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Abstract. Encoding and decoding are the two key steps in infor-
mation processing. In this work we study the encoding and decod-
ing capabilities of operational theories in the context of information-
storability game, where the task is to freely choose a set of states
from which one state is chosen at random and by measuring the
state it must be identified; a correct guess results in as many utiles
as the number of states in the chosen set and an incorrect guess
means a penalty of a fixed number of utiles. We connect the op-
timal winning strategy of the game to the amount of information
that can be stored in a given theory, called the information storabil-
ity of the theory, and show that one must use so-called nondegrad-
able sets of states and nondegradable measurements whose encod-
ing and decoding properties cannot be reduced. We demonstrate
that there are theories where the perfect discrimination strategy is
not the optimal one so that the introduced game can be used as
an operational test for super information storability. We further
develop the concept of information storability by giving new useful
conditions for calculating it in specific theories.

1. Introduction

Let’s have a birthday party! For entertainment and fun, we could
choose to play a specific kind of game. It goes like this: given a
state space S you are allowed to pick n ∈ N and a subset of states
X = {si}ni=1. You will then be given a random unknown state from
the set X and allowed to perform a measurement. After obtaining a
measurement outcome, you have to declare the label of the state you
think you were given. If you are correct, then you win n utiles1, while
if you are wrong you get w utiles. We will mostly be concerned with
the cases when w < 0, meaning that you loose utiles if your guess is
wrong. Here by a state space we mean any set of preparations closed
with respect to randomization, this clearly includes both classical and
quantum theories and such state spaces were treated by Holevo in his

1Utile is a theoretical unit of utility. For small amounts it can be replaced by
money, but unlike to money, the law of diminishing returns does not apply to utiles.
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Figure 1. The party game of the year (the informa-
tion storability game): you are free to choose a set X
of n states from which a single state will be chosen and
your task is to guess which state it was. Correct answer
rewards you n utiles (represented by presents in the fig-
ure) and incorrect answer costs you a penalty (some fixed
number of utiles).

celebrated textbooks [1, 2, 3]. The aforementioned game has a clear
practical interpretation: the aim is to pick the largest possible set of
states X = {si}ni=1 that can be efficiently used for storing classical infor-
mation. Thus we will refer to this game as the information-storability
game. The information storability game is illustrated in Fig. 1.

What is the most optimal strategy for the information-storability
game? Clearly, one can choose n = 1 in which case one always wins,
but the payoff is small. A better strategy would be to pick X to be
one of the largest possible sets of perfectly distinguishable states, in
which case a rational player still always wins and the payoff is given
by the maximal number of perfectly distinguishable states in a given
theory. For instance, in the case of quantum theory the payoff would
coincide with the dimension of the underlying Hilbert space. In general
in quantum theory, the quantity we are working with is closely related
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to accessible information and thus upper bounded by the Holevo in-
formation [4]. It is also clear that somehow artificially enlarging X is
not helpful since then the probability of guessing correctly decreases
and that affects the expectation value of the payoff. The questions
we want to answer are the following. For a fixed state space S and a
given penalty w, what is the best strategy in the information-storability
game? Are there state spaces S where the optimal strategy also involves
the possibility of guessing incorrectly?

Information storing depends both on encoding and decoding, hence
one can look these and other related questions both from the perspec-
tives of states and measurements. The information storing capability
of an abstract state space has been introduced and studied in [5]. One
of the main results of that investigation is that a state space with large
information storing capability is necessarily highly asymmetric. This
explains why higher dimensional quantum state spaces do not have
point-symmetry as the qubit state space has. In addition to these
results, information storability can be compared to the operational
dimension of the theory. In quantum and classical theories the two
numbers are the same, but in general they can be different. In [5] a
sufficient condition for the agreement of the numbers was derived and it
is relying on the existence of suitable symmetry transformations. The
symmetry group of a state space is a useful and descriptive feature of
the theory. However, the symmetry group has no direct operational
manifestation.

In the current work we develop the concept of information storability
further. We introduce a binary division for all finite subsets of states
into degradable and nondegradable sets, depending on their informa-
tion storing property. Roughly speaking, a degradable set has a proper
subset that already stores the same information. Information stor-
ing property of subsets of states has a dual notion for measurements,
namely, decoding power. Aided with these concepts, we present an
operational classification of state spaces that is based on their informa-
tion storing and decoding properties. In this classification, quantum
theory and classical theory belong to the same class, while there are
some other state spaces that behave differently.

2. Encoding and decoding of information

In the information storing game the finite set of states (and thus
also the number of states) can be chosen freely and the goal is to
maximize the number of utiles that one gets by correctly distinguishing
the states and by avoiding incorrect guesses which causes one to lose
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utiles. We will consider the information storing game in the framework
of operational theories.

2.1. Short introduction to operational theories. The framework
of operational theories is built on describing physical experiments by
preparing, transforming, measuring and joining (physical) systems. In
particular, we will use the convex formulation of general probabilistic
theories (GPTs), where the set of states S, i.e., all possible different
preparation procedures of the system, is assumed to be a compact con-
vex subset of a finite-dimensional real vector space (see e.g. [6, 7, 8] for
more thorough reviews). There convexity is a natural requirement that
arises from the possibility of probabilistic mixing of different prepara-
tion procedures so that if we have two preparation devices preparing
states s1, s2 ∈ S we can assign a probability p ∈ [0, 1] and use the state
s1 with probability p and state s2 with probability 1− p in each round
of an experiment leading to a mixed state ps1 + (1 − p)s2 ∈ S. On
the other hand, a measurement A with n (< ∞) outcomes is taken to
be a collection of affine functionals Ai : S → [0, 1], called effects, for
all i ∈ [n] := {1, . . . , n} such that

∑n
i=1 Ai(s) = 1 for all states s ∈ S.

The interpretation then is that Ai(s) describes the probability that an
outcome i is attained when we measure the system which is in state
s with a measurement A. Then the normalization

∑n
i=1 Ai(s) = 1, or

equivalently,
∑n

i=1 Ai = u, where u is the unit effect defined as u(s) = 1
for all s ∈ S, guarantees that some outcome is always attained in each
measurement. We denote the set of effects on a state space S, i.e., the
set of affine functionals e : S → [0, 1] by E(S), and the set of measure-
ments on S with O(S). The set of measurements with n outcomes is
then denoted by On(S).

For our future analysis, following [9] we say that a nonzero effect
e ∈ E(S) is indecomposable if any decomposition of e into a sum of
two other nonzero effects e1, e2 ∈ E(S) as e = e1 + e2 implies that
e = λ1e1 = λ2e2 for some λ1, λ2 > 0. It is known that indecomposable
effects are exactly those that lie on the extreme rays of the positive
dual cone {f ∈ span(S)∗ | f(s) ≥ 0 ∀s ∈ S} [9]. We denote the set of
indecomposable effects by E ind(S) and the set of extreme indecompos-
able effects by Eext

ind(S). Similarly we say that a measurement A ∈ O(S)
is indecomposable if all of its nonzero effects are indecomposable and
we denote the set of indecomposable measurement by Oind(S).

Example 1 (Quantum theory). Consider a d-dimensional Hilbert space
denoted as H. Let L(H) represent the algebra of linear operators acting
on H, and Ls(H) be the real vector space of self-adjoint operators on
H. The state space Sq

d of a d-dimensional quantum theory consists of
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density matrices on H, defined as:

Sq
d = {ϱ ∈ Ls(H) | ϱ ≥ O, tr [ϱ] = 1},

where O is the zero-operator, and the partial order is induced by the
cone of positive semi-definite matrices. The pure states, or extreme
points of the state space, precisely correspond to rank-1 projections on
H, i.e., operators of the form |φ⟩⟨φ| for some unit vector φ ∈ H.

The set of effects E(Sq
d) can be shown to be isomorphic to the set

E(H) of self-adjoint operators bounded between O and 1, where 1 is
the identity operator on H, expressed as:

E(Sq
d) ≃ E(H) := {E ∈ Ls(H) |O ≤ E ≤ 1}.

