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In the absence of a complete theory of quantum gravity, phenomenological models
built upon minimal assumptions have been explored for the analysis of possible quantum
effects in gravitational systems. Implications of a superposition of geometries have been
considered in such models, including the occurrence of processes with indefinite order.
In a gravitational quantum switch, in particular, the order of operations applied by two
agents on a target system is entangled with the state of the geometry. We consider a
model describing the superposition of geometries produced by distinct arrangements of
spherical mass shells, and show that a protocol for the implementation of a gravitational
quantum switch can be formulated in such a system. The geometries in superposition
are identical in an exterior region outside a given radius, and differ within such a
radius. The exterior region provides a classical frame from which the superposition of
geometries in the interior region can be probed. One of the agents crosses the interior
region and becomes entangled with the geometry, which is explored as a resource for
the implementation of the quantum switch. Novel features of the protocol include
the superposition of nonisometric geometries, the existence of a region with a definite
geometry, and the fact that the agent that experiences the superposition of geometries
is in free fall, preventing information on the global geometry to be obtained from within
its laboratory.

1 Introduction
The formulation of a complete theory of quantum gravity applicable to physical regimes where both
gravitational and quantum effects can become relevant remains a central problem in fundamental
physics. In the absence of a complete theory, a strategy explored in recent works for the analysis
of quantum gravitational effects consists of studying concrete physical setups with the aid of
phenomenological models built upon minimal assumptions [1, 2, 3, 4, 5]. In this approach, instead
of starting from some proposed full theory of quantum gravity, one postulates how basic features
of quantum theory and general relativity combine in a proposed setup, typically involving the
superposition of weak gravitational fields, and explores physical consequences in such a model.
Such a strategy provides a means to investigate conceptual questions which can hopefully guide
the development of tools required for the formulation of a fundamental theory of quantum gravity,
as well as to delineate experimental avenues along which quantum gravity effects might be observed.
Recent predictions of phenomenological models have the potential to rule out the possibility that
the gravitational field is purely classical, including the production of entanglement mediated by a
gravitational interaction [1, 2], the possibility of decoherence in the recombination of wavepackets
of a delocalized massive particle [3, 4] and the superposition of temporal orders [5].
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A basic property often assumed to hold in quantum gravity phenomenology is that the grav-
itational field gµν can be prepared in a superposition of classical configurations. For a mass in
a superposition of distinct positions, for instance, the gravitational field is assumed to be the
superposition of the metrics produced by the mass in each position. A key consequence of the
superposition of geometries is that causal relations become indefinite, as they are determined by
the metric. In particular, the order between two events A and B can become indefinite [5], with
nonzero amplitudes for spacetimes in which the event A is in the past of B, as well as for spacetimes
in which B is in the past of A. The development of a framework for probabilistic theories without
a fixed background of causal relations was emphasized in [6] as a step towards the formulation of
a full theory of quantum gravity. Generalizations of quantum theory that do not assume a fixed
background of causal structure were later introduced in [7, 8], and provide tools for the descrip-
tion of processes with an indefinite order among its events. The question of how such abstract
formalisms relate to concrete gravitational scenarios can be approached, for instance, through the
construction of protocols implementing processes with indefinite order in phenomenological mod-
els [5], and might require the further development of techniques for the description of events and
causal relations on quantized spacetimes, which can be based on an operational approach [5, 9].

The simplest example of a process with indefinite order is the quantum switch [7]. In this
process, two operations A and B are performed on a target system, and the order of the operations
is entangled with a control bit C. Let |0⟩C and |1⟩C be orthogonal states of C. If the control bit is in
the state |0⟩C , the operation A is applied before the operation B. If in the state |1⟩C , the operations
are applied in the opposite order. Preparing the control bit in a superposition (|0⟩ + |1⟩)/

√
2, the

target will evolve into a superposition of states obtained through the application of the operations
A and B in switched orders,

(|0⟩c + |1⟩c)√
2

|ψ⟩ 7→
|0⟩c BA |ψ⟩ + |1⟩c AB |ψ⟩√

2
. (1)

The order of the operations is then indefinite. If the control bit is the gravitational field, the
process is called a gravitational quantum switch.

A protocol for the implementation of a gravitational quantum switch in the gravitational field
produced by a mass in a superposition of two positions was proposed in [5]. An operational
approach is there employed to define what is meant by an event in a superposition of spacetimes.
One assumes that, inside a laboratory A, procedures can be specified that correspond to the
application of an operation A on a target system that reaches the laboratory and then leaves it.
In addition, it is assumed that the proper time can be measured within the laboratory, so that the
procedures can be performed at a chosen proper time. The interaction with a target system at a
specific proper time at the laboratory corresponds to an event in the superposition of geometries, at
which the operation A is performed. Similarly, a laboratory B can perform an operation B on the
target system at a specific proper time. The laboratories and target system live in a superposition
of two geometries, which in the model considered in [5] can be arranged so that in one branch of
the geometry the operation A is performed on the target before the operation B, while in the other
branch the operations are performed in the opposite order, leading to an implementation of the
quantum switch.

Despite having been introduced for the description of events in a superposition of spacetimes,
the operational approach can also be applied for systems on a definite, classical spacetime. Oper-
ationally defined events differ from the classical notion of events as coincidence points of classical
worldlines in the spacetime manifold, and can be delocalized on the background geometry. It turns
out that, for operational events, the quantum switch can also be implemented on a classical geom-
etry, if the laboratories are quantum systems that are delocalized [10]. In fact, it was argued in
[11] that when the geometries in superposition are related by a diffeomorphism, as in the protocol
described in [5], one can always re-express such a situation as one in which the laboratories are
delocalized on a definite spacetime. If a quantum switch were implemented on a superposition of
nonisometric geometries, on the other hand, such a direct translation into an equivalent protocol
on a classical spacetime would not be available. Superpositions of nonisometric geometries can
also produce other effects as superpositions of vacuum fluctuations of a quantum field, which can
be observed by Unruh-de Witt detectors, as analyzed in [12, 13].

The reference [8] introduces the notion of closed laboratories in order to establish the process

Accepted in Quantum 2024-02-01, click title to verify. Published under CC-BY 4.0. 2



matrix formalism, a framework constructed to characterize and explore tasks with indefinite causal
order. A closed laboratory is there defined as a system that is isolated from the rest of the world,
except for interactions with target systems that can enter and leave the laboratory. In the protocol
of reference [5], on the other hand, the agents follow worldlines that are not geodesics, with the
consequence that a nonzero local gravity can in principle be measured by them, which is different
in each semiclassical branch of the quantum spacetime. Hence, by measuring the weight of an
object, not only the agents would acquire information on the global structure they are immersed
in, preventing them to be interpreted as closed laboratories, but the quantum spacetime would
also decohere and the quantum switch would not be implemented. Not any system can thus be
used as an agent in the protocol of reference [5], but only those which perform operations that
are insensitive to the local gravity. The possibility of constructing a protocol that depends just on
the geometry of spacetime and not on the nature of the systems A and B is in this way directly
related to the utilization of closed laboratories. A protocol involving only closed laboratories would
implement the quantum switch as described by a process matrix, and universally, in the sense that
the transformation (1) would take place for arbitrary operations A,B.

In this work, we present a new protocol for a gravitational quantum switch. We consider a
quantum geometry formed by the superposition of two nonisometric classical geometries. Both
geometries are isotropic, and identical in a region exterior to a radius R1. The shared exterior
region describes a classical geometry surrounding a region where the gravitational field is in a
superposition of configurations produced by two distinct arrangements of masses, distributed into
thin shells. We introduce a protocol for a quantum switch on this quantum geometry in which a
laboratory freely falls in the superposition of geometries. In this setup, a quantum analogue of the
Einstein elevator thought experiment is implemented. Physical systems inside a sufficiently small
laboratory in free fall behave in the same way regardless of the external geometry in which the
laboratory is travelling. As a result, one cannot determine from within the laboratory whether
the geometry is in a superposition state, as physical systems inside it behave in the same way in
either branch of the superposition. This allows our protocol to implement a quantum switch for
any choice of operations A and B performed at the laboratories.

In comparison with the well-known protocol for a gravitational quantum switch introduced
in [5], the main novelties of our work are: (i) the agents that perform the operations are closed
laboratories, as required for an implementation of the quantum switch as described in the process
matrix formalism; (ii) the geometries in superposition are nonisometric, so that the protocol cannot
be directly mapped into an analogous protocol on a definite geometry; (iii) the existence of an
exterior region with a definite geometry, which provides a classical frame from where the quantum
geometry can be probed by studying how quantum systems transform as they are thrown into the
quantum region and emerge from it again into the classical region. As the order of the operations
in the proposed protocol is controlled by the gravitational field, its eventual implementation would
show that a nonclassical gravitational field can indeed produce an indefinite causal structure.

The paper is organized as follows. In Section 2, we introduce the classical geometries involved
in our protocol and describe their quantum superposition in an operational approach. A protocol
for the implementation of a quantum switch controlled by the gravitational field in such a super-
position of geometries is presented in Section 3. The relation between our protocol and previous
implementations of the quantum switch is discussed in the same section. We summarize our results
in Section 4.

