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Abstract The effect of Hawking radiation on tripartite
measurement uncertainty in a Schwarzschild black hole
background is analyzed in this study. Two scenarios are
examined. In the first, quantum memory particles approach
a Schwarzschild black hole and are positioned near the event
horizon, while the particle being measured remains in the
asymptotically flat region. In the second scenario, the mea-
sured particle moves toward the black hole, and the quan-
tum memories stay in the asymptotically flat region. This
study considers two initial quantum states, namely GHZ
and W states. Our findings reveal that in both cases, mea-
surement uncertainty increases steadily with rising Hawk-
ing temperature. When comparing the GHZ and W states,
the GHZ state initially exhibits lower measurement uncer-
tainty at low Hawking temperatures than the W state, indi-
cating greater resilience to Hawking radiation. Additionally,
when the quantum memories remain in the asymptotically
flat region while the measured particle falls toward the black
hole, the uncertainties for GHZ and W states do not align
at high temperatures. The GHZ state consistently demon-
strates lower measurement uncertainty, showcasing its supe-
rior robustness against Hawking radiation.

1 Introduction

The uncertainty principle can be represented using Shan-
non entropy [1]. Specifically, it has been demonstrated that
for two incompatible observables X and Z , the following
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entropic uncertainty relation (EUR) applies [2]

H(X) + H(Z) � − log2 c, (1)

where H(P) = −∑
k pk log2 pk represents the Shannon

entropy of the measured observable P ∈ {X, Z}, in which
pk is the probability of obtaining measurement outcome of
k. The term c measures the complementarity between the
observables and is defined as c = max{X,Z} |〈xi |z j 〉|2, with
X = {|xi 〉} and Z = {|z j 〉} being the eigenbases of the
observables X and Z , respectively.

In the last decade, many efforts have been made to gener-
alize and modify this relation [3–31]. Uncertainty relations
can be understood through a tripartite scenario illustrated
by an uncertainty game involving three participants: Alice,
Bob, and Charlie. At the start of the game, Alice, Bob, and
Charlie share a quantum state ρABC . In the next step, Alice
performs one of two possible measurements, X or Z , and
then informs Bob and Charlie, who hold the quantum mem-
ories B and C respectively, about her measurement choice.
If X is measured, Bob’s task is to predict the outcome of
this measurement. If Z is measured, then Charlie’s task is
to predict the outcome of Alice’s measurement. It has been
demonstrated that the tripartite quantum memory entropic
uncertainty relation (QM-EUR) can be formulated as [3,4].

U ≡ S(X |B) + S(Z |C) � − log2 c, (2)

where c is identical to the term defined in Eq. (1). Besides,
S(X |B) and S(Z |C) represent the conditional von Neumann
entropies of the states

ρXB =
∑

i

(|xi 〉A〈xi | ⊗ IB)ρAB(|xi 〉A〈xi | ⊗ IB), (3)
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and

ρZC =
∑

j

(|z j 〉A〈z j | ⊗ IC )ρAC (|z j 〉A〈z j | ⊗ IC ), (4)

respectively, where IB(C) is the identity operator in Bob
(Charlie)’s Hilbert space.

Physically speaking, S(X |B) quantifies Bob’s uncertainty
about the outcome of measurement X given that Bob has
access to the quantum memory B and, likewise, S(Z |C)

quantifies Charlie’s uncertainty about the outcome of mea-
surement Z given that Charlie has access to the quantum
memory C .

The study of the influence of the relativistic effect on
quantum correlations in curved space-time has been the main
topic of many researches [32–44]. Especially, the influence
of Hawking radiation on quantum entanglement is studied in
the background of a Schwarzschild black hole [43,44]. It has
been shown that in curved space-time, the presence of Hawk-
ing radiation can reduce quantum correlations [43–47]. Also,
it is well known that quantum correlations between the quan-
tum memory and the measured particle play an important
role in QM-EURs. Note that quantum entanglement between
the memory particle and the measured particle can decrease
uncertainty. Therefore, it is important to examine how the
Hawking effect impacts the tripartite QM-EUR in the con-
text of black holes. While the Hawking effect on QM-EUR
has been thoroughly explored in bipartite systems [48–51],
to the best of our knowledge, the tripartite QM-EUR has been
investigated in only a few studies such as Ref. [52].

