on the above studies, we are ready to state the following fact of qutrit state-space in 4.
Observation- All the points inside spherical Ball of radius r� 1/2 are physical states for all the angular

parameter values of θiʼs.However, all points beyond r> 1/2 are not valid qutrits.
Proof of this fact has been furnished in appendix B. An implication of this result is that a rotation in the Bloch

sphere does not always correspond to a unitary operation, unlike the qubit Bloch sphere.

Figure 4. Four different views of the three section ( )n 04W = : Yellow regions are defined by—(a) (cos 3 1iq = - ), (b) (cos 3 1iq = ), (c)
(cos 3 1, cos 3 0, cos 3 01 2 3q q q= = = ) and (d) (cos 3 0iq = ), where i = 1, 2, 3. Allowed qutrits to live inside the yellow regions. The
red sphere with a radius of 1/2 is contained inside the yellow region in all cases.
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4.2. Features of the Bloch sphere—for d= 3
In this section, we discuss several features of the Bloch sphere for qutrits and discuss the difference with the qubit
Bloch sphere.

4.2.1.Mixed and pure states
The purity of a densitymatrix operator is defined as

[ ] ( ( )) ( )n n n nTr
1

3
1 2 . 142

1
2

2
2

3
2

4
2r = + + + +

Thus, wefind that the length of the Bloch vector determines the purity of the qutrit state. Further,
[ ]Tr 12r = for n n n n 11

2
2
2

3
2

4
2+ + + = , i.e., the pure states lie on the surface of the unit sphere. Also,

[ ]Tr 02r = onlywhen n n n n 01
2

2
2

3
2

4
2+ + + = , i.e., themaximallymixed state lies at the center of the sphere.

Also, the purity increases as wemove away from the center of the sphere.
To characterize the set of pure states in d= 3, one needs tofind the states which satisfy ρ2= ρ. As ρ2 is a

Hermitianmatrix, we find its components by considering the terms [ ]ℓ ℓ
( )n HTr 22 2r= and one of the

elements is given by,

{ ( ¯ )} ( )ℓ ℓ ℓ ℓ ℓ
( )n n n f n

1

6
4 2 cos 3 2 , , 152 2 qq= + +

where ( ¯ ) ( ) ( ) ( )f n n n n n n n,. cos 3 cos 3 cos 32 1 3 1 2 3 1 4 1 2 3 3 4 2 3 4q q q p q q q p q q q p= - + + + + + - + + - -
and soon.Therefore, suitable conditionsonnℓ andθℓdetermine the set of pure states. For example, if ¯ℓn 0= , then
the condition forpuredensitymatrix reduces to

⎧

⎨
⎪

⎩⎪
⟹ ( ) ( )

ℓ ℓ

ℓ ℓ

n
m

n
m

1 and
2

3
,

1 and
2 1

3
,

162r r
q

p

q
p

=
= =

= - =


where m Î +. These states live on the boundary of sphere |n|= 1 (outer sphere). However, these states are not
only extremal states. Some other solutions from equation (15)might yield pure states (see examples in the three-
dimensional section).

It is safe to assume that the states that live on the boundary of the states space are singular, i.e.,
[ ] n HDet . 0+ = . It is difficult to understand the structure of the boundary from the expression of the

determinant. However, it is clear that to  n H.+ to be singular,n.H should have eigenvalues equal to−1.Now,
tracelessness ofn.H forces other two eigenvalues toλ, 1− λ. Also, we can easily verify that the restriction |n|� 1
implies that the square of eigenvalues ofn.H is bounded by 6, i.e.,

( ) 1 1 6,2 2l l+ + -

which forcesλ to be−1� λ� 2. It should be noted here that the eigenvalues of thematricesHℓ lie in the same
range.Now, normofn is

{ }∣ ∣ [( ) ] [ ( ) ] ( )n n H
1

6
Tr .

1

6
1 1 , 172 2 2

1
2

l l= = + + -

whoseminimum is 1/2whenλ= 1/2. This is exactly themidpoint of the valuesλ=− 1, 2 at which |n|= 1.
Hence, if n is a boundary point then−(1/2)n is also a boundary point, heralding that the boundary points of the
outer sphere (|n|= 1) are dual to the boundary points of the inner sphere (|n|= 1/2).

Nowone can easily see that there exists another sphere forwhich n.H is also singular, i.e., forλ= 0 or 1. And
midpoint of these values also defines the inner sphere (|n|= 1/2).With theseλ values, onefinds a new sphere of
radius ∣ ∣n 1 3= which is self-dual, i.e., antipodal point ofn is−n.

4.2.2. Rank of a qutrit state
A closely related concept to purity/mixedness is the rank of a physical state. Let us now recall the following
equationwhich is equivalent to ( )Det r ,

( )r r f1 3 2 , , , , , , , .2 3
1 2 3 4 1 2 3 4q q q q a a a aW = - +

As f ( · , · ) ä [− 1, 1], we find thatΩ> 0 has a unique solution, i.e., r� 1/2.Notice also that the surface of the
Ball (r= 1/2) corresponds toΩ> 0 as well asΩ= 0. Therefore, some rank 2 qutrits also live on the surface of
this Ball. Now rank 1 and 2 qutrits corresponds toΩ= 0. Andwe know that rank 1 states are all situated on the
surface of a sphere in 4 (see equation (16)). The following list summarizes ourfindings (see also thefigure 5),
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• Surface of sphere in 4 (r= 1) contains rank 1 qutrits.