Here, extreme effects align with projections on H. The indecomposable
effects correspond to rank-1 operators of the form λ|φ⟩⟨φ| for some unit
vector φ ∈ H and λ > 0 [9]. Clearly effects of this form are extreme if
and only if λ = 1.

Measurements with a finite number of outcomes on H are character-
ized by positive operator-valued measures (POVMs). These measures
are represented as maps of the form A : x 7→ A(x), where x belongs
to some outcome set [n], and the effect operators A(x) in E(H) sat-
isfy the condition

∑n
x=1A(x) = 1. The indecomposable measurements

correspond to POVMs with rank-1 effects.

2.2. Degradable states and measurements in the information-
storability game. In the information-storability game, if one chooses
a set of n states X = {si}ni=1 ⊂ S and a measurement A ∈ On(S)
with n outcomes, then given a random unknown state si from X the
probability that one manages to distinguish that state from the others
by using A is just Ai(si) in which case one gains n utiles; otherwise
one gains w < 0 utiles, i.e., loses |w| utiles with probability 1− Ai(si).
Thus, the average number of utiles that one is rewarded when the game
is repeated by using the states X and the measurement A is then

n · 1
n

n∑
i=1

Ai (si) + w ·

[
1− 1

n

n∑
i=1

Ai (si)

]

= w +
(
1− w

n

) n∑
i=1

Ai (si) =: Ew(X ,A) , (1)

where we have assumed that in each round of the game the states are
chosen with uniform probability.

The optimal strategy for the game can be found by optimising both
the set of states X and the measurement A in the above expression
for Ew(X ,A). However, the order in which these two optimizations are
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performed does not matter and thus we can look separately on both of
these optimizations.

Let us start by first considering the states. The key element is choos-
ing a set of states such that with high probability one manages to
distinguish them. We define the encoding power of a set of states as
the maximal success probability of the minimum error discrimination
task of those states (which are chosen with equal apriori probability)
multiplied by the number of states.

Definition 1. For a finite set of states X = {si}ni=1 ⊂ S we define the
encoding power µmax (X ) of X as

µmax (X ) := sup
A∈On(S)

n · 1
n

n∑
i=1

Ai(si) = sup
A∈On(S)

n∑
i=1

Ai(si) . (2)

Since the set of measurements On(S) with fixed number of outcomes n
is convex and closed, the supremum is always attained by some mea-
surement.

Thus, for a given set X of n states the maximum average number
of utiles that are awarded in the information-storability game by using
the states in X in terms of the encoding power µmax (X ) is given by

µmax (X ) + w ·
(
1− µmax (X )

n

)
:= Ew(X ) . (3)

Then the maximum probability of gaining n utiles by using the states X
is µmax (X ) /n. For example, if X consists of n perfectly distinguishable
states, then µmax (X ) = n and we are always guaranteed to get n utiles.

When finding the optimizing set of states that maximizes the average
number of rewarded utiles given by Eq. (3) we note that we are not
just trying to maximize µmax (X ) but also the term µmax (X ) /n. In
particular, if we find another set Y ⊂ S with µmax (Y) = µmax (X ) but
which has m < n states, then clearly the average number of rewarded
utiles increases. In particular, given a set of states X , we can start
looking for the more optimal set Y by looking at the subsets of X .
Namely, it is straightforward to check that if Y ⊂ X , then µmax (Y) ≤
µmax (X ) because only in the worst case the optimizing measurement
for µmax (Y) (equipped with suitable number of additional zero effects)
will be optimal for µmax (X ). However, it may happen that µmax (Y) =
µmax (X ) even for some proper subsets Y of X .

Definition 2. A finite set X ⊂ S is degradable if there exists a proper
subset Y ⊂ X such that

µmax (Y) = µmax (X ) . (4)
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Otherwise X is nondegradable.

Clearly now in the information-storability game, the set of states for
the optimal strategy has to be nondegradable.

Example 2 (Degradable pure qubit states). In the qubit case let us
take two non-orthogonal unit vectors φ, ψ ∈ C2 and the unit vectors
orthogonal to them φ⊥, ψ⊥ ∈ C2 and let us consider the following set
of four pure qubit states

X = {|φ⟩⟨φ|, |φ⊥⟩⟨φ⊥|, |ψ⟩⟨ψ|, |ψ⊥⟩⟨ψ⊥|} ⊂ Sq
2 .

We note that from the basic decoding theorem (see e.g. [10]) it follows
that the maximum encoding power of any set of states in qubit is 2
(see Sec. 3). Clearly, since both Y := {|φ⟩⟨φ|, |φ⊥⟩⟨φ⊥|} and Z :=
{|ψ⟩⟨ψ|, |ψ⊥⟩⟨ψ⊥|}} contain two orthogonal pure states, we have that
µmax (Y) = µmax (Z) = 2 so that also µmax (X ) = 2 and thus X is
degradable. Thus, in this case one of the optimal strategies to decode
the information encoded in X is just to discriminate the two states in
one of the orthogonal pairs contained in X .

Dually, one can also approach the information-storability game by
not fixating on the states but by considering the distinguishing mea-
surements instead. In particular, we can define the decoding power
of a measurement as the maximal success probability of the minimum
error discrimination task of the optimal set of states which the mea-
surement can distinguish (with equal apriori probabilities) multiplied
by the number of outcomes of the measurement.

Definition 3. For a measurement A ∈ On(S) with n outcomes the
decoding power λmax (A) of A is defined as

λmax (A) := n · 1
n

n∑
i=1

sup
s∈S

Ai(s) =
n∑

i=1

sup
s∈S

Ai(s) . (5)

Since the state space S is convex and closed, the supremum is always
attained.

Thus, for a given measurement A with n outcomes, the maximal
average number of utiles which one is rewarded with in the information-
storability game by using the decoding measurement A in terms of the
decoding power λmax (A) reads as

λmax (A) + w ·
(
1− λmax (A)

n

)
=: Ew(A) . (6)

Then the maximum probability of gaining n utiles by using the mea-
surement A is λmax (A) /n.
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Analogously as in the case of states, when starting to find the opti-
mizing measurement for the optimal strategy in the information-storing
game, we can focus on measurements which in the above equation do
not change the value of λmax but which nevertheless have less number
of outcomes. One natural way is to look at merging some of the out-
comes of the measurement and see if λmax reduces or not. Thus, we
can define an analogous concept of degradability for measurements:

Definition 4. A measurement A with n outcomes is degradable if there
exists a measurement B with m < n outcomes which can be obtained
from A by merging some of its effects such that

λmax (A) = λmax (B) . (7)
If A is not degradable then it is nondegradable.

We conclude that in the information-storing game, the decoding mea-
surement for the optimal strategy has to be nondegradable.

In the context of the information-storability game the above defi-
nitions of degradability seem intuitive (at least to us). However, in
general there are more general ways of obtaining states from other
states and measurements from another measurements. For more gen-
eral definitions of degradability (which we show to reduce to the ones
presented above) can be found in Appendix A.

2.3. Conditions on degradable states and measurements. For a
finer analysis of degradability it is useful to define also set dependent
decoding power; we denote

λmax (A |X ) =
∑
i

sup
s∈X

Ai(s) (8)

for all A ∈ On(S) and X ⊂ S. The following observation will be useful
in later developments. See Appendix A for the proof.

Lemma 1. For any finite subset of states X ⊂ S, we have that

µmax (X ) = sup
A
λmax (A |X ) (9)

and they both can maximized by the same measurement.

In the following we look first conditions for a subset of states to be
degradable and then a condition for a measurement to be degradable.