2 Superposition of spherical shells
The Schwarzschild metric is a vacuum solution of the Einstein equation that describes the geometry
of spacetime around a spherically symmetric localized mass M [14]. It can be written as

ds2 = −
(

1 − 2M
r

)
dt2 +

(
1 − 2M

r

)−1
dr2 + r2dΩ2 , (2)

where dΩ2 = dθ2 + sin2 θdφ2 is the metric of the unit 2-sphere. New solutions of the Einstein
equation can be constructed by gluing together pieces of Schwarzschild spacetimes of varied masses.
The resulting geometry is a new solution when junction conditions are satisfied at the common
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boundary of the glued regions [15, 16]. In general, a thin mass distribution must be present at this
surface. When the glued subregions are spherically symmetric, the shared boundary is occupied
by a thin spherical mass shell.

We will consider two distinct spacetimes M1 and M2, both obtained by gluing an exterior
region formed by patches of Schwarzschild spacetimes to an interior region cut from Minkowski
spacetime. The spacetimes are built so that the metrics are the same outside a certain radius
r = R1. In addition, the interior flat region in each spacetime extends beyond the Schwarzschild
radius of the exterior Schwarzschild metric. As a result, the spacetimes M1 and M2 do not have
event horizons. We apply techniques regularly explored in quantum gravity phenomenology in
order to build a quantum geometry describing the superposition of the spacetimes M1 and M2.
The resulting nonclassical geometry will be explored in the next section for the formulation of a
protocol for a gravitational quantum switch.

In this section, we first summarize the junction conditions and describe the main properties
of the spacetimes M1 and M2 required for the formulation of the quantum switch, including the
behavior of their bounded radial timelike geodesics. Next, we introduce the assumptions adopted
for building a quantum superposition of geometries, and discuss their motivation and interpretation.
We then describe how, in a superposition of the spacetimes M1 and M2, their isometric exterior
regions provide a classical frame from which the superposition of geometries for r < R1 can be
probed.

2.1 Junction conditions
Let (V +, g+) and (V −, g−) be solutions of the Einstein equation in regions that meet at a common
boundary Σ = ∂V + = ∂V −, where V ± is a differentiable manifold and g± is a metric on V ±. We
wish to construct a new solution (V, g) on the union V = V + ∪ V − that reduces to the previous
solutions in each subregion. Let xα

± be coordinate systems defined on the regions V ±, including
on their boundaries, and g±

αβ be the metric in these coordinates. Let ya be coordinates on the
three-dimensional shared surface Σ. Defining the Jacobian matrices

(e±)α
a =

∂xα
±

∂ya
, (3)

the intrinsic metric of the surface Σ induced by the metric on each side of it is given by

h±
ab = (e±)α

a (e±)β
b g

±
αβ .

We denote the covariant derivative compatible with the metrics g±
αβ by ∇±, and the unit vector

normal to the surface pointing toward V + by nα
±.

The first junction condition states that a new solution of the Einstein equation is obtained only
if the metric induced in the common boundary is the same on both sides of the surface:

h+
ab = h−

ab . (4)

This condition ensures that a system of coordinates xα defined on both sides of the surface exists
in which the components of the metric gαβ are continuous. The Christoffel symbols are then
well defined, and geodesics can cross the boundary between the glued regions. We introduce the
Jacobian matrix

eα
a = ∂xα

∂ya
,

which relates such coordinates to those on the surface Σ. When the first junction condition is
satisfied, we denote the induced metric h+

ab = h−
ab on the shared boundary simply by hab.

In general, a distribution of energy and momentum must be present at the shared boundary Σ.
This is not necessary, however, when the second junction condition

K+
ab = K−

ab (5)

is satisfied, where K±
ab is the extrinsic curvature at each side of Σ,

K±
ab = (∇±

β n
±
α )(e±)α

a (e±)β
b . (6)
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Figure 1: Representation of the distinct regions of the spacetimes M1 and M2.

If the condition (5) is not satisfied, then a thin matter shell must be present at the surface Σ. Its
contribution to the total energy-momentum tensor is given in the coordinates xα by

Tαβ
Σ = δ(ℓ)Sabeα

ae
β
b , (7)

where ℓ is the geodesic distance to the surface along a geodesic that crosses it orthogonally, and

Sab = − 1
8π ([Kab] − [K]hab) , (8)

with
[Kab] = K+

ab −K−
ab (9)

representing the discontinuity of the extrinsic curvature at the surface, and [K] = hab[Kab]. The
contribution (7) must be added to the energy-momentum tensors of the original solutions g±

αβ . If
the glued metrics are vacuum solutions, then the full energy-momentum tensor of the resulting
spacetime is given by Eq. (7).

2.2 Glued Schwarzschild metrics
Spacetime with one mass shell. The spacetime M1 is constructed by gluing the exterior
region of a Schwarzschild metric of mass M that lies outside a sphere of radius R to an interior flat
region representing the worldvolume of a spatial 3-ball of the same radius in Minkowski spacetime,
as depicted on the left in Figure 1. For the exterior region, we use coordinates

xα
+ = (t+, r+, θ, φ) , r+ ≥ R ,

and write the Schwarzschild metric in the form (2). We denote the exterior metric by

ds2
+ = g+

αβdx
α
+dx

β
+ . (10)

In the interior region, we use coordinates

xα
− = (t−, r−, θ, φ) , 0 ≤ r− ≤ R ,

and express the Minkowski metric as

ds2
− = g−

αβdx
α
−dx

β
− = −dt2− + dr2

− + r2
−dΩ2 .

The radial coordinates are such that r+ = r− = R at the interface Σ of the two regions. The
variables used for the angular coordinates in the interior and exterior regions are identified on Σ,
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θ+ = θ− =: θ and φ+ = φ− =: φ. The interior and exterior time variables cannot be directly
identified, however, if the junction condition (4) is to be satisfied. We use instead the identification:

t+ =
(

1 − 2M
R

)−1/2
t− . (11)

The condition (4) can then be easily checked. For instance, by putting t := t+ and choosing
coordinates ya = (t, θ, φ) on Σ, we find that

h+
ab = h−

ab =

−
(
1 − 2M

R

)
0 0

0 R2 0
0 0 R2 sin2 θ

 . (12)

As the intrinsic metric is the same on both sides of the surface, a coordinate system xα =
(t, ℓ, θ, φ) exists on a neighborhood of the surface in which the components of the metric vary
continuously [15, 16]. For instance, one can introduce a new time variable

t =


t+ , in the exterior region,(

1 − 2M
R

)−1/2
t− , in the interior region,

(13)

and a new radial coordinate defined by

dℓ

dr+
=
(

1 − 2M
r+

)−1/2
,

dℓ

dr−
= 1 ,

together with the boundary conditions ℓ|Σ = r+|Σ = r−|Σ = R. The metric in the new coordinates
xα = (t, ℓ, θ, φ) assumes the form:

ds2 =


−
(

1 − 2M
r+(l)

)
dt2 + dℓ2 + r2

+(ℓ)dΩ2 , ℓ ≥ R ,

−
(

1 − 2M
R

)
dt2 + dℓ2 + ℓ2dΩ2 , ℓ < R ,

(14)

and is explicitly continuous across Σ.
The continuity of the metric implies that the Christoffel symbols are well behaved, without

terms including Dirac deltas. As a result, a geodesic xµ(τ) parametrized by its proper time has a
tangent vector Uµ = dxµ/dτ that varies continuously along the curve. Expressing it at Σ in terms
of the interior and exterior coordinates, we have:

dxµ

dτ

∣∣∣∣
Σ

=
(
∂xµ

∂xν
±

dxν
±

dτ

)∣∣∣∣
Σ
. (15)

This allow us to determine the relation between the components of the tangent vector on each side
of Σ. We find that:

dr+

dτ
=
(

1 − 2M
R

)1/2
dr−

dτ
,

dt+
dτ

=
(

1 − 2M
R

)−1/2
dt−
dτ

. (16)

The second junction condition (5) is not satisfied on Σ. As a resut, the spacetime M1 must
include a mass shell at r = R. The calculations of the discontinuity of the extrinsic curvature and
of the energy-momentum tensor are straightforward, and presented in Appendix A.
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Spacetime with two mass shells. The spacetime M2 is composed of three regions glued along
two spherical surfaces, consisting of an exterior region I described by a Schwarzschild metric of
mass M ,

ds2
1 = −

(
1 − 2M

r1

)
dt21 +

(
1 − 2M

r1

)−1
dr2

1 + r2
1dΩ2 ,

with r1 > R1, an intermediate region II described by a Schwarzschild metric of mass m,

ds2
2 = −

(
1 − 2m

r2

)
dt22 +

(
1 − 2m

r2

)−1
dr2

2 + r2
2dΩ2 ,

with R2 ≤ r2 ≤ R1, and an interior flat region III described by the Minkowski metric,

ds2
3 = −dt23 + dr2

3 + r2
3dΩ2 ,

with 0 ≤ r3 ≤ R2, as depicted on the right in Figure 1. We denote the boundary surface between
the regions I and II by Σ1, and that between the regions II and III by Σ2. We set M > m.

