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Pawłowski and Winter’s hyperbit theory, proposed in 2012, presented itself as an alternative to quantum theory,
suggesting novel ways of redefining entanglement and classical communication paradigms. This research under-
takes a meticulous reevaluation of hyperbit theory, uncovering significant operational constraints that question
its equivalence with quantum mechanics. Crucially, the supposition that hyperbit theory and quantum theory
are equivalent relies on the receiver having unattainable additional knowledge about the sender’s laboratory,
indicating that the work by Pawłowski and Winter is incorrect. This study accentuates the constraints of hyperbits
in information processing and sheds light on the superiority of quantum communication, thereby advancing the
investigation at the intersection of classical and quantum communication.
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I. INTRODUCTION

Quantum resources can enhance information processing
beyond classical limitations. In a communication scenario
involving two distant parties, Alice and Bob, whose chosen
settings of �x and �y produce classical output s and s′, then
the joint probabilities p(s, s′|�x, �y) characterize the correlations
between them. Two types of correlations can be considered:
one where Alice and Bob share prior entanglement but do not
communicate and another where they do not share any prior
entanglement but communicate directly (in its simplest case,
one-way communication from Alice to Bob). The latter case
corresponds to the prepare and measure scenario [1–3]. By
combining these two cases, a more general scenario can be
obtained, where Alice and Bob both share an entangled state
and communicate with each other. This results in new types
of quantum correlation, enabling new protocols like quantum
teleportation [4] and quantum dense coding [5].

From both a conceptual and applied standpoint it is crucial
to examine whether entanglement-assisted classical commu-
nication [6] and another kind of transmission are equivalent
resources in communication tasks. Many quantum communi-
cation tasks can be completed using this equivalent and novel
scenario [7,8].

In 2012, Pawłowski and Winter in Ref. [9] introduced
a resource equivalent to entanglement and classical com-
munication using the same communication protocols. This
resource, called hyperbit, was introduced as an information
quasiparticle. Quasiparticles are mathematical artifacts use-
ful to describe the effective behavior of complex systems
and make predictions by simplifying the calculations for the
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system as a whole. Examples are phonons in the collective
behavior of atoms, vacancies in solid-state physics, or as me-
diators, such as plasmons, magnons, polarons, and gluons, just
to mention a few of them [10–14].

The motivation behind the work of Pawłowski and Winter
comes from this background. Information theory, like all other
physical theories, has its particles, bits, and qubits, and their
quasiparticles are the hyperbits, so called because they are
elements of a hyperball. In analogy with quantum theory,
where states and measurements are vectors in some Euclidean
ball [15], as it is easy to see for qubits in the Bloch sphere,
there are difficulties in imagining how it works in higher
dimensions.

For higher dimensions, generalized Bloch spheres have
been defined [16–20]. Within these frameworks, the formula
for probabilities of experimental outcomes mirrors that for
qubits. Here, the state is denoted by a vector �v, of length
|�v|, in a d-dimensional Euclidean space, and the measurement
outcomes X = ±1 are depicted by the pair of unit vectors ±�w.
The expectation value is given by 〈X 〉 = 〈 �w, �v〉. The primary
distinction from the Bloch sphere lies in the dimension of
the vectors signifying states and measurements. Therefore,
a hyperbit corresponds to the vector representing a finite-
dimensional system state.

On a broader note, such a hyperball embodies the set of
preparations, while its dual signifies the measurement set. The
choice of a rule for probability computation facilitates the
construction of a probabilistic theory within a preparation-
measurement scenario.

In this article, we discuss the shortcomings of the original
theorem mentioned in Ref. [9]. A counterexample that dis-
rupts the equivalence between hyperbit theory and quantum
theory was previously identified in Ref. [2]. Here, we eluci-
date why that theorem is incorrect by highlighting physical
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constraints that were not initially considered. Our objective
is to demonstrate that the operational limitations restrict the
equivalence between hyperbit theory and quantum theory to
merely suboptimal communication protocols.

The paper is organized as follows. In Sec. II we revisit
the aforementioned theorem within the theory of hyperbit
(with its operational and diagrammatic procedures in the
Appendix). In Sec. III we show the unimposed physical re-
strictions of the original theorem. We clarify the limitation
of the equivalence in Sec. IV, subsequently highlighting the
limits to use hyperbits in Sec. IV A. Finally, we offer a sum-
mation of our findings in the conclusions, paving the way for
fresh interpretations of quantum superiority in communication
tasks.