2.3.1. Degradable sets of states. Next we will give some sufficient con-
ditions for a set of states to be degradable.
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Proposition 1. Let X ⊂ S be a finite set. In the following cases X is
degradable:

(a) X has more than dim(aff(S)) + 1 elements.
(b) X ̸= ext(conv(X ))

Proof. Let X = {s1, . . . , sn} ⊂ S for some n ∈ N and let A be some
n-outcome measurement that maximizes µmax (X ). We see that by
Lemma 1 we have that µmax (X ) = supB λmax (B |X ) = λmax (A |X ). By
using the simulation scheme of measurements introduced in [11, 12, 13]
now A can be written as a simulation of some finite number M of
extreme indecomposable measurements (also called as simulation irre-
ducible measurements) {B(k)}Mk=1 with some finite number m of out-
comes with some probability distribution (pk)

M
k=1 and row-stochastic

postprocessing matrices ν(k) = (ν
(k)
ji )j∈[m],i∈[n] (so that νji ≥ 0 for all

i ∈ [n] and j ∈ [m] and and
∑

i νji = 1 for all j ∈ [m]) such that

Ai =
M∑
k=1

m∑
j=1

pkν
(k)
ji B

(k)
j (10)

for all i ∈ [n].
(a) We now observe that

λmax (A |X ) =
n∑

i=1

sup
l

Ai(sl) =
n∑

i=1

sup
l

(
M∑
k=1

m∑
j=1

pkν
(k)
ji B

(k)
j

)
(sl)

≤
n∑

i=1

M∑
k=1

m∑
j=1

pkν
(k)
ji sup

l
B
(k)
j (sl) =

M∑
k=1

m∑
j=1

pk sup
l

B
(k)
j (sl)

=
M∑
k=1

pkλmax

(
B(k) |X

)
≤ max

k
λmax

(
B(k) |X

)
.

Thus, since A maximizes µmax (X ) we get that also B(k) maximizes it
for some k ∈ [M ]. Since B(k) is an extreme measurement its nonzero
effects must be linearly independent [13] so that it has maximally
dim(aff(S)) + 1 nonzero outcomes. Thus, if n > dim(aff(S)) + 1, then
there exists a proper subset Y ⊂ X of at most dim(aff(S)) + 1 states
such that λmax

(
B(k) |Y

)
= λmax

(
B(k) |X

)
= µmax (X ) implying that

µmax (Y) = µmax (X ) so that X is degradable.
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(b) From Eq. (10) we see that

µmax (X ) =
n∑

i=1

Ai(si) =
n∑

i=1

M∑
k=1

m∑
j=1

pkν
(k)
ji B

(k)
j (si)

=
M∑
k=1

m∑
j=1

pk B
(k)
j

(
n∑

i=1

ν
(k)
ji si

)
,

where now s
(k)
j :=

∑n
i=1 ν

(k)
ji si ∈ conv(X ) for all j ∈ [m] for all k ∈ [M ].

Then it follows that

µmax (X ) =
M∑
k=1

m∑
j=1

pk B
(k)
j

(
s
(k)
j

)
≤

M∑
k=1

pkλmax

(
B(k) | conv(X )

)
≤ max

k
λmax

(
B(k) | conv(X )

)
. (11)

Since linear functions (such as effects) attain their supremums on the
extreme points of a convex set, we have that λmax (B

′ |conv(X )) =
λmax (B

′ |ext(conv(X ))) for any measurement B′. Thus, if we denote
Y = ext(conv(X )) we have by Eq. (11) that there exists k ∈ [M ] such
that µmax (X ) ≤ λmax

(
B(k) | Y

)
≤ µmax (Y). If now X ̸= ext(conv(X )),

so that we have a strict inclusion Y ⊂ X and it follows that µmax (Y) =
µmax (X ) so that X is degradable. □

One can easily see that neither of the conditions is necessary for
degradability in general: Let us consider the following set of three pure
qubit states X = {|φ⟩⟨φ|, |φ⊥⟩⟨φ⊥|, |ψ⟩⟨ψ|} where {|φ⟩, |φ⊥⟩} ∈ C2 is
some orthogonal basis in C2 and |ψ⟩ = 1√

2
(|φ⟩ + |φ⊥⟩). Clearly X is

degradable (similarly as in Example 2) since we have that µmax (X ) =
µmax

(
{|φ⟩⟨φ|, |φ⊥⟩⟨φ⊥|}

)
= 2 but on the other hand X has less than

dim(aff(Sq
2)) + 1 = 4 states and clearly X = ext(conv(X )).

A potential generalization of Prop. 1 would be to prove that X is
degradable if the states in X are not affinely independent. This is not
true in general, as demonstrated by the following example:

Example 3. Let S = S4 be the simplex generated by 4 linearly inde-
pendent states x1, x2, x3, x4. There is only one extreme indecomposable
(simulation irreducible) measurement b given by effects bi ∈ Eext

ind(S),
i ∈ {1, . . . , 4} such that bi(xj) = δij for i, j ∈ {1, . . . , 4} where δij is
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the Kronecker delta. Define the states

x1123 =
x1
2

+
x2 + x3

4
, (12)

x1224 =
x2
2

+
x1 + x4

4
, (13)

x1334 =
x3
2

+
x1 + x4

4
, (14)

x2344 =
x4
2

+
x2 + x3

4
, (15)

and let X = {x1123, x1224, x1334, x2344}. We clearly have that x1123 +
x2344 = x1224 + x1334 so the states in X are not affinely independent.
Using the result of Lemma 1 that µmax (X ) = supA λmax (A |X ) and the
fact that the previous supremum can be attained by extreme indecom-
posable measurements (see Appendix A for proof), it follows that since
there is only one simulation irreducible measurement on S4 we must
have

µmax (X ) =
4∑

i=1

sup
s∈X

bi(s) = 2 (16)

where we have used that sups∈X bi(s) = 1
2
, which is easy to check

directly.
Now consider Y = {x1123, x1224, x1334}, then we get

µmax (Y) =
4∑

i=1

sup
s∈X

bi(s) =
3

2
+ sup

s∈Y
b3(s) =

7

4
< 2, (17)

and analogically for the other subsets of X . Thus X is nondegradable.

Conditions that are both necessary and sufficient for degradibility of
sets of states remains an open problem.

2.3.2. Degradable measurements. For measurements we can actually
show a necessary and sufficient condition for degradability.

Proposition 2. A measurement is nondegredable if and only if each
of its effects attains its maximum value only on some different set of
states.

Proof. Let us take A ∈ On(S) and let us set Si = {s ∈ S | Ai(s) =
supt∈S Ai(t)} for all i ∈ [n]. Suppose that there are two indices k, k′ ∈
[n], k ̸= k′ such that Sk ∩ Sk′ ̸= ∅. Without loss of generality we may
assume that k = n− 1 and k′ = n. Thus, we can take a set of n states
{si}ni=1 such that si ∈ Si for all i ∈ [n] and sn−1 = sn. We can now
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define a measurement B ∈ On−1(S) by setting Bi = Ai for all i < n− 1
and Bn−1 = An−1+An. We now see that

λmax (A) =
n∑

i=1

Ai(si) =
n−1∑
i=1

Bi(si) ≤ λmax (B) .

However, since B is formed by just merging some outcomes of A we
must have that λmax (B) ≤ λmax (A). Thus, λmax (A) = λmax (B) so that
A is degradable.

For the other direction, let now A ∈ On(S) be a measurement such
that each of its effects attains its maximum value only on some different
set of states meaning that Si ∩ Sj = ∅ for all i ̸= j. Suppose now
that A is degradable. Thus, there exists a measurement B ∈ Om(S)
with m < n such that B is formed by merging some of the effects
of A and λmax (A) = λmax (B). In particular there exists a function
f : [n] → [m] such that Bj =

∑
i∈f−1(j) Ai for all j ∈ [m]. Since

λmax (A) = λmax (B), there exists some set of m states {tj}mj=1 such that∑
j Bj(tj) = λmax (B). Now we see that

λmax (A) = λmax (B) =
m∑
j=1

Bj(tj) =
m∑
j=1

∑
i∈f−1(j)

Ai(tj) =
n∑

i=1

Ai(tf(i))

≤
n∑

i=1

sup
s∈S

Ai(s) = λmax (A) .