The proof that the junction condition (4) is satisfied at Σ2 is identical to that for a single shell
previously discussed. The time coordinates in the regions II and III are related at the common
boundary Σ2 through

t2 =
(

1 − 2m
R2

)−1/2
t3 , (17)

and the components of the tangent vector to a geodesic curve transform at Σ2 according to:

dr2

dτ
=
(

1 − 2m
R2

)1/2
dr3

dτ
,

dt2
dτ

=
(

1 − 2m
R2

)−1/2
dt3
dτ

. (18)

The junction condition (4) is also satisfied at Σ1, with the time coordinates in the regions I
and II identified at Σ1 through

t1 =
(

1 − 2M
R1

)−1/2(
1 − 2m

R1

)1/2
t2 . (19)

As in the previous cases, one can construct a system of coordinates in a neighborhood of Σ1
in which the components of the metric are continuous (see Appendix A). The continuity of the
components of the tangent vector of a geodesic curve xµ(τ) in such a coordinate system again leads
to relations among its components in the original interior and exterior coordinates, which read:

dr1

dτ
=
(

1 − 2M
R1

)1/2(
1 − 2m

R1

)−1/2
dr2

dτ
,

dt1
dτ

=
(

1 − 2M
R1

)−1/2(
1 − 2m

R1

)1/2
dt2
dτ

, (20)

The second junction condition is not satisfied at Σ1 or Σ2. Mass shells must then be present
at both surfaces. The discontinuity of the extrinsic curvature and the energy-momentum tensor at
these surfaces are computed in Appendix A.

2.3 Radial timelike geodesics in glued Schwarzschild metrics
Let us now discuss bounded timelike radial geodesics on the spacetimes M1 and M2 constructed
in the previous section. We first review the relevant formulas for radial geodesics in a single
Schwarzschild spacetime and then build compositions of such solutions across the glued patches of
Schwarzschild and Minkowski spacetimes.
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Consider a Schwarzschild metric of mass M . Let a massive body be released from rest at the
radius ri, at t = 0. For radial motion, the conserved quantity E associated with invariance under
time translations is given by

E2 =
(
dr

dτ

)2
+
(

1 − 2M
r

)
. (21)

Computing it at the initial time, we obtain

E =
√

1 − 2M
ri

. (22)

Following [14], we introduce a new radial variable η defined by

η(r) = 2 arccos
√
r

ri
. (23)

At the initial position, we have η(ri) = 0. At the horizon RS = 2M , we have

ηH := η(RS) = 2 arcsinE . (24)

The radial geodesic is described in parametric form in terms of the variable η as:

r(η) = ri cos2
(η

2

)
, (25)

t(η) = E

(
r3

i

2M

)1/2 [1
2(η + sin η) + (1 − E2)η

]
+ 2M log

[
tan(ηH/2) + tan(η/2)
tan(ηH/2) − tan(η/2)

]
. (26)

The proper time along the curve is given by

τ(η) =
(
r3

i

8M

)1/2

(η + sin η) , (27)

and the components of the tangent vector read:

U0(η) = dt

dτ
(η) = E cos2(η/2)

cos2(η/2) − cos2(ηH/2) ,

U1(η) = dr

dτ
(η) = −(1 − E2)1/2 tan(η/2) . (28)

In both spacetimes M1 and M2, the exterior region is a Schwarzschild metric of mass M . We
wish to determine the radial geodesic followed in each of these spacetimes by a massive particle
released from rest at ri. We proceed as follows. The motion is the same in both spacetimes
in the common external geometry. When the geodesic reaches a mass shell, we compute the
transformation of the components of the tangent vector across the shell. The transformation is
given for each of the shells in the considered spacetimes by Eqs. (16), (18) and (20). An updated
energy is then computed after the shell crossing, and the continuation of the geodesic in the new
patch is described again in parametric form using Eqs. (25) and (26). The process is repeated at
each shell crossing. In what follows, we discuss the cases of M1 and M2 in detail.

Spacetime with one mass shell. In the spacetime M1, we consider a body released from rest
at ri and set t+(ri) = τ(ri) = 0. We denote the corresponding geodesic curve by γ1. At the radius
R of the shell, the variable η introduced in Eq. (23) assumes the value

ηR = 2 arccos
√
R

ri
.

The coordinate and proper times when it reaches the shell are given by Eqs. (26) and (27),

∆t+ = t+|Σ = t(ηR) , ∆τ+ = τ |Σ = τ(ηR) .
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From Eq. (28), the components of the 4-velocity are

dt+
dτ

∣∣∣∣
Σ

= U0(ηR) , dr+

dτ

∣∣∣∣
Σ

= U1(ηR) .

In terms of the interior coordinates, from Eqs. (11) and (16), we have

t−|Σ =
(

1 − 2M
R

)1/2
t+|Σ ,

and

dt−
dτ

∣∣∣∣
Σ

=
(

1 − 2M
R

)1/2
U0(ηR) , (29)

dr−

dτ

∣∣∣∣
Σ

=
(

1 − 2M
R

)−1/2
U1(ηR) . (30)

After crossing the shell, the particle freely moves in the Minkowski patch and reaches the center
of the coordinates after a coordinate time

∆t− = −R
(

1 − 2M
R

)
U0(ηR)
U1(ηR) , (31)

during which the amount of elapsed proper time is

∆τ− = −R
(

1 − 2M
R

)1/2 1
U1(ηR) . (32)

The particle crosses the shell again, reaches the radius ri at the opposite side, and starts
oscillating. The period of oscillation required for it to return to the initial position is

∆t(1) = 4
[

∆t+ +
(

1 − 2M
R

)−1/2
∆t−

]
,

and the amount of proper time elapsed in one oscillation is

∆τ (1) = 4(∆τ+ + ∆τ−) .

Spacetime with two mass shells. In the spacetime M2, the radius R1 of the exterior shell
corresponds to

ηR1 = 2 arccos
√
R1

ri
.

We set t1(ri) = τ(ri) = 0, and denote the geodesic curve by γ2. The coordinate and proper times
when the body reaches the exterior shell Σ1 are given by Eqs. (26) and (27),

∆t1 = t1|Σ1 = t(ηR1) , ∆τ1 = τ |Σ1 = τ(ηR1) .

From Eq. (28), the components of the 4-velocity at Σ1 are

dt1
dτ

∣∣∣∣
Σ1

= U0(ηR1) , dr1

dτ

∣∣∣∣
Σ1

= U1(ηR1) .

These quantities can be expressed in terms of the coordinates of the region II through Eqs. (19)
and (20), which yield explicit formulas for t2|Σ1 , (dt2/dτ)|Σ1 and (dr2/dτ)|Σ1 .

The geodesic motion in the region II can be described as part of a geodesic in a single
Schwarzschild metric of mass m. The energy in this fictitious space is computed from Eq. (21) as

Ef =

( dr2

dτ

∣∣∣∣
Σ1

)2

+
(

1 − 2m
R1

)1/2

,
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and is associated with the motion of a particle released from rest at the radius

rif = 2m
1 − E2

f

.

The radial variable (23) at the shells is then given by:

ηf,Ra
= 2 arccos

√
Ra

rif
, (33)

with a = 1, 2. At the horizon of the metric with mass m, we have

ηf,H = 2 arcsin(Ef ) .

The amounts of coordinate and proper times spent in the region II are given again by Eqs. (26)
and (27), now applied for the new initial radius and mass,

∆t2 = t(ηf,R2 , rif ,m) − t(ηf,R1 , rif ,m) , (34)
∆τ2 = τ(ηf,R2 , rif ,m) − τ(ηf,R1 , rif ,m) , (35)

and the particle reaches the inner shell Σ2 at the coordinate time

t2|Σ2 = t2|Σ1 + ∆t2 . (36)

From Eq. (28), the components of the 4-velocity at the inner shell read:

dt2
dτ

∣∣∣∣
Σ2

= Ef cos2(ηf,R2/2)
cos2(ηf,R2/2) − cos2(ηf,H)/2 ,

dr2

dτ

∣∣∣∣
Σ2

= −(1 − E2
f )1/2 tan(ηf,R2/2) . (37)

Using Eq. (20), the components of the 4-velocity can be transformed to the interior coordinates,
yielding the quantities (dt3/dτ)|Σ2 and (dr3/dτ)|Σ2 . The coordinate and proper time elapsed until
the particle reaches the origin of the coordinates are then easily computed for the uniform motion
in the flat interior region,

∆t3 = −R2
dt3
dτ

∣∣∣∣
Σ2

(
dr3

dτ

∣∣∣∣
Σ2

)−1

, (38)

∆τ3 = −R2

(
dr3

dτ

∣∣∣∣
Σ2

)−1

. (39)