• Region  r 11

2
< contains all rank 2 qutrits.

• Inside the Ball r 1

2
all of rank 3 qutrit lives.

4.2.3. Orthogonal states andmutually unbiased states
Let us consider two pure states ρ1: (n,θ) and ρ2: (m,f) and expand it in the formof equation (5)

( ( )) ( ( )) n H m H
1

3
2 . , and

1

3
2 . .1 2r q r f= + = +

The orthogonality condition can simply be checked by [ ]Tr 01 2r r = . In general, the orthogonality condition for
two qutrits is given by

⎛
⎝

⎞
⎠

( ) ( )n mcos
1

2
cos

2

3
. 18

i
i i i i

1

4

å q f
p

- = - =
=

This condition is farmore complex than the qubit case. Themost simple solution exists whenever
( )cos 1i iq f- = ∀i, and in that case the condition (18) reduces to

⎛
⎝

⎞
⎠

( )n m.
1

2
cos

2

3
. 19

p
= - =

In this context, we remind our reader that Bloch vectors for two orthogonal qubit states
obey, · ( )n m 1 cos p= - = .

For twomutually unbiased state vectors in 3, [ ]Tr 1 31 2r r = . Generally, twomutually unbiased qutrit
will satisfy,

( ) ( )n mcos 0 cos
2

. 20
i

i i i i
1

4

å q f
p

- = =
=

Notice that if ( ) tcos i iq f- = for all i, where t≠ 0 is a real number, then it implies

( )n m. 0 cos
2

. 21
p

= =

Therefore, in this case, the Bloch vectors corresponding tomutually unbiased state vectors are orthogonal to
each other, which is similar tomutually unbiased qubits.

4.2.4. Distance between densitymatrices
Let us consider two states ρ1: (n,θ) and ρ2: (m,f). TheHilbert-Schmidt (HS) distance between them is defined
as [24]

Figure 5. 2Dprojection of Qutrit state space.—The blue Ball (r = 1/2) contains rank 3 states and rank 2 on its surface. Points inside the
orange curve regions depict rank 2 qutrits. Red points are the pure qutrits (r = 1). The other regions are empty. (Note that it is a
representative figure only for understanding qutrit state space, not the actual one).
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( ) ( [ ] ) ( )D , Tr . 22HS
2

1 2 1 2
2r r r r= -

HSdistance defines the distance between two densitymatrices in induced Euclidean space [25].We obtain the
Hilbert-Schmidt distance between two arbitrary qutrits,

[ ] { ( )} ( )D n m n m,
2

3
2 cos . 23HS

i
i i i i i i

2
1 2

1

4
2 2år r q f= + - -

=

This induced distance depends on the angular parameters nontrivially.Whenever ( )cos 1i iq f- = ∀i, the
Hilbert-Schmidt distance reduces to the Euclidean distance in 4, i.e.

[ ] ( )D n m,
2

3
.HS

i
i i1 2

2år r = -

In the qubit Bloch sphere also, theHilbert-Schmidt distance between two densitymatrices is proportional to the
Euclidean distance between them [24].

5. Implications of qutrit bloch sphere construction

5.1. Employing the Bloch sphere geometry tofindMUBs in three dimensions
It is known that in prime or power of prime dimension d= pn, where p is a prime number and n is an integer
greater than zero, there exist amaximumof d+ 1MUBs [14]. For the qubit, the existence of threeMUBs can be
very easily explained through the qubit Bloch sphere, but such an explanation is difficult in higher-level
quantum systems. In this section, we show that the qutrit Bloch sphere geometry restricts themaximumnumber
ofMUBs to four.

MUBs in 2 dimensions- The qubit Bloch sphere is a three-dimensional sphere, inwhich the Bloch vectors
corresponding to orthonormal basis kets lie on the antipodal points on the sphere, i.e. they lie along the line
passing through the center. Also, the Bloch vectors corresponding tomutually unbiased kets are orthogonal to
each other [26]. As, there can be only three such orthogonal lines passing through the center, which explains why
there are only three possiblemutually unbiased bases in dimension 2.

MUBs in 3 dimensions.–Tofind the qutritMUBs, we firstfix one of the orthonormal basis to be the eigenbasis
ofHWoperatorZ or the computational basis. The eigenvectors ofZ have the following Bloch vector and angular
parameters

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ∣ ∣ ∣n n n1, 0 0 , 1,
3

1 , and 1,
2

3
2 .2 2 2 2 2 2q q

p
q

p
= =  ñ = - =  ñ = =  ñ

Notice, here that the pairs (n2, θ2) infinding computational basis are not only choices, but they are also one of the
possible combinations (see equation (16)).

According to equation (21), any pure qutrit which ismutually unbiased to all the computational basismust
have n2= 0.However, finding such pure states are straight forward as is seen from equation (16).We list the
other threeMUBs below,

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ∣ ∣ ∣n n n1, 0 , 1,
3

, and 1,
2

3
,k k k k k k k k kq q

p
q

p
w= =  +ñ = - =  -ñ = =  ñ

where k= 1, 3, 4.One can easily find their expressions by putting these values in the general expression of the
qutrit densitymatrix.

5.2. Characterization of unitalmaps
In this section, we characterize the unitalmaps acting on the qutrit states. Unitalmaps are quantumoperations
that preserve the identitymatrix or themaximallymixed densitymatrix. It is known that the unitalmaps acting
on a qubit densitymatrix are characterized by a convex tetrahedron [27, 28].

