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Isolating noise and amplifying the signal using weak quantum measurement and postselection
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The so-called quantum Cheshire cat is a phenomenon in which an object, identified with a “cat”, is dissociated
from a property of the object, identified with the “grin” of the cat. We propose a thought experiment, similar
to this phenomenon, with an interferometric setup, where a property (a component of polarization) of an object
(photon) can be separated from the object itself and can simultaneously be amplified when it is already decoupled
from its object. We further show that this setup can be used to dissociate two complementary properties, e.g.,
two orthogonal components of polarization of a photon and identified with the grin and the snarl of a cat, from
each other and one of them can be amplified while being detached from the other. Moreover, we extend the work
to a noisy scenario, effected by a spin-orbit-coupling–like additional interaction term in the Hamiltonian for the
measurement process, with the object in this scenario being identified with a so-called confused Cheshire cat.
We devise a gedanken experiment in which such a “confusion” can be successfully dissociated from the system,
and we find that the dissociation helps in the amplification of signals.
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I. INTRODUCTION

In recent times, a technique known as weak-value am-
plification has been used to amplify weak signals [1]. The
method relies on extracting information from a system while
minimally disturbing it [2–4]. This weak measurement [5,6]
of the system is performed using a weak coupling strength
between the system and a meter. In the weak-value amplifica-
tion method, a quantum system is initially prepared in a pure
state, known as the preselected state, following which an ob-
servable is weakly measured. After the weak measurement of
the observable, a strong measurement of a second observable
is carried out on the principal system and a quantity called
weak value [5–7] is defined by postselecting an outcome of
the second measurement. The weak value of the observable
is basically the average shift in the meter readings for the
weak measurement corresponding to the postselected state.
Experimental observations of weak values have been reported
in Refs. [8–15].

Although the present work discusses weak values in rela-
tion to signal amplification, it may be worthwhile to mention
a few other applications of the idea. Weak values can be used
in the direct measurement of a photon wave function [10,16]
to measure the spin Hall effect [9], in quantum state tomog-
raphy [17,18], in the geometric description of quantum states
[19], and in state visualization [20]. It also finds application
in quantum thermometry [21] and measuring the expectation
value of non-Hermitian operators [22,23]. Weak values have
been shown to be acquire complex values [24] and weak
values play important roles in the two-state vector formal-
ism [25], in the physical understanding of superoscillations
[26], and in separating a quantum property from its system

[27]. Weak measurements have been used to show a double
violation of a Bell inequality by a single entangled pair [28]
and in quantum process tomography where sequential weak
measurements are done on incompatible observables [29]. A
property of weak values that is of special interest to us is that
it can lie outside the eigenvalue spectrum of the observable
being weakly measured and can even be very large [5,6]. This
aspect is exploited in weak-value amplification.

A significant concern in experiments is the minimization
of noise in the relevant signal and designing measurement
techniques that achieve the same. Setting aside logistics and
dependences on other constraints imposed by the particular
scenario, a measurement strategy with a significantly reduced
noise is typically favored by experimentalists [30–35]. We
consider a situation in which noise may be introduced during
the process of weak-value amplification if the Hamiltonian
coupling the system and the meter has extra undesired terms
due to the effect of an environmental element. It therefore
becomes necessary to eliminate these terms or suppress them
to obtain the amplification of the signal alone.

An important ingredient of the strategy we discuss in this
paper is a phenomenon known as the quantum Cheshire cat. In
this gedanken experiment, based on a modified Mach-Zehnder
interferometer, a photon can be detected in one arm while its
circular polarization can be detected in the other arm, each be-
ing absent in the other arm, by measuring the respective weak
values [27]. Thus, for a particular combination of preselected
and postselected states, the photon “cat” can be disembodied
from its property “grin”, leading to the name of the effect
being chosen after a magical and enigmatic character in the
celebrated literary work, Alice in Wonderland. This coun-
terintuitive phenomenon has been experimentally observed
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using neutron interferometry in Ref. [11] and using photon
interferometry in Refs. [12–14,36]. The concept has been
further expanded upon in Refs. [37–40], and different kinds
of manipulations of the photon polarization, independent of
the photon, have been achieved in Refs. [41–44].