Repeating the procedure of transforming the coordinates and the components of the 4-velocity
at each shell crossing, one finds that the particle again oscillates radially around the origin. Adding
the times spent in each patch of the geometry, it is straightforward to compute the period of
oscillation taken for the particle to return to its initial position,

∆t(2) = 4
[

∆t1 +
(

1 − 2M
R1

)−1/2(
1 − 2m

R1

)1/2
∆t2

+
(

1 − 2M
R1

)−1/2(
1 − 2m

R1

)1/2(
1 − 2m

R2

)−1/2
∆t3

]
, (40)

and the total amount of proper time elapsed in one oscillation,

∆τ (2) = 4(∆τ1 + ∆τ2 + ∆τ3) . (41)
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2.4 Assumptions on quantum gravity phenomenology
In order to build a model for a quantum spacetime describing a superposition of semiclassical
states representing the spacetimes M1 and M2, we adopt basic assumptions regularly explored
in models of quantum gravity phenomenology [1, 2, 3, 4, 5]. It is not our purpose to propose
a fresh set of hypotheses for quantum gravity phenomenology, but instead to apply procedures
already explored in the literature to a new setup, on which we will formulate a new protocol for a
gravitational quantum switch. Later on, we discuss the novel features of our protocol and compare
it with previous protocols for the implementation of a quantum switch. Following [5], we adopt
an operational approach for the description of events in a nonclassical spacetime. In addition, we
assume that the principle of superposition holds for gravity. In this section, we explicitly state the
assumptions underlying our model, and discuss their motivation and interpretation.

Since we are interested in discussing causal relations on a nonclassical spacetime, let us first
recall how causal relations are described on a classical spacetime [17]. Let EA and EB be events
on a classical spacetime M. To determine the causal relation between these events, it is necessary
to check whether a signal can be sent from one event to the other. If a signal can be sent from EB

to EA, then the event EA is in the future of EB . This occurs whenever there is a causal curve1

directed to the future starting at EB and ending at EA [17]. The event EA is said to be in the
past of EB when EB is in its future, and the events are spatially related if neither is in the future
of the other. As the character of a curve is encoded in the metric tensor, the existence or not of a
causal curve connecting two given events is determined by the metric. In this way, the full network
of causal relations among events in a classical spacetime is encoded in the metric tensor.

Suppose now that the geometry can display quantum fluctuations, so that it cannot be described
by a single definite metric tensor. In this case, the fixed background of causal relations encoded
in a definite metric is lost. For instance, a causal curve connecting two events may exist for some
configurations of the metric representing fluctuations of the geometry but not for others. In order
to analyze what replaces the causal structure of a classical spacetime in a specific quantum gravity
scenario, three main points must be addressed. First, a concrete representation of a nonclassical
spacetime must naturally be introduced, i.e., a model must be adopted for the quantum geometry.
In a nonclassical geometry, it may not be immediately clear how to represent physical events, as they
will not lie on a definite spacetime. One must then also specify how events should be represented in
the adopted model for the quantum geometry. Moreover, one must be able to determine whether
a signal can be exchanged between two events in the superposition of geometries. This requires
describing how physical systems—which can be a laboratory, a massive particle or a light ray, for
instance—, evolve in the quantum geometry. In the context of a specific model, prescriptions can
be introduced to address these questions, without the need of embeddeding them in the context
of a full theory of quantum gravity. It is enough to state such prescriptions in a sufficiently clear
form for the construction of the model of interest, without the ambition of setting down a formal
basis for some general axiomatic system for quantum gravity.

As in other works in quantum gravity phenomenology, we adopt the basic hypothesis that the
principle of superposition remains valid in a gravitational context. Configurations of the gravi-
tational field are then described by vector states that can be added together to build quantum
superpositions. If a classical spacetime M is produced by a certain distribution of matter, such a
geometry must correspond to a semiclassical state of the quantum geometry, i.e., a quantum state
peaked in the given classical geometry with small fluctuations around it, which we represent by
|M⟩. If a distribution of matter is prepared in a superposition of two classical configurations, we
assume that the gravitational field is described by the superposition of the corresponding semi-
classical states of the geometry. In our protocol, the geometries in superposition will consist of the
spacetimes M1 and M2 discussed in the previous sections, associated with distinct configurations
of spherical mass shells.

In order to describe events in a superposition of geometries, we adopt an operational approach,
following [5]. In an operational approach, physical events are specified by concrete procedures
performed in a laboratory by an experimenter. Consider, for instance, a laboratory equipped
with an internal clock. Then the observation of a particular time τ in the laboratory specifies
a physical event. If another observation is performed when the clock displays such a time, this

1A curve is causal when its tangent vector is nonspacelike at all its points.
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also constitutes a physical event at the same time. The observer can also switch an apparatus on
or bring two systems together so that they can interact at a given time. These are examples of
operationally defined events associated with an instant of time τ as measured in the laboratory. In
our proposed protocol for a gravitational quantum switch, the relevant events will be operationally
defined physical events in a superposition of the spacetimes M1 and M2.

On a classical spacetime, the observation of an instant of time τ in a laboratory L defines
a spacetime region associated with the event E. Neglecting the dimensions of the region, such
an event can be identified with a point in spacetime. Consider now the case of a superposition
of spacetimes Mi. One might, for instance, consider a situation in which a second laboratory
Lm prepares a distribution of matter in a superposition of distinct semiclassical states |ψi⟩. The
laboratory L will then live in a geometry described by the superposition of the spacetimes Mi

associated with the distinct states of the matter. We restrict to situations in which the matter
distributions in superposition do not produce any singularity2. How should the event E describing
the observation of a time τ in the laboratory L be represented in this quantum geometry? We first
note that the observation of the time τ is consistent with all geometries in superposition. If the
matter is observed to be in a state |ψi⟩, then the event E will simply correspond to an operational
event Ei in the spacetime Mi. Hence, the observation of the event E does not collapse the state
of geometry into a definite semiclassical state. Accordingly, we represent the event E by a family
of images Ei in the spacetimes in superposition.

Such a representation of a physical event in a superposition of geometries was previously em-
ployed in [5] for a setup involving a mass prepared in a superposition of two positions and two
laboratories that experience the quantized gravitational field produced by the mass in superpo-
sition. The proper times of the laboratories are represented by their images in each of the two
spacetimes in superposition. Such a representation of a physical event in terms of images in each
branch of a superposition of geometries was further discussed in [18, 19]. We adopt the same
operational definition of events for our model.

Consider now that a light ray is emitted from a laboratory at an instant of time τ as measured
by a clock in the laboratory. This corresponds to a physical event E that, in a superposition
of geometries, is represented by events Ei in the geometries in superposition. If the state of the
geometry is observed—for instance, through a measurement of the masses that produced it—, then
the light ray will propagate on a semiclasical state |Mi⟩. In this case, the behaviour of the light
ray must reduce to that described in classical gravity, i.e., it must follow a null geodesic starting
at Ei on Mi. Suppose now that the state of the geometry was not measured, so that the light ray
propagates on a superposition of semiclassical states of the geometry. In this more general case, we
assume that the propagation of the light ray is described by its classical evolution in each branch
of the superposition, i.e., that its evolution is controlled by the state of the geometry. For a trivial
superposition of a single semiclassical state, we then recover the correct classical limit. The same
is assumed for the evolution of massive systems and in the case of internal degrees of freedom, as
well as for quantum systems on a superposition of geometries. For instance, a massive body in free
fall in a superposition of geometries will be represented by a timelike geodesic in each branch of
the superposition.

The hypothesis that a physical system evolves in each semiclassical spacetime in a superposi-
tion as described by classical gravity is implicitly adopted in several models of quantum gravity
phenomenology, and ensures that a correct classical limit is obtained for the dynamics. The evolu-
tion of a physical system must reduce to that described in classical gravity, up to small quantum
corrections, in a semiclassical state of the geometry. In [5], for instance, time dilations and light
ray propagation are determined using classical equations in each of the considered semiclassical
geometries in superposition. In the effect of gravitationally mediated entanglement [1, 2], the rel-
evant effect is a superposition of time dilations computed using general relativity, as discussed in
[20].

Let us summarize our assumptions and further comment on their interpretation and relation
to the discussed motivations.

1. The gravitational field can exist in a superposition of semiclassical states |Mi⟩ associated

2In the presence of a singularity, a physical system can fall into the singularity and have a maximum value for
its proper time. We restrict to situations where the proper time of any physical system can have arbitrary values.
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with classical spacetimes Mi equipped with metrics gi, where each gi is a classical solution
of the Einstein equation for some distribution of matter Tµν

i .

2. An operationally defined event E that does not include an observation of the state of the
geometry is represented by images Ei in each spacetime Mi in superposition, where each Ei

is an operationally defined event in the spacetime Mi.

3. Let S be a system whose dynamics in each of the classical spacetimes Mi is known. The
dynamics of the system in a superposition of spacetimes is described by solutions of its
evolution equation in each of the spacetimes in superposition.

