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Measurement error and disturbance, in the presence of conservation laws, are analysed in gen-
eral operational terms. We provide novel quantitative bounds demonstrating necessary conditions
under which accurate or non-disturbing measurements can be achieved, highlighting an interesting
interplay between incompatibility, unsharpness, and coherence. From here we obtain a substan-
tial generalisation of the Wigner-Araki-Yanase (WAY) theorem. Our findings are further refined
through the analysis of the fixed-point set of the measurement channel, some extra structure of
which is characterised here for the first time.

1 Introduction
That measurements generally disturb quantum systems is one of the fundamental aspects of quantum mechanics.
The consequences of this effect range from the foundational to the applied, sometimes entering in the guise of
measurement “back-action”, playing a key role in quantum metrology, computation, and information processing
[1–20]. Measurement disturbance can be seen when two observables are measured in succession, and the statistics
of the second measurement depend on the first. While a well-known necessary condition for non-disturbance
is that the pair of observables must be compatible [21, 22], further necessary conditions arise when the first
measurement obeys a conservation law, i.e., when the interaction between the measured system and measuring
apparatus conserves some total quantity such as energy, charge, or angular momentum. Indeed, the Wigner-
Araki-Yanase (WAY) theorem states that when a single sharp observable is measured in succession, the first
measurement will not disturb the second only if the measured observable commutes with the system part of a
conserved quantity [23–25]. The same constraint holds for perfectly accurate measurements, and independently
of disturbance, if the pointer observable of the apparatus obeys the “Yanase condition”, i.e., if it commutes
with the apparatus part of a conserved quantity [26].

The WAY theorem has evolved over the years and continues to inspire research in a variety of directions (some
recent examples are [27–34]), having impact also in other fields of research: for instance in quantum computing
[35–37], the resource theories of asymmetry [38] and coherence [39, 40], the theory of quantum reference frames
[41, 42], quantum clocks [43], and quantum thermodynamics [44–48]. Despite the progress that has been made,
however, the full scope of the WAY theorem is still not known. For instance, the theorem as stated pertains only
to sharp observables, and has been shown only in the limited framework of “normal” measurement schemes,
where the apparatus is prepared in a pure state and unitarily interacts with the measured system, and where
the pointer observable is sharp. But in the quantum theory of measurement [49], observables are more properly
represented by positive operator valued measures (POVMs) which can be unsharp, measurement interactions
are more generally described by channels which can be non-unitary, and the apparatus preparation may be
described by a mixed state. Additionally, the WAY theorem addresses disturbance only in the case where
the same observable is measured in succession, and the situation where the first and second observables in the
sequence are not the same has received scant attention. In this paper, we shall investigate the role of conservation
laws on measurement error and disturbance in the more general setting, stating our results in operational terms,
in that the quantitative bounds we employ can be seen to arise from the probabilistic structure of quantum
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theory in its general measurement theoretic form [50].

The paper is structured as follows. In Sec. 2, we present the elements of operational quantum theory pertinent
to our investigation. This includes a background on the quantum theory of measurement, together with a
quantification of measurement error and disturbance. Readers familiar with these topics can jump directly to
Sec. 3, where the main results of the paper begin; here we present a framework for describing conservation
laws in quantum theory, prising apart two distinct notions of conservation—full and average—whose difference
manifests for general channels and which plays a key role in interpreting our findings. Next, we consider
sequential measurements where the first measurement obeys a conservation law—whether average or full—and
obtain general quantitative bounds for the error in the first measurement to realise a desired target observable,
and the disturbance by the first measurement on a second, possibly different, observable. Here, we do not
assume that the system observables are sharp, or that the apparatus pointer observable is sharp, or that
the measurement interaction is unitary, or that the apparatus preparation is pure. In particular, the bounds
demonstrate that in the case of a full conservation law, a large coherence in the apparatus preparation is in
general a necessary condition for approximately accurate and non-disturbing measurements of observables not
commuting with the system part of a conserved quantity. These bounds are then used to prove a generalisation
of the WAY theorem, given in the form of a single quantitative bound, and capturing many essential features
of the original theorem. Next, we provide an even stronger generalisation of the WAY theorem, indicating a
deep connection between measurability, non-disturbance, and “definiteness”, and demonstrating that there are
unsharp observables not commuting with the conserved quantity whose measurement cannot be accurate or
non-disturbing irrespective of the apparatus preparation. Finally, in Sec. 4 we consider how the structure of the
set of fixed states of the measurement channel imposes further restrictions on non-disturbance. In particular, we
show that an observable not commuting with the conserved quantity admits a non-disturbing measurement only
if the measurement channel disturbs all “faithful” states, i.e., states with strictly positive eigenvalues.

2 Preliminaries
In this section we introduce the elements of operational quantum theory. This includes some background on
observables, instruments, and measurement schemes, as part of the quantum theory of measurement (see, e.g.,
[49–52]). In particular, an operationally motivated quantification of measurement error and disturbance is
provided, together with a review of two special instances of non-disturbing measurements—measurements of
the first kind and repeatable measurements.

2.1 Operators on Hilbert space, operations, and channels
Let H be a complex separable Hilbert space, with L(H) ⊃ Ls(H) ⊃ Lp(H) the algebra of bounded (linear)
operators, the real vector space of self-adjoint operators, and the (cone of) positive operators on H, respectively.
For any subset A ⊆ L(H), the commutant is defined as A ′ := {B ∈ L(H) : [A,B] = O∀A ∈ A }. We shall
denote by 1 and O the identity and null operators of L(H), respectively, and an operator A ∈ Lp(H) satisfying
O ⩽ A ⩽ 1 will be called an effect. We define by T (H) ⊆ L(H) the two-sided ideal of trace-class operators
in L(H). The (normal) state space is the space of positive, unit-trace operators S(H) ⊂ T (H), and a state
ρ ∈ S(H) is called faithful if for all A ∈ L(H), tr[A∗Aρ] = 0 =⇒ A = O, which implies that all of the
eigenvalues of ρ are strictly positive.