In particular this means that tf(i) ∈ Si for all i ∈ [n]. However, since
Si ∩ Sj = ∅ for all i ̸= j we must have that f(i) ̸= f(j) for all i ̸= j so
that f is injective. This is not possible since m < n. Hence, A must be
nondegradable. □

Example 4. It is a straighforward consequence of Prop. 2 that a POVM
is nondegradable if and only if the set of eigenvectors corresponding to
the maximal eigenvalue an effect operator is unique for every effect.
Consequently, a rank-1 POVM is nondegradable if and only if none of
its effects are proportional. It is also clear that a POVM that has only
projections in its range is nondegradable.

3. Information storability

Let us first focus on the case when w = 0 in the information-storing
game. Then one does not have to worry about the penalty and the
task simplifies to finding a (finite) set of states that maximizes µmax,
or equivalently, a measurement which maximizes λmax. Thus, the max-
imum average number of utiles that the optimal strategy in this case
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rewards is
I(S) := sup

A∈O(S)
λmax (A) = sup

X⊂S
µmax (X ) , (18)

which is known as the information storability of the state space S.
In a given theory it corresponds to the maximal amount of informa-
tion that can be successfully encoded and decoded in a communication
scenario: namely, it is the maximisation of the product of the length
of the message which one wishes to communicate and the probability
of encoding/decoding the message. In other words, it is the maximal
product of the number of states that is used to encode the message and
the optimal success probability of decoding the message by performing
a minimum-error discrimination task on the states. We further denote

In(S) := sup
A∈On(S)

λmax (A) = sup
X⊂S,|X |=n

µmax (X ) , (19)

which is the information storability when the messages are limited to
the length of n. Clearly, In(S) ≤ Im(S) whenever n ≤ m, and we
denote by nS the smallest integer n such that In(S) = I(S).

We recall that the operational dimension of a state space S is the
largest number of perfectly distinguishable states contained in S, and
we denote it by dS . It is clear that nS ≥ dS . As noted in Example 2 in
the case of the qubit, it is consequence of the basic decoding theorem
(see e.g. [10]) that in general in d-dimensional quantum theory we have
that I(Sq

d) = dSq
d
= nSq

d
= d (see also Example 7 below). Curiously,

there are state spaces S where nS > dS and thus I(S) > dS , in which
case we say that the theory manifests super information storability (see
Example 9 below).

The concept of information storability was first introduced in [5] and
furthermore they showed that it is linked to the point-asymmetry of the
state space. In particular, the information storability I(S) of a state
space S is related to the amount of asymmetry of S given by the (affine-
invariant) Minkowski measure M(S) by the relation M(S) = I(S)−1.
In particular this means that I(S) = 2 if and only if the state space S
is point-symmetric (also called centrally-symmetric [14, 15]) meaning
that there exists a state s0 ∈ S such that for any state s ∈ S there
exists another state s′ ∈ S such that s0 = 1

2
(s+ s′).

Using the introduced notation we see that

µmax (X ) ≤ I(S) , (20)

where the upper bound I(S) does not depend on the size of the set X .
This motivates the following definition.
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Definition 5. A finite set X ⊂ S that satisfies µmax (X ) = I(S) is
maximally decodable.

Example 5. (Maximally decodable sets of pure quantum states) Let us
consider d-dimensional quantum state space. Any set of d orthogo-
nal pure states is maximally decodable, but there are also other sets.
Namely, let Pi, i = 1, . . . , n, be pure quantum states such that

n∑
i=1

Pi = r1 (21)

for some r ∈ R. (The sum of projections is a positive operator, hence
r > 0 if it exists.) The orthogonal case is equivalent to (21) with r = 1,
but r can be different and this is hence more general condition. For
each i we define an operator Ai =

1
r
Pi. These operators form a POVM

and we have∑
i

tr [Pi Ai] =
1

r

∑
i

tr
[
P 2
i

]
=

1

r

∑
i

tr [Pi] =
1

r
tr

[∑
i

Pi

]
= d , (22)

hence the set X = {P1, . . . , Pn} is maximally decodable. A class of
sets of the previous kind can be formed by choosing a d-dimensional
irreducible unitary representation g 7→ Ug of a finite group G and fixing
a pure quantum state P . If UgPUg ̸= P for all g ̸= e, the pure states
are labeled with the elements of G as Pg := UgPU

∗
g . More generally,

the pure states are labeled with the elements of the quotient group
G/H, where H = {h ∈ G : UhPU

∗
h = P}. Fig. 2 shows an example of

a maximally decodable (non-orthogonal) set of qubit states.

As a generalization of Example 2 we can show the following results
connecting degradability and maximal decodability.

Proposition 3. Let X ⊂ S be a finite set. Suppose there exists a
proper subset Y ⊂ X that is maximally decodable. Then X is both
degradable and maximally decodable.

Proof. The claim follows straightforwardly by noting that since the
maximally decodable set Y is a proper subset of X ⊂ S we must have
that I(S) = µmax (Y) ≤ µmax (X ) ≤ I(S). □

Example 6. (Maximally decodable set need not be degradable) It is clear
that a maximal set of perfectly distinguishable states is maximally de-
codable but not degradable. One can then ask if a maximally decodable
set with more than d states has to be degradable. The answer is neg-
ative. One can see this for example by considering the trine states in
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Figure 2. Five maximally decodable pure qubit states
on the Bloch sphere.

qubit: let us fix some orthogonal basis {|φ⟩, |φ⊥⟩} ⊂ C2 and let us
define

|ψ1⟩ =
1√
2

(
|φ⟩+ |φ⊥⟩

)
|ψ2⟩ =

1√
2

(
|φ⟩+ e

2πi
3 |φ⊥⟩

)
|ψ3⟩ =

1√
2

(
|φ⟩+ e

4πi
3 |φ⊥⟩

)
and take X = {|ψj⟩⟨ψj|}3j=1 ⊂ Sq

2. It is known that the optimal mea-
surement for minimum error discrimination is just the POVM which
measures along the directions of the state (see e.g. [16]). In particular,
if we set Aj =

2
3
|ψj⟩⟨ψj| it is straightforward to check that A is a POVM

and that
∑

j Aj(sj) = 2 = I(Sq
2) so that µmax (X ) = 2. However, since

none of the states in X are orthogonal the set cannot be degradable.

Dually, we can also define maximal decodability for measurements.

Definition 6. A measurement A that satisfies λmax (A) = I(S) has
maximal decoding power.

Now we can give our conditions for calculating the information stora-
bility in specific theories and illustrate the use of them in some impor-
tant examples.
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Proposition 4. Let S be a state space.
i) If there exists a state s0 ∈ S such that e(s0) = f(s0) =: λ0 for

all e, f ∈ Eext
ind(S), then I(S) = 1/λ0 and it is attained by all

indecomposable measurements.
ii) Furthermore, if the maximal value of each e ∈ Eext

ind(S) is at-
tained on a unique pure state se ∈ Sext such that se ̸= sf for
all e ̸= f , e, f ∈ Eext

ind(S), then I(S) = 1/λ0 is attained only by
indecomposable measurements.

Proof. In [17] it was shown that if the condition in i) holds, then
λmax (S) = 1/λ0 and that λmax (A) = 1/λ0 for all A ∈ Oind(S). We will
show that if also the condition in ii) holds, then if λmax (A) = 1/λ0,
then A ∈ Oind(S).

First let us introduce the supremum norm ∥·∥ : span(E(S)) → [0, 1]
on the set of effects defined by ∥e∥ := sups∈S |e(s)| = sups∈S e(s) for
all e ∈ E(S). It is clear that 0 ≤ ∥e∥ ≤ 1 for all effects e ∈ E(S) and
if e is an extreme effect then ∥e∥ = 1. Also, in terms of the supermum
norm we now have that λmax (A) =

∑n
i=1 ∥Ai∥ for all A ∈ On(S).