To analyze the unital channels acting on a qutrit densitymatrix b Up q pq pq
1

3 ,
2r = å with Bloch vector bpq


(see

equation (2)), we note that a linear quantummap can bewritten in the formof an affine transformation acting
on the d2− 1= 8 dimensional Bloch vector. Thus, every linear qutrit quantummap  : 3 3 3F ´ can be

represented using a 9× 9matrix  acting on the column vector { }b1, pq


. The action of the quantum channel

( ) b Up q pq pq
1

3 ,
2r r F = å ¢ can bewritten as

( )b b Lb l
l L

, with 1 0 ,
   
 ¢ = + =

where L is an 8× 8matrix and l is a column vector containing eight elements. By observing equation (4), it can be
seen that tomake sure that b


¢ corresponds to a hermitian densitymatrix ( ) r , it is necessary that 1) L is a
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diagonalmatrix with eigenvalues {λ01,λ02,K,λ22} and 2) the eigenvaluesmust be of the following form

e e e e

e e e e

, , ,

, , , .

i i i i

i i i i

01 1 02 1 10 2 20 2

12 3 21 3 22 4 11 4

1 1 2 2

3 3 4 4

l l l l l l l l
l l l l l l l l

= = = =
= = = =

f f f f

f f f f

- -

- -

Next, we note that to preserve the identitymatrix, l 0
 
= . Now, to do the complete characterization of themap

we impose the complete positivity requirement via Choi’s theoremwhich requires that ChoiMatrix
( )(∣ ∣)C = Ä F WñáW is positive semidefinite, where |Ω〉=∑i|ii〉. To simplify the problem,wefind the

eigenvalues when the anglesfi= 0. The constraints on the parameters {λi}ʼs are given by

  
 

1 2 0, 1 2 0, 1 2 0,
1 2 0, and 1 2 2 2 2 0.

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

l l l l l l l l l l l l
l l l l l l l l

+ - - - - + - - - - + -
- - - + + + + +

One can easily generalize this result for arbitraryf values by noticing that the change inHℓʼs are happening by
ei θUpq+ e−i θU−p,−q→ ei( θ+f)Upq+ e−i( θ+f)U−p,−qwhich preserves theHermiticity and trace orthogonality
ofHℓ. The above constraint gives a convex polygon spacewithfive vertices

⎧
⎨⎩

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

{ } { }{ }v v v v v1 , 1,
1

2
,

1

2
, 1,

1

2
,

1

2
,

1

2
,

1

2
, 1,

1

2
, and

1

2
, 1 .1 2 3 4 5

  
= = - = - - - = - - - = -

It is an irregular polygonwith 8 edges, out of which 4 edges have Euclidean length 9 2 and 4 other edges have

Euclidean length 27 4 .
It is insightful to visualize the effect of the action of the channel on a state in the sphere 4. The parameters

{λi} reduce the length of each Bloch vector component from ni toλini, thus bringing the state closer to the
origin.

5.3. Characterization of randomly generated densitymatrices
In this section, we characterize the structure of the state space of randomly generated densitymatrices, using the
Bloch sphere in 4. Specifically, we show the representation of ensembles generated byHilbert-Schmidt and
Buresmetrics [29, 30]. The infinitesimalHilbert-Schmidt (equation (23)) distance between ρ and δρ, has a very
simple form given as [( ) ]d TrHS

2 2dr= . In n-dimensions, the probability distribution induced by thismetric,
derived byHall [31] is given by

⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( )P C, , 1 , 24HS n HS
i

n

i
j k

n

j k1
1

2å l l d l l l¼ = - -
= <

whereλiʼs are the eigenvalues of ρ andCHS is determined by the normalization.
Formixed quantum states, there is another useful distancemeasure known as the Bures distance [32, 33]

( ) ( [ ])D , 2 1 Tr .B
2

1 2 1 2 1r r r r r= -

Similar to theHilbert-Schmidt case, there exists the infinitesimal formBuresmetric derived byHubner [34]

∣ ∣ ∣ ∣
d

j k1

2
,B

j k

n

j k

2

, 1

2

å
dr

l l
=

á ñ
+=

where againλk and |k〉 are respectively the eigenvalues and eigenvectors of ρ. For thismetric also, the probability
distributionwas derived byHall [31], which is given by

( )
( )

( · )
( )

( )P C, ,
1

, 25B n B
i
n

i

n j k

n
j k

j k
1

1

1 1
1 2

2

 l l
d l

l l l
l l
l l

¼ =
- å -

+
=

<

whereCB is again determined by the normalization. In equations (24) and (25), we have the probability
distributions defined on the simplex of eigenvalues. However, wewant to see how this probability distribution
picks out the states from the Bloch sphere. For a two-dimensional state ( )( · ) r1 2


r s= + , we can translate

the eigenvalues to Bloch sphere parameters using the simple formulasλ1= (1+ r)/2 andλ2= (1− r)/2, where
λ1,λ2 are the two eigenvalues of ρ. By substituting these in equations (24) and (25), we get the following
probability distributions in terms of Bloch sphere parameters [31]

( ) ( ) ( )P r P r
r

3

4
, and

4

1
. 26HS B

2

 
p p

= =
-

Wecan see that both probability distributions are dependent only on the radial parameter r.While theHS
distribution is uniformover the Bloch spherewhile the Bures distribution is sharply peaked at the surface of the
Bloch sphere.