Transformations of quantum systems are called operations, defined as completely positive (CP), trace non-
increasing linear maps Φ : T (H) → T (K). Among the operations are the channels, which preserve the trace.
For any operation Φ : T (H) → T (K), there is an associated (“Heisenberg picture”) dual operation Φ∗ : L(K) →
L(H), defined via the duality tr[Φ∗(A)T ] = tr[AΦ(T )] for all A ∈ L(K) and T ∈ T (H). Φ∗ is completely positive
and sub-unital, and unital exactly when Φ is trace-preserving. Unital operations Φ∗ will also be referred to as
channels. In Appendix (A) we present several properties of operations that are of central importance for the
proofs of our results, most notably a Cauchy-Schwarz inequality [53].

For channels Φ : T (H) → T (H), and their duals Φ∗ : L(H) → L(H), we define the fixed-point sets as

F(Φ) := {T ∈ T (H) : Φ(T ) = T}, F(Φ∗) := {A ∈ L(H) : Φ∗(A) = A}.

Note that A ∈ F(Φ∗) is equivalent to tr[AΦ(ρ)] = tr[Aρ] for all states ρ ∈ S(H). Linearity of Φ∗ ensures that
F(Φ∗) is closed under linear combinations, and because Φ∗ preserves the involution, F(Φ∗)∗ = F(Φ∗). While
F(Φ∗) is not generally closed under multiplication, if F(Φ) contains a faithful state then multiplicative closure is
guaranteed, in which case F(Φ∗) is a ∗-algebra; in fact, it is a von Neumann algebra [54, 55]. See Appendix (B)
for further details.
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2.2 Observables
An observable of a quantum system S, with Hilbert space HS , is represented by a normalised positive operator
valued measure (POVM) E : Σ → Lp(HS), where Σ is a σ−algebra of subsets of some value space X , representing
possible outcomes of a measurement of E. For any X ∈ Σ, the positive operator O ⩽ E(X) ⩽ 1S is referred to as
an effect of E. E is sigma-additive on disjoint elements of Σ, and normalisation implies that E(X ) is the identity
operator on HS . An effect E(X) = α1S , where α ∈ [0, 1], is called trivial, and an observable E is called non-trivial
if at least one of the effects in its range is non-trivial. Discrete observables are those for which X = {x1, x2, . . . }
is countable, in which case E can be identified with the set {E(x) ≡ E({x}) ∈ Lp(HS) : x ∈ X } ≡ E. If it is not
stated otherwise, observables will be assumed to be discrete. Combined with states, observables give rise to the
probabilities

pE
ρ(x) := tr[E(x)ρ],

holding for all ρ ∈ S(HS) and all x ∈ X , interpreted as the probability of observing outcome x when the
observable E is measured in the state ρ.

If E is a POVM acting in HS , the commutant of E is denoted by E′ := {A ∈ L(HS) : [E(x), A] = O∀x ∈ X }.
Since E = E∗ is a self-adjoint set, E′ is a von Neumann algebra, and E′′ ≡ (E′)′ is the smallest von Neumann
algebra containing E (i.e., it is the von Neumann algebra generated by E). For any A ∈ L(HS) such that
A ∈ E′, we write [E, A] = O. Similarly, for any observable F := {F(y) : y ∈ Y} such that F ⊂ E′, we shall write
[E,F] = O. Among the observables are those that are commutative, meaning that E ⊂ E′ (that is, all the effects
E(x) mutually commute). Among the commutative observables are the sharp observables, which satisfy the
additional condition that for all x, y ∈ X , E(x)E(y) = δx,yE(x), i.e., E(x) are mutually orthogonal projection
operators. These observables correspond to self-adjoint operators through the spectral theorem. Observables
that are not sharp will be called unsharp, and similarly any effect E which is not a projection will be called
unsharp. The unsharpness of E can be quantified through the operator norm as 0 ⩽ ∥E − E2∥ ⩽ 1/4, which
vanishes exactly when E is a projection. Finally, an observable E is defined as being “norm-1”, or having the
norm-1 property, if ∥E(x)∥ = 1 for every x for which E(x) ̸= O. While sharp observables are trivially norm-1,
this property may also be enjoyed by some unsharp observables.

2.3 Instruments

Figure 1: An instrument measures an observable E of the system S, and also transforms the system conditional on registering a
given outcome. The system, initially prepared in an arbitrary state ρ, enters the instrument which then registers outcome x with
probability pE

ρ(x) := tr[E(x)ρ] = tr[Ix(ρ)]. Subsequently, the instrument transforms the system to the (non-normalised) state
Ix(ρ).

Though the state-observable pairings describe the totality of the measurement statistics, this is not sufficient
for determining other interesting properties of a measurement, for instance the form of the associated state
changes. To this end, we make use of the notion of instrument, or operation valued measure [56–60]. A discrete
instrument is a collection of operations I := {Ix ≡ I{x} : x ∈ X } such that IX (·) :=

∑
x∈X Ix(·) is a channel.

Throughout, we shall always assume that I acts in HS , that is, Ix : T (HS) → T (HS). Each instrument is
associated with a unique observable E via I∗

x(1S) = E(x), which implies that pE
ρ(x) := tr[E(x)ρ] = tr[Ix(ρ)]. We

refer to such an I as an E-compatible instrument, or an E-instrument for short, and to IX (·) as the associated
E-channel. Ix(ρ) is interpreted as the non-normalised state after a measurement of E has taken place and
the outcome x has been registered, and IX (ρ) is the normalised state after a non-selective measurement. A
schematic representation of an instrument is given in Fig. 1.