Let now A be a measurement with n outcomes. Each effect Ai can be
decomposed as Ai =

∑ri
j α

(i)
j e

(i)
j for some ri ∈ N, some set of positive

numbers {α(i)
j }rij=1 ⊂ R+ and some distinct indecomposable extreme

effects {e(i)j }rij=1 ⊂ Eext
ind(S) for each i ∈ [n] [9]. Given this decomposition

of the effect Ai we have that

∥Ai∥ =

∥∥∥∥∥
ri∑
j=1

α
(i)
j e

(i)
j

∥∥∥∥∥ ≤
ri∑
j=1

α
(i)
j

∥∥∥e(i)j

∥∥∥ =

ri∑
j=1

α
(i)
j (23)

for all i ∈ [n] so that in particular

λmax (A) =
n∑

i=1

∥Ai∥ ≤
n∑

i=1

ri∑
j=1

α
(i)
j . (24)

On the other hand, we see that

1

λ0
=

1

λ0
u(s0) =

1

λ0

n∑
i=1

Ai(s0) =
1

λ0

n∑
i=1

ri∑
j=1

α
(i)
j e

(i)
j (s0) =

n∑
i=1

ri∑
j=1

α
(i)
j

(25)

If now λmax (A) =
∑n

i=1 ∥Ai∥ = 1/λ0, then it follows from Eq. (24)
and Eq. (25) that

n∑
i=1

[
ri∑
j=1

α
(i)
j − ∥Ai∥

]
= 0.
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On the other hand from Eq. (23) we see that we must actually have
that ∥Ai∥ =

∑ri
j=1 α

(i)
j for all i ∈ [n]. Since the maximal value of each

e
(i)
j ∈ Eext

ind(S) is attained by a unique pure state s
e
(i)
j

∈ Sext such that
s
e
(i)
j

̸= s
e
(i)
k

for all j ̸= k for all i ∈ [n], it follows that ri = 1 for all
i ∈ [n] so that A is indecomposable. □

Example 7 (Quantum theory). In d-dimensional quantum theory Sq
d

with a d-dimensioanl Hilbert space H we can take s0 = 1
d
1 so that

then tr [s0|φ⟩⟨φ|] = 1/d for all unit vectors φ ∈ H. Thus, condition
i) in Prop. 4 is satisfied and then I(Sq

d) = d and it is attained by
all indecomposable measurements, i.e., all POVMs with rank-1 effects.
On the other hand, since the supremum in supϱ∈Sq

d
tr [ϱ|φ⟩⟨φ|] attained

by a unique state for each unit vector φ ∈ H, also the condition ii)
in Prop. 4 is satisfied and thus I(Sq

d) = d is attained only by rank-1
POVMs.

Example 8 (Classical theory). Let’s explore the conventional represen-
tation of a classical system in phase space [1]. In this context, each
dimension within the phase space corresponds to a degree of freedom
of the system. Consequently, the points in the phase space uniquely
determine the state of the system. When viewed as a statistical (op-
erational) theory, this representation necessitates an extension of the
concept of states to encompass all probability distributions across the
phase space. The concept of a simplex precisely encapsulates this ex-
tension. If Ω denotes a (finite) phase space with d + 1 points, the set
of probability distributions on Ω forms a d-simplex. In other words,
it constitutes the convex hull of its d+ 1 affinely independent extreme
points. Therefore, a theory is deemed classical if and only if its state
space is a simplex.

We denote the state space of a d-dimensional classical theory by Scl
d

and we may represent it as a d− 1-simplex as

Scl
d =

{
p = (p1, . . . , pd) ∈ Rd | ∀i : pi ≥ 0,

d∑
i=1

pi = 1

}
. (26)

We note that the pure states in this case are the deterministic proba-
bility distributions, i.e., states p which have pi = 1 for some i ∈ [d], and
that every mixed state can be written as a unique convex composition
of pure states. We denote the pure states by xi where i ∈ [d]. The
effect space E(Scl

d ) is then generated by linear functions bj : Rd → [0, 1]
defined as bj(xi) = δij for all i, j ∈ [d], where δ is the Kronecker delta.
More precisely, any effect e ∈ E(Scl

d ) can be written as e =
∑

j νjbj
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for some coefficients {νj}j ⊂ [0, 1]. In particular, we have the unit
effect u =

∑
j bj. The extreme effects are of the form

∑
j∈J bj for some

J ⊂ [d] and the indecomposable effects are all multiples of some bj. It
follows that Eext

ind(Scl
d ) = {bj}dj=1.

Let us denote s0 = 1
d

∑d
i=1 xi. It follows that for all extreme inde-

composable effects bj we have that bj(s0) = 1/d for all j ∈ [d]. Thus,
the condition i) in Prop. 4 is satisfied and thus I(Scl

d ) = d and it is at-
tained by all indeocomposable measurements, i.e., measurements with
effects proportional to some bj. On the other hand, for each j ∈ [d]
clearly the supremum in sups∈Scl

d
bj(s) is attained by a unique state xj

so that also the condition ii) in Prop. 4 is satisfied and thus I(Scl
d ) = d

is attained only by indecomposable measurements.

Example 9 (Polygon theories). In alignment with [18], we define a state
space denoted as Pn for a regular n-sided polygon, embedded in R3.
This state space is defined as the convex hull of its n extreme points,
represented by:

sk =


rn cos

(
2kπ

n

)
rn sin

(
2kπ

n

)
1

 , k ∈ [n]. (27)

Here, rn =
√

sec
(
π
n

)
. Within this framework, the effect space encom-

passes the zero effect, denoted as o = (0, 0, 0)T , and the unit effect,
denoted as u = (0, 0, 1)T . Let us define s0 = (0, 0, 1)T . The symmetry
properties of the state space depend on the parity of n; in particular
the state space may or may not exhibit point-symmetry around s0.
This gives rise to distinct structural characteristics in the effect space
E(Pn) for odd and even values of n.

For even n, the non-trivial extreme points are expressed as:

ek =
1

2


rn cos

(
(2k − 1)π

n

)
rn sin

(
(2k − 1)π

n

)
1

 , k ∈ [n], (28)

resulting in E(Pn) = conv({o, u, e1, . . . , en}). Notably, all non-trivial
extreme effects lie on a common hyperplane determined by the effects
e for which e(s0) = 1/2. The indecomposable effects are expressed as
multiples of ek for some k ∈ [n].
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In the case of odd n, the effect space exhibits 2n non-trivial extreme
effects:

gk =
1

1 + r2n


rn cos

(
2kπ

n

)
rn sin

(
2kπ

n

)
1

 , fk = u− gk (29)

for k ∈ [n]. In this scenario, E(Pn) = conv({o, u, g1, . . . , gn, f1, . . . , fn}),
and the non-trivial extreme effects are distributed across two distinct
planes determined by all points g and f such that g(s0) = 1

1+r2n
and

f(s0) = r2n
1+r2n

. The indecomposable effects are expressed as multiples
of gk for some k ∈ [n]. It is noteworthy that P3 is isomorphic to the
classical state space Scl

3 as it corresponds to a triangle, i.e., a 2-simplex.
Since Eext

ind(Pn) = {ek}nk=1 for even n and Eext
ind(Pn) = {gk}nk=1 for

odd n and ek(s0) = 1/2 and gk(s0) = 1 + r2n for all k ∈ [n], we see
by condition i) in Prop. 4 that I(Pn) = 2 for even n and I(Pn) =
1 + r2n = 1 + sec(π/n) for odd n and that these values are attained
for all indecomposable measurements. Here we note that for odd n we
have that I(Pn) > 2 = dPn so that the odd polygon theories manifest
super information storability. For pentagon state space this was first
recognized in [5] and for any odd n this was shown in [17].

Furthermore, for odd n one can readily confirm that the supremum
in supi∈[n] gk(si) is attained by a unique state sk for all k ∈ [n] so that
by the condition ii) in Prop. 4 the value I(Pn) = 1 + sec(π/n) is
attained only by indecomposable measurements. On the other hand
one can easily check that in the even case ek(sk) = ek(sk−1) = 1 so
that for even n condition ii) in Prop. 4 is not satisfied. For example, in
square state space (n = 4) we can define a decomposable measurement
A by setting A1 = 1/2(e1 + e2) and A2 = 1/2(e3 + e4) for which now
clearly λmax (A) = 2 = I(P4).