Driven by these observations, we explore the impact
of Hawking radiation on the tripartite QM-EUR within
Schwarzschild space-time. In our study, we assume that
Alice, Bob, and Charlie initially share a generally tripartite
entangled state in flat Minkowski space-time. In the next step,
we consider two different scenarios. In the first scenario, Bob
and Charlie, who hold the quantum memories B andC , freely
fall towards a Schwarzschild black hole and position them-
selves near the event horizon, while Alice stays in the asymp-
totically flat region. In the second scenario, Alice freely falls
toward a Schwarzschild black hole and then hovers near the
event horizon, while Bob and Charlie remain in the asymp-
totically flat region. We examine the behavior of the tripartite
QM-EUR in these scenarios for two distinct classes of tripar-
tite entangled states, i.e. the Greenberger–Horne–Zeilinger
(GHZ) state and the W state.

The structure of this paper is as follows. In Sect. 2, we
provide a brief overview of the vacuum structure and Hawk-
ing radiation for Dirac fields in Schwarzschild space-time. In
Sect. 3, we analyze the impact of the Hawking effect on the
tripartite QM-EUR in Schwarzschild space-time. The final
section is dedicated to the conclusion and discussion.

2 Dirac fields in Schwarzschild space-time

The metric for Schwarzschild space-time can be written as
follows:

ds2 = −
(

1 − 2M

r

)

dt2 +
(

1 − 2M

r

)−1

dr2

+ r2
(
dθ2 + sin2 θdϕ2

)
, (5)

where M represents the mass of the black hole. Throughout
this paper, we assume that G = c = h̄ = κB = 1.

The Dirac equation [53] can be formulated as
[
γ aeμ

a
(
∂μ

+�μ

)]
ψ = 0, where γ a denotes the Dirac matrix, eμ

a is
the inverse tetrad, and �μ represents the spin connection
coefficient. For Schwarzschild space-time, the Dirac equa-
tion specifically takes the form:

− γ0
√

1− 2M
r

∂ψ

∂t
+γ1

√

1−2M

r

[
∂

∂r
+1

r
+ M

2r(r−2M)

]

ψ

+ γ2

r

(
∂

∂θ
+ cot θ

2

)

ψ + γ3

r sin θ

∂ψ

∂φ
= 0. (6)

By solving the above equation, one can obtain the positive
(fermions) frequency outgoing solutions for the outside and
inside regions of the event horizon [54]

� I
k = ξe−iωu and � I I

k = ξe+iωu, (7)

respectively, where k represents the wave vector, ξ is a four-
component Dirac spinor, and ω is a monochromatic fre-
quency of the Dirac field. The retarded time u is expressed
as u = t − r∗ in which r∗ = r + 2M ln r−2M

2M is the tortoise
coordinate.

Making an analytic extension for the above equation
through Damour and Ruffini’s suggestion [55], one can
provide a complete basis for the positive energy modes.
Subsequently, one can obtain the Bogoliubov transforma-
tions [56] between the creation and annihilation operators
in the Schwarzschild and Kruskal coordinates by quantizing
the Dirac fields in the Schwarzschild and Kruskal modes,
respectively. After suitably normalizing the state vector, the
expressions of the Kruskal vacuum and excited states can be
expressed as

|0〉k = α|0〉+I |0〉−I I + β|1〉+I |1〉−I I (8)

and

|1〉k = |1〉+I |0〉−I I , (9)

where α = 1√
e−ω/T +1

, β = 1√
eω/T +1

, and T = 1
8πM is the

Hawking temperature [57]. Here, |n〉+I and |n〉−I I correspond
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Fig. 1 A schematic diagram of our model shows Alice’s particle, A,
located in a flat region, while Bob’s particle, B, and Charlie’s particle,
C , are positioned near the event horizon of a Schwarzschild black hole.
The dashed lines represent the entanglement between the particles. The
input states are given in (10) and (17), and the corresponding output
states are presented in (12) and (19)

Fig. 2 This schematic diagram illustrates the model with Alice’s par-
ticle, A, positioned near the event horizon of a Schwarzschild black
hole, while Bob’s particle, B, and Charlie’s particle, C , are located
in a flat region. The input states are shown in (10) and (17), with the
corresponding output states provided in (15) and (22)

to the orthonormal bases for the fermion in the outside region
and the antifermion in the inside region of the event horizon.
In the following, both |n〉+I and |n〉−I I will be denoted as |n〉I
and |n〉I I , in order to simplify the formulation.