II. HYPERBITS FOR COMMUNICATIONS

The main theorem of Ref. [9] establishes the equivalence of
quantum theory and hyperbit theory1 in communication tasks:

For tasks where Bob gives binary answers, sending one
hyperbit from Alice to Bob is equivalent to sharing any amount
of entanglement and sending one classical bit.

The theorem posits the existence of a theory, referred to as
hyperbit theory H, which has the capability to predict event
probabilities analogous to quantum theory Q, which employs
the Born rule.

The hyperbit theory H finds its application particularly
beneficial in scenarios where Alice and Bob, operating in
separate laboratories, employ input n–bitstrings �a, �b ∈ {0, 1}n.
Alice utilizes these to choose one from her set of 2n di-
chotomic measurements. Bob responds with s ∈ {−1,+1}
based on his communication with Alice and his input bitstring
�b. Therefore, the theorem stipulates that the following expec-
tation value can be achieved by both the theories Q and H

〈B(�a, �b, r, ρ)〉Q = 〈B(�a, �b, r, �x�a)〉H, (1)

where 〈·〉Q stands for the Born rule in Q and 〈·〉H is its analog
rule in H.2 Equation (1) yields∑

s∈{−1,+1}
sPQ(s|�a, �b, r, ρ) =

∑
s∈{−1,+1}

sPH(s|�a, �b, r�x�a), (2)

where r in H is an unbiased dichotomic random variable
shared by Alice and Bob, but in Q it corresponds to the
classical bit of Alice’s outcome that she sends to Bob3; �x�a is

1Here we recall hyperbit theory, for simplicity, specifically is only
a fragment of a theory, since we describe only the set of preparations
and effects, and the rule to compute probabilities without specifies
other properties that fully define a theory which are the composition
rule and the update state rule after the interaction with the effects.

2In general probabilistic theories (GPTs), specifically within the
framework of preparation-measurement scenarios, a fragment of a
theory is characterized by its set of states, effects, and the rule
employed to determine the probability of obtaining outcomes and
expectation values (e.g., 〈·〉H) as a result of the effects exerted on the
states [21,22].

3Although r serves different roles in the two theories—as Alice’s
output in quantum theory and as shared randomness in the hyperbit

her prepared hyperbit which depends on the input bitstring �a
multiplied by r.4

Defined by Eq. (2), we can say that Q is weak or distribu-
tionally equivalent to H, i.e.,

PQ(s|�a, �b, r, ρ)
w� PH(s|�a, �b, r�x�a). (3)

The left-hand side (LHS) calculates the probability according
to the Born rule. Meanwhile, the right-hand side (RHS) sig-
nifies the probability rule we intend to define for the hyperbit
theory. Regardless of this rule’s specifics, the theorem restated
in Eqs. (1), (2), and (3) can be expressed also via Penrose’s
graphical notation [23,24],

(4)

Here, the boxes labeled by A and B encapsulate the internal
operational procedures that Alice and Bob undertake in their
spatially separated laboratories (refer to the Appendix for
further details).

The LHS represents the probability of Bob obtaining
outcome s when measuring the observable B�b,r with PVM el-

ements �±
�b,r

, chosen based on the input bitstring �b and Alice’s

outcome r. Alice measures A�a with PVM elements P±
�a ,

PQ(s|�a, �b, r, ρ) = Tr
(
PA

�a ⊗ �s
�b,rρ

)
. (5)

The double wire in the LHS denotes that Alice and Bob share
the quantum state ρ and Alice sends the classical bit r to Bob.

In contrast, on the RHS, Alice and Bob share only a clas-
sical copy r and the thicker wire represents the hyperbit sent
from Alice to Bob. We proceed now to define the analog of
Born rule to compute PH for the hyperbit theory.

A. Tsirelson isomorphism

In communication tasks where Bob’s answer s ∈ {−1,+1}
is a dichotomic outcome, its expectation value E [s] fully char-
acterizes the probability distribution PH(s = ±1|�a, �b, r�x�a) ≡
π±

�b,r
,

π±
�b,r = 1 ± E [s]

2
. (6)

Notice that, in Q, π±
�b,r = Trρ �±

�b,r , but in H we have not
defined yet the analogous of the Born rule. In order to do

theory—this distinction will facilitate the introduction of a potential
equivalence between the hyperbit and quantum theories. Then, the
narrative in Eqs. (14) and (18) will be simplified.