We note that for every discrete observable E, there are infinitely many E-compatible instruments; every E-
instrument I can be constructed as the set of operations {Ix = Φx ◦ ILx : x ∈ X } [58, 60], where Φx : T (HS) →
T (HS) are arbitrary channels that may depend on outcome x, and IL is the Lüders instrument for E [61],
defined as

ILx (T ) :=
√

E(x)T
√

E(x) ILx
∗(A) :=

√
E(x)A

√
E(x), (1)

to hold for all x ∈ X , T ∈ T (HS), and A ∈ L(HS).
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2.4 Measurement schemes

Figure 2: An E-instrument I is implemented on the system S via a measurement scheme. The system, initially prepared in an
arbitrary state ρ, and a measuring apparatus A, prepared in a fixed state ξ, undergo a joint evolution by the channel E. Subse-
quently, a pointer observable Z of the apparatus is measured. With probability pE

ρ(x) := tr[E(x)ρ] = tr[Ix(ρ)] the apparatus
registers outcome x, thereby transforming the system to the non-normalised state Ix(ρ).

An even more comprehensive description of the measurement process involves the modelling of a measuring
apparatus A and a specification of how it couples to the system under investigation. A measurement scheme
is characterised by the tuple M := (HA, ξ, E ,Z) where: HA is the Hilbert space for the measuring apparatus
A and ξ ∈ S(HA) is a state on HA; E : T (HS ⊗ HA) → T (HS ⊗ HA) is a channel which serves to correlate
system and apparatus; and Z := {Z(x) : x ∈ X } is a “pointer” observable of the apparatus. The operations of
the instrument implemented by M can be written as

Ix(·) = trA[(1S ⊗ Z(x))E(· ⊗ ξ)], (2)

where trA : T (HS ⊗ HA) → T (HS) is the partial trace channel over the apparatus, defined as tr[AtrA[T ]] =
tr[(A⊗ 1A)T ] for all A ∈ L(HS) and T ∈ T (HS ⊗ HA). The channel implemented by M may thus be written
as IX (·) = trA[E(· ⊗ ξ)]. A schematic representation of a measurement scheme is given in Fig. 2. We note that
every E-compatible instrument admits infinitely many normal measurement schemes, where ξ is chosen to be
pure, E is chosen to be unitary, and Z is chosen to be sharp [62]. However, unless stated otherwise, we shall
consider the more general situation where ξ may be mixed, E may be non-unitary, and Z may be unsharp.

We now introduce the unital, completely positive normal conditional expectation Γξ : L(HS ⊗ HA) → L(HS).
Γξ, called a restriction map for ξ, is defined as the dual of the isometric embedding (or the preparation map)
T 7→ T ⊗ ξ, and satisfies tr[Γξ(B)T ] = tr[B(T ⊗ ξ)] for all B ∈ L(HS ⊗ HA) and T ∈ T (HS). We may use the
restriction map to define the channel ΓE

ξ : L(HS ⊗ HA) → L(HS) as

ΓE
ξ (·) := Γξ ◦ E∗(·). (3)

Using Eq. (3), we may express the duals of the operations defined in Eq. (2) as

I∗
x(·) = ΓE

ξ (· ⊗ Z(x)). (4)

In particular, we may write the dual channel as I∗
X (·) = ΓE

ξ (· ⊗ 1A).
We may also be interested in asking how the apparatus is transformed as a result of the measurement interaction.
To this end, we introduce the channel Λ : T (HS) → T (HA) and its dual Λ∗ : L(HA) → L(HS), referred to as
conjugate channels to IX and I∗

X , respectively, defined as

Λ(T ) := trS [E(T ⊗ ξ)], Λ∗(A) := ΓE
ξ (1S ⊗A), (5)

to hold for all T ∈ L(HS) and A ∈ L(HA). That is, Λ(ρ) is the state of the apparatus after it has interacted
with the system, when the system is initially prepared in state ρ. On the other hand, for an initial system state
ρ, the expected value of A ∈ L(HA) in the state of the apparatus after the measurement interaction can be
obtained by evaluating the expected value of Λ∗(A) in ρ.

2.5 Quantifying measurement error and measurement disturbance
In order to quantify measurement error and measurement disturbance, we shall first provide a quantification of
the difference, or discrepancy, between two effects E and F acting in a generic space H. For any state ρ ∈ S(H),
the probabilities that the properties corresponding to E and F are realised can be compared as |tr[ρ(E − F )]|,
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which can be estimated through repeated measurements of E and F in the state ρ. Given that we wish to
quantify the sense in which E and F differ as effects, i.e., independently of the state, it is natural to take the
supremum over all states, and note that

sup
ρ∈S(H)

|tr[ρ(E − F )]| = ∥E − F∥, (6)

the right hand side denoting the operator norm, which of course vanishes when E = F and is non-zero other-
wise. Eq. (6) gives an operationally motivated—in the sense of being derived directly from the experimental
probabilities—quantification of the discrepancy between two effects, which will be utilised in the analysis of
measurement error and disturbance.

Let us first address the question of measurement error. Note that by Eq. (4) and Eq. (5), the observable that is
measured by a scheme M := (HA, ξ, E ,Z) has the effects I∗

x(1S) = ΓE
ξ (1S ⊗Z(x)) ≡ Λ∗(Z(x)). Now, let E be the

target observable, i.e., the observable we wish to measure, which may be different to the measured observable,
but has the same value space X . By Eq. (6), the measurement error for each effect of the target observable can
be quantified through the operator norm as ∥ϵ(x)∥, where

ϵ(x) := Λ∗(Z(x)) − E(x). (7)

A global quantification of measurement error may thus be defined as the largest error over all effects of E,

ϵ := max
x∈X

∥ϵ(x)∥.

M is a measurement scheme for E if ϵ = 0, that is, if the target observable is what is actually measured, so that
Λ∗(Z(x)) = E(x) for all x. In the absence of any constraints, perfectly accurate measurements are possible for
any target observable E.

Figure 3: In a sequential measurement, an observable E is measured by an instrument I, and subsequently a second observable
F is measured. I does not disturb F if for all input states ρ, the statistics of F do not depend on whether an E-measurement took
place or not.