3 Results

In this section, we examine the behavior of the tripartite
QM-EUR in the context of a Schwarzschild black hole. The
incompatible observables measured on part A of a three-
qubit state ρABC are chosen as the Pauli matrices X = σ̂x
and Z = σ̂z . Here, let us consider two different cases.

Case 1. Alice, Bob, and Charlie are assumed to share
a tripartite quantum state ρABC at the same initial point
in flat Minkowski space-time. Particles A, B, and C are

sent to Alice, Bob, and Charlie, respectively. After receiv-
ing their particles, Alice remains stationary in an asymptoti-
cally flat region, while Bob and Charlie freely fall toward
a Schwarzschild black hole and position themselves near
the event horizon. Next, Alice performs either the X or Z
measurement on her quantum system and communicates her
measurement choice to Bob and Charlie. Bob’s (or Charlie’s)
primary goal is to minimize his uncertainty about the X (Z )
measurement (see Fig. 1).

Case 2. This scenario is similar to the previous one, but
with the difference that Charlie and Bob remain in the asymp-
totically flat region, while Alice freely falls toward the black
hole and positions herself near the event horizon (see Fig. 2).

Now, let’s explore the above scenarios for two different
initial states as mentioned before.

3.1 GHZ state

The initial state of the system that has been shared between
Alice, Bob, and Charlie is assumed to be a GHZ state, given
by

|GHZ〉ABC = |0〉A|0〉B |0〉C + |1〉A|1〉B |1〉C√
2

. (10)

For Case 1, by applying (8) and (9), Eq. (10) can be re-
expressed in terms of Minkowski modes for Alice and black
hole modes for Bob and Charlie as follows:

|GHZ〉Case 1
ABI BI I CI CI I

= 1√
2

[
α|0〉A|0〉BI |0〉BI I |0〉CI |0〉CI I

+ β|0〉A|1〉BI |1〉BI I |1〉CI |1〉CI I

+ |1〉A|1〉BI |0〉BI I |1〉CI |0〉CI I

+ αβ|0〉A|0〉BI |0〉BI I |1〉CI |1〉CI I

+ αβ|0〉A|1〉BI |1〉BI I |0〉CI |0〉CI I

]
.

(11)

Since Region I is completely disconnected from Region II,
Bob and Charlie cannot access the modes inside the event
horizon. Thus, by tracing out the state of the inaccessible
modes, the following density matrix can be obtained

ρGHZ
ABI CI

= 1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α4 0 0 0 0 0 0 α2

0 α2β2 0 0 0 0 0 0

0 0 α2β2 0 0 0 0 0

0 0 0 β4 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

α2 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(12)
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Fig. 3 Measurement uncertainties for both cases when the three qubits are initially prepared in the GHZ state. Plots (a) and (b): U versus ω and
T . Plot (c): U versus T with ω = 1

Using Eqs. (2) and (12), we obtain the analytical expression
of tripartite measurement uncertainty as follows

UGHZ
ABI CI

= −η ln η + η ln(2(η + 1)) + ln(2η + 2) + θ ln 2

ln 4
,

(13)

with η = β4 + α2β2 and θ = α4 + α2β2.
In Case 2, where Charlie and Bob stay in the asymptot-

ically flat region while Alice freely falls toward the black
hole and is situated near the event horizon, Eq. (10) can be
reformulated in terms of black hole modes for Alice and
Minkowski modes for Bob and Charlie, namely

|GHZ〉Case 2
AI AI I BC = 1√

2

[
α|0〉AI |0〉AI I |0〉B |0〉C

+ β|1〉AI |1〉AI I |0〉B |0〉C
+ |1〉AI |0〉AI I |1〉B |1〉C

]
. (14)

Next, by tracing out the inaccessible mode AI I , the following
density matrix can be derived

ρGHZ
AI BC = 1

2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

α2 0 0 0 0 0 0 α

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 β2 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
α 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (15)

Employing (2) and (15), one can obtain the analytical form
of tripartite measurement uncertainty, given by

UGHZ
AI BC = −α2 ln α2

2 − β2 ln β2

2 + ln 2

ln 4
. (16)