In this paper we present a gedanken experiment to amplify
a property of a photon at a location, independent of the photon
being present at the same location. We also show that the
same gedanken setup can amplify one property of a photon
independent of another property of the same, where the two
properties are complementary and correspond to noncom-
muting observables. We believe this is a technologically and
fundamentally useful amalgamation of the two areas, viz.,
the quantum Cheshire cat and weak-value amplification. As
a demonstration, we consider a scenario where the polariza-
tion degree of the photon interacts with another degree of
freedom and results in an additional term in the Hamiltonian
that governs the measurement. We call the additional term
the spin-orbit coupling of the photon (cat), borrowing the
nomenclature from the spin-orbit interaction in the relativistic
treatment of an electron’s dynamics. This additional term be-
haves as a noise component that changes the shift of the meter.
The meter now gives a deflection proportional to the weak
value of an effective observable that is different from the weak
value of a polarization component, which was to be measured.
To avoid the unwanted disturbances caused by the effect of
noise in some amplification techniques, we then formulate a
gedanken experiment to separate the required observable from
the noisy part. We propose that, using this experimental setup,
it is possible to reduce the noise effect on average (as a weak
value primarily is) and amplify some quantum property by a
weak-value measurement with a certain accuracy.

The rest of the paper is organized as follows. The ideas
of weak measurement and quantum Cheshire cat are briefly
recollected in Sec. II. In Sec. III we present the thought
experiment, based on the concept of the quantum Cheshire
cat, to amplify a property of a photon (z component of po-
larization) independent of the photon itself. We extend the
idea to amplify one property (z component of polarization)
independently of the other (x component of polarization) for
a noiseless ideal situation. In Sec. IV we evaluate the weak
value of the effective observable, resulting from a noisy sce-
nario, where the weak value is obtained from the shift of the
meter, weakly coupled with the system, and where the noise
is incorporated as a spin-orbit coupling. We also propose an
experimental setup useful to amplify the weak value of the
effective observable in that section. We summarize in Sec. V.

II. REVIEW OF WEAK MEASUREMENT
AND QUANTUM CHESHIRE CAT

The weak-value scheme [5,6] started with a thought exper-
iment for measuring a spin component of a quantum spin- 1

2
particle, obtaining a result which was far beyond the range
of usual values. In this work the interaction Hamiltonian is
usually taken as

H0 = −g(t )Â ⊗ q̂, (1)

where q̂ is a canonical variable of the meter that is conjugate to
momentum p̂, g(t ) is a time-dependent coupling function with

a compact support near the time of measurement (normalized
such that its time integral is unity), and Â is the observable to
be measured. In [5,6], q̂ has a continuous spectrum. However,
we will consider in this paper instances where q̂ can also have
a discrete spectrum. The weak value of Â is defined as

Aw = 〈� f |Â|�in〉
〈� f |�in〉 . (2)

The concept of the quantum Cheshire cat [27] is based on
weak measurement of observables. Typically in a quantum
Cheshire cat setup, as seen in Fig. 1(a), a photon having hori-
zontal polarization |H〉 is fed into a 50:50 beam splitter BS1 of
a Mach-Zehnder interferometer, creating the preselected state

|�in〉 = 1√
2

(i |L〉 + |R〉) |H〉 , (3)

where |L〉 and |R〉 represent the left and right path degrees of
freedom, respectively. We will consider the states of circular
polarization of the photon, denoted by |+〉 and |−〉 and given
by

|+〉 = 1√
2

(|H〉 + i |V 〉), |−〉 = 1√
2

(|H〉 − i |V 〉), (4)

as the computational basis. In particular, therefore,
σ̂z = |+〉 〈+| − |−〉 〈−| and σ̂x = |+〉 〈−| + |−〉 〈+|. Here
|V 〉 denotes the state of vertical polarization. This convention
is in accordance with that adopted in [27]. In the two arms
of the interferometer, weak measurements of the location of
the photon and that of the photon’s circular polarization are
carried out. The photon and its polarization interact weakly
with appropriate meter states, resulting in deflections in the
latter. This interaction is of the form defined in Eq. (1). Next
an arrangement of a half waveplate (HWP), phase shifter
(PS), beam splitter (BS2), polarization beam splitter (PBS),
and detectors (D1, D2, and D3), elaborated in Fig. 1(a), is
used to postselect the state

|� f 〉 = 1√
2

(|L〉 |H〉 + |R〉 |V 〉). (5)

For this particular postselected state, it can be seen that the
distributions of the deflected meter states center around the
weak values of the observables being measured in the arms. To
trace the location of the photon, the meters, which are inserted
in the left and right arms of the interferometer, measure the
projectors �̂L = |L〉 〈L| and �̂R = |R〉 〈R|, respectively, and
similarly the polarization detectors measure the observables
σ̂ L

z = �̂L ⊗ σ̂z and σ̂ R
z = �̂R ⊗ σ̂z. The corresponding weak

values are

(�̂L )w = 1, (�̂R)w = 0,(
σ̂ L

z

)
w

= 0,
(
σ̂ R

z

)
w

= 1. (6)

This indicates that the photon passed through the left arm but
its z component of polarization passed through the right arm.