Now let us address the question of measurement disturbance. Let E := {E(x) : x ∈ X } and F := {F(y) : y ∈ Y}
be two observables acting in HS . Consider the sequential measurement of these observables, as depicted in
Fig. 3, where at first E is measured by the instrument I (implemented by some measurement scheme M), and
subsequently F is measured. For any initial state ρ ∈ S(HS), the probability of observing outcome y of F after
a non-selective measurement by the E-instrument I is given as

tr[F(y)IX (ρ)] ≡ tr[I∗
X (F(y))ρ].

That is, the prior E-measurement implies that we perform a measurement of the disturbed observable {I∗
X (F(y)) :

y ∈ Y} in the state ρ. By Eq. (6), the disturbance of each effect of F may be quantified through the operator
norm as ∥δ(y)∥, where

δ(y) := I∗
X (F(y)) − F(y). (8)

Note that if I is implemented by the measurement scheme M := (HA, ξ, E ,Z), then we may equivalently write
δ(y) = ΓE

ξ (F(y) ⊗ 1A) − F(y). A global quantification of the disturbance of F can then be defined as the largest
disturbance over all the effects,

δ := max
y∈Y

∥δ(y)∥,

and F is non-disturbed by I exactly when δ = 0, which is the case when I∗
X (F(y)) = F(y) for all y ∈ Y. In other

words, I does not disturb F exactly when each F(y) is a fixed point of the E-channel I∗
X , i.e., F ⊂ F(I∗

X ). In such
a case, for any initial state ρ, a non-selective measurement by I does not affect the subsequent measurement
statistics of F. In the absence of any constraints, non-disturbance is always possible when the pair of observables
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commute; since E′ ⊂ F(ILX
∗) always holds, where IL is the Lüders E-instrument defined in Eq. (1), then a Lüders

measurement of E is guaranteed not to disturb any F commuting with E [63]. While the fixed-point set of the
E-channel I∗

X is not always contained in the commutant of E, in Appendix (C) we present some cases where
F(I∗

X ) ⊂ E′ necessarily holds. For a wider discussion on the relationship between disturbance, commutation,
and compatibility, and a quantitative bound relating the minimum disturbance in terms of the commutation
between the pair of observables, and the unsharpness of each, see Appendix (D).

2.6 Measurements of the first kind, and repeatable measurements
A special instance of a non-disturbing measurement is when an E-instrument I does not disturb E itself,
i.e., when E ⊂ F(I∗

X ). Such measurements are referred to as measurements of the first kind. A subclass of
measurements of the first kind are those which are repeatable. Though repeatability is a standard assumption
in many textbook treatments of quantum mechanics, that it is a property which a measurement may or may
not enjoy appeared already in Wigner’s 1952 contribution on the WAY theorem. However, within the general
framework presented thus far, repeatability corresponds to a very special form of state change, possible only for
a privileged class of observables—an observable E admits a repeatable measurement only if it is discrete [62],
and all the effects have at least one eigenvector with eigenvalue 1 [64]. I is a repeatable E-instrument if

tr[Iy ◦ Ix(ρ)] = δx,ytr[Ix(ρ)] ∀ ρ ∈ S(HS), x, y ∈ X ,

which implies that

I∗
x(E(y)) = δx,yE(x) ∀x, y ∈ X . (9)

The above definition is equivalent to I∗
x(E(x)) = E(x) for all x, since if this holds then I∗

x(1S − E(x)) =
E(x) − E(x) = O [1]. In other words, if I is a repeatable instrument, then repeated measurements by I
are guaranteed (with probability one) to produce the same result. It is straightforward to verify that if a
measurement of E is repeatable, then it is also of the first kind, since

I∗
X (E(y)) =

∑
x∈X

I∗
x(E(y)) =

∑
x∈X

δx,yE(x) = E(y).

While the converse relation does not hold in general—a measurement can be of the first kind and not repeat-
able, such as is the case for a Lüders instrument compatible with a commutative but unsharp observable—in
the special case of sharp observables repeatability and first-kindness coincide (Theorem 1 in Ref. [65]). In
Appendix (E), we provide a series of results regarding the structure of repeatable instruments.

3 Generalisation of the Wigner-Araki-Yanase theorem
The Wigner-Araki-Yanase (WAY) theorem is the classic result connecting measurement, conservation, and
disturbance. This theorem was formulated by Araki and Yanase in 1960 [25], capturing in a fairly general
setting an observation due to Wigner given in 1952 [23, 24] regarding spin measurements in the presence of
angular momentum conservation. The WAY theorem as formulated in Ref. [26] states that for any discrete sharp
observable represented as a self-adjoint operator A not commuting with the system part of a (bounded, additive)
conserved quantity, the measurement—described by a normal measurement scheme—cannot be repeatable and
must violate the Yanase condition, i.e., the pointer observable of the apparatus must fail to commute with
the apparatus part of the conserved quantity. In other words, if the Yanase condition is satisfied, then the
measurement cannot be “accurate”, in the sense that A is not measured by the scheme. But the WAY theorem
does not rule out approximate measurements with approximate repeatability properties, where approximate
measurement is understood to mean that the unsharp observable which is actually measured can be made
statistically close to A. Therefore, WAY has both a strict impossibility part, along with the provision of
conditions under which approximate measurements may be possible; as already hinted at by Wigner’s original
observation, and subsequently refined by Yanase [66] and Ozawa [67] in the form of quantitative bounds, a
normal measurement scheme obeying a conservation law and the Yanase condition can achieve approximately
accurate measurements for A only if the uncertainty of the apparatus preparation in the conserved quantity is
large.

While the WAY theorem has developed over the years, its full scope is still not known. In particular, while
much of the previous work around the WAY theorem has focused on the “measurability question”—upon which
observables cannot be measured, or can be only approximately measured given the conservation law—the role of
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disturbance has been much less fully examined. Moreover, previous proofs of the WAY theorem concerned only
sharp target observables, and were shown in the limited framework of normal measurement schemes, leaving
open the question as to whether the implications of the theorem will carry over to the more general setting. In
this section, we shall close this gap.