In Fig. 3, the measurement uncertainties for the GHZ state
are calculated based on Eqs. (13) and (16). In Fig. 3a and b,
this uncertainty is plotted against the monochromatic fre-
quency ω of the Dirac field and the Hawking temperature T
for two distinct scenarios: Case 1 and Case 2. Besides, Fig. 3c
shows U versus T for ω = 1.
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According to all plots in Fig. 3, the measurement uncer-
tainty U increases monotonically with increasing Hawking
temperature T . This indicates that the thermal effects due
to Hawking radiation increase the uncertainty in measure-
ments. These results are consistent with the findings of Ref.
[43], where it was demonstrated that higher Hawking tem-
peratures lead to stronger Hawking radiation, which disturbs
the quantum system more significantly. While the general
trends are similar in Cases 1 and 2, the magnitude and rate of
increase inU with T differ between the two cases, highlight-
ing different levels of susceptibility to Hawking radiation
depending on the specific arrangement of the particles.

If we consider the 2D plot in Fig. 3c, one can analyze
which of the two cases exhibits a higher U for a fixed ω. In
Case 1, Bob and Charlie (quantum memories) are approach-
ing the event horizon, while Alice (the measured particle)
remains in the asymptotically flat region. Quantum memo-
ries near the event horizon are directly exposed to the intense
gravitational effects and Hawking radiation. This exposure
is expected to induce greater decoherence and entanglement
degradation due to the strong interaction with the thermal
radiation emanating from the black hole. Compared with
Case 2, where Alice (the measured particle) is near the event
horizon, while Bob and Charlie remain in the asymptoti-
cally flat region, Case 1 should feature a higher measure-
ment uncertainty U as a function of Hawking temperature
T , which is demonstrated in Fig. 3.

In addition, we can discuss the impact of ω on the mea-
surement uncertainty based on Fig. 3. In general, we notice
that U is reduced when ω increases. This effect is partic-
ularly pronounced at low Hawking temperatures. This sug-
gests that higher frequency modes might mitigate some of
the uncertainty introduced by the Hawking effect at lower
temperatures.

At lower Hawking temperatures, the thermal radiation’s
effect is less significant. The higher frequency modes ω may
help in reducing the uncertaintyU by interacting less destruc-
tively with the quantum memories.

3.2 W state

Let us assume that the W state shared by Alice, Bob, and
Charlie is as follows

|W〉ABC = |1〉A|0〉B |0〉C + |0〉A|1〉B |0〉C + |0〉A|0〉B |1〉C√
3

.

(17)

The approach is similar to the previous section. Regarding
Case 1, for the three qubits being prepared initially in the W

state, Eq. (17) can be rewritten as

|W〉Case 1
ABI BI I CI CI I

= 1√
3

[
α|0〉A|0〉BI |0〉BI I |1〉CI |0〉CI I

+ α|0〉A|1〉BI |0〉BI I |0〉CI |0〉CI I

+ β|0〉A|1〉BI |0〉BI I |1〉CI |1〉CI I

+ β|0〉A|1〉BI |1〉BI I |1〉CI |0〉CI I

+ α2|1〉A|0〉BI |0〉BI I |0〉CI |0〉CI I

+ αβ|1〉A|0〉BI |0〉BI I |1〉CI |1〉CI I

+ αβ|1〉A|1〉BI |1〉BI I |0〉CI |0〉CI I

+ β2|1〉A|1〉BI |1〉BI I |1〉CI |1〉CI I

]
. (18)

Then, tracing over the inaccessible modes BI I and CI I , one
comes to

ρW
ABI CI

= 1

3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0
0 α2 α2 0 α3 0 0 0
0 α2 α2 0 α3 0 0 0
0 0 0 2β2 0 αβ2 αβ2 0
0 α3 α3 0 α4 0 0 0
0 0 0 αβ2 0 α2β2 0 0
0 0 0 αβ2 0 0 α2β2 0
0 0 0 0 0 0 0 β4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(19)

Equipped with Eqs. (2) and (19), we arrive at

UW
ABI CI

= − α2 + 2β2

3
log2

α2 + 2β2

3
− �−

6
log2

�−
12

+ 2(α2 + θ)

3
log2

α2 + θ

3
− �+

6
log2

�+
12

− α2

3
log2

α2

3
− θ

3
log2

θ

3
− η

3
log2

η

3

+ α2 + 2β2 + η

3
log2

α2 + 2β2 + η

3
, (20)

where �± = 3 ± √
16β4 − 12β2 + 5.