III. AMPLIFICATION OF POLARIZATION
OF A PHOTON WITHOUT THE PHOTON

Weak values can be used as a tool for amplifying small
signals. Further, we have seen how a property can be separated
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FIG. 1. Quantum Cheshire cat without and with amplification. (a) Quantum Cheshire cat setup (without amplification). The areas shaded
pink and blue carry out the preselection and postselection, respectively. For the latter, only the clicks of detector D1 are selected. Weak
measurements of the photon position and the position of polarization are performed by interacting suitable meters weakly, in the two arms of
the interferometer. (b) Setup for decoupling the z component of polarization of a photon from the photon itself and amplifying it simultaneously.
This configuration is also applicable for dissociating the z component of polarization and the x component of polarization of the photon and
amplifying the former simultaneously.

from a quantum system using the technique of the quantum
Cheshire cat. Now we aim to achieve the two phenomena
simultaneously, namely, the separation of a property from the
object and amplification of the separated property indepen-
dently of the object.

The interferometric setup of this gedanken experiment is
presented in Fig. 1(b). Let us begin by considering a photon,
propagating along a path degree of freedom state denoted by
|L′〉, in a polarization state cos θ

2 |H〉 + sin θ
2 |V 〉. The photon

is sent through a polarization beam splitter PBS1 that trans-
mits horizontally polarized light and reflects the vertically
polarized one, leading to the state

|�1〉 = cos
θ

2
|L〉 |H〉 + sin

θ

2
|R〉 |V 〉 , (7)

where |L〉 and |R〉 are the two possible photon paths, viz.,
along the transmitted and reflected paths, respectively, form-
ing the two arms of a Mach-Zehnder interferometer. Note
that |L〉 and |L′〉 are along the same path after and before
the polarization beam splitter PBS1. In the right arm of the
interferometer, we place a half waveplate HWP1 that converts
a vertical polarization into a horizontal one, and vice versa,
followed by a π phase shifter P, which introduces a phase eiπ

in the right path. We now have the state

|� ′
1〉 =

(
cos

θ

2
|L〉 − i sin

θ

2
|R〉

)
|H〉 . (8)

In the parlance of weak values and the quantum Cheshire
cat, this is the preselected state. The postselection involves
a half waveplate, a phase shifter, a beam splitter, a second
polarization beam splitter, and three detectors. The working
principle is the same as discussed for the quantum Cheshire
cat scenario without the amplification requirement. Thus the

clicking of the detector D1 can once again be solely selected
to obtain the postselected state

|� f 〉 = 1√
2

(|L〉 |H〉 + |R〉 |V 〉). (9)

In the two arms of the interferometric setup, weak mea-
surements of the position of the photon and its circular
polarization are performed and the corresponding weak values
are obtained. The weak values of the operators �̂L and �̂R,
denoting the positions of the photon in the left and right arms,
and σ̂ L

z and σ̂ R
z , denoting the positions of z components of

polarization in the two arms, are then measured to be

(�̂L )w = 〈� f |�̂L|� ′
1〉

〈� f |� ′
1〉

= 1,

(�̂R)w = 〈� f |�̂R|� ′
1〉

〈� f |� ′
1〉

= 0,

(
σ̂ L

z

)
w

= 〈� f |σ̂ L
z |� ′

1〉
〈� f |� ′

1〉
= 0,

(
σ̂ R

z

)
w

= 〈� f |σ̂ R
z |� ′

1〉
〈� f |� ′

1〉
= tan

θ

2
. (10)

Therefore, the photon is detected in the left arm and the z
component of polarization is detected in the right arm with
a factor which could be amplified by varying the parameter
θ . Thus we have achieved the phenomenon of amplifying a
property of an object independently of the object: The pho-
ton’s polarization component is being amplified in the right
arm of the interferometer and the photon is not there.

This thought experiment can be further extended by sep-
arating two orthogonal components of polarization and then
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amplifying one component independently of the other. Let
us consider the two orthogonal components to be the x and
z components of polarization, viz., σ̂x and σ̂z. The operators
σ̂ L

x = �̂L ⊗ σ̂x and σ̂ R
x = �̂R ⊗ σ̂x are measured to detect the

x component of polarization in the left and right arms of the
interferometer, respectively. The corresponding weak values
turn out to be

(
σ̂ L

x

)
w

= 〈� f |σ̂ L
x |� ′

1〉
〈� f |� ′

1〉
= 1,

(
σ̂ R

x

)
w

= 〈� f |σ̂ R
x |� ′

1〉
〈� f |� ′

1〉
= 0. (11)

When coupled with the weak values of σ̂ L
z and σ̂ R

z , these
indicate that the z component of polarization can be ampli-
fied independently of the x component of polarization. The
weak value of σ̂ R

z is seen to acquire a value of tan θ
2 , which

means that the weak value will result in outcomes beyond
the eigenvalue spectrum in the regions θ ∈ (π/2, π ) and
θ ∈ (−π,−π/2).