Next, we derive the formof these probability distributions with respect to our representation of qutrit states.
For a qutrit state ρ, its eigenvaluesλ1,λ2 andλ3 can bewritten directly in terms of the Bloch sphere parameters
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niʼs and angular parameters θi. However, a direct approachwill lead to cumbersome calculations. Instead, we
write the eigenvaluesλiʼs in terms of the characteristic equation coefficients aiʼs from equation (7) and substitute
in the equations (24) and (25)which gives us the following

( )( ) ( ) ( ) ( )

( ) ( )
( )P r

C F

r
P r

C F

r
, ,

27
, and , ,

27 Det Det
. 27HS i i

HS
B i i

B

r3 3 1

3

2

 a q
r

z q
r

r r
= =

--

where ( ) {( ) ( ) ( )}{( ) ( ) ( )}F r r r r1 2 1 27 Det 1 2 1 27 Det2 2r r r= - + - + - + andwe have switched
to the polar representationwith n r n r n rcos , sin cos , sin sin cos1 1 2 1 2 3 1 2 3a a a a a a= = = and
n r sin sin sin4 1 2 3a a a= . Also,CHS andCB are constants and are determined by normalization. In this form,
these probability distributions don’t givemuch information about the states in the Bloch sphere because of
dependence on the angular parameters θiʼs which are not a part of the sphere in 4.We can obtain a distribution
for a subset of states by fixing the θiʼs and then analyze the probability distributions. Afterfixing all the θiʼs values
(say all zero), we get Det (ρ)= f (r,α). The distributions in equation (27) are not invariant with respect to unitary
operations unlike in the qubit scenario. This is a signature of the fact that all points inside the Bloch sphere in 4

don’t represent physical states.
After some algebraic calculations, it is found that theHS distribution in equation (27) is always positive

irrespective ofDet(ρ) being positive or negative.Whereas the Bures distribution in equation (27) is positive if
and only if Det(ρ)� 0, hence picking out the closed structure of the qutrit states inside the Bloch sphere.
Moreover, theHS distribution is non-decreasingwith respect to the radial parameter r, everywhere.Whereas,
the Bures distribution is non-decreasing with respect to r in the regionwhere theDet(ρ)� 0. It can also be seen
that the Bures distribution is sharply peakedwhenever the denominator vanishes.While ( )Det 0r = for rank-2
or rank-1 states, the {( ) } ( )r1 3 Det 02 r- - = only at the surface of the Bloch sphere or beyond.

Thus if wefix the θiʼs, both these distributions are localized closer to the surface of the Bloch sphere. For the
HS distribution, this is unlike what happens in the qubit scenario where it is uniform all over the sphere.
Whereas, the Bures distribution is sharply peaked near or at the surface of the Bloch sphere. It is similar to the
behavior of the Bures distribution in the qubit scenario, where the Bures distribution is sharply peaked on the
surface. These results arematchingwith the plots presented in Figure 2 of [30], which depicts the plots in the
simplex of eigenvalues.

As an example, wefix the all θi= 0’ and all polar anglesαiʼs asα1= π/3,α2= 0,α3= π/7, to see the
dependence on the radial parameter r, and obtain the following

( ) ( ) ( )
( )( )

( )P r C r P r C
r

r r r r

6 3

72
,

162 6 3

4 12 6.19 32 24 6.19
. 28HS HS B B

3
3

2 3 2 3
=

-
=

-

- + - + +

We see that in the chosen direction,HS distribution is peaked on the surface of the Bloch sphere and it is
everywhere positive.While the Bures distribution sharply peaked at r≈ 0.73 andwhile is negative for r> 0.73. It
simply tells that for the chosen θiʼs there are nomore physical states beyond r≈ 0.73 in the chosen direction and
also that there is a rank 2 state at r≈ 0.73. The other singularity of the Bures distribution lies at r≈ 1.02, butPB(r)
is negative after r=0.73 and hencewe ignore it.

In appendix A, for completeness, we analyze theHS andBures distributions also for the qutrit states
represented byGell-Mann operators. In this case, we observe similar patterns, i.e., (1)TheHS distribution is
always positive whereas the Bures distribution is positive iff Det (ρ)� 0. (2)HSdistribution is non-decreasing
with respect to the radial parameter and hence the states are localized on the surface of the convex structure of
the states and (3)Bures distribution is non-decreasing forDet (ρ)� 0 and it also blows up at the surface of the
Bloch sphere or for the rank-2 states.

6. Extention to d� 4

In this section, we extend the above analysis to d� 4.Our aim is tofind the dimension of Bloch sphere geometry
in these dimensions.Wefind that (1) for prime d, the Bloch sphere lives in ( ) d 1 22- , however, (2) for non-prime
d, it is hard to tell precisely.