4. Optimal strategy in the information-storing game

Let us now focus on solving the information storing game that was
presented previously. As a reminder: the game consists of you choosing
n ∈ N, states X = {si}ni=1 and an n-outcome measurement A ∈ On(S)
such that in the case of you successfully identifying a randomly given
state from X by using A you are awarded n utiles and in the case when
you get the state wrong you are given w ≤ 0 utiles (which is fixed by
the game). As presented before in Eq. (1), then the average reward of
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the information storing game is given by

Ew(X ,A) = w +
(
1− w

n

) n∑
i=1

Ai (si) . (30)

As a player one wants to maximize this reward function by choosing
the best n, X and A.

4.1. The case with no penalty. Let us first solve the simplest case
when w = 0 so that there is no penalty. In this case the game reduces to
finding the optimal strategy for maximizing the product of the number
of states that is used to encode a message and the optimal success
probability of decoding the message by performing a minimum-error
discrimination task on the states. In other words, we are looking for a
strategy that can be used to attain the information storability I(S) of
the theory:

E0 := sup
n∈N

sup
A∈On(S)

sup
X⊂S,|X |=n

E0(X ,A) = I(S) . (31)

Thus, the optimal value is attained for all n ∈ N such that In(S) =
I(S). We have earlier introduced nS as the smallest integer n such that
In(S) = I(S). Furthermore, since In(S) = I(S) for all n ≥ nS , it does
not make a difference for the expected reward if we choose more states
than nS as long as they can be used to attain I(S). We can present
this result as follows:

Proposition 5 (No penalty). The maximal average expected reward Ew

in the information storing game in a theory in the case of no penalty,
w = 0, is

E0 = I(S) . (32)
This is attained with n ≥ nS maximally decodable states and with an
n-outcome measurement with maximal decoding power.

As was pointed out before, it is known that there are state spaces S
where I(S) > dS . Thus, the information storing game without penalty
can be seen as an operational test for super information storability.

4.2. The case with penalty. Let now w < 0 in Eq. (30). As was
already pointed out in Sec. 2 the maximizing set of states X and the
maximizing measurement A should now be nondegradable: indeed, if
X would be degradable, then there would exist a subset Y ⊂ X with
m < n states which would preserve the value of µmax but nevertheless
increase the expected reward since then −w

m
> −w

n
> 0. On the

other hand, if the maximizing measurement A with n outcomes was
degradable, then there would be another measurement B with k <
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n outcomes that would preserve the value of λmax but nevertheless
increase the expected reward since then again −w

k
> −w

n
> 0. Thus,

we have shown the following result:

Proposition 6. The optimal strategy in the information-storing game
is attained by using a nondegradable measurement and nondegradable
set of states.

Let us now continue with the optimization. It is clear that when we
perform the maximization over X and A where they are assumed to
have n states and n outcomes respectively, then we get

Ew(n) := sup
A∈On(S)

sup
X⊂S,|X |=n

Ew(X ,A)

= w +
(
1− w

n

)
sup

A∈On(S)
sup

X⊂S,|X |=n

n∑
i=1

Ai (si)

= w +
(
1− w

n

)
sup

A∈On(S)
λmax (A)

= w +
(
1− w

n

)
In(S)

= w + In(S)− w
In(S)
n

. (33)

What remains to be chosen is n that maximizes the above expression
to get the maximal average expected reward Ew := supn∈N Ew(n). We
note that both the terms In(S) and −w In(S)

n
are now positive so that

we need to maximize both In(S) and In(S)
n

depending on the value of
w.

4.2.1. Theories without super information storability. Let first S be a
state space which does not have super information storability so that
I(S) = dS . In this case we see that for all n ≤ dS we have that
In(S) = n and thus In(S)

n
= 1. On the other hand for all n > dS we

have that In(S) = dS and In(S)
n

= dS
n
< 1. Hence, the optimal value for

n in this case is dS since it maximizes both In(S) and In(S)
n

irrespective
of w. Thus, we have the following:

Proposition 7 (No super information storability). The maximal av-
erage expected reward Ew in the information storing game in a theory
without super information storability is

Ew = dS (34)
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irrespective of the exact value of the penalty w < 0. This is attained
only with dS perfectly distinguishable states and with a measurement
that distinguishes them.

4.2.2. Theories with super information storability. Let us now turn to
theories which do have super information storability. Thus, let now S
be a state space such that I(S) > dS .

First, let us note that one can always use a strategy which results in
expected reward of dS utiles by using dS perfectly distinguishable states
and a measurement that distinguishes them: namely, then In(S) = dS
and In(S)

n
= 1 for n = dS so that from Eq. (33) we see that

Ew ≥ Ew(dS) = dS . (35)

Let us now look for strategies that would result in a higher reward.
Thus, we will look for cases when Ew(n) > dS . From Eq. (33) we see
that this can happen only when

w

(
1− In(S)

n

)
> dS − In(S) . (36)

Now if we have n ≤ dS , then the LHS of the above equation is
zero since In(S) = n so that the above equation is satisfied only when
In(S) > dS which is impossible for n ≤ dS . Thus, we can focus on
looking at cases when n > dS . For n > dS we have that In(S) < n so
that the LHS of the above expression is strictly negative. Then it can
be satisfied only if dS − In(S) < 0, i.e., only when we are witnessing
super information storability. Thus, if we denote by mS the minimum
number m ∈ N such that super information storability is detected, i.e.,
when Im(S) > dS , we see that dS − In(S) < 0 only for all n ≥ mS .
Thus, we may further restrict to look only for n ≥ mS .

Solving for w in Eq. (35) we get the following result:

Proposition 8. In the information storing game with penalty w < 0
an advantage over the perfect discrimination strategy can be attained
with n states X and an n-outcome measurement A if and only if

w > n
dS − In(S)
n− In(S)

and n ≥ mS . (37)

Furthermore, then we can and must choose X and A such that µmax (X ) =
λmax (A |X ) = In(S) in order to see the advantage.

To see more specifically for which values of n it is possible, let us try
to solve for n in Eq. (35). By rearranging some terms we find that it
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is possible only when:

n · In(S)− dS + w

w
< In(S) . (38)

We see that there will be different cases wether In(S) − dS + w is
positive or negative. Simply solving for n in these cases leads to the
next result:

Proposition 9. In the information storing game with penalty w < 0
an advantage over the perfect discrimination strategy can be attained
with n states X and an n-outcome measurement A if and only if

mS ≤ n (39)

when In(S)− dS ≥ −w, and

mS ≤ n <
In(S)w

In(S)− dS + w
(40)

when In(S) − dS < −w. Furthermore, then we can and must choose
X and A such that µmax (X ) = λmax (A |X ) = In(S) in order to see the
advantage.

The previous two results can also be used, if possible, to find a
penalty for which the optimal strategy is something other than perfect
discrimination strategy. We illustrate this in Figs. 3 and 4 for different
combinations of odd polygon state space where we know that super
information storability is manifested (see Example 9).

Above we have now considered if there is some better strategy than
the perfect discrimination strategy. How about the optimal strategy?
To this end let us start by comparing these super information stora-
bility strategies with different n. As explained above, the perfect dis-
crimination strategy is optimal for all n < mS . Also, it is clear that
if n ≥ nS , then Ew(n) monotonically decreases (see Eq. (33)). What
happens between for the expected reward between mS ≤ n < nS? Is it
monotonically increasing in all theories for all penalties or not so that
the optimal strategy will always be achieved with n = nS? We can
show that the answer to the previous question is negative: While in
Fig. 3 for S = P5⊗Scl

2 (a tensor product of pentagon and classical
bit) the optimal solution jumps directly from the perfect distinguisha-
bility strategy to the maximal super information storability strategy
with n = nS depending on the penalty, in Fig. 4 we see that for the
state space S = P5⊕P7 (direct sum of pentagon and heptagon, see
[19] for the definition of a direct sum) there are choices of penalties for
which the optimal strategy is a non-maximal super information stora-
bility strategy with mS ≤ n < nS . This shows that the behaviour of
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Figure 3. The expected reward Ew(n) as a function of
the penalty w for the composite state space S = P5⊗Scl

2

for dS ≤ n ≤ nS . For this state space we have dS = 4
and nS = 6 so it manifests super information storability.