To realize the weak-value measurement, the principal sys-
tem is made to weakly interact with a meter. Let us assume
that the meter is initially in a state |�in〉. Suppose we intend
to measure σ̂ R

z . The weak interaction between the system
and the meter can be effected by a joint unitary Ûσ̂ R

z
=

exp(− ∫
iHσ̂ R

z
t dt ), where

Hσ̂ R
z

= 1√
2

g(t )[(Î − �̂R) ⊗ σ̂z ⊗ Î + �̂R ⊗ σ̂z ⊗ q̂]. (12)

For the postselection given by Eq. (9), the meter goes to the
state

|�m〉 = 〈� f |� ′
1〉

[
1 − ig

(
σ̂ R

z

)
w

q̂ |�in〉
]
, (13)

with (σ̂ R
Z )w = 1. Hence, the meter shows a deflection that

is directly proportional to the weak value of the measured
observable.

IV. AMPLIFICATION OF THE POLARIZATION
OF A PHOTON IN A NOISY SCENARIO

In the preceding section, we laid out the procedure for
amplifying a property of a quantum system in the absence of
the system. We now consider a scenario in which the property
we are looking to amplify is affected by noise, in a certain
way. We first present the situation where the weak-value am-
plification of the noise-affected observable is carried out. As
expected, the amplified quantity will contain a contribution
from the unwanted noise. We then get rid of the noise by
separating it from the signal using a setup similar to that of
the quantum Cheshire cat and amplify the signal.

We can conveniently take the observable to be weakly mea-
sured, as the z component of polarization σ̂z. We recall that
the measurement of the z component of polarization ideally
requires us to set up an interaction of the form

H0 = −g(t )σ̂z ⊗ q̂, (14)

between the polarization degree of freedom and a convenient
meter of our choosing, with meter variable q̂. The variable
q̂ may be a discrete or a continuous meter variable. (See

[8,28,29,45] for experimental realizations of using discrete
meter states.) Let us now consider a scenario in which there
is noise in the interaction Hamiltonian that is analogous to
a spin-orbit-coupling term L̂x ⊗ σ̂x. The total Hamiltonian is
now

H = −gδ(t )Î ⊗ σ̂z ⊗ q̂ + g′L̂x ⊗ σ̂x ⊗ Î. (15)

Here g and g′ are the coupling constants. The coupling be-
tween the system and the meter is an instantaneous coupling,
while on the contrary, in the second term, there is no depen-
dence of time on spin-orbit coupling. Our aim is to obtain the
weak value of σ̂z. Due to the noise, the effective observable
of the total system, resulting in the deflection in the meter, is
different from that in the noiseless case obtained from Eq. (14)
in [5,6].

Let us consider the initial state of the system as |�in〉 and
the postselected state as |� f 〉. As mentioned before, the meter
state could be chosen as a discrete or a continuous spectrum,
depending on the type of the experimental setup. In our work,
we consider both scenarios: One is with a meter variable q̂
considered as discrete and the other is with a continuous state
distribution of the same. As an example of a discrete meter
state, we take a discrete Gaussian function with the standard
deviation

√
2	 as

|�in〉dis =
N∑

k=−N

exp

(
− q2

k

4	2

)
|qk〉 , (16)

where we are assuming a discrete meter variable qk = k with
k having the values 0,±1,±2, . . . ,±N . The corresponding p
representation of this meter state turns out to be

|�in〉dis =
N∑

l=−N

exp
( − 	2 p2

l

)
ξ (pl ) |pl〉 , (17)

where ξ (pl ) = ∑N
k=−N e−(1/4	2 )(qk+2i	2 pl )2

and pl = l
(2N+1)

with l having the values 0,±1,±2, . . . ,±N . In the limit of
N → ∞, ξ (pl ) will be independent of pl . The parallel exam-
ple in the continuous case may be taken as

|�in〉con =
∫ +∞

−∞
dq exp

(
− q2

4	2

)
|q〉 , (18)

with the p representation

|�in〉con =
∫ +∞

−∞
d p exp(−	2 p2) |p〉 . (19)

To obtain the p representations from the q representation in
both the discrete and continuous cases, we neglect multiplica-
tive constants. After postselection, the final state of the meter
is given by

|� f 〉 = 〈� f | Û (t ) |�in〉 |�in〉 , (20)

where t is the time of measurement. This is true for both
the discrete and continuous meter states and hence we have
omitted the subscripts. As the Hamiltonians at different times
do not commute, the expansion of Û (t ) requires using the
Dyson series expansion, leading to

Û (t ) = 1 +
∞∑

n=1

1

n!