Wefind that it is possible tofind such a group ofHermitianmatrices from theHWbasis. Below,we describe
ourmethod in detail. Our aim is tofind twoproperties ofHWoperators {Upq}, namely,

1. The conditions that pairs ofHWmatrices are complex-conjugate to each other,

2. The conditions that someHWmatrices are forming a coset of pairwise commutingmatrices.
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Tofind the complex-conjugate ofUpq, we recall the relation that
†U Upq

pq
p q,w= - - . Thismeans that theHW

matrixUℓ,m, whichwill be equal to
†Upq, should satisfy the relation thatℓ+ p=m+ q= nd, where n= 0,K,

d− 1. Clearly, it is always possible tofind complex conjugates ofUpqwithin the set ofHWmatrices, {Upq}. Now,
let us consider that the coset {Uℓm} that aremutually commuting, then they should satisfy the following
property

( )
ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓℓ ℓ

U U U U

X Z

0

.

m m m m

m m m mm m
2w w w

= -

= -
¢ ¢ ¢ ¢

+ ¢ + ¢ ¢ ¢+ ¢

Therefore, formutual commutavity, ℓ ℓm m¢ =  ¢ , where± ismodulo d. This condition can compactly be
written asℓm= nd+ k� (d− 1)2, where k= 0,K,d− 1. The last inequality comes from the fact that both
(ℓ,m) can havemaximumvalue d− 1.Howmany such cosets exist? If we count the possible k values, the
number of cosets are always d+ 1, as ‘k= 0’ can come from two distinct possibilities (ℓ,m)= (0, q) and (p, 0).
However, note that k= 0 can come fromℓm= nd also, andwe hoped that these elementsmight be distributed
inside one of the cosets {(0, q)|q= 1,..,d− 1} and {(p, 0)|p= 0,K,d− 1} dependingwithwhich coset they
commute.However, we find that this is never the case in general for tractable dimensions. Therefore, we ask:
Howmany elements exist in each coset?Naturally, the answer to this isn’t straightforward.Wewill answer this
question in the following sections.

6.1. ( ) d 1 22- Bloch sphere representation for qudits with prime d
For prime power dimensions, below, we state a known result in the literature:

Claim.1: There exists d+ 1 cosets consisting of d− 1mutually commutingHWmatrices.

Alongwith the above claim, we observe that

Corollary:Within each cosets –

1. for all prime d, individual cosets contains the pairs { }ℓ ℓU U,m m¢ ¢ which are each others complex-conjugate.
Thatmeans (d− 1)/2 such pairs exist in a coset.

2. for prime d, there exists noUℓm such that ℓ ℓ
†U Um m= .

Now if we recall equation (2), and apply the above properties, we can conclude that for pair of commuting
HWmatrices, ℓ ℓ

†U Um m= ¢ ¢ such that ℓ ℓb n e bm i m
i i *= =q

¢ ¢, where ( ) n ,i iq Î . Thismeans one finds terms like

ℓ ℓ ℓ ℓb U b Um m m m+ ¢ ¢ ¢ ¢ inside ρ, which can be rewritten as niHi, where ℓ ℓH e U e Ui m m
i ii i= +q q-

¢ ¢. Note that all
{Hi} satisfy both †H Hi i= , and [ ]†H H dTr 2i j ijd= . Thismeans, for prime d, wefind a group of (d2− 1)/2 trace-
orthogonal andHermitianmatrices {Hi}. Notice that thesematrices are no longer unitary. Then any density
matrices in prime d can bewritten as

[ ] [ ] ( ) n H
d

n H
1

. , with
1

2
Tr , 29k kr r= + =

where n is a (d2− 1)/2-dimensional real vectors with |n|2� (d− 1)/2.We call nis theweight parameters. It
should also be noted that the angular parameters (θis) can be estimated by the following formula

⎡
⎣⎢

⎤
⎦⎥

( [ ]) ( )ℓ
n

Uarccos
1

Re Tr . 30i
i

mq r=

Comment:—Our construction is inducing a Bloch sphere in ( ) d 1 22- . Effectively, we are reducing in terms of
the dimension of Euclidean space. However, we are having (d2− 1)/2 number of θ parameters which induces an
envelope in the state-space dictating valid regions.

6.1.1. Bloch sphere representation of a state in d= 5
For the states in d= 5, there are six possible cosets; {Up0|p= 1,..,4}; {U0p|p= 1,K,4}; {U11,U23,U32,U44};
{U12,U21,U34,U43}; {U13,U24,U31,U42}; and {U14,U22,U33,U41}. Using the same analysis from the previous
subsection, wefind that we can consider a set ofHermitian, traceless, trace-orthogonalmatrices {Hi} of the form
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H e U e U H e U e U H e U e U

H e U e U H e U e U H e U e U

H e U e U H e U e U H e U e U

H e U e U H e U e U H e U e U

, , ,

, , ,

, , ,

, , ,

1
i

10
i

40 2
i

20
i

30 3
i

01
i

04

4
i

02
i

03 5
i

11
i

44 6
i

23
i

32

7
i

12
i

43 8
i

21
i

34 9
i

13
i

42

10
i

24
i

31 11
i

14
i

41 12
i

22
i

33

1 1 2 2 3 3

4 4 5 5 6 6

7 7 8 8 9 9

10 10 11 11 12 12

= + = + = +
= + = + = +
= + = + = +
= + = + = +

q q q q q q

q q q q q q

q q q q q q

q q q q q q

- - -

- - -

- - -

- - -

where iq Î . Therefore, one canwrite the state in d= 5 as

[ ] [ ] ( ) n H n H
1

5
. , with

1

2
Tr , 31i ir r= + =

where n is a real vector in 12. Note here that like qutrit, these six cosets are related to sixMUBs.

6.2. Bloch sphere representation of qudit when d is non-prime

Claim.2: There exists d+ 1 such cosets ofHWmatrices plus some extra cosets from the relation
ℓm= nd+ 0wheneverℓorm≠ 0.

Corollary:Within such cosets –

1. for all non-prime d, individual cosets contains the pairs { }ℓ ℓU U,m m¢ ¢ which are each others complex-
conjugate.