Figure 4. The expected reward Ew(n) as a function of
the penalty w for the direct sum state space S = P5⊕P7

for dS ≤ n ≤ nS . Also for this state space we have dS = 4
and nS = 6 so it manifests super information storability.

the expected reward Ew(n) in the interval mS ≤ n < nS depends on the
theory and thus the optimal strategy may not be as straightforward to
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solve in general. We leave the analytical optimal solution as an open
problem.

5. Conclusions

In this work we have introduced the party game of the year, namely
the information-storability game: your task is to freely choose a set of
states from which a state is chosen at random and by measuring the
state you must guess which state was chosen. If the guess is correct
you receive as many utiles as the number of states in the set that
you choose and if you guess incorrectly you lose a fixed number of
utiles. By formalizing the game we see that two key concepts in the
solution are the notions of the information storability of the theory and
nondegradability of the used set of states and the used measurement.
We have developed the theory of both of these concepts by giving
conditions on when the set of states or the measurement is degradable,
and how information storability can be calculated in specific theories.

By using these concepts we have explored the optimal solutions in
three different cases: i) game with no penalty, where the optimal strat-
egy is always attained by using the strategy that maximizes the infor-
mation storability and depending if the theory has super information
storability or not this optimal strategy may or may not be the per-
fect discrimination strategy, ii) game with penalty in a theory without
super information storability, where the optimal strategy is just the
maximal perfect discrimination strategy, and iii) game with penalty in
a theory with super information storability, where the optimal strategy
will be either some super information storability strategy or the perfect
distingishability strategy depending on the value of the penalty. What
follows from our analysis is one of our most important observations
that the game can be used as an operational test for super information
storability.

Interestingly, in the last case iii) we have demonstrated that depend-
ing on the theory and the penalty neither the perfect discrimination
strategy or the maximal super information storability strategy may
not be the optimal one but some other super information strategy may
perform better. We leave it as an open question to solve the optimal
strategy analytically in this case but for now the lack of perfect knowl-
edge of the solution adds to the fun of the game even for the creators!
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Appendix A. About the definitions of degradability

In Sec. 2 we introduced the concept of degradable states and mea-
surements and linked them to the information storing game. However,
although the definitions might seem intuitive in the context of the
game, they do not capture the most general way of how to obtain the
nondegradable states/measurements from the degradable ones. These
more general processes of obtaining sets of states from other sets of
states and measurements from some other measurement are called pre-
and postprocessing, respectively.

Definition 7. A finite set of states Y = {tj}mj=1 ⊂ S is a preprocessing
of a finite set of states X = {si}ni=1 ⊂ S, denoted by Y ⪯ X , if
there exists a row-stochastic matrix2 C = {Cji}j∈[m],i∈[n] such that tj =∑n

i=1Cjisi for all j ∈ [m].

The interpretation of preprocessing follows from the stochasticity of
the preprocessing matrix; namely, the preprocessd states are nothing
but convex combinations of other states. Since the state space is convex
it is clear that by taking any preprocessing of any set of states leads to
another set of states.

Definition 8. A measurement B ∈ O(S) with nB outcomes is a post-
processing of a measurement A ∈ O(S) with nA outcomes, denoted by
B ⪯ A if there exists a row-stochastic matrix2 ν = (νij)i∈[nA],j∈[nB] such
that By =

∑nA

i=1 νij Ai for all j ∈ [nB].

The interpretation of postprocessing is as follows: given a postpro-
cessing matrix ν the matrix element νij describes the transition prob-
ability of an outcome i to be transformed into outcome j. Then the

2An n×m-matrix M = (Mij)i∈[n],j∈[m] is row-stochastic if Mij ≥ 0 for all i ∈ [n],
j ∈ [m] and

∑m
j=1 Mij = 1 for all i ∈ [n].
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stochasticity of the postprocessing matrix guarantees that the postpro-
cessed measurement remains a valid measurement.

Next we will see that even if we use pre- and postprocessings in
the definitions of degradability they will naturally reduce to the ones
presented in Sec. 2.

A.0.1. Degradability of states defined via preprocessing. First we note
that when Y = {tj}mj=1 ⪯ X = {si}ni=1 via some preprocessing matric
C which takes only values Cji ∈ {0, 1} we see that then for all j ∈
[m] there exists an index ij ∈ [n] such that tj = sij . Thus, taking
preprocessings of a set of states is a natural generalization of taking
subsets of states. For preprocessing to be useful in the context of
degradability of states we need to see how the encoding power of states
behaves under preprocessing.

Proposition 10. Let Y ,X ⊂ S be finite subsets of states such that
Y ⪯ X . Then

µmax (Y) ≤ µmax (X ) . (41)

Proof. Let Y = {tj}mj=1 and X = {si}ni=1 be subsets of m and n
states respectively. Since Y ⪯ X , there exists a stochastic matrix
C = {Cji}j∈[m],i∈[n] such that tj =

∑m
i=1Cjisi for all j ∈ [m]. Let B be

some m-outcome measurement that maximizes µmax (Y). Then

µmax (Y) =
m∑
j=1

Bj(tj) =
m∑
j=1

Bj

(
n∑

i=1

Cjisi

)

=
n∑

i=1

(
m∑
j=1

Cji Bj

)
(si) =

n∑
i=1

B̃i(si)

≤ max
A

n∑
i=1

Ai(si) = µmax (X ) ,

where B̃ is a postprocessing of B via the matrix C. □

We thus see that µmax is a monotone for the preprocessing order of
states, and in particular thus I(S) can be always attained by some set
of pure states. Now in the spirit of Def. 2, for a more general notion of
degradibility we are looking for preprocessings of states that preserve
the value of µmax.

Definition 9. A finite set X ⊂ S of n states is pp-degradable if there
exists another finite set Y ⊂ S of m < n states that is a preprocessing
of X , i.e., Y ⪯ X , such that

µmax (Y) = µmax (X ) . (42)
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Otherwise X is pp-nondegradable.

Now we can show that even though we are using a seemingly more
general definition via preprocessings for pp-degradability, it still re-
duces to the original notion of degradavility.

Proposition 11. A finite set X ⊂ S is pp-degradable if and only if it
is degradable.

Proof. First, as noted above, having Y to be a proper subset of X is
a special case of preprocessing so that if X is degradable, then it is
also pp-degradable. Next we will show that pp-degradability of states
reduces to degradability. Let X = {si}ni=1 be a pp-degradable set of
states. It turns out that we can choose the degrading set Y ⪯ X to not
be just any preprocessing of X but a deterministic preprocessing where
all the elements of the preprocessing matrix are either 0 or 1: Let Y ′ =
{tj}mj=1 be some set of states such that Y ′ ⪯ X via some preprocessing
matrix C such that µmax (Y ′) = µmax (X ) for some m < n. Let B be
some m-outcome measurement that maximizes µmax (Y ′). We now see
by using Lemma 1 that

µmax (Y ′) =
m∑
j=1

Bj(tj) =
m∑
j=1

Bj

(
n∑

i=1

Cjisi

)
=

m∑
j=1

n∑
i=1

Cji Bj(si)

≤
m∑
j=1

n∑
i=1

Cji sup
s∈X

Bj(s) =
m∑
j=1

sup
s∈X

Bj(s) = λmax (B |X )

≤ sup
B′
λmax (B

′ |X ) = µmax (X ) = µmax (Y ′) .