4Notice that, in H, r is a free-cost random variable with vanishing
expectation. Here, a copied random variable with vanishing expecta-
tion value does not carry on any information from Alice to Bob.
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that, we introduce Tsirelson’s isomorphism Jρ [25] which, in
essence, maps observables into vectors:

Jρ (Ak, Bm) = (�xk, �ym), (7)

(Ak, Bm) =J −1
ρ (�xk, �ym), (8)

where Ak, Bm are Hermitian operators satisfying −1 �
Ak, Bm � 1, [Ak, Bm] = 0, and the vectors satisfy |�xk|, |�ym| �
1. This relationship is explicitly characterized by

〈�xk|�ym〉 = Tr(Ak ⊗ Bmρ). (9)

In this context the aforementioned equivalence is formulated:
Alice’s steering measurement and a single classical bit of
communication are equivalent to Bob receiving the hyperbit
�xk . The isomorphism then defines the rule for calculating
probabilities and expectation values in H, akin to the Born
rule in Q. Hence the expectation value of the probability
distribution in Eq. (6) is opportunely calculated as E [s] =
〈�xk|�ym〉 represents the expectation value of measurement �ym

given �xk .
In other words, for ρ = T †T , the isomorphism can be

visualized as

(10)

In this representation, the cyclic wire signifies the contraction
of indices, i.e., the trace operation. The lower triangle depicts
the input state, while the upper triangle represents the result of
the effect. The dotted line helps to distinguish the preparation
(lower side) from the measurement (upper side).

1. Properties of the Tsirelson isomorphism

The homomorphism (perfect correlated input choices)
maps the identity to the identity,

1 = Tr(1 ⊗ 1ρ) = 〈�x1|�y1〉 = |�x1||�y1| cos θ


⇒ �x1 = �y1, |�x1| = 1. (11)

For dichotomic measurements with equal probability on the
outcomes related to {P+1

�a , P−1
�a } we have{

A�a = P+1
�a − P−1

�a ,

1 = P+1
�a + P−1

�a ,

Jρ (A�a,·)−−−−→
{

�x�a = �x�a,+1 − �x�a,−1,

�x1 = �x�a,+1 + �x�a,−1.
(12)

Without any loss of generality, suppose that Alice has
unbiased expectation value 〈A�a〉 = 0; then, going through the
isomorphism, the sum of two vectors, e.g., �x�a,±1, with the
same module is always orthogonal to the difference, as in
Fig. 1, and with Eq. (11) it yields

〈�x�a|�y1〉 = 0 
⇒ 〈�x�a,+1|�y1〉 = 〈�x�a,−1|�y1〉,
|�x�a,+1| cos θ+ = |�x�a,−1| cos θ−. (13)

FIG. 1. Geometrical representation in the affine space for
the Tsirelson isomorphism for Alice’s choice of A�a related to
{�x�a,+1, �x�a,−1} with norm of the sum |�x�a| � 1 and Bob’s choice �y�b,r

with |�y�b,r | � 1 decomposed along �y1, and �y⊥,�b,r orthogonal to �y1.

Therefore, θ− = θ+. Then

Tr(P�ar ⊗ 1ρ) = Tr

(
1 + rA�a

2
⊗ 1ρ

)
= 1

2
+ r〈�x�a|�y1〉 = 1

2
,

(14)

and combined with Eq. (13) gives

〈�x�a,1|�y1〉+ 〈�x�a,−1|�y1〉= 2〈�x�a,±1|�y1〉= 1 
⇒ |�x�a,±1| cos θ = 1

2
.

(15)

In the case of Bob’s choices the probability distribution of
the outcomes is not uniform as in Eq. (12); therefore,{

y�b,r = αy�b,r,+1 − βy�b,r,−1

�y1 = y�b,r,+1 + y�b,r,−1
−→ 〈y�b,r |�y1〉 = α − β. (16)

In Fig. 1, �y�b,r is decomposed in c �y1 along the axes parallel to
�y1 with 0 � c � 1 and c′N�y⊥,�b,r orthogonal to �y1. The crucial
assumption for our communication tasks is that all possible
choices of Alice A�a must be with equal probability outcomes5

as commented along Eq. (12) and the distribution of Bob’s
probability outcomes depend on the values of α and β in
Eq. (16) going from −1 to 1. This assumption allows copying
and sharing, as a free resource, a random bit r, equal to Alice’s
output with vanishing expectation value in the hyperbit theory
as represented by a circle on the RHS of Eq. (4).