For Case 2, based on Eqs. (8) and (9), one can rewrite Eq.
(17) as follows:

|W〉Case 2
AI AI I BC = 1√

3

[
α|0〉AI |0〉AI I |0〉B |1〉C

+ β|1〉AI |1〉AI I |0〉B |1〉C
+ α|0〉AI |0〉AI I |1〉B |0〉C
+ β|1〉AI |1〉AI I |1〉B |0〉C
+ |1〉AI |0〉AI I |0〉B |0〉C

]
. (21)
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Fig. 4 Measurement uncertainties for both cases when the three qubits are initially prepared in the W state. Plots (a) and (b): U versus ω and T .
Plot (c): U versus T with ω = 1

Tracing over the inaccessible region II, one arrives at

ρW
AI BC = 1

3

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0
0 α2 α2 0 α 0 0 0
0 α2 α2 0 α 0 0 0
0 0 0 0 0 0 0 0
0 α α 0 1 0 0 0
0 0 0 0 0 β2 β2 0
0 0 0 0 0 β2 β2 0
0 0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (22)

Using now Eqs. (2) and (22), the following formula for
tripartite uncertainty can be obtained

UW
AI BC = − 2α2

3
log2

α2

3
− β2

3
log2

β2

3

− �−
6

log2
�−
12

− �+
6

log2
�+
12

+ 2

3
log2

1

3
+ 4

3
log2

2

3

− 1 + β2

3
log2

1 + β2

3
, (23)

where �± = 3 ± √
4α2 + 1.

Fig. 5 Measurement uncertainty for W and GHZ states versus the
Hawking temperature T , with Alice remaining stationary in an asymp-
totically flat region while Bob and Charlie freely fall toward a
Schwarzschild black hole, where ω = 1

The measurement uncertainties for the W state [see (20)
and (23)] are plotted as functions of the monochromatic fre-
quency ω of the Dirac field and the Hawking temperature
T in Fig. 4a and b. Similar to the GHZ state, for both cases,
the measurement uncertainty U decreases with increasing ω

123



Eur. Phys. J. C          (2024) 84:1162 Page 7 of 9  1162 

Fig. 6 Measurement uncertainty for W and GHZ states versus the
Hawking temperature T , with Charlie and Bob staying in the asymptot-
ically flat region while Alice falls freely toward the black hole, where
ω = 1

at low temperatures. The decline of U for higher values of
ω at low temperatures again suggests that higher frequency
modes are less disruptive to the W state’s entanglement.

Moreover, measurement uncertainty U increases mono-
tonically with increasing the Hawking temperature T . As
T increases, the Hawking radiation’s thermal effects dom-
inate, leading to increased measurement uncertainty. When
we compare the two cases, we see that the general trends
are similar, but the magnitude and rate of change in U with
respect to T and ω differ, reflecting different susceptibili-
ties to Hawking radiation depending on the position of the
quantum memories and the measured particle.

In Fig. 4c, we also present U as a function of T with
a fixed ω. Our observation indicates that the measurement
uncertainty behaves differently for the W state compared to
the GHZ state at lower temperatures. Specifically, for the W
state, Case 1 exhibits less uncertainty at lower temperatures,
but as the temperature increases, the uncertainties for both
cases tend to converge to the same value.

At lower Hawking temperatures, the effect of thermal radi-
ation is minimal. The robustness of the W state to particle loss
means that the entanglement and coherence of the system are
better preserved, resulting in lower measurement uncertainty
for Case 1.

3.3 Comparison between GHZ and W states

To compare the GHZ state with the W state, in Figs. 5 and 6
dependence of the measurement uncertainty on the Hawking
temperature T is plotted, where Fig. 5 presents Case 1 and
Fig. 6 illustrates Case 2.

For Case 1 presented in Fig. 5, the measurement uncer-
tainty starts at a lower value for the GHZ state compared to
the W state. This indicates that the GHZ state is initially less

affected by the Hawking radiation at low temperatures, main-
taining better coherence. As the Hawking temperature T con-
tinues to increase, the measurement uncertainties for both the
W and GHZ states converge to similar values. This conver-
gence indicates that at high temperatures, the overwhelming
thermal effects of the Hawking radiation uniformly disrupt
both types of quantum states, making the initial differences
in their entanglement properties less significant.