Thus, we have that
∑m

j=1 Bj (
∑n

i=1Cjisi) =
∑m

j=1 sups∈X Bj(s). Now,
if we denote the convex hull of X by conv(X ), we have that sups∈X Bj(s) =
sups∈conv(X ) Bj(s) for all j ∈ [m] because conv(X ) is compact and be-
cause X contains all the extreme points of conv(X ). We can thus
conclude that for all j ∈ [m] we must have that Bj(si) = sups∈X Bj(s)
for all i ∈ [n] such that Cji ̸= 0. Furthermore, since C is a stochastic
matrix we know that for all j ∈ [m] there exists at least one index
ij ∈ [n] such that Cji ̸= 0. If we now take Y = {sij}mj=1 we see that
Y ⪯ X where the preprocessing is now deterministic but nevertheless
µmax (Y) = µmax (X ). From the requirement m < n it follows that
actually Y ⊂ X . □

A.0.2. Degradability of measurements defined via postprocessing. Sim-
ilarly as taking preprocessings of states can be seen as a probabilistic
generalization of just taking subsets of states, taking postprocessings
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of a measurement probabilistically generalizes merging of the measure-
ment outcomes. Namely, if B ⪯ A for some postprocessing matrix ν
with entries νij ∈ {0, 1}, then there exists a function f : [nA] → [nB]
such that νij = δf(i),j for all i ∈ [nA] and j ∈ [nB] so that Bj =∑

i∈f−1(j) Ax for all j ∈ [nB].
In [17] it was shown that λmax is a monotone on the postprocessing

order but we repeat the proof here in the more general set dependent
case for completeness.

Proposition 12. Let A,B ∈ O(S) be measurements such that B ⪯ A.
Then

λmax (B |X ) ≤ λmax (A |X ) (43)

for all X ⊂ S.

Proof. If A has nA outcomes and B has nB outcomes, then B ⪯ A means
that there exists a row-stochastic matrix ν = {νij}i∈[nA],j∈[nB] such that
Bj =

∑
i∈[nA]

νij Aj for all j ∈ [nB]. Now

λmax (B |X ) =

nB∑
j=1

sup
s∈X

Bj(s) =

nB∑
j=1

sup
s∈X

(
nA∑
i=1

νij Ai

)
(s)

≤
nB∑
j=1

nA∑
i=1

νij sup
s∈X

Ai(s) =

nA∑
i=1

sup
s∈X

Ax(s)

= λmax (A |X )

for all X ⊂ S. □

In a similar fashion one can also show the following for mixtures of
measurements [17]:

Proposition 13. Let A(1), , . . . ,A(m),A ∈ On(S) be n-outcome mea-
surements such that A =

∑m
k=1 pk A

(k) for some probability distribution
(pk)

m
k=1. Then

λmax (A |X ) ≤
m∑
k=1

pkλmax

(
A(k) |X

)
≤ max

k∈[m]
λmax

(
A(k) |X

)
(44)

for all X ⊂ S.
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Proof. A straightforward calculation shows that

λmax (A |X ) =
n∑

i=1

sup
s∈X

Ai(s) =
n∑

i=1

sup
s∈X

(
m∑
k=1

pk A
(k)
i

)
(s)

≤
m∑
k=1

pk

n∑
i=1

sup
s∈X

A(k)(s) =
m∑
k=1

pkλmax

(
A(k) |X

)
≤ max

k∈[m]
λmax

(
A(k) |X

)
for all X ⊂ S. □

In particular, since it is known that indecomposable measurement are
exactly the maximal ones with respect to the postprocessing preorder
on the set of measurements [13, Prop. 1], we get by combining the two
previous results that I(S) can be always attained by some extreme
indecomposable measurements (also known as simulation irreducible
measurements).

Now the original definition of degradability Def. 4 can be restated
in terms of postprocessing as follows:

Definition 10. A measurement A with nA outcomes is pp-degradable
if there exists a measurement B ⪯ A with nB < nA outcomes such that

λmax (A) = λmax (B) (45)

If A is not pp-degradable then it is pp-nondegradable.

Similarly to pp-degradable states, we can now show that also in the
case of measurements pp-degradablity reduces to degradability.

Proposition 14. A measurement A ∈ O(S) is pp-degradable if and
only if it is degradable.

Proof. As was pointed out above, if a measurement is degradable then
it is also pp-degradable since merging of effects is a particular instance
of postprocessing. Let now A be a pp-degradable measurement with
nA outcomes and let B′ be some measurement with nB′ < nA out-
comes such that B′ ⪯ A and λmax (B

′) = λmax (A). Thus, then there
exists a postprocessing ν ′ = {ν ′ij}i∈nA,j∈nB′

such that B′
j =

∑
i∈[nA]

ν ′ij Ai

for all j ∈ [nB′ ]. Now ν ′ can be written as a convex mixture ν ′ =∑m
k=1 pkν

(k) of deterministic postprocessings ν(k) = {ν(k)ij }i∈nA,j∈nB′
that

satisfy ν
(k)
ij ∈ {0, 1} for all i ∈ [nA], j ∈ [nB′ ] and k ∈ [m] for some

probability distribution (pk)
m
k=1 for some m ∈ N. If we now define

measurements B(k) ⪯ A with nB′ outcomes as B
(k)
j =

∑nA

i=1 ν
(k)
ij Ai for
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all j ∈ [nB′ ] and k ∈ [m], then it holds that B′ =
∑m

k=1 pk B
(k). From

Propositions 12 and 13 it follows that

λmax (A) ≥ max
k∈[m]

λmax

(
B(k)

)
≥ λmax (B

′) = λmax (A)

from which we see that all the inequalities must actually be equalities.
Let us choose k0 ∈ [m] such that λmax

(
B(k0)

)
= maxk∈[m] λmax

(
B(k)

)
and set B := B(k0). As can be seen above, then λmax (B) = λmax (A) and
since nB = nB′ < nA, this means that the deterministic postprocessing
ν(k0) just represents the merging of (some of) the effects of A. Thus,
this shows that A is degradable. □

Appendix B. Proof of Lemma 1

Lemma. For any finite subset of states X ⊂ S we have that

µmax (X ) = sup
A
λmax (A |X ) (46)

and they both can maximized by the same measurement.

Proof. Let X = {si}ni=1 and let A be some n-outcome measurement
that maximizes µmax (X ). We have

µmax (X ) =
n∑

i=1

Ai(si) ≤
n∑

i=1

sup
s∈X

Ai(s) = λmax (A |X ) ≤ sup
B
λmax (B |X ) .

(47)

On the other hand, let B be some m-outcome measurement that
satisfies λmax (B |X ) = supB′ λmax (B

′ |X ). For each i ∈ [m] let ti ∈ X be
some state in X such that Bi(ti) = sups∈X Bi(s) and denote Y = {ti}mi=1

so that λmax (B |X ) = λmax (B |Y) =
∑m

i=1 Bi(ti). It may happen that
ti = tj for some i ̸= j meaning that some of the effects are maximized
by the same state on X . For that reason, let us define an equivalence
relation ∼ on [m] by setting i ∼ j if and only if ti = tj. We can now
define a new measurement B̃ with outcome set [m]/ ∼ consisting of the
equivalence classes [[i]] of elements i ∈ [m] such that

B̃[[i]] =
∑
j∈[[i]]

Bj

for all [[i]] ∈ [m]/ ∼. Let us now denote by s̃[[i]] ∈ Y the maximizing
state of each B̃[[i]] in Y for all [[i]] ∈ [m]/ ∼ so that B̃[[i]](s[[i]]) =

supt∈Y B̃[[i]](t) for all [[i]] ∈ [m]/ ∼ and let X̃ = {s̃[[i]]}[[i]]∈[m]/∼. By
construction now X̃ consists of distinct states in Y and thus also in
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X so that then µmax

(
X̃
)
≤ µmax (X ), and furthermore λmax (B |X ) =

λmax

(
B̃|X̃

)
. It now follows that

λmax (B |X ) = λmax

(
B̃|X̃

)
=
∑
[[i]]

B̃[[i]](s̃[[i]]) ≤ µmax

(
X̃
)
≤ µmax (X ) .

(48)

Hence, from Eqs. (47) and (48) we can now conclude that µmax (X ) =
supA λmax (A |X ). Furthermore, by combining Eq. (47) and (48) we see
that λmax (A |X ) = λmax (B |X ) = supB′ λmax (B

′ |X ) so that in fact
both µmax (X ) and supA λmax (A |X ) can be maximized with the same
measurement. □
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