(−i

h̄

)n ∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn−1

×J [H (t1)H (t2) · · · H (tn)]. (21)
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We redefine the coupling constants g and g′ so that we can
effectively set h̄ = 1. Using time ordering in the expansion,
we have

1 + (−i)
∫ t

0
dt1H (t1)

+ 1

2!
(−i)2

∫ t

0
dt1

∫ t1

0
dt2H (t1)H (t2)

+ 1

2!
(−i)2

∫ t

0
dt2

∫ t2

0
dt1H (t2)H (t1) + · · · . (22)

Interchanging t1 and t2 in the last (displayed) term, we get

1 + (−i)
∫ t

0
dt1H (t1)

−
∫ t

0
dt1

∫ t1

0
dt2H (t1)H (t2) + · · · . (23)

Substituting the Hamiltonian H from Eq. (15) in this expres-
sion, the form of the unitary turns out to be

1 − i(gÎ ⊗ σ̂z ⊗ q̂ + g′t L̂x ⊗ σ̂x ⊗ Î ) −
(

g2(Î ⊗ σ̂z ⊗ q̂)2

+ gg′t (L̂x ⊗ σ̂xσ̂z ⊗ q̂) + g′2 t2

2
(L̂x ⊗ σ̂x ⊗ Î )2

)
+ · · · .

(24)

The measurement time t is chosen from the regime g
g′ 
 t 


√
g

g′ . Thus we can now assume g and g′ to be sufficiently small

to neglect the g2 term in (24) and the higher-order terms that
are not present in (24). On the other hand, we retain the terms
containing gg′t and g′2t2. Using Eq. (16), the final state of the
meter after weak measurement and postselection reads

|� f 〉dis ≈ 〈� f |�in〉
N∑

k=−N

e−q2
k /4	2

(
1 + igqk (σ̂z )w

− ig′t (L̂x ⊗ σ̂x )w − gg′tqk (L̂x ⊗ σ̂xσ̂z )w

− g′2 t2

2
(L̂x ⊗ σ̂x )2

w

)
|qk〉 . (25)

The weak values above are obtained using the definition in
Eq. (2). Now, in general, for an observable Â and postselection
of |� f 〉, with Aw being the weak value of Â, the shifted meter
state is given by

|� f 〉dis ≈ 〈� f |�in〉
N∑

k=−N

eigqk Aw exp

(
− q2

k

4	2

)
|qk〉 . (26)

Comparing Eqs. (25) and (26), we get

eigqk Aw = 1 + igqk (σ̂z )w − ig′t (L̂x ⊗ σ̂z )w

− gg′tqk (L̂x ⊗ σ̂xσ̂z )w − g′2 t2

2
(L̂x ⊗ σ̂z )2

w. (27)

Let

aw = −ig′t (L̂x ⊗ σ̂z )w − g′2 t2

2
(L̂x ⊗ σ̂z )2

w,

A′
w = (σ̂z )w + ig′t (L̂x ⊗ σ̂xσ̂z )w. (28)

So the final state of the meter can be rewritten as

|� f 〉dis ≈ 〈� f |�in〉
N∑

k=−N

eaw eigqk A′
w exp

(
− q2

k

4	2

)
|qk〉 ,

(29)
with the corresponding p representation being

|� f 〉dis ≈ 〈� f |�in〉
N∑

l=−N

eaw exp[−	2(pl − gA′
w )2]

× ξ (pl − gA′
w ) |pl〉 (30)

≈ 〈� f |�in〉
N∑

l=−N

ea′
w exp[−	2(pl − gA′′

w )2] |pl〉 . (31)

Here a′
w and A′′

w are implicitly defined via the expression
(30), which is equal to the expression (31) and A′′

w → A′
w and

a′
w → aw as N → ∞. The factor ea′

w does not contribute to
the shift of the meter. So the deflection of the meter is propor-
tional to the weak value A′′

w. This A′′
w is difficult to be given

in a closed (explicit) analytic form. In the continuous limit
N → ∞, when the meter state is taken as a continuous one,
given in Eq. (18), the effective observable, measured in the
weak measurement conjured by the noisy Hamiltonian in
Eq. (15), is given by

A′ = σ̂z + ig′t L̂x ⊗ σ̂xσ̂z. (32)

The steps of the calculation for the continuous meter case are
given in the Appendix. In the further discussion of our paper
we will use the effective observable obtained in the continuous
limit. The results for the discrete case will however be close
to those obtained using the effective observable A′ in Eq. (32)
for large N . Moreover, there are instances below where the
discrete and continuous cases match (in form).