In Fig. 6, the initial measurement uncertainty for the W
state is higher, suggesting that the W state is more sensi-
tive to the initial presence of Hawking radiation, even at low
temperatures. As the Hawking temperature T increases, the
uncertainties for the GHZ and W states increase monotoni-
cally. Despite this increase, the GHZ state maintains a lower
uncertainty compared to the W state across all temperatures.
At high Hawking temperatures, the measurement uncertainty
for the GHZ state approaches an asymptotic value that is
lower than that for the W state. This indicates that even at
high temperatures, the GHZ state retains better coherence
and lower uncertainty compared to the W state.

The difference between the GHZ and W states can be fur-
ther understood by considering the geometry of their entan-
glement. In the GHZ state, all the entanglement is shared
globally among all three qubits, meaning the entanglement
is strictly three-way [58,59]. This monogamous nature of the
GHZ state ensures that the entanglement is concentrated, cre-
ating a strong, unified quantum correlation that is resistant
to external disturbances like Hawking radiation. In contrast,
the W state’s entanglement is more distributed, allowing two-
qubit subsystems to retain some level of entanglement even
if one qubit is lost. However, this lack of strong three-way
entanglement means the W state does not have the same col-
lective defense against decoherence. As a result, the more
dispersed entanglement in the W state leaves it more sus-
ceptible to gradual disruptions, such as those caused by low
levels of Hawking radiation, leading to higher measurement
uncertainty. The GHZ state’s three-way entanglement geom-
etry, being more tightly bound, helps it maintain coherence
more effectively across a range of temperatures.

The research presented in this paper aligns closely with
the findings of Wu et al. [44], particularly in demonstrating
the superior robustness of the GHZ state against the Hawking
effect compared to the W state. Both studies show that as the
Hawking temperature increases, the GHZ state’s entangle-
ment properties exhibit greater resilience. In our work, this
is reflected in the lower initial measurement uncertainty and
the less steep increase in uncertainty for the GHZ state, even
as temperature rises. This consistency strengthens the argu-
ment that the GHZ state has inherent advantages in maintain-
ing quantum coherence in extreme conditions such as near a
black hole’s event horizon.

However, the approach used in the present contribution is
original and novel in several key aspects. While Wu et al.
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[44] focused on the behavior of genuine tripartite entangle-
ment (GTE) and tangle measures, our research specifically
analyzes the measurement uncertainty U , which offers a dif-
ferent perspective on quantum state robustness. By investi-
gating how U changes under various conditions – such as
different positions of quantum memories and measured par-
ticles relative to the event horizon – we provide a more com-
prehensive view of quantum state behavior in Schwarzschild
spacetime. This novel approach not only validates previous
findings about the GHZ state’s resilience but also extends our
understanding of the impact of Hawking radiation on quan-
tum measurements, thereby contributing valuable insights to
the field of relativistic quantum information processing.

4 Conclusion

Several studies have investigated quantum correlations in a
tripartite system within the context of a Schwarzschild black
hole, revealing that their dynamical behaviors are signifi-
cantly influenced by the Hawking temperature T [43–47].
These studies demonstrated that the Hawking effect dimin-
ishes quantum correlations. Since measurement uncertainty
in a QM-EUR is closely linked to the system’s quantum cor-
relations, it is anticipated that it too may be impacted by the
Hawking temperature T . In this work, the effect of Hawking
radiation on the tripartite QM-EUR in Schwarzschild space-
time was studied for GHZ and W states. It has been shown that
the behaviors of uncertainty depend on the Hawking effect.
Specifically, it has been found that the uncertainty increases
monotonically with increasing Hawking temperature. As the
Hawking temperature T increases, the intensity of Hawk-
ing radiation also increases, leading to greater decoherence
and increased measurement uncertainty. However, the higher
monochromatic frequency ω of the Dirac field might miti-
gate some of the uncertainties introduced by the Hawking
radiation.

As for the comparison between GHZ and W states, the
GHZ state starts with a lower measurement uncertainty at
low Hawking temperatures compared to the W state. This
indicates that the GHZ state is initially more resilient to
the effects of Hawking radiation. Additionally, in the sce-
nario where Charlie and Bob remain in the asymptotically
flat region and Alice falls toward the black hole, the uncer-
tainties for the GHZ and W states do not converge at high
temperatures. The GHZ state consistently maintains a lower
measurement uncertainty than the W state, highlighting its
superior robustness against Hawking radiation.

These findings contribute to a deeper understanding of
quantum mechanics in black hole environments and could
have implications for quantum information processing and
communication in extreme conditions.
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