B. Expectation value in quantum theory

Now we are ready to compute the LHS of Eq. (1), the
expectation value of Bob’s answer in quantum theory Q, as
the expectation value of the observable B�b,r on the steering
state ρ�a,r via A�a = P+1

�a − P−1
�a . With Eq. (14) and tracing out

5It should be noted that this condition comes from the assumption
of the expectation value of the Alice outcome r ∈ {−1,+1} being
zero. This condition does not reduce the generality of the protocol
since it is obtainable by some postprocessing (in Alice’s case) or pre-
processing (in Bob’s) and can be incorporated into the measurement
operators.
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Alice’s Hilbert space we found

ρ�a,r = TrA(Pr
�a ⊗ 1ρ)

Tr(Pr
�a ⊗ 1ρ)

= 2 TrA
(
Pr

�a ⊗ 1ρ
)
, (17)

such that, summing on Eq. (12) and then using Tsirelson
isomorphism,

〈B(�a, �b, r, ρ)〉Q = TrBB�b,rρ�a,r = 2 TrPr
�a ⊗ B�b,rρ

= Tr[(1 + rÂ�a) ⊗ B�b,rρ]

= 〈x1 + r�x�a|�y�b,r〉
= 〈x1 + r�x�a|c(�b, r)y1 + c′(�b, r)�y⊥�b,r〉
= c(�b, r) + c′(�b, r)N (�b, r)〈r�x�a|�̃y⊥�b,r〉. (18)

It is important to note that the vector x1 + A�x�a possesses a
length exceeding 1. Consequently, it does not qualify as a hy-
perbit, as its length precludes the possibility of measurement
with normalized outcome probabilities. This necessitates the
application of postprocessing procedures to ensure that hyper-
bits attain a normalized length suitable for measurement and
necessary for the equivalence H ≡ Q. Moreover, it is partic-
ularly evident from the second to the third line of Eq. (18)
the application of the Tsirelson isomorphism that represents
the passage from Q to H, hence the change of the meaning
of the variable r, as Alice’s output to shared randomness [see
Eq. (14)], despite the equivalence at the operational level. This
approaches a potential equivalence for these theories, despite
their different interpretations.

Now, according to Fig. 1, we defined c(�b, r) = 〈y1|�y�b,r〉
and c′(�b, r)N (�b, r) = 〈�̃y⊥�b,r |�y�b,r〉 with �̃y⊥�b,r the normalized
�y⊥�b,r , which is the projection of �y�b,r on the subspace orthog-

onal to �y1 and N (�b, r) the normalization factor. We expressed
c, c′, and N with the dependence on �b and the random bit r to
stress the dependence on Bob’s resources. In addition to that,
the constraint from the Tsirelson isomorphism gives

|�y�b,r | � 1 
⇒ [c′(�b, r)N (�b, r)]2 + c2(�b, r) � 1. (19)

For a lighter notation we denoted

x = c′(�b, r)N (�b, r), y = c(�b, r), z = 〈r�x�a|�̃y⊥�b,r〉. (20)

Equation (18) reads as a three-variable function t :

〈B(�a, �b, r, ρ)〉Q = t (x, y, z) = y + xz (21)

in the domain

C = {(x, y, z) ∈ R3
∣∣ x2 + y2 � 1, |t (x, y, z)| � 1, |z| � 1}.

(22)
Notice that Bob’s answer is −1 or +1; therefore, this induces
the constraint |t (x, y, z)| � 1. In conclusion, the expectation
value of Bob’s answer in Q is represented by the function t in
its domain C.

C. Expectation value in hyperbit theory

To show the equivalence between the quantum theory
Q and the hyperbit theory H, each value of the function
t (x, y, z) for any selection of (x, y, z) ∈ C, derived from the
Born rule in Q, must be also obtained within the hyper-
bit theory through meaningful operational procedures. First,

the Tsirelson isomorphism defines the operational procedure
to obtain the expectation value of Bob’s answer as E [s] =
〈r�x�a|�̃y⊥�b,r〉, which must correspond to the expectation value
in Eq. (6) of the output s distributed in {−1,+1} by π±1

�b,r
as

E [s] = π+1
�b,r

− π−1
�b,r , with

∑
s=±1

π s
�b,r = 1. (23)

The expectation value of Bob’s answer s is obtained, simi-
larly to the Born rule in Q, by measuring with the effect �̃y⊥�b,A
on the received hyperbit r�x�a, as shown in the lighter notation
in Eq. (20); thus z = E [s]. Now, we are ready to reformulate
the equivalence.