If instead of σ̂x the noise term in the Hamiltonian of
Eq. (15) contains σ̂z, as in the cases

H1 = −gδ(t )Î ⊗ σ̂z ⊗ q̂ + g′L̂x ⊗ σ̂z ⊗ Î,

H2 = −gδ(t )Î ⊗ σ̂z ⊗ q̂ + g′L̂z ⊗ σ̂z ⊗ Î, (33)

then by calculating the effective observable in a similar fash-
ion, we get, respectively,

A′
1 = σ̂z + ig′t L̂x ⊗ Î,

A′
2 = σ̂z + ig′t L̂z ⊗ Î. (34)

We can also consider a noisy interaction Hamiltonian of
a different form. Precisely, we can take the noisy part of the
interaction Hamiltonian to be a three-body term so that it is
coupled to the meter with a coupling parameter g(t ) which
has a compact support near the measurement time t :

H ′ = −g(t )(Î ⊗ σ̂z ⊗ q̂ − L̂x ⊗ σ̂x ⊗ q̂). (35)

Using the same method as before, we see that the effective
observable resulting in the shift of the meter is

A′ = σ̂z − L̂x ⊗ σ̂x. (36)

To demonstrate the working principle in either case [i.e.,
when the interaction Hamiltonian is given by either Eq. (35)
or (15)], let us consider a set of preselected and postselected
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FIG. 2. Setup for amplifying the weak value of the effective ob-
servable in the noisy scenario. The L splitter adds an orbital angular
momentum degree of freedom to the physical system. The L′ splitter
transmits the component of orbital angular momentum parallel to
|va〉 and reflects any component orthogonal to it.

states as follows:

|χin〉 = 1√
2

(|va〉 + i |vb〉) ⊗ |H〉 ,

|χ f 〉 = |va〉 ⊗ (cos α |H〉 + sin α |V 〉). (37)

In these states, the first degree of freedom represents the
angular momentum component L̂x, while the second degree
of freedom represents polarization. We assume that the orbital
quantum number l is conserved, for the system under study,
at 1. Correspondingly, the dimension of the space spanned
by the eigenvectors of L̂x is three dimensional. For simplic-
ity, we work in a scenario where one of the dimensions in
this three-dimensional space is naturally or artificially forbid-
den. The remaining two-dimensional Hilbert space is spanned
by orthonormal vectors |va〉 and |vb〉, with L̂x represented
as

L̂x = −i(|va〉 〈vb| − |vb〉 〈va|), (38)

where

|va〉 = 1√
2

⎛
⎝1

0
1

⎞
⎠, |vb〉 =

⎛
⎝ 0

−i
0

⎞
⎠, (39)

expressed in the eigenbasis of L̂z. To prepare the preselected
state, we can send a photon with an initial polarization |H〉
through an arrangement, which we call the L splitter in Fig. 2,
where it acquires an angular momentum of 1√

2
(|va〉 + i |vb〉).

We intend to measure the weak value of σ̂z and so bring in
a meter in the initial state given by Eq. (16) for the discrete
pointer state and Eq. (18) for the continuous pointer state
and set up an interaction of the form in Eq. (14). How-
ever, unknown to us, the form of interaction is actually as
in Eq. (15). To get the postselected state, the photon passes
through another arrangement, the L′ splitter, that transmits
orbital angular momentum |va〉 and reflects any orthogonal
component towards the detector D3. The transmitted photon is
then passed through a polarization beam splitter that is chosen
so that it transmits light of polarization cos α |H〉 + sin α |V 〉
towards a detector D1 and reflects any orthogonal polarization
en route to detector D2. Thus, by selecting the clicks of D1

alone, we can postselect the state |χ f 〉.
However, due to the inherent noise in the Hamiltonian of

the form (15), as a result of the extra spin-orbital interaction,

the weak value of the effective observable A′ = σ̂z + ig′t L̂x ⊗
σ̂xσ̂z is measured (instead of σ̂z) to be

A′
w = (g′t + i) tan α. (40)

In contrast, if the unknown noise is a three-body interaction as
in Eq. (35), the weak value of the effective observable given
in Eq. (36) turns out to be

A′
w = 1 + i tan α (41)

using the setup schematically demonstrated in Fig. 2.
So, in both noisy situations [Eqs. (15) and (35)] we can

amplify the weak value of the respective effective observables
[see Eqs. (32) and (36)] by varying the parameter α using
different PBSs. However, due to the presence of spin-orbit
coupling in the system, we are unable to determine the weak
value of σ̂z as, instead of σ̂z, the deflection of the meter is pro-
portional to the weak value of an observable which contains
an unwanted noise along with σ̂z. Hence, while attempting to
amplify the weak value of the z component of polarization,
we unintentionally amplify the weak value of a constituent
noise. This, e.g., may cause disadvantages in applications
of quantum technologies, which depend on the weak-value
enhancement of the polarization degree of freedom of the
system. It is plausible that the presence of the noise effects
considered is more probable than the ideal noiseless situation,
and therefore it will be beneficial to design an experimental
setup that can “disembody” the noise from the required ob-
servable.