2. for non-prime d, there exist atmost threeUℓm such that ℓ ℓ
†U Um m= and they are (ℓ,m)= {(d/2, 0), (0, d/2),

(d/2, d/2)}. For some non-prime d, there exists none, eg., d= 9, 25, 27,... etc.

3. a coset can contain at least oneHWmatrix.

Notice that arbitrary densitymatrix in non-prime dwill also be concisely written as equation (29), however,
the dimension of the Bloch vector is not precisely known as is shown in the below examples.

6.2.1. d= 4
There arefive (six) possible cosets for d= 4 and they are listed in table 1. In this case, there are exactly three
HermitianHWmatrices,U02,U20, andU22. Using the property of densitymatrix, ρ†= ρ, wefind that there exist
Hermitian, trace-orthogonalmatrices {Hi}, with self-adjoint ones

G H U H U H U1: , , ,2 20 4 02 6 22= = =

where [ ]H HTr 4i j ijd= forHi äG1, and the expression for otherHiʼs are defined as

G H e U e U H e U e U H e U e U

H e U e U H e U e U H e U e U

2: , , ,

, , ,
1

i
10

i
30 3

i
01

i
03 5

i
11

i
33

7
i

12
i 2

32 8
i

21
i 2

23 9
i

13
i

31

1 1 3 3 5 5

7 7 8 8 9 9w w
= + = + = +

= + = + = +

q q q q q q

q q q q q q

- - -

- - -

where n ,i iq Î and [ ]H HTr 8i j ijd= forHi äG2.Note thatwemultipliedω2 in front ofU23 andU32 to get the
desired properties. Notice also that there are only six angular parameters, θi. Therefore, the state in d= 4 can be
expressed as

[ ] [ ] ( )( ) n H n H
1

4
. ,

1

2
Tr , 32i f H i1 i

r r= + =
-

where f (Hi)= 1 ifHiäG1, otherwise 0, and n is a real vector in 9 with ∣ ∣( ) n2 3i
f H

i
1 2iå - .

6.2.2. d= 6
In d= 6, a total of nine cosets exist and they are listed in table 2. Here also, wefind that exactly threeHermitian
HWmatrices exist, which areU03,U30, andU33. Notice that the the cosets {(2, 3), (4, 3)} and {(3, 2), (3, 4)} do

Table 1.Coset for d = 4.-Here p = 1, 2, 3. Notice that for k = 0 there
exists three distinct cosets. The lone coset {(2, 2)} is compatible with
the coset for k = 1, forming a perfect coset with d − 1 elements. This
indicates that wemight find at least 3MUBs.

Cosets (d = 4)

k k nd + k

0 {(p, 0)}; {(0, p)} (2,2)
1 {(1, 1), (2, 2), (3, 3)}
2 {(1, 2), (2, 1), (2, 3), (3, 2)}
3 {(1, 3), (3, 1)}
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not commutewith any other cosets from table 2. By a similar argument, wefind that there existHermitian,
trace-orthogonalmatrices {Hi}, with

G H U H U H U1: , , ,3 30 6 03 9 33= = =

where [ ]H HTr 6i j ijd= forHiäG1, and the expression for otherHiʼs are defined as

G H e U e U H e U e U H e U e U

H e U e U H e U e U H e U e U

H e U e U H e U e U H e U e U

H e U e U H e U e U H e U e U

H e U e U H e U e U H e U e U

H e U e U

2: , , ,

, , ,

, , ,

, , ,

, , ,

,

1
i

10
i

50 2
i

20
i

40 4
i

01
i

05

5
i

02
i

04 7
i

13
i

53 8
i

31
i

35

10
i

12
i 3

54 11
i

21
i 3

45 12
i

24
i

42

13
i

11
i

55 14
i

15
i

51 15
i

23
i 3

43

16
i

14
i 3

52 17
i

41
i 3

25 18
i

22
i

44

19
i

32
i 3

34

1 1 2 2 4 4

5 5 7 7 8 8

10 10 11 11 12 12

13 13 14 14 15 15

16 16 17 17 18 18

19 19

w w
w

w w
w

= + = + = +
= + = + = +
= + = + = +
= + = + = +
= + = + = +
= +

q q q q q q

q q q q q q

q q q q q q

q q q q q q

q q q q q q

q q

- - -

- - -

- - -

- - -

- - -

-

where iq Î and [ ]H HTr 12i j ijd= forHiäG2.Note that wemultipliedω3 in front of certainHWmatrices to
get the desired properties. Therefore, the densitymatrix in d= 6 can bewritten as

[ ] [ ] ( )( ) n H n H
1

6
. ,

1

2
Tr , 33i f H i1 i

r r= + =
-

where f (Hi)= 1 ifHiäG1, otherwise 0, and n is a real vector in 19 with ∣ ∣( ) n2 5i
f H

i
1 2iå - .

6.3. FindingMUBs in non-prime d
For completeness, we extend the analysis offinding theMUBs to non-prime d using our construction. Note that
in every dimension, the presence of a coset with d− 1HWmatricesmight imply that there exists aMUB.

MUBs in 4 dimensions.–From table 1, we know that it is possible tofind 3MUBs in d= 4. Thenwe have the
computational basis belowwith the notation, (n1, n2, θ1)→ |k〉:

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( ) ∣ ∣ ( ) ∣ ∣1 : 1, 1, 0 0 , 1, 1,
2

1 , 1, 1, 2 , and 1, 1,
2

3 .
p

p
p

 ñ - -  ñ  ñ -  ñ

From the other two complete cosets from table 1, we have the twomoreMUBs belowwith the notation, (n3, n4,
θ3)→ |k〉 for 2 and (n4, n5, θ5)→ |k〉 for 3:

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ∣ ∣ ∣ ( ) ∣

( ) ∣ ∣ ∣ ( ) ∣





2: 1, 1, 0 , 1, 1,
2

, 1, 1,
2

, and 1, 1, 0 ;

3: 1, 1, 0 , 1, 1,
2

, 1, 1,
2

, and 1, 1, 0 .