H is equivalent to Q if and only if the most general post-
processing operational procedures on Bob’s random answer s
admit a function g = t for all (x, y, z) ∈ C.

Notice that, being s random, there is no a priori informa-
tion about its expectation value z. To characterize the most
general postprocessing procedure we observe that the function
g can be represented as a point of a tetrahedron obtainable as a
convex combination of all the possible deterministic functions
which are

f1(s) = +1, f2(s) = −1, f3(s) = s, f4(s) = −s,
(24)

where f1 and f2 are the deterministic discarding operations
that replace the outcome into s → +1 and s → −1, respec-
tively; f3 is do nothing operation and f4 flips Bob’s outcome.
Therefore, the most general operational procedure that con-
structs g = 〈B(�a, �b, r, �x�a)〉H is

g =
∑
s=±1

4∑
i=1

ki fi(s)π s
�b,r,

4∑
i=1

ki = 1, ki � 0, (25)

which yields, from Eqs. (23) and (24),

g(�k, z) = k1 − k2 + (k3 − k4)z. (26)

In conclusion, Eq. (26) represents the expectation value of
Bob’s answer in H as a function g of the weights �z =
(k1, . . . , k4) and the expectation value z.

Before showing the limitations concerning the equivalence
of Eq. (1), let us revisit the protocol in Ref. [9].

III. PAWłOWSKI-WINTER PROTOCOL

Pawłowski and Winter in Ref. [9] formulate the follow-
ing operational procedure in hyperbit theory H intending to
demonstrate its equivalence to the shared entanglement sce-
nario in the quantum theory Q.

PW protocol.
(1) Alice and Bob copy and share a random bit r with

vanishing expectation value.
(2) Alice receives the input string �a and selects the mea-

surement x�a and sends to Bob the hyperbit multiplied by r,
that is, �x�a,r = r�x�a.

(3) Bob receives the input bitstring �b and then measures and
computes the expectation value on the hyperbit with �̃y⊥,�b,r .

(4) The expectation value 〈B(�a, �b, r, �x�a)〉H can be obtained
by the following postprocessing.
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(4.1) With probability |c(�b, r)| = |y|, as in Eq. (20), Bob
discards his outcome and outputs sgn[c(�b, r)].

(4.2) With probability 1 − |c(�b, r)| he tosses a coin that has
probability q for the outcome “head” and probability 1 − q for
the outcome “tail.”

(4.3) If the outcome of the coin is head, then Bob flips his
outcome; otherwise, with tail, his outcome remains invariant.

Now the protocol that realizes g = 〈B(�a, �b, A, �x�a)〉H math-
ematically reads

〈B(�a, �b, r, �x�a)〉H

=
∑
s=±1

π s
�b,r

{
|y|

[
1 + y/|y|

2
f1(s) +

(
1 − 1 + y/|y|

2

)
f2(s)

]

+ (1 − |y|)[q f4(s) + (1 − q) f3(s)]

}
(27)

or, equivalently, introducing the probabilistic discarding op-
eration Dc(r,N ) with probability c(A, N ) = |y| (in lighter
notation) that replaces s with sgn(y) and with probability
1 − |y|, s is not discarded; then the probabilistic flipping op-
eration Fq happens with probability q,

〈B(�a, �b, r, �x�a)〉H = (Fq ◦ D|y| ◦ E )(s)

= Fq[y + (1 − |y|)z]

= Fq[y + (1 − |y|)z]

= y + (1 − |y|)z(1 − 2q). (28)

Explicitly, first it acts as E (s) = π+
�b,r − π−

�b,r = z. Then we
apply the probabilistic discarding operation, such that with
probability |y| gives sgn(y) and with probability 1 − |y| we
toss a coin where we apply the probabilistic flip operation;
therefore, we obtain

|y|sgn(y) + (1 − |y|)Fq(z).