We begin by first introducing two operational definitions of conservation laws for channels—full conservation,
and the generally weaker notion of average conservation. Next, we obtain quantitative bounds for measurement
error and measurement disturbance in the presence of conservation—whether average or full—in the general
setting, i.e., without assuming sharpness of the measured observable, the sharpness of the pointer observable,
the unitarity of the interaction or the purity of the apparatus preparation. These bounds allow us to prove a
generalisation of WAY, which is presented as a single quantitative bound that contains both the possibility and
impossibility statements of the theorem. A further generalisation of the WAY theorem is also provided, this time
presented as an equality that serves to further strengthen the strict impossibility statement of the WAY theorem
for observables that may be unsharp, but are “definite”. The section concludes with a demonstration that by
imposing conservation laws on pointer objectification in addition to the measurement interaction between system
and apparatus, the measurability part of WAY can be recovered without the Yanase condition.

3.1 Measurement schemes in the presence of conservation laws

Figure 4: The system is measured in succession, with the first measurement implemented by a scheme M := (HA, ξ, E, Z) where
E conserves an additive quantity N = NS ⊗ 1A + 1S ⊗ NA. The conservation law imposes restrictions on the possibility of M to
accurately measure a target observable E, and on the possibility of non-disturbance for the second observable F.

While every E-compatible instrument I admits some measurement scheme M := (HA, ξ, E ,Z), any restrictions
imposed on the elements of M will in turn restrict the types of instruments that can be implemented, and
hence the class of observables E that can be accurately measured, and the class of observables F that will
be non-disturbed. One such restriction is given by conservation laws—for example, the interaction channel E
between system and apparatus may be restricted so that the total energy, charge, or angular momentum must
be conserved. Before investigating how conservation limits measurements, let us first consider two operational
definitions of conservation laws for channels, where the conserved quantity N is always assumed to be a bounded
self-adjoint operator. In the first analysis, a conservation law can be defined by equality of expectation values
before and after the action of the channel, i.e., average conservation:

Definition 1. A channel Φ : T (H) → T (H) conserves a self-adjoint operator N ∈ Ls(H) on average if for all
ρ ∈ S(H),

tr[NΦ(ρ)] = tr[Nρ],

i.e., N ∈ F(Φ∗).
However, this does not rule out the higher moments of the “conserved” quantity changing their values. Thus
we may strengthen the definition in the following way:

Definition 2. A channel Φ : T (H) → T (H) fully conserves a self-adjoint operator N ∈ Ls(H) if for all
ρ ∈ S(H) and k ∈ N,

tr[NkΦ(ρ)] = tr[Nkρ],

i.e., Nk ∈ F(Φ∗) for all k ∈ N.
As shown in Appendix (F), full conservation is in fact equivalent to just the first two moments being conserved,
i.e., Nk ∈ F(Φ∗) for k = 1, 2. Moreover, full conservation is also shown to be equivalent to “invariance” of
the unitary group generated by N under the action of the channel, i.e., Φ∗(eitN ) = eitN for all t ∈ R. We
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note that invariance implies (but is not equivalent to) “covariance”, i.e., Φ∗(eitNAe−itN ) = eitNΦ∗(A)e−itN for
all t ∈ R and A ∈ L(H). While full conservation trivially implies average conservation, however, it is shown
that in general a channel may conserve N on average but not fully. Indeed, it is possible for a channel to
conserve N on average while not being covariant. Therefore, average conservation is generally a weaker form of
conservation law, and is logically distinct from the concept of “symmetry” [68, 69]. However, in the special case
where Φ(·) := U ·U∗ is a unitary channel, average and full conservation coincide, and are both equivalent to the
commutation relation [U,N ] = O. Since a normal measurement scheme uses a unitary interaction channel, it
follows that in such cases there is no distinction to be drawn between the two notions of conservation law. But if
a measurement scheme is not normal, i.e., if the interaction channel is non-unitary, then the distinction between
average and full conservation will no longer be void and, as we shall see, leads to interesting consequences.

Throughout what follows, we shall only consider the case where the interaction channel E conserves a quantity
N that is a bounded, additive, self-adjoint operator. That is, N = NS ⊗1A +1S ⊗NA, where NS ∈ Ls(HS) and
NA ∈ Ls(HA) are respectively bounded quantities of the system and apparatus alone. Note that conservation
of an additive N by the interaction channel E does not generally imply conservation of NS by the channel IX ,
since E may allow for an “exchange” of the conserved quantity between system and apparatus; specifically,
average conservation of N by E implies that

tr[NS(IX (ρ) − ρ)] = tr[NA(ξ − Λ(ρ))] (10)

holds for all ρ ∈ S(HS), where Λ is the conjugate channel of IX defined in Eq. (5), so that Λ(ρ) is the state
of the apparatus after the measurement interaction. We can see that it is possible for the expected value of
NS to increase (decrease), provided that the expected value of NA decreases (increases) by an equal amount.
Indeed, such a “compensation” by the measuring apparatus is in general necessary for the instrument I to
accurately measure some observable E not commuting with the conserved quantity: if E is a sharp observable
and the E-channel IX conserves NS on average, by item (i) of Lemma C.1 it holds that E must commute with
NS . Additionally, if IX fully conserves NS then by item (iii) of Lemma C.1 E must commute with NS , even
when E is unsharp.

3.2 Measurement error and disturbance under conservation laws
Consider the case where the system is measured in succession, but where the first measurement is constrained by
a conservation law, as shown in Fig. 4. We now present our first main result, providing quantitative bounds for
the error of the first measurement in achieving the desired target observable E, and for the disturbance caused
by the first measurement on the second observable F. These bounds will be used to obtain our generalisation
of the WAY theorem in the sequel.