The assumption 1 is the basic hypothesis that the gravitational field can be prepared in a super-
position of semiclassical configurations. If a mass distribution is in a superposition of two distinct
configurations, we assume that the gravitational field produced by such masses is a superposition
of the geometries for each configuration.

The assumption 2 introduces the representation of an operationally defined event in a super-
position of geometries. Under this assumption, a laboratory on a superposition of geometries is
represented by a copy of itself in each of the geometries: any proper time τ at the laboratory is
associated with an operational event Ei on each spacetime in the superposition, corresponding
to the observation of such a proper time in that spacetime. The assumption 2 characterizes the
kinematical setting in a superposition of geometries. The identification of spacetime points in the
distinct geometries in superposition can also provide an operational meaning to the superposition
of geometries itself, as we will soon discuss.

The assumption 3 allows one to model the evolution of a quantum system on a superposition
of geometries from its known dynamics on definite spacetimes. A given system can be found in
any of the spacetimes in superposition. In each of these geometries, it simply evolves as dictated
by quantum mechanics on such a definite geometry. Introducing a (3 + 1) foliation with a time
coordinate ti for each spacetime gi, the evolution of a quantum system of interest can then be
described by states |ψi, ti⟩ that are solutions of its evolution equation in each spacetime. The joint
state of the system and the geometry has the form

∑
ci |Mi⟩⊗|ψi, ti⟩. For a localized object, i.e., a

system for which the states |ψi, ti⟩ are well localized around a classical trajectory in each spacetime,
a proper time can be assigned along the trajectories. The evolution of the system in each branch
of the geometry can then alternatively be presented in terms of the proper time, |ψi, τi⟩.

2.5 Superposition of spherical shells
Let us now describe how the superposition of geometries is operationally defined in our specific
setup of interest. In particular, we wish to discuss how the assumption 2 provides an operational
meaning to the superposition of spacetimes itself. For this purpose, consider a superposition of
semiclassical states of the geometry of the form:

|Ψ⟩ = 1√
2

(|M1⟩ + |M2⟩) , (42)

where M1 and M2 are the spacetimes described in Section 2. Denote their respective metrics by
g1 and g2. Let Ua ⊂ Ma, a = 1, 2, be the exterior region r ≥ R1 in each geometry. Such regions
are isometric, i.e., the spacetimes are identical in their exterior regions, g1|U1 = g2|U2 ≡ gext. It is
natural to ask whether these regions can be interpreted as a shared classical region of spacetime,
with a definite geometry gext. In order to answer this question, we first note that this must be the
case if classical procedures for measuring the exterior geometry gext can be implemented in the
quantum geometry (42). This corresponds to the existence of local observers that can communicate
with each other through the exchange of light rays, such that the relations between the times at
which light rays are emitted by a local observer OA and later observed by another local observer
OB are well described by the trajectories of light signals in the metric gext.

For instance, consider a pair of local observers OA and OB specified in the classical metric gext

by fixed spatial coordinates x⃗a = (ra, θ, φ) and x⃗b = (rb, θ, φ), where we choose the same angular
variables for both observers for simplicity. Put rb > ra. A light ray emitted by OA at ta in the
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Figure 2: A light ray is sent from a local observer OC to another local observer OD through the interior region
with r < R1. After crossing the interior region, the ray follows a superposition of paths in the exterior region,
represented by the wavepackets |ψ1⟩ and |ψ2⟩. An arrangement of mirrors mi ensures that both wavepackets
arrive at OD at the same time. The mirror m1 is removed after reflecting the wavepacket |ψ1⟩, before it is
reached by the wavepacket |ψ2⟩.

direction of OB will reach the latter at the coordinate time

tb = ta +
∫ rb

ra

(
1 − 2M

r

)−1
dr .

The proper time of an observer static with respect to the spherical coordinates (t, r, θ, φ) is related
to the coordinate time at each point by τ =

√
|g00(x⃗)|t. Therefore, the relation between the proper

time τA of OA when the ray is emitted and the proper time τB of OB when it is absorbed is

τb =
(

1 − 2M
rb

)1/2
[(

1 − 2M
ra

)−1/2
τa +

∫ rb

ra

(
1 − 2M

r

)−1
dr

]
. (43)

Analogous relations exist for generic pairs of observers at any fixed spatial coordinates. Now
suppose that there are laboratories Lx⃗ in the superposition state |Ψ⟩, labeled by positions x⃗, for
which such relations among proper times of emissions and absorptions of light rays in the exterior
region are satisfied. Each emission and absorption of a light ray corresponds to an operational
event E associated with a definite proper time at a laboratory. From assumption 2, each such
event must correspond to events E1 and E2 in the geometries g1 and g2. If these images are
identified by the same coordinates (t(τ, x⃗), x⃗) in the exterior region of both spacetimes, we say
that gext describes a classical patch of the quantum geometry |Ψ⟩. In this case, the spacetime
points in the exterior geometry gext can be interpreted as operational events at the laboratories
Lx⃗, as the communication among the laboratories through the exchange of light signals cannot be
distinguished from what would be observed in the classical metric gext.

A local laboratory in the exterior region can also send a light ray toward the interior region
r < R1. In this case, the ray will follow distinct geodesics in each of the geometries in superposition.
After leaving the interior region, it will carry information on the superposition of geometries.
Consider, for instance, that the light ray is emitted from a laboratory OC at the position x⃗c =
(rc, π/2, 0), in the exterior region, along the radial direction toward the interior region. Another
local observer OD situated at x⃗d = (rd, π/2, π), in the exterior region at the other side of the
shells, will receive the signal. The emitted light ray crosses the interior region and emerges in the
opposite side of the shells. Let ri(t) describe the geodesic motion of the ray in this region for each
spacetime Mi. As the coordinate times taken to cross the interior region in each spacetime M1
and M2 are in general different, the ray emerges in the exterior region in a superposition of two
localized states, entangled with the geometry (see Fig. 2),

|Ψ⟩ |r, tc⟩ 7→ |M1⟩ |ψ1, t⟩ + |M2⟩ |ψ2, t⟩√
2

, (44)

where tc is the emission time, t > tc is large enough so that the ray is in the exterior region for
both spacetimes, and the states |ψi, t⟩ are wavepackets peaked at ri(t). As a result, the arrival
of the light ray at the laboratory OD occurs after distinct delays ∆t1D,∆t2D in each branch of the
superposition. Repeating the experiment, the delay ∆t1D will be observed in half the observations,
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with the same probability for ∆t2D. The observation of the time of arrival of the light ray at OD

amounts to a measurement of the geometry of the interior region.
Suppose now that a different experiment is prepared, in which mirrors are arranged in the

exterior region at the opposite side of the shells so that the light ray reaches OD at the same
coordinate time in both geometries (see Fig. 2). For concreteness, consider a configuration of
the shells for which r1 > r2 after the ray has crossed the interior region. A mirror can then
be placed in a point of the trajectory r1(t) at a radius rm, with R1 < rm < r, and deviate
the trajectory from its original radial direction toward OD, after which the mirror is rapidly
removed, so that it does not affect the trajectory r2(t). Other mirrors can be arranged so that
the reflected wavepacket reaches the laboratory OD at the same time td as the second trajectory
r2(t). Under these conditions, the arrival of the ray at OD will now always be observed after the
same coordinate time delay ∆tD. In addition, the detection of the ray can be made in a manner
that, under a postselection, the geometry remains in its original superposition state (42). The
states |ψi, td⟩, although peaked at the same position, are in general not identical, as they include
distinct phases accumulated along their paths from emission to absorption, and possibly distinct
momenta, depending on the arrangement of mirrors. The local observer can then measure the ray
in a diagonal basis |±⟩ = (|ψ1, td⟩ ± |ψ2, td⟩)/

√
2, and select runs of the experiment with the result

|+⟩. This leaves the geometry in the state (42). Such an exchange of a light ray between OC and
OD, tuned by a precise positioning of mirrors dependent on the geometries in superposition, is the
analogue, for a ray crossing the interior region, of the direct exchange of light signals through the
exterior region that allows the observers to measure the exterior geometry.

3 Implementation of the quantum switch
3.1 Gravitational quantum switch on superposition of mass shells
Our protocol for the implementation of a gravitational quantum switch is formulated on the quan-
tum geometry given by the superposition of semiclassical states associated with the spacetimes
M1 and M2 with equal amplitudes, as described by Eq. (42). The exterior regions of both space-
times describe a classical patch gext of the geometry, as discussed in the previous section. We use
coordinates (t, x⃗) in this region.

Let us first describe the overall structure of the protocol. Two agents A and B are considered,
which perform operations A and B on a target system T. The paths of the agents and target are
specified in reference to the classical part gext of the geometry, exterior to the radius R1. For the
agent A, an initial position is chosen in this classical region, from which it freely falls toward the
interior region in geodesic motion. The agent B moves in a prescribed way in the exterior region,
at the opposite side of the shells, and the target system remains at a fixed nearby position. Their
paths cross once in the exterior region, when the agent B applies its operation. The agent A meets
the target at the same proper time in both branches of the superposition of geometries, and applies
its operation. The parameters of the geometries and paths can be chosen so that in one branch of
the geometry the target is first acted upon by agent A and then by B, while in the other branch the
operations occur in the opposite order, leading to the implementation of a quantum switch. The
relevant part of the worldlines of the agents and target system are schematically represented in
Figure 3. We will now describe the trajectories in more detail and show how the quantum switch
is implemented.