Now, with probability q, we have z �→ −z and with proba-
bility 1 − q, z �→ z. Therefore, Fq(z) = q(−z) + (1 − q)z =
(1 − 2q)z. Finally, y = |y|sgn(y). Now, by imposing Eq. (1),
and with Eqs. (20)–(23), one has

q = 1

2

(
1 − x

1 − |y|
)

. (29)

We observe that the PW protocol makes sense if and only if
the flipping probability lies 0 � q � 1, i.e.,

|c| ± Nc′ � 1, 〈r�x�a, �̃y�b,r〉 ∈ [−1, 1] (30)

that with lighter notation is

D = {(x, y, z) ∈ R3| − 1 � z � 1, |y| ± x � 1}. (31)

In its current formulation, the hyperbit theory is equivalent
to the quantum theory only within the subregion D ⊂ C as
depicted in Fig. 2. For points in C \ D the equivalence of
Eq. (1), i.e., g = t iff q �∈ [0, 1], which is impossible, as
noticed in Ref. [2]. Therefore, to establish an equivalence be-
tween quantum theory and hyperbit theory for communication
tasks, other operational procedures g = 〈B(�a, �b, r, �x�a)〉H must
be considered. These new procedures from Eq. (25) must sat-
isfy (1); hence g({ki, qi, yi}, z) = t (x, y, z), since t (x, y, z) =
〈B(�a, �b, A, ρ)〉Q also for all (x, y, z) ∈ C \ D.

FIG. 2. On the lower panel: a white parallelepiped representing
the region D and a white cylinder. On the upper panel: by remov-
ing the four green regions, characterized by 1 � |t (x, y, z)| � √

2,
from the white cylinder the region C explicitly written in Eq. (22) is
obtained. It contains D. The blue helices on the surface of the cylin-
der and parametric equation {cos τ, sin(±τ ),± 1−sin τ

cos τ
} for τ ∈ [0, π ]

correspond to the points for t = 1. These helices illustrate that, for
each point z, it is possible to identify a violation of the equivalence
as the PW protocol, as well as its widest generalization being valid
only in the region D.

The purpose of this paper is to show that even by consid-
ering all possible operational procedures in Eq. (25) obtained
by fixing ki’s the equivalence Q ≡ H is unattainable under the
assumption that Bob has no access to Alice’s laboratory.

IV. MAIN RESULT

We show the lack of equivalence between Q and H and
the operational limitation of using hyperbits starting from the
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FIG. 3. Bob’s a priori knowledge of z allows Bob to adjust this
strategy such that g = t for all (x, y, z) ∈ C/D.

following proposition that corrects the main theorem stated in
Sec. II of Ref. [9].

Proposition IV.1. For tasks where Bob gives binary an-
swers, sending one hyperbit from Alice to Bob is equivalent to
sharing any amount of entanglement and sending one classical
bit if and only if Bob can adjust his strategy by knowing a
priori the expectation value on the hyperbit.

Proof. Let us consider the reformulation of the equivalence
H � Q as in the paragraph above Eq. (24). In other words,
within the framework of H the most general Bob’s postpro-
cessing procedure admits a function g = t for all (x, y, z) ∈ C,
where g, t , and C are respectively defined in Eqs. (26), (21),
and (22). Therefore, g = t , from Eqs. (26) and (21), reads as

k1 − k2 + (k3 − k4)z = y + xz, ∀(x, y, z) ∈ C. (32)

Now if H � Q is trivial to show that Bob knows a priori
the expectation value of the hyperbit z, indeed from Eq. (32)
immediately he can determine

k1 − k2 − y + (k3 − k4 − x)z = 0 
⇒ z = y − k1 + k2

k3 − k4 − x
.

(33)
The other direction is more interesting. To prove it, we simply
observe from Eq. (20) that x and y are functions of Bob’s input
�b and r; hence if Bob also knows the value of z he can freely
select ki’s values (with

∑
i ki = 1 and ki � 0) as part of his

strategy such that Eq. (32) holds; thus H � Q. For (x, y, z) ∈
D using the PW protocol once obtain g = t . For (x, y, z) ∈
C/D a numerical evidence is in Fig. 3. �

At this point, we are confronted with the question of
whether the equivalence Q � H established in proposition IV
is operationally meaningful or is required to drop the hypoth-
esis of Bob’s a priori knowledge of the expectation value
of the hyperbit. The answer hinges on understanding which
resources are operationally accessible to Bob. From Eqs. (20),
it is evident that the variables x and y depend solely on �b and
the random variable r, both of which are readily accessible
resources in Bob’s laboratory. However, for Bob to know the

value of z, he requires a priori knowledge of the outcome
from the effect �̃y⊥,�b,r on the preparation r�x�a. This knowledge
enables him to adjust his strategy by selecting appropriate ki

values to satisfy Eq. (1).
Clearly, �̃y⊥,�b,r is known to Bob, as it is for x and y, but

he needs to fix the postprocessing procedure (depicted in the
box B) even before receiving the hyperbit r�x�a. However, once
the strategy is fixed, it must satisfy Eq. (32) for all the values
of z. In other words, the equivalence between quantum and
hyperbit theory must always hold regardless of the specific
value of z (the expectation value of the hyperbit Bob re-
ceives). This creates an obstacle to establishing equivalence
between hyperbit theory and quantum theory without the a
priori knowledge of z. It means that Eq. (32) must be sat-
isfied as follows (subject to the postprocessing probability
constraints):

k1 − k2 = y, k3 − k4 = x,
∑

i

ki = 1, ki � 0. (34)