Theorem 3.1. Let M := (HA, ξ, E ,Z) be a measurement scheme for an instrument I := {Ix : x ∈ X } acting in
HS, and assume that E conserves an additive quantity N = NS ⊗1A +1S ⊗NA on average, where NS ∈ Ls(HS)
and NA ∈ Ls(NA). Let ∥ϵ(x)∥ be the error in measuring the effects of a target observable E := {E(x) : x ∈ X }
by M, as defined in Eq. (7). Then for all x ∈ X it holds that

∥[E(x), NS ] − Λ∗([Z(x), NA])∥ ⩽ 2∥NS∥∥ϵ(x)∥ + 2∥ΓE
ξ (N2) − ΓE

ξ (N)2∥ 1
2

(
2∥ϵ(x)∥ + ∥E(x) − E(x)2∥

) 1
2

, (11)

where ΓE
ξ is the channel defined in Eq. (3), and Λ is the conjugate channel to IX defined in Eq. (5).

Let ∥δ(y)∥ be the disturbance of the effects of an observable F := {F(y) : y ∈ Y} caused by I, as defined in
Eq. (8). Then for all y ∈ Y it holds that

∥[F(y), NS ] − I∗
X ([F(y), NS ])∥ ⩽ 2∥NS∥∥δ(y)∥ + 2∥ΓE

ξ (N2) − ΓE
ξ (N)2∥ 1

2

(
2∥δ(y)∥ + ∥F(y) − F(y)2∥

) 1
2

. (12)

The proof for the error bound Eq. (11) is provided in Appendix (G), and the proof for the disturbance bound
Eq. (12) is given in Appendix (H). In Appendix (D), we also provide similar bounds for disturbance that are
independent of conservation, but take into account the commutation between F and the observable that is
measured by I. Note that while the upper bounds of both inequalities above (the terms on the right hand side)
are structurally the same, the lower bounds (the terms on the left hand side) are not. Specifically, while the
constraints on measurement error depend on the choice of pointer observable, the constraints on disturbance
are independent of this. It follows that the implications of these inequalities differ markedly. We shall illustrate
this by considering when the inequalities impose no constraints, i.e., when the lower bounds vanish.
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Let us first consider Eq. (11). This will not impose any constraints on perfectly accurate measurements,
i.e., ϵ = 0, if it holds that Λ∗([Z(x), NA]) = [E(x), NS ], as in such a case the lower bound vanishes. If the
pointer observable obeys the Yanase condition, i.e., if Z commutes with NA, it follows that there will not be
any constraints on perfectly accurate measurements if E commutes with NS , since by complete positivity it
holds that [Z(x), NA] = [E(x), NS ] = O =⇒ Λ∗([Z(x), NA]) = [E(x), NS ]. But if we are free to choose the
pointer observable, then there exists a measurement scheme obeying a conservation law that can accurately
measure all target observables E. For example, let us assume that M is a “trivial” measurement scheme where
the system and apparatus are identical, and where E is a unitary swap channel. That is, choose HA ≃ HS ,
NA = NS , and E∗(A ⊗ B) = B ⊗ A for all A,B. It is clear that E conserves NS ⊗ 1A + 1S ⊗ NS . In
such a case, Λ∗(A) = A for all A, and so by choosing the pointer observable so that Z = E, we obtain
ϵ(x) = Λ∗(E(x)) − E(x) = O, and so all target observables are measurable. This is perfectly consistent with
Eq. (11), since in such a case Λ∗([E(x), NS ]) = [E(x), NS ], and so the lower bound vanishes. But note that if M
is trivial, then the instrument that it implements is also trivial, i.e., it will hold that I∗

X (·) = tr[·ξ]1S . In such
a case, we have δ(y) = tr[F(y)ξ]1S − F(y), so all non-trivial observables will be disturbed.

Let us now consider Eq. (12). This will not impose any constraints on non-disturbance for F, i.e., δ = 0, if F
commutes with the conserved quantity. This is because by complete positivity, it holds that [F(y), NS ] = O =⇒
I∗

X ([F(y), NS ]) = [F(y), NS ], in which case the lower bound vanishes. But note that I∗
X ([F(y), NS ]) = [F(y), NS ]

does not in general imply that [F(y), NS ] = O. For example, let us assume that IX fully conserves NS , i.e.,
Nk

S ∈ F(I∗
X ) for k = 1, 2. In such a case, by the multiplicability theorem (Corollary A.1) it will hold that

I∗
X ([A,NS ]) = [I∗

X (A), NS ] for all A ∈ L(HS). If it additionally holds that F ⊂ F(I∗
X ), then I∗

X ([F(y), NS ]) =
[F(y), NS ], so that the lower bound of Eq. (12) will vanish and non-disturbance will not be ruled out for F,
whether it commutes with NS or not. But by item (iii) of Lemma C.1 such an instrument I will accurately
measure E only if [E, NS ] = O. Indeed, as a result of the above arguments, and as shown in Corollary H.2, if the
measurement scheme M implements the Lüders instrument IL compatible with an observable E commuting
with NS , then non-disturbance will not be ruled out for any observable F that commutes with E.

Notwithstanding the special cases discussed above, when E and F do not commute with the conserved quantity,
the lower bounds in Theorem 3.1 will not vanish in general, in which case the upper bounds must also not
vanish. It follows that a large value of ∥ΓE

ξ (N2) − ΓE
ξ (N)2∥ is a necessary condition for achieving an arbitrarily

small measurement error for E when [E(x), NS ] ̸= Λ∗([Z(x), NA]) and an arbitrarily small disturbance for F
when [F(y), NS ] ̸= I∗

X ([F(y), NS ]). If the error and disturbance are to be exactly zero, then E and F must
also be unsharp. The term ∥ΓE

ξ (N2) − ΓE
ξ (N)2∥ is clearly dependent on the choice of apparatus preparation ξ

and, as we show below, under the stronger constraint of a full conservation law this quantity obtains a clearer
interpretation as the uncertainty of NA in the apparatus preparation, as quantified by the variance.