The agent A is released from rest at an initial radius ri > R1 in the exterior region, at t0 = 0.
It freely falls toward the center and starts oscillating in the radial direction in both branches of
the geometry, following the geodesics γ1 and γ2 described in Section 2.3. As the coordinate times
required for the geodesics to cross the interior region r < R1 are different in the classical spacetimes
M1 and M2, after first crossing the interior region, the agent emerges in the exterior region in a
superposition of two paths. The initial radius ri, and the masses and radii of the shells are chosen
so that after a number of cycles, the two paths join again and return to the initial position at the
coordinate time tf with the same proper time. The paths of A satisfy the following additional
property. Let rt < ri be a radius crossed by the agent A in the exterior region. In the first
oscillation, at the side opposite to that of the initial position, we denote by t1A the coordinate time
at which the geodesic in M1 crosses rt while travelling back toward the center, and by t2A the
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Figure 3: Trajectories of the agents A and B and of the target system. The agent A is relased from rest in the
exterior region (r > R1) and freely falls toward the shells situated in the interior region (r < R1, represented in
gray). After crossing the interior region, it follows distinct geodesics γ1 and γ2 at the opposite side of the shells
for each spacetime in superposition. Each geodesic crosses the worldline of the target, which remains at a fixed
position, at the same proper time τA. The agent B is brought into contact with the target at its proper time
τB . The operations are applied at the operational events defined by the proper times τA and τB . Afterwards,
the agent B is brought back to its initial position, and the geodesics of A oscillate radially until they rejoin at
the initial position of the agent. Only the first crossing of the interior region by the agent A is represented.

coordinate time at which the geodesic in M2 crosses rt while travelling toward the turning point
ri. We require the proper time τA of A to be the same in both cases, with t1A < t2A.

The target remains at a fixed position x⃗T at the side opposite to that from which the agent A
was released, at the radius rt in the path of A. The agent B is initially at a position x⃗0

B , also at
the side opposite to that from which the agent A was released, and off the path of A. It is brought
to x⃗T , at the position of the target, at an instant of time tB such that

t1A < tB < t2A , (45)

and then brought back to x⃗0
B .

For a configuration of the system satisfying the properties listed above, we can now determine
the final state of the system at tf . The initial state of the system at t = 0 is

1√
2

(|M1⟩ + |M2⟩) |ri⟩A |x⃗0
B⟩B |x⃗T ⟩T |ψ⟩T , (46)

where the state of A is labelled by the radial position of the agent, the state of B by its position,
and the state of the target is the tensor product of a state describing its position and an internal
state |ψ⟩T . The evolution in each branch of the geometry can be determined independently. In
the first branch, the position of A follows the radial geodesic γ1 in M1. In its first oscillation,
after crossing the interior region, it meets the target at t = t1A, and applies the operation A on its
internal state at this time. Next, it oscillates radially around the origin and returns to its initial
position at t = tf . The target system, after meeting the agent A, encounters the agent B at a later
time tB > t1A, when the agent applies the operation B at a proper time τB . The final internal state
of the target is then BA |ψ⟩T . The target and agent B are afterwards brought back to their initial
positions. Hence, the evolution in this branch is given by:

|M1⟩ |ri⟩A |x⃗0
B⟩B |x⃗T ⟩T |ψ⟩T 7→ |M1⟩ |ri⟩A |x⃗0

B⟩B |x⃗T ⟩T BA |ψ⟩T . (47)

In the second branch, the position of A follows the radial geodesic γ2 in M2. It also meets the
target system after crossing the interior region, but at a time t2A > tB . In this branch the target
first meets B and then A. Hence, its final internal state is AB |ψ⟩T . The agents and target return to
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Figure 4: Left panel: Ratio between proper time and coordinate time elapsed in one oscillation on the spacetimes
M1 (orange surface) and M2 (blue surface) in terms of the parameters R1, f . The ratios are identical at the
intersection of the two surfaces, which provides solutions to condition (51). Right panel: Ratio of coordinate
times elapsed in one oscillation on the spacetimes M1 and M2 in terms of R1, with the parameter f fixed so
that condition (51) is satisfied. The ratio varies continuously, providing solutions to condition (52).

their initial positions at tf , after their interactions have taken place. The evolution in this branch
is given by:

|M2⟩ |ri⟩A |x⃗0
B⟩B |x⃗T ⟩T |ψ⟩T 7→ |M2⟩ |ri⟩A |x⃗0

B⟩B |x⃗T ⟩T AB |ψ⟩T . (48)
The final states of the agents and of the position of the target are the same in both branches,

and disentangle from the rest of the system. The final state of the subsystem formed by the state
of spacetime and the internal state of the target is

|M1⟩ BA |ψ⟩T + |M2⟩ AB |ψ⟩T√
2

. (49)

A quantum switch (1) is thus implemented, with the state of the geometry playing the role of
the control bit. Assuming that the state of the geometry can be measured in a diagonal basis
|±⟩ = (|M1⟩ ± |M2⟩)/

√
2, the target system is then brought to the state

BA |ψ⟩T ± AB |ψ⟩T√
2

, (50)

where the sign ± refers to the result of the measurement of the diagonal basis that was postselected.
For either choice, the final internal state of the target is a superposition of those obtained with the
application of the operations in switched orders. The superposition of orders can then be verified
by performing observations of the internal state of the target system.

Let us now show that geodesics satisfying the required properties exist. The parameters that
can be varied are the masses m and M of the Schwarzschild patches, the radii R,R1, R2 of the
shells and the initial radial position ri of the agent A. The first condition we impose is that after
a number of oscillations, the geodesics γ1 and γ2 of the agent A in the spacetimes M1 and M2
meet again at the initial position in the exterior region, at the same coordinate and proper times.
We do it in two steps. We first impose the condition

∆τ (1)

∆t(1) = ∆τ (2)

∆t(2) (51)

that the ratio of proper time to coordinate time in one oscillation is the same in both geometries.
This ensures that, if the geodesics return to the initial position at the same coordinate time, then
they will also have the same proper time. In addition, we require that

∆t(1)

∆t(2) = p

q
, p, q ∈ N , (52)

i.e., that the ratio of the periods of oscillation in the distinct geometries is a rational number. This
ensures that the geodesics meet again at the initial position, at the same coordinate time, after q
oscillations in the spacetime M1 and p oscillations in M2.
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Figure 5: Proper time (left panel) and coordinate time (right panel) along the geodesics γ1 and γ2 on the
spacetimes M1 and M2 in the exterior region r > R1, after the first crossing of the interior region.

In order to numerically solve the conditions (51) and (52), we proceeded as follows. We fixed
the radius R2 of the shell Σ2, the masses m,M and the initial radius ri, and let the radii R and R1
of the shells Σ and Σ1 be free parameters that could be varied, allowing us to look for solutions for
the conditions in this restricted parameter space. We further restricted to configurations satisfying
R2 < R < R1 by writing

R = R2 + (R1 −R2)f , f ∈ [0, 1] , (53)

and required that R > 2M and R2 > 2m, so that the shells do not form a black hole in either ge-
ometry. We computed the periods of oscillation in coordinate and proper times on each spacetime,
and plotted the ratios ∆τ (1)/∆t(1) and ∆τ (2)/∆t(2) in terms of the free parameters R1, f . The
intersection of these surfaces describe solutions of the condition (51). Setting m = 1.9999, M = 3,
R2 = 4 and ri = 12, we obtained a family of solutions along a line on the plane (R1, f), as shown
in the left panel of Figure 4. For these solutions, we can plot the ratio ∆t(1)/∆t(2) as a function
of R1, restricting to values such that R > 2M . We verified that the ratio changes continuously,
as shown in the right panel of Figure 4. Therefore, there is an infinite number of solutions with
rational ratios ∆t(1)/∆t(2). As an example, a specific solution with ∆t(1)/∆t(2) = 9/10 is shown,
for which R1 = 10.072, f = 0.329464 and R = 6.00057.

We also need to show that the geodesics γ1 and γ2 are such that, after first crossing the interior
region r < R1, both cross some radius rt at the same proper time τA but distinct coordinate times
t1A < t2A, with γ1 crossing rt while travelling back toward the interior region, and γ2 crossing rt

while travelling toward the turning point at ri. We verified this explicitly for the solution with
∆t(1)/∆t(2) = 9/10 by plotting the coordinate and proper times as functions of the radius for each
geodesic, as shown in Figure 5. In the left panel, the proper times are plotted against the radius.
The geodesics intersect at the radius rt = 11.9382 in the desired manner. In the right panel, the
coordinate times are plotted as functions of the radius. The whole trajectory of γ1 in the exterior
region takes place before γ2 reaches the region, showing that t1A < t2A, as desired. This completes
the verification of all properties required for the implementation of the quantum switch.