Then, we observe that the equivalence Q � H is only possible
within the D region.6 The operational limitation necessitates
reexamining and adjusting a kind of negation of Proposi-
tion IV. Specifically, if Bob does not know the value of z
(meaning the ki values are chosen in advance to fix his strat-
egy), then there will be instances where t (x, y, z) �= g(ki, z), as
it happens within the region C/D shown in Fig. 2.

The subsequent proposition is the kind of negation we are
looking for. It formally states this discussion highlighting the
importance of distinguishing between the resources that are
operationally accessible a priori to Bob.

Proposition IV.2. Suppose that the operationally accessible
resources a priori are those below the dashed line, i.e., those
available before the communication starts. Then the following
equivalence is impossible:

(36)

Proof. It is enough to observe that (36) implies that Bob’s
strategy (the values of ki’s) is fixed for all values of z; there-
fore, the only way to satisfy the equivalence H � Q formally
written in Eq. (32) is via Eq. (34). But this is true only for
(x, y, z) ∈ D. Since there are still points (x, y, z) ∈ C/D, this
proves that, without a priori Bob’s knowledge of z, in reductio
ad absurdum H �� Q. �

We thus infer that, in the absence of a priori knowledge of
z, there is no z-invariant postprocessing strategy for Bob that

6Remarkably, the parallelepiped D is the largest region in C shape
invariant in the xy plane along the z axis and PW protocol is obtained
from Eq. (25) with

q = 1

2

(
1 − k3 − k4

1 − |k1 − k2|
)

. (35)
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yields an output 〈B(�a, �b, r, �x�a)〉H capable of reproducing all
possible Bob responses 〈B(�a, �b, A, ρ)〉Q.

In the context of quantum theory, a physical interpretation
suggests that, if Bob had access to the information of z, that
is, if he knew Alice’s preparation a priori, the communication
tasks would be rendered trivial as Alice’s laboratory would
essentially become accessible to Bob. Observe that, in such a
case, Bob would have three a priori inputs:

(37)

which contrasts the scenario of Eq. (36), where Bob has only
two a priori inputs. In this situation, the hyperbit conveys the
information of �x�a, enabling Bob to adapt his strategy accord-
ing to his z-dependent software program. Consequently, we
have 〈B(�a, �b, A, ρ)〉Q = 〈B(�a, �b, r, �x�a)〉H. Note that Eq. (37)
diagrammatically reformulates Proposition IV.

The resources available to Bob within quantum theory
and hyperbit theory enhance our comprehension of quantum
theory. Hyperbit theory, originally developed to simplify cal-
culations, still remains categorized as a foil theory [26]. Foil
theories are purposefully designed to highlight the distinctive
features within quantum mechanics. This categorization helps
in delineating and deepening our appreciation of the specific
and unique aspects of quantum theory.

A. Related papers

In Ref. [2], a finite gap was identified that exposed a spe-
cific type of inequivalence between the entanglement-assisted
(EA) bit value and the hyperbit value, primarily due to the
constraints of the PW protocol. This means that only a coun-
terexample was found that disproves the equivalence Q � H
without any explanation at the level of the interpretation. Our
results, however, suggest that even when the most general
strategy of Eq. (25) is employed, under the assumption that
Bob cannot access Alice’s laboratory (i.e., Bob does not know
the expectation value z), the equivalence is limited to the D
region, as observed in the PW protocol (see Fig. 2). If the
focus is solely on the violation of an inequality based on the
upper bound of a linear functional, such as the witness used
in [2], one can only observe the discrepancy between quantum
theory and hyperbit theory without understanding why the
equivalence cannot be achieved or the underlying assumption
that leads to such a no go result. In our analysis, we pinpoint
the no go result in diagram (36) and the equivalence of dia-
gram (37) in cases where the communication is trivial. Both
these diagrams are more informative than diagram (4).