Disembodiment of noise from the ideal system
using quantum Cheshire cats

With the general working principle established earlier in
Sec. II, we now proceed to get the amplified signal of the z
component of polarization by disassociating, with the help of
the Cheshire cat mechanism.

The noise originates from the interaction with the unin-
tended degree of freedom (in this case, L̂x) during the weak
measurement process. The intended preselected and posts-
elected states are |� ′

1〉 and |� f 〉, respectively [see Eqs. (8)
and (9)]. However, the photon passing through the L splitter
picks up a new degree of freedom, an angular momentum
component given by 1√

2
(|va〉 + i |vb〉), as shown in Fig. 3. So

the effective preselected state is

|χ ′
in〉 =

(
cos

θ

2
|L〉 − i sin

θ

2
|R〉 ⊗ 1√

2
(|va〉 + i |vb〉

)
⊗ |H〉 .

(42)
To achieve the desired outcome, we are required to carry out
postselection in

|χ ′
f 〉 = (cos α |L〉 |H〉 + sin α |R〉 |V 〉) ⊗ |va〉 . (43)

To obtain this state, the beam splitter BS2 needs to be of
a transmission coefficient cos2 α and reflection coefficient
sin2 α rather than being the 50:50 type. Also, we assume
that the state passes through a device, the L′ splitter, that
permits only the orbital angular momentum component along
|va〉 towards the PBS and reflects any orthogonal component
towards the detector D3, as shown in Fig. 3. The measured

052214-6



ISOLATING NOISE AND AMPLIFYING THE SIGNAL … PHYSICAL REVIEW A 107, 052214 (2023)

FIG. 3. Interferometric setup for separating the spin-orbit-
coupling–like noise and simultaneously amplifying the signal
corresponding to the chosen observable. See the text for details.

weak values are

(
σ̂ L

z

)
w

= 0,

(
σ̂ R

z

)
w

= tan
θ

2
tan α,

(L̂x ⊗ σ̂x )L
w = 1,

(L̂x ⊗ σ̂x )R
w = 0. (44)

Therefore, we can conclude that one can amplify the weak
value of the observable σ̂z separating it from the noise part
L̂x ⊗ σ̂x. Moreover, the enhancement of the weak value of σ̂ R

z
can be more than that of the effective observables obtained
in the two previous cases [described in Eqs. (40) and (41),
using a linear setup, as depicted in Fig. 2], because of the extra
tuning parameter θ . Therefore, even if we fix the parameter α,
we are still able to amplify the weak value of σ̂z by changing
the parameter θ with the use of different PBS1s. So now we
have successfully achieved our goal of amplifying the weak
value of the required observable by splitting up the noise from
the system. In addition, the enhancement of the weak value of
the required observable is greater than that of the effective ob-
servable detectable in the noisy situation [compare Eqs. (40)
and (41) with Eq. (44)]. We need to choose an initial state
of suitable polarization in the preparation of the preselected
state. Also, to measure the weak values in an experimental
procedure, we have to construct a unitary parallel to the one
mentioned in the noiseless situation. The composite setup of
the system and meter can be acted on by the Hamiltonian H ′

σ̂ R
z

for measuring σ̂ R
z , where

H ′
σ̂ R

z
= gδ(t − t ′)[(Î − �̂R) ⊗ Î ⊗ σ̂z ⊗ Î

+ �̂R ⊗ Î ⊗ σ̂z ⊗ q̂]. (45)

So the unitary generated by the Hamiltonian H ′
σ̂ R

z
will be

U ′
σ̂ R

z
= exp(− ∫

iH ′
σ̂ R

z
t dt ). After the postselection, the meter

state turns out to be

|�m〉 = 〈χ ′
f |χ ′

in〉
[
1 − ig

(
σ̂ R

z

)
w

q̂ |�in〉
]
. (46)

Hence, the deflection of the meter state is proportional to the
weak value of σ̂z on the right arm, up to the first-order term in
the expansion of the unitary. The constructed unitary is almost
the same as in the noiseless scenario, the only difference
being that we have to incorporate an identity in the degree of
freedom of orbital angular momentum. Similarly, to measure
(L̂x ⊗ σ̂x )L, the unitary is Û ′

(L̂x⊗σ̂x )L , where

H ′
(L̂x⊗σ̂x )L = g′[(Î − �̂L ) ⊗ L̂x ⊗ σ̂x ⊗ Î

+ �̂L ⊗ L̂x ⊗ σ̂x ⊗ q̂], (47)

and here the final meter state ends up being

|�m〉 = 〈χ ′
f |χ ′

in〉 [1 − ig′t (L̂x ⊗ σ̂x )R)wq̂ |�in〉]. (48)

Note that the subscript dis or con has been omitted here, as the
same form of the equation is true in both cases.