3.2 Comparison with previous protocols
A protocol for the implementation of a gravitational quantum switch was originally proposed
in [5], where a superposition of geometries produced by a point mass in a superposition of two
positions was considered. The transformation (1) that characterizes a general quantum switch has
also been performed in nongravitational systems in recent experiments [21]. In such experimental
realizations, the process is implemented in optical tables, with distinct degrees of freedom of a
photon, as for instance its path and polarization, used as the control bit and the target system.
Distinct protocols for the implementation of the quantum switch are thoroughly discussed in [22].

There are distinct ways of performing the task (1) in situations where a global time variable
t associated with an external observer is available, as in the case of optical table experiments,
where t is the local time in the laboratory where the experiment is realized. One can consider, for
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instance, a setup in which the operations A and B are each applied at two different times:(
A ⊗ |0⟩ ⟨0| + 1A ⊗ |1⟩ ⟨1|

)
|t=t2

(
1B ⊗ |0⟩ ⟨0| + B ⊗ |1⟩ ⟨1|

)
|t=t2(

1A ⊗ |0⟩ ⟨0| + A ⊗ |1⟩ ⟨1|
)
|t=t1

(
B ⊗ |0⟩ ⟨0| + 1B ⊗ |1⟩ ⟨1|

)
|t=t1

(
|ψ⟩ ⊗ (|0⟩ + |1⟩)√

2

)
, (54)

with the states |0⟩ , |1⟩ referring to the control bit. The two operations in the first line are applied
at the same time t2, and the two operations in the second line at the same time t1 < t2. The
composition of all operations implements the transformation (1). The agents A and B are assumed
to be at distinct positions, so that operations performed at equal times commute. The optical
table implementations of the quantum switch reported in [23, 24] are realized in such a manner.
Further discussions on such implementations and the ways of expressing them can be found in
references [22, 25, 26, 27].

Alternatively, one can consider a setup in which the operation B is applied at the same instant
of time for both paths, and the operation A is applied at two distinct times:(

A ⊗ |0⟩ ⟨0| + 1A ⊗ |1⟩ ⟨1|
)
|t=t3

(
B ⊗ |0⟩ ⟨0| + B ⊗ |1⟩ ⟨1|

)
|t=t2(

1A ⊗ |0⟩ ⟨0| + A ⊗ |1⟩ ⟨1|
)
|t=t1

(
|ψ⟩ ⊗ (|0⟩ + |1⟩)√

2

)
, (55)

where t1 < t2 < t3 refer to instants of time defined in the frame of an external observer. Ex-
amples of such an implementation are given by a gravitational quantum switch described in the
Supplementary Material of reference [5], as described in terms of global coordinates associated
with an observer far away from the mass in superposition, and by the protocol proposed in [10].
The protocol herein proposed, when described in terms of the reference frame associated with the
local observers in the exterior region, also has this property.

A distinctive feature of a gravitational quantum switch based on an operational approach is
that an event which is localized for one observer may appear as delocalized in time for another
observer. Indeed, in both the protocol of [5] and in our proposal, the operation A consists of a
single event at a definite proper time for an observer in the laboratory A, while for an external
observer, which in our case resides in the exterior region, such an event appears as delocalized in
time. Ultimately, such a delocalization is what allows for the implementation of the superposition
of orders, since in one branch of the superposition of geometries, the operation A is an event in the
future of B, and in the other branch of the superposition it is in the past of B. That is, the switch
is implemented with only two operationally defined events A, B, but one of the events appears in
a superposition of two distinct times for an external observer.

A special property of our protocol is that the quantum switch can be implemented for arbitrary
operations, even when controlled by the result of some other measurement performed in the labo-
ratories. This results from the fact that each laboratory is acted by the same local gravity in both
spacetimes in superposition, preventing the states of the geometry to be distinguished from within
the laboratories. If the states of the geometry could be distinguished, they could be used to control
the operation performed at the laboratiores, and a quantum switch would not be implemented.
In order to discuss this point in more detail, let us consider a more general setup for the process
described by Eq. (55). In the protocol (55), the operations performed by A are controlled only by
the coordinate time t, whose readings t3 and t1 in fact correspond to the same proper time τ∗ of
A for a gravitational quantum switch. A more general protocol can be considered for operations
controlled by additional measurements: besides the proper time τ , the agent can also measure
some other degree of freedom λ, and apply operations according to the results obtained. In this
case, we can consider a generalization of the form:(

A(τ1;λ1) ⊗ |0⟩ ⟨0| + 1A ⊗ |1⟩ ⟨1|
)(

B ⊗ |0⟩ ⟨0| + B ⊗ |1⟩ ⟨1|
)

(
1A ⊗ |0⟩ ⟨0| + A(τ2;λ2) ⊗ |1⟩ ⟨1|

)(
|ψ⟩ ⊗ (|0⟩ + |1⟩)√

2

)
, (56)

where A(τ ;λ) means an operation performed at the proper time τ that depends on the degree of
freedom λ. The protocol of [5] is a particular case of (56), with τ1 = τ2 = τ∗ and A(τ1;λ1) =
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A(τ2;λ2) = A, so that A(τ ;λ) does not depend on λ and is applied in both branches of the
superposition at the same proper time τ = τ∗.

A slightly more general operation can be considered, however, with τ1 = τ2 = τ∗, and
A(τ1;λ1) = A(λ1), A(τ2;λ2) = A(λ2). In this case, the operation of A is still applied at the
proper time τ = τ∗, but now it can depend on λ. Naturally, a quantum switch will not then
be implemented if A(λ1) ̸= A(λ2). As an illustration, if the laboratory A chooses to perform an
operation A(λ) such that A(λ1) = C ̸= A(λ2) = D, then we obtain the following process:

CB|ψ⟩ ⊗ |0⟩ + BD|ψ⟩ ⊗ |1⟩√
2

(57)

which is not a quantum switch. Therefore, if we allow for arbitrary operations, the protocol does
not necessarily implement a quantum switch. The parameter λ can represent, in particular, a
measurement of the weight of an object in the laboratory. Now, consider the protocol discussed
in [5]. There, the laboratories A and B move along wordlines with distinct accelerations, and the
parameter λ will assume distinct values for each geometry in superposition when representing a
measurement of the local gravity. The superposition of orders will then be implemented only for
a subset of all possible operations that the laboratories can perform, namely, those independent
of λ. In this way, the implementation of the indefinite order depends not only on the structure
of the spacetime, but also on the operations being applied. If the laboratory A is in free fall, on
the other hand, the measurement of the local gravity has always the same outcome, and the same
operation would be implemented in both branches of the superposition.

Note that the tabletop realizations of a quantum switch can also be described in terms of
operations controlled by an additional degree of freedom λ, where λ ∈ {yes, no} is a variable that
describes if the photon is inside the laboratory or not, and τ = t is the global time. The operation
applied by laboratory A can be represented as A(t;λ) = A(λ) = Aδλ,yes +1δλ,no, as it is performed
only when the target system is found in the laboratory. The protocol can then be written as:(

A(t∗; yes) ⊗ |0⟩ ⟨0| + A(t∗; no) ⊗ |1⟩ ⟨1|
)(

B ⊗ |0⟩ ⟨0| + B ⊗ |1⟩ ⟨1|
)

(
A(t∗∗; no) ⊗ |0⟩ ⟨0| + A(t∗∗; yes) ⊗ |1⟩ ⟨1|

)(
|ψ⟩ ⊗ (|0⟩ + |1⟩)√

2

)
. (58)

Of course, if the agent A were to chose to apply a more general operation of the form A(t;λ) =
A(t)δλ,yes + 1δλ,no, with A(t∗) ̸= A(t∗∗), the quantum switch would not be implemented, and its
realization again depends on the choice of operation performed in the laboratory A.