Lemma 3.1. If the channel E fully conserves an additive quantity N = NS ⊗ 1A + 1S ⊗NA, then

∥ΓE
ξ (N2) − ΓE

ξ (N)2∥ = Var (NA, ξ) ,

where Var (NA, ξ) := tr[N2
Aξ] − tr[NAξ]2 denotes the variance of NA in the state ξ.

Proof. If N is fully conserved by E , then by Definition 2 we have E∗(Nk) = Nk for k = 1, 2. It follows that
ΓE
ξ (Nk) = Γξ(Nk) for k = 1, 2, and hence ΓE

ξ (N2) − ΓE
ξ (N)2 = Γξ(N2) − Γξ(N)2. Recall that the restriction

map satisfies Γξ(A⊗B) = tr[Bξ]A for all A ∈ L(HS) and B ∈ L(HA). It follows that Γξ(N) = NS + tr[NAξ]1S .
Now note that N2 = N2

S ⊗ 1A + 2NS ⊗NA + 1S ⊗N2
A. Therefore,

Γξ(N2) = N2
S + 2tr[NAξ]NS + tr[N2

Aξ]1S ,

Γξ(N)2 = N2
S + 2tr[NAξ]NS + tr[NAξ]21S ,

which gives

Γξ(N2) − Γξ(N)2 = tr[N2
Aξ]1S − tr[NAξ]21S = Var (NA, ξ)1S .

If ξ is a pure state, then a large variance implies a large coherence. This is because Var (NA, ξ) = 0 ⇐⇒
[NA, ξ] = O for pure states. Of course, if ξ is a mixed state then it may still be the case that Var (NA, ξ) is
large even if ξ commutes with NA, and hence has zero coherence in the conserved quantity. A quantifier of
coherence (or asymmetry) for general states is given by the quantum Fisher information [70–73], which is equal
to four times the convex roof of the variance [74, 75]. Let {qi, ϕi} be an arbitrary ensemble of (not necessarily
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orthogonal) unit vectors ϕi ∈ HA, with {qi} a probability distribution. The quantum Fisher information of NA

in ξ can be written as

Q(NA, ξ) = 4 inf
{qi,ϕi}

{∑
i

qiVar (NA, ϕi) : ξ =
∑
i

qiPϕi

}
. (13)

Here, Pψ ≡ |ψ⟩⟨ψ| denotes the projection on ψ, and we use the short-hand notation Var (NA, ϕi) ≡ Var (NA, Pϕi
).

It is clear that Q(NA, ξ) = 0 if and only if [NA, ξ] = O, while Q(NA, ξ) = 4Var (NA, ξ) if ξ is a pure state. The
following demonstrates that a large coherence of the conserved quantity in the initial state of the apparatus,
when such a state may be mixed, is a necessary condition for accurate and non-disturbing measurements in the
presence of a full conservation law.

Proposition 3.1. Consider again the setup of Theorem 3.1, and assume that the interaction channel E also
fully conserves N = NS ⊗ 1A + 1S ⊗NA. Then for all x ∈ X it also holds that

∥[E(x), NS ] − Λ∗([Z(x), NA])∥ ⩽ 2∥NS∥∥ϵ(x)∥ + 1
2Q(NA, ξ)

1
2 , (14)

and for all y ∈ Y it also holds that

∥[F(y), NS ] − I∗
X ([F(y), NS ])∥ ⩽ 2∥NS∥∥δ(y)∥ + 1

2Q(NA, ξ)
1
2 . (15)

The proof for Eq. (14) is provided in Appendix (G), and the proof for Eq. (15) is given in Appendix (H). Let us
stress that since full conservation implies average conservation, then the inequalities in the above proposition
are complementary to those given in Theorem 3.1. That is, when the observables are sharp, then zero error and
zero disturbance are possible only if [E(x), NS ] = Λ∗([Z(x), NA]) and [F(y), NS ] = I∗

X ([F(y), NS ]), respectively,
independently of the coherence in the apparatus preparation. This is because when the observables are sharp
and there is zero error for E or zero disturbance for F, while the upper bounds in Proposition 3.1 may be large,
the upper bounds in Theorem 3.1 vanish. Notwithstanding, we see that so long as the apparatus preparation
has a large coherence, approximately accurate measurements for E and approximate non-disturbance for F will
not be ruled out, even when these observables are sharp.

3.3 The generalised Wigner-Araki-Yanase theorem
We are now ready to give two formulations of the WAY theorem which go beyond existing work in several
respects. The first formulation is a direct consequence of the quantitative bounds given above.

Theorem 3.2 (Generalised WAY theorem 1). Let M := (HA, ξ, E ,Z) be a measurement scheme for an E-
instrument I acting in HS, and assume that E conserves an additive quantity N = NS ⊗ 1A + 1S ⊗ NA on
average, where NS ∈ Ls(HS) and NA ∈ Ls(HA). If either I is repeatable, or the Yanase condition [Z, NA] = O

is satisfied, then for all x ∈ X it holds that

∥[E(x), NS ]∥ ⩽ 2∥ΓE
ξ (N2) − ΓE

ξ (N)2∥ 1
2 ∥E(x) − E(x)2∥ 1

2 , (16)

where ΓE
ξ is the channel defined in Eq. (3). If E also fully conserves N , and if either I is repeatable or the

Yanase condition is satisfied, then for all x ∈ X it also holds that

∥[E(x), NS ]∥ ⩽
1
2Q(NA, ξ)

1
2 , (17)

where Q(NA, ξ) is the quantum Fisher information of NA in ξ as defined in Eq. (13).

Proof. We first prove Eq. (16). By Theorem 3.1, and setting ϵ = 0, if M is a measurement scheme for E then
it must hold that

∥[E(x), NS ] − Λ∗([Z(x), NA])∥ ⩽ 2∥ΓE
ξ (N2) − ΓE

ξ (N)2∥ 1
2 ∥E(x) − E(x)2∥ 1

2 ∀x ∈ X .