In practice, a more complex scenario can arise when the
noise couples with the measured observable, as in Eq. (33).
In this case, one may not be able to find a suitable pre-
and postselection to decouple the noise from σ̂z. It could be
possible to separate σ̂z and L̂x ⊗ σ̂z or L̂z ⊗ σ̂z, but in both
arms of the interferometer, there still remains a contribution
of σ̂z. Hence the complete dissociation of the z component
of polarization of the photon from the noise part may not be
achievable by this method.

In the noise model proposed here, the angular momentum
degree of freedom of the system is acting as a source of
noise and it couples to another degree of freedom of the
system, which we want to measure. So it is like a subsys-
tem interacting with the original system. In a realistic noisy
scenario, to introduce a generic noise in the system, we take
an auxiliary system from outside, operate a global unitary on
the composite system-auxiliary setup, and then trace out the
auxiliary. The same method can be followed with a different
degree of freedom of the system instead of using the auxiliary
system. The mathematical modeling will be the same in both
instances. There are previous works where the noise is gener-
ated from a degree of freedom of the system itself. See, e.g.,
[46,47]. Also, in [48] it was shown that decoherence effects
can be generated due to the coupling of mesoscopic variables
of the system and internal degrees of freedom of the same.
The center of mass of a system can have different degrees of
freedom, which may interfere, and such interference can get
effectively decohered due to the coupling of the center of mass
of the system with the internal vibrational degrees of freedom,
as was studied in [49]. See also [50,51] in this regard.

An additional point to be noted here is that in practical
scenarios, the noise source is usually unknown and we have
to trace out the subsystem. In our case, for the measurement,
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we have to concentrate on the meter state, which is done by
removing both degrees of freedom of the system from the
total system including the meter. This tracing out is performed
implicitly in the method of weak measurement. This implicit
tracing out of the system has also been performed in previous
papers in this direction, e.g., in [5,6]. Note that for this implicit
tracing out of the system, the noise source is also being traced
out. So no additional explicit tracing out, corresponding to the
noise in the system, is required.

V. CONCLUSION

To summarize, we have proposed a thought experiment
related to the so-called quantum Cheshire cat in which a com-
ponent of polarization could be amplified independently of
the photon, using interferometric arrangements. Furthermore,
we extended the setup to a scenario in which, of two com-
plementary polarization components of a photon, one can be
amplified while being detached from the other. Moreover, we
considered a noisy scenario in which the noise is generated by
a spin-orbit-coupling–like interaction term in the Hamiltonian
governing the measurement process. We analyzed the ampli-
fication of a chosen observable in the presence of noise, both
with and without the noise term being dissociated, on average,
from the object by using a quantum Cheshire cat–inspired
setup.

It has been pointed out in the literature that the phenomena
related to the quantum Cheshire cat are “average” effects. In
particular, the weak values indicate average shifts of the meter,
conditioned on the preselected and the postselected states, and
the object and the property (or two properties of the same
object) do not actually travel separately in each arm of the
experimental setup; rather they do so only on an average.
Nonetheless, just like for the original quantum Cheshire cat,
in our setups also, it has been ensured that the weak values
observed are not classical averages, but quantum-mechanical
mean shifts, obtained by considering coupling between the

photon or polarization component and a meter. Let us also
note here that the amplifications reported do not imply that
the amplified values could become arbitrarily large; nonlinear
effects appear that limit the amplified values [52].
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APPENDIX: EFFECTIVE OBSERVABLE WHEN THE
METER STATE IS CONTINUOUSLY DISTRIBUTED

For the initial meter state given in Eq. (18), the final meter
state will take the form

|� f 〉con ≈ 〈� f |�in〉
∫

dq e−q2/4	2

(
1 + igq(σ̂z )w

− ig′t (L̂x ⊗ σ̂x )w − gg′tq(L̂x ⊗ σ̂xσ̂z )w

− g′2 t2

2
(L̂x ⊗ σ̂x )2

w

)
|q〉 . (A1)

This can be written as

|� f 〉con ≈ 〈� f |�in〉
∫

dq eiqgAw exp

(
− q2

4	2

)
|q〉 , (A2)

with the same aw and A′
w as in Eq. (28) and hence the effective

observable A′ is the same as in Eq. (32). So the final state of
the meter turns out to be

|� f 〉con ≈ 〈� f |�in〉
∫

dq eaw eiqgA′
w exp

(
− q2

4	2

)
|q〉 ,

(A3)
with the corresponding p representation being

|� f 〉con ≈ 〈� f |�in〉
∫

d p eaw exp[−	2(p − gA′
w )2] |p〉 .

(A4)
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