1 2
p

w
p

w

p p

 +ñ - -  ñ -  ñ -  -ñ

 ñ -  ñ - -  ßñ -  ñ

Tofind the other twoMUBs using our analysis, we need to search numerically over the entire pure state space.
Wewill pursue this in our future research.

MUBs in 6 dimensions.–From table 2, we shouldfind 3MUBs in d= 6 easily. However, it is not the case.We
only find twoMUBs fromour construction.We have the computational basis with the notation, (n1, n2, n3, θ1,
θ2)→ |k〉 and the other one, 2 with the notation, (n4, n5, n6, θ4, θ5)→ |k〉 below.

Table 2.Coset for d = 6.-Here p = 1,..5. Notice that for
k = 0 there exists four distinct cosets.We find that there
exists 3 perfect cosets, k = 0 (×2), and k = 3, indicating the
existence of at least 3MUBs.

Cosets (d = 6)

k k nd + k

0 {(p, 0)} ; {(0, p)} {(2, 3), (4, 3)}; {(3, 2), (3, 4)}
1 {(1, 1), (5, 5)}
2 {(1, 2), (2, 1), (2, 4), (4, 2), (4, 5), (5, 4)}
3 {(1, 3), (3, 1), (3, 3), (3, 5), (5, 3)}
4 {(1, 4), (4, 1), (2, 2), (2, 5), (5, 2), (4, 4)}
5 {(1, 5), (5, 1)}
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⎛
⎝
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⎠
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⎝
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⎠

⎛
⎝
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⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( ) ∣ ( ) ∣ ∣

∣ ∣ ∣

( ) ( ) ∣ ( ) ∣ ∣

∣ ∣ ∣





1 : 1, 1, 1, 0, 0 0 , 1, 1, 1, 0, 0 1 , 1, 1, 1,
3

,
3

2 ,

1, 1, 1,
3

,
3

3 , 1, 1, 1,
3

,
3

4 , 1, 1, 1,
3

,
3

5 .

2 : 1, 1, 1, 0, 0 , 1, 1, 1, 0, 0 , 1, 1, 1,
3

,
3

,

1, 1,
3

,
3

, 1, 1, 1,
3

,
3

, 1, 1, 1,
3

,
3

.

1

2 3 4

p p

p p p p p p

p p
w

p p
w

p p
w

p p
w

 ñ - -  ñ - - -  ñ

- - -  ñ - - -  ñ - - -  ñ

 +ñ - -  -ñ - - -  ñ

- - -  ñ - - -  ñ - - -  ñ

Note that anotherMUB ( 3) can be found from any of the coset {( ) ∣ [ ]}XZ p 1, 5m p Î , wheremä [1, 5]
[14, 35, 36]. Note that other properties of qudits can also be determined using Bloch parameters using our
construction similar to qutrit.

7.Discussion on the relevance of the present studywith that of [13]

Before concluding, it is important for us to discuss awork ([13]) related to our present study. The authors in [13]
considermodifiedHWoperator basis to represent a d-dimensional quantum states (qudits). Themodified
operator basis are defined as

†D U U ,pq pq pq*c c= +

whereχ= (1± i)/2 andUpq are usualHWoperators. Notice that themodified operators are by construction
Hermitian and satisfy the following properties,D00= 1 and [ ]D D dTr pq p q pp qqd d=¢ ¢ ¢ ¢. Therefore, these operators
(1 plus d2− 1 operators) form a basis acting on a d dimensionalHilbert space. Thus one can decompose any d-
dimensional densitymatrix as

[ ]
d

d D d D
1

, with Tr ,
p q

d

pq pq pq pq
, 0

1

år r= =
=

-

where the Bloch parameters dpq are real. First, notice that this construction induces a geometry in d 12- .
Whereas, our construction induces a geometry in ( ) d 1 22- , whichmakes it easy to visualize at least in lower
dimensions. Also, wefind that there is a nontrivial connection between this representationwith ours by noticing
that bpq= χdpq+ χ*ω pqd−p,−q. Further notice that in our construction, we combine two contributions,
bpqUpq+ b−p,−qU−p,−q, to get ( )n e U e Uj pq

pq
p q

i i
,

j jw+q q-
- - . By plugging one can see that nj= dpq+ d−p,−q,

whereas solutions for θj comes from

e e .pq pqi ij j*c c w w+ = +q q-

It is now easy to see the connection between the present work and the construction presented in [13].
Furthermore, the aim of the [13]was not to study the geometry induced by their construction, rather they
dedicated their study to investigate thewitnessing of higher-dimensional entangled states and the discritization
of continuous variable systems. Therefore, our study in this perspective can be treated as a companion of
the [13].

8. Conclusion

To conclude, we have used theHWoperator basis to represent a qutrit state. In doing so, we identified eight
independent parameters consisting of four weight and four angular parameters.Wefind that the fourweight
parameters induce a Bloch sphere-like structure in 4 for qutrits. Further, we have obtained the constraints
whichmust be satisfied for the parametrization to represent a physical qutrit. To understand the geometry of
state space, we study its one, two, and three sections in detail. Our study shows that these projections are unlike
those studied in the previous literature [8].