V. CONCLUSION

In this paper, we explored the Tsirelson isomorphism with
the potential to simplify computations and offer a physical

interpretation via the hyperbit concept. Yet, given the hypothe-
ses that ground this isomorphism, such an interpretation could
be perceived as a general probabilistic theory. Consequently,
we demonstrated that, for communication tasks covered by
the theorem in Ref. [9], postprocessing operations on hyper-
bits and their associated dual effects exhibit equivalence in
a confined region given an input-independent protocol. This
finding served to clarify the previously discussed equivalence
H � Q [2,9]. Further, we examined the conditions leading to
disrupting this equivalence based on certain characteristics of
postprocessing and accessibility within the hyperbit theory.

Upon the hypotheses of Tsirelson’s theorem, such as the
commutativity among settings, further research might be di-
rected toward formulating a CHSH-like correlator in hyperbit
terms as it implies a form of “quantumness” certification that
may only involve a single correlation term similar to those
defining the CHSH functional [27,28]. In addition to these
insights, our geometrical construction lends support to the
idea that quantum mechanics may carry more information
about Alice’s laboratory, even when Bob has no direct access,
as in the case of hyperbits. Our proof shows that if Bob already
knows the value of z, a protocol satisfying g = t in Eq. (32)
always exists. When identifying (x, y) as expectation values
of some operational procedure, the linear trade-off of Eq. (31)
is known to be noncontextual [29,30] and the quadratic one
of Eq. (22) is quantum. Such quantum superiority might be
linked with contextuality akin to a random access code [31],
opening new avenues for understanding and exploring the
complex world of quantum communication.
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APPENDIX: OPERATIONAL FEATURES

In this Appendix, we explain the details of Eq. (4) that
summarize the whole paper. Let us start from the quantum
protocol to compute the probability that Bob’s outcome is s:

(A1)

Alice’s lab is labeled as A and depending on the input bitstring
�a she selects one of the possible dicothomic measurements
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A�a′ ,

(A2)

In the sum only one term is connected to the input so that the
cardinality of the input and output legs on the LHS is the same
as the one on the RHS by the action of the selector �a′, indeed

(A3)

The spectral representation of Alice’s dicothomic measure-
ment A�a′ with PVM elements {P+

�a′ , P−
�a′ } is

(A4)

where only one channel is activated so that the number of legs
on both sides remains the same. After the measurement, Alice
outputs the outcome A ∈ {−1,+1} and sends it to Bob’s lab
labeled as B. Here, Bob will receive two a priori inputs, i.e.,
before the communication start: the bitstring �b and the shared
entangled state ρ represented with a double wire. The third
Bob’s input is received during the communication, namely,
Alice’s outcome that selects one of his dichotomic observ-
ables B �A′,�′

b
. Specifically,

(A5)

where the possible dichotomic measurements output s ∈
{−1,+1},

(A6)

Notice that the spectral decomposition of the measurement
B�b′,A′ leads to a different decomposition of the vector �y�b′,A′
than the decomposition in Fig. 1, which is more similar to the
one of the vector �x�a.

As regards the RHS of Eq. (A1) about the fragment of
hyperbit theory, we have

(A7)

It is clear from this scheme that Alice and Bob shared only a
classical random variable r with a vanishing expectation value

FIG. 4. Each point in the tetrahedron identifies a PW protocol
at given y ∈ [−1, 1] and q ∈ [0, 1] that respectively characterize the
probabilistic discarding and the probabilistic flip operations obtained
as convex combinations of the function fi of Eq. (24).

and the communication is powered by the hyperbit that Alice
sends to Bob represented by a thicker output line. With a slight
abuse of notation, we refer to the Alice operational procedure
again with the label A, where now she has two classical inputs
and the hyperbit output:

(A8)

where we select as a shared copy the unbiased Alice’s output
such that r′ = A. Once Bob receives the hyperbit multiplied
by the random copied variable A�x�a his strategy is fixed: the
expectation value associated with the effect �y⊥,�b,A inputs into a
preestablished postprocess. All the protocols can be visualized
as a point in the tetrahedron with vertices fi of Eq. (24) as
in Fig 4. As an example, we specialize in the PW protocol.
Then Bob’s strategy is the one presented in the PW protocol
of Sec. III,

(A9)

where PS is the postprocessing of the outcomes once the prob-
abilistic discarding operation is applied. In the PW protocol
PS = fq, which is the probabilistic flip

(A10)

where the last term is the identity operation that can be equiv-
alently represented by a solid vertical line.
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