4 Discussion
We introduced a new protocol for the implementation of a gravitational quantum switch. The
protocol is formulated on a superposition of spacetimes M1 and M2 with geometries produced by
distinct configurations of thin spherical mass shells. The geometries are isometric in an exterior
region outside a radius R1, where both are described by a Schwarzschild metric of mass M . Inside
this radius, the geometries differ, so that M1 and M2 are not globally isometric. Both interior
geometries are well behaved, including a flat core described by a Minkowski metric, surrounded
by distinct patches of Schwarzschild metrics glued together. In the proposed protocol, an agent
A initially in the exterior region first frelly falls from rest towards the masses. After crossing the
interior region, it follows distinct geodesics in the exterior region for each spacetime in superposi-
tion. We showed that the configuration of the shells and the wordline of the target can be chosen,
nonetheless, so that in both spacetimes the agent A meets the target system at the same proper
time τA, when it applies an operation A on it. Another agent B, travelling in the exterior region,
also acts on the target system, applying an operation B on it. The geometries are such that the
operation A is performed in the causal past of the operation B in the spacetime M1, and in the
causal future of B in M2. In addition, at the end of the protocol, the agents naturally disentangle
from the state of the target. The operations are thus applied on the target in reversed orders in the
distinct branches of the superposition of geometries, leading to the implementation of a quantum
switch controlled by the state of the geometry.
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In a superposition of geometries, it is not immediately clear how to characterize a physical event.
We adopted an operational approach for that purpose [5, 9], as in related works on quantum gravity
phenomenology. An event can then be characterized as an interaction between a laboratory and a
target system at a definite proper time as measured in the laboratory. Accordingly, the operations
A and B correspond to interactions taking place at specific proper times of the agents, understood
as laboratories in the superposition of geometries, as in the previous protocol [5]. In addition,
we applied the operational approach to provide an explicit operational meaning to the coordinate
system used to specify the paths of the agents and the target. This was possible in our setup
due to the existence of isometric exterior regions in the spacetimes in superposition. A network of
laboratories can be positioned in the exterior region. As each laboratory can be observed in either
spacetime in superposition, an operationally defined event that is localized in both spacetimes
identifies a pair of points xµ

1 ∈ M1 and xµ
2 ∈ M2 [18, 19]. The pair (xµ

1 , x
µ
2 ) defines what is called

the quantum coordinates of the event [28]. In our setup, the same coordinates are assigned to
events in such laboratories in the exterior region in both spacetimes. This reduces the quantum
coordinates to classical coordinates (xµ

1 = xµ, xµ
2 = xµ) 7→ xµ in this region. The meaning of

these coordinates is then the same as in a classical geometry: if a laboratory with coordinates xµ

sends a light signal to another laboratory with coordinates yµ, the time delay between emission
and absorption is the same as that for a lightlike geodesic connecting such points in the classical
geometry of the exterior region.

In the proposed protocol, an agent crosses the interior region that displays a superposition of
geometries. A novel feature of the protocol is that the agent that experiences the superposition of
geometries is in free fall. This allows for a more general class of operations A,B to be considered
for the implementation of the quantum switch than in previous protocols. No information from the
geometry can be obtained from within a laboratory in free fall, as the local gravity inside it vanishes,
assuming that the laboratory is sufficiently small so that tidal forces can be neglected. This is true
not only for a classical geometry, but also for a superposition of geometries, as no measurement
performed within the laboratory can distinguish between the geometries in superposition. In
contrast, if a laboratory were required to follow nongeodesic paths with distinct accelerations in
the geometries in superposition, it could in principle measure the weight of an object, and apply
an operation on the target controlled by the result of the weight measurement. A quantum switch
would not be implemented in this case, as distinct operations would be realized in each branch of the
superposition. Hence, a protocol for a quantum switch involving laboratories in nongeodesic motion
in the superposition of geometries can be implemented only for operations that are insensitive to
the local gravity. This restriction is not necessary for laboratories in geodesic motion. In this sense,
the proposed protocol is universal, being applicable to arbitrary operations A and B, even when
controlled by measurements performed in the laboratory. From a conceptual side, a laboratory
in free fall is a natural realization of the concept of closed laboratory as explored in the process
matrix formalism [8], and our protocol corresponds to an implementation of the quantum switch
as represented in such a formalism.

The interactions among the agents and the target system take place in the exterior region of
the spacetimes, after the agent A has crossed the interior region that displays a superposition
of geometries. The fact that the operations are applied in a region of spacetime with a definite
geometry may seem to imply that the superposition of orders is unrelated to the superposition of
geometries. That this is not the case, however, can be seen as follows. In a classical spacetime, a
given event being in the causal past or future of another event is not a property of the metric at the
events, but a global property of the spacetime. In a superposition of spacetimes, the superposition
of orders results from that of such global structures, and not from fluctuations of the lightcone at
the moment when the operations are performed. In particular, the temporal relation between two
operationally defined events A and B in a pair of laboratories depends on the wordlines followed by
the laboratories in each geometry in superposition, which cross an extended region of spacetime.
In short, a superposition of orders between operationally defined events, with a quantum geometry
used as a control bit, is not determined by a local superposition of lightcones at the events where
the operations are applied, but by the superposition of the global structures of the spacetimes.

An eventual experimental realization of the proposed protocol would require the preparation of
a large mass in a quantum superposition of two configurations in which the mass is distributed over
a single or two spherical shells, which is beyond present-day experimental capabilities. Nonetheless,
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there is no fundamental reason preventing this to be achievable with future quantum technology.
Some barriers currently being challenged for the production of macroscopic states of quantum mat-
ter are the production of superposition states for systems with large masses [29] and superpositions
of positions separated by large distances [30]. Geometrical traps of complex shapes have also been
engineered for cold atoms and Bose-Einstein condensates [31], including a potential that traps
atoms on a single spherical shell, which allowed the observation of bubbles of ultracold atoms on
a microgravity environment [32].
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Consider the spacetime M1. At the radius r = R, the extrinsic curvature K±

ab can be directly
computed at each side of the surface Σ from the definition (6). We find that it is discontinous,
with a discontinuity

[Kab] = diag
[

−M
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The energy-momentum tensor expressed in the coordinates xα = (t, ℓ, θ, φ) is given by Eqs. (7),
(8) and (9). Its nonzero components read:

T 00 = δ(ℓ) 1
4πR

(
1 −

√
1 − 2M

R

)(
1 − 2M

R

)−1
,

T 22 = δ(ℓ) 1
8πR3

(
1 − M

R
−
√

1 − 2M
R

)(
1 − 2M

R

)−1/2
,

T 33 = 1
sin2 θ

T 22 . (60)

The energy density ρ and pressure P in the shell can be computed from Eq. (60). The 4-velocity
of an observer standing at the shell is given by

uα = diag
[

−
(

1 − 2M
R

)1/2
, 0, 0, 0

]
,

from which we obtain

ρ = Tαβuαuβ = δ(ℓ) 1
4πR

(
1 −

√
1 − 2M

R

)
. (61)

For large radii R ≫ 2M , the energy density reduces to δ(ℓ)M/(4πR2), as could be expected.
Taking unit vectors er, eθ, eφ along the spatial directions, we can also determine the pressure in
each direction. For the directions tangential to Σ, we find:

P = Tαβ(eθ)α(eθ)β = Tαβ(eφ)α(eφ)β

= δ(ℓ) 1
8πR

(
1 − 2M

R

)−1/2
(

1 − M

R
−
√

1 − 2M
R

)
. (62)

The tangential pressure P vanishes at large radii and diverges at the horizon. The pressure vanishes
in the orthogonal radial direction.

In the spacetime M2, the second junction condition is not satisfied at Σ1 or Σ2. The case of
Σ2 is identical to the previous case: a Schwarzschild patch is glued around an interior spherical
region in Minkowski spacetime. The formulas for the discontinuity of the extrinsic curvature and
the energy-momentum tensor can then be obtained from Eq. (59) and (60) with the substitutions
R → R2 and M → m. For the surface Σ1, the extrinsic curvature on each side of the surface read:

K1
ab =

√
1 − 2M

R1
diag

[
−M

R2
1
, R1, R1 sin2 θ

]
,

K2
ab =

√
1 − 2m

R1
diag

[
− m

R2
1

(
1 − 2M

R1

)(
1 − 2m

R1

)−1
, R1, R1 sin2 θ

]
.

Therefore, K1
ab − K2

ab ̸= 0, and a thin shell is present at Σ1. The nonzero components of the
energy-momentum tensor on Σ1 are given by:

T 00
1 = δ(ℓ) 1

4πR1

(√
1 − 2m

R1
−
√

1 − 2M
R1

)(
1 − 2M

R1

)−1
,

T 22
1 = δ(ℓ) 1

8πR4
1

 R1 −M√
1 − 2M

R1

− R1 −m√
1 − 2m

R1

 ,

T 33
1 = 1

sin2 θ
T 22

1 , (63)

where we used coordinates xα = (t, ℓ, θ, φ) in a neighborhood of Σ1, with

t =

t1 , in region I ,(
1 − 2M

R1

)−1/2 (
1 − 2m

R1

)1/2
t2 , in region II .

(64)
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and where ℓ is the proper length along the radius, defined by

dℓ

dr1
=
(

1 − 2M
r1

)−1/2
,

dℓ

dr2
=
(

1 − 2m
r2

)−1/2
,

and the boundary condition that ℓ = R1 at Σ1. The metric is continuous in these coordinates.
The energy density ρ1 and tangential pressure P1 can be determined as before. We find that

ρ1 = δ(ℓ) 1
4πR1

(√
1 − 2m

R1
−
√

1 − 2M
R1

)
. (65)

For large radii R1 ≫ 2M > 2m, the energy density reduces to δ(ℓ)(M − m)/(4πR2
1). The radial

component of the pressure, orthogonal to Σ1, vanishes. The pressure in any tangential direction is
given by

P1 = δ(ℓ) 1
8πR2

1

 R1 −M√
1 − 2M

R1

− R1 −m√
1 − 2m

R1

 . (66)

It vanishes for R1 ≫ 2M > 2m, and diverges for R1 = 2M .
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