We have applied our Bloch vector representation to show that there can be amaximumof fourMUBs in
three dimensions. The characterization of unitalmaps acting on qutrits is also demonstrated using our
representation.We also did a characterization of randomly generated densitymatrices, when the probability
distributions are induced byHilbert-Schmidt and Bures distances. Lastly, we havementioned the basic steps
required to extend this representation in dimensions greater than three.

Aswe have shown in this paper that the geometry of the Bloch sphere limits the existence of the number of
MUBs in qubits and qutrits. This approach can be used to study the existence ofMUBs in 6, where the
maximumnumber ofMUBs is not known yet [35, 37, 38]. An extension to the characterization of unitalmaps
would be to characterize qutrit entanglement breaking channels similar to qubit entanglement breaking
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channels [22]. Similar to the characterization of ensembles generated byHS andBuresmetric, another
interesting study could be to identify the formof the Fubini-Studymetric and the corresponding volume
element [39]. Such an analysis could be useful for sampling pure qutrit states and averaging over them.

Our sphere representation in 4 could also have significant applications in studying the dynamics of qudit
states andfinding the constants ofmotion in d-level systems. It can also be used to detect the entanglement of
bipartite systems and identify the reachable states in open systemdynamics.We hope that this approach leads to
better insight into the study of qudit systems and their dynamics.
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AppendixA. randomDensitymatrices inGell-Mann operator representation

Using theGell-Mann operator basis, one can alsowrite a arbitrary qutrit state in the followingway [1]

⎜ ⎟
⎛

⎝

⎞

⎠
( ) g

1

3
, A.1

i

d

i i
1

12

år = + L
=

-

whereΛi are theGell-Mann operators in three dimensions and ( )g Tri ir= L form the components of the eight-
dimensional (eight-D)Bloch vector g


. The eightGell-Mann operators in three dimensions contain diagonal,

symmetric, and anti-symmetricmatrices, but for simplicity, we denote all of themwithΛi. Using a similar trick
as in the case ofWeyl operator representation, we can get theHS andBures distribution in terms of the Bloch
vector parameters gi as follows

( ) ( ) ( ) ( )
[ ( )] ( )

( )P r
C

r
F P r

C F

r r
, , ,

3 9Det Det
, A.2HSG i

HSG
G BG i

BG G
7 7 2

a r a
r
r r

= =
- -

 

where ( ) ( )( ) ( ) [ ( )] ( )F r r r1 729 3 4 3 2 2 27 Det DetG
2 2 2 2r r r= - - + - - . Notice that we have switched to

polar representation to represent a pont inside the eight-D spherewhere r represents the radial distance inside
the sphere andαiʼs being the seven polar angles.CHSG andCBG are constants determined by the normalization.

As in theWeyl representation, here also, theHS distribution is always positive inside the eight-DBloch
sphere irrespective ofDet (ρ) being positive or negative. Also, it is non-decreasing with respect to r. Thus the
states chosen are localized at the surface of the Bloch sphere.

The Bures distribution also behaves similarly to theWeyl representation. It is positive if and only if

Det (ρ)� 0 and also it is non-decreasing forDet (ρ)� 0.The singularity in ( )P r ,BG ia


occurs either at
[ ( )]r3 9 Det 02 r- - = orwhen ( )Det 0r = . Thefirst condition is only possible at or beyond the surface of
the eight-D sphere.Whereas, ( )Det 0r = can happen for rank-1 or rank-2 states, i.e., at the surface of the
structure formed by the qutrit states. Thus,HBG is sharply localized at the surface of the convex structure formed
by the qutrit states.

Appendix B.Outside of the ball of radius r= 1/2

One can prove that inside the Bloch sphere of radius r� 1/2,Ω is positive for all the values of angular parameters
θi. This can be proven by using the polar coordinate forms of niʼs in equation (9), i.e. we replacewith
n r n r n r n rcos , sin cos , sin sin cos , sin sin sin cos1 1 2 1 2 3 1 2 3 4 1 2 3 4a a a a a a a a a a= = = = in equation (9),
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whereα1,α2,α3 andα4 are the polar angles. ThenΩ can bewritten in the following simple form

( ) ( )r r f1 3 2 , , , , , , , . B.12 3
1 2 3 4 1 2 3 4q q q q a a a aW = - +

where f ä [− 1, 1] is a function of θiʼs andαiʼs. It is straightforward to see from the above equation that any
points inside the Ball of radius, r= 1/2, corresponds to a physical qutrit.

Next, we askwhether this boundary is sharp, i.e., if we increase the boundary by ò<< 1, do all the points
on the stretched boundary still corresponds to physical qutrits? If we do little algebra, wefind by putting r=
(1/2)+ ò in the above expression (assuming ò2, ò3≈ 0),

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

( )

{ ( )} { ( )}

  

 



f f

f

f f

, 1 3
1

2
2

1

2
, ,

1

4
3

1

2

1

2
3 , ,

1

4
1 , 3 1 , .

2 3

q a

q a

q a q a

W = - + + +

» - + +

= + - -

As 1+ f (θ,α)� 0 always, we look into the second term in the RHS of the last line of the above equation and find
that a valid solution (=0) exists only when f (θ,α)= 1. Thismeans that for arbitrary small ò (>0), we no longer
have a solid Ball.
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