If the Yanase condition is satisfied, then Λ∗([Z(x), NA]) = Λ∗(O) = O, and so we obtain Eq. (16).
Now let Z be an arbitrary pointer observable, but assume that I is a repeatable E-instrument. Recall that
repeatability implies first-kindness, which is a specific instance of non-disturbance. Then by Theorem 3.1,
identifying F with E, and setting δ = 0, it must hold that

∥[E(x), NS ] − I∗
X ([E(x), NS ])∥ ⩽ 2∥ΓE

ξ (N2) − ΓE
ξ (N)2∥ 1

2 ∥E(x) − E(x)2∥ 1
2 ∀x ∈ X .
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By item (vi) of Proposition E.1, if I is a repeatable measurement of E, then I∗
X (E(x)A) = I∗

X (AE(x)) for
all A ∈ L(HS). It follows that I∗

X ([E(x), NS ]) = O, and so once again we obtain Eq. (16). Indeed, let us
note that if the measurement is repeatable, then for any choice of pointer observable Z it will also hold that
Λ∗(Z(x)B) = Λ∗(BZ(x)) for all B ∈ L(HA), and so Λ∗([Z(x), NA]) = O even if Z violates the Yanase condition.
It follows that we can obtain Eq. (16) under the repeatability assumption directly from the measurability bound.
By the same arguments as above, Eq. (17) is obtained from Proposition 3.1.

This theorem goes beyond the original WAY theorem (and its descendants) in the setting of bounded conserved
quantities in the following respects: it holds for general interaction channels, unsharp target observables, unsharp
pointer observables, and mixed apparatus states. It also provides an operationally motivated quantitative
bound from which the original theorem can be obtained as a special case: if E is a sharp observable, the upper
bound of Eq. (16) vanishes, in which case an additive conservation law together with either repeatability or
the Yanase condition necessitates commutation of E with the system part of the conserved quantity. Note
that the impossibility statement of the original WAY theorem holds even under the weaker notion of average
conservation. This shows that the impossibility of perfect measurements, for sharp observables not commuting
with the conserved quantity, holds in much broader contexts than previously assumed. Indeed, such constraint
holds even when the measurement is not constrained by “symmetry”; recall that while full conservation of N
by E implies that E is covariant with respect to unitary evolution generated by N (in fact, it is also invariant),
it may be the case that E conserves N on average without being covariant.

Theorem 3.2 does not rule out accurate (under the Yanase condition) or repeatable measurements for unsharp
observables not commuting with the conserved quantity, provided an appropriate apparatus preparation: in the
special case of a full conservation law, the apparatus preparation must have a large coherence in the conserved
quantity. However, this does not imply that coherence allows for accurate or repeatable measurements of
all unsharp observables. We now present a further generalisation of the WAY theorem, providing additional
necessary conditions for perfect measurements that are independent of the apparatus preparation.

Theorem 3.3 (Generalised WAY theorem 2). Let M := (HA, ξ, E ,Z) be a measurement scheme for an E-
instrument I acting in HS, and assume that E conserves an additive quantity N = NS ⊗ 1A + 1S ⊗ NA on
average, where NS ∈ Ls(HS) and NA ∈ Ls(HA). If either I is a measurement of the first kind, or the Yanase
condition [Z, NA] = O is satisfied, then for any effect E(x) that has both eigenvalue 1 and 0, it holds that

P[E(x), NS ]P = [E(x),PNSP] = O, (18)

where P := P0(x) + P1(x), with P0(x) and P1(x) orthogonal projections onto the eigenvalue-0 and eigenvalue-1
eigenspaces of E(x), respectively.
For a proof, see Appendix (I). The first equality in Eq. (18) follows from the fact that E(x)P = PE(x) = P1(x),
so that E(x) commutes with P, and the second equality states that while the commutator [E(x), NS ] may not
vanish entirely, it does vanish when projected onto the subspace PHS . The above theorem is an even stronger
extension of the original WAY theorem, as it relaxes the repeatability condition to that of first-kindness; recall
that while a measurement that is repeatable is also of the first kind, repeatability and first-kindness coincide only
for sharp observables, and a measurement of an unsharp observable may be of the first kind but not repeatable.
Moreover, note that an observable admits a repeatable measurement only if all effects have eigenvalue 1 which,
by normalisation, implies that all effects have both eigenvalue 1 and 0. In such a case, Eq. (18) applies to every
effect, and P may be interpreted as the projection onto the union of eigenvalue-1 eigenspaces of all the effects of
E, i.e., P =

∑
x∈X P1(x). Finally, note that if E is sharp, then P = 1S , in which case the original WAY theorem

is once again recovered.

The condition of an effect E(x) having both eigenvalue 1 and 0 implies that the effect is definite, or admits definite
values. Specifically, such a condition implies that there exist states ρ for which outcome x can be predicted
to obtain with probabilistic certainty, i.e., tr[E(x)ρ] = 1, and that there exist states σ for which outcome x
can be predicted to not obtain with probabilistic certainty, i.e., tr[E(x)σ] = 0. Therefore, a measurement
of such an E allows for perfect distinguishability of states ρ and σ; if outcome x is observed, we know with
probabilistic certainty that the system was not prepared in state σ. Conversely, if any outcome y ̸= x is
observed, we know with probabilistic certainty that the system was not prepared in state ρ. Theorem 3.3
therefore demonstrates that the impossibility part of the WAY theorem—originally pertaining to sharpness—is
more properly understood as concerning observables with definite values, even if unsharp. That is to say, if we
wish to achieve perfectly accurate (under the Yanase condition) or first-kind measurements of an observable
that truly does not commute with the conserved quantity, i.e., such that [E(x), NS ] does not vanish even when
projected onto a subspace of HS , then not only must such an observable be unsharp, but it must also not admit
definiteness.
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Theorem 3.3 imposes stronger constraints than Theorem 3.2 and demonstrates that in general, and irrespective
of the apparatus preparation, there exist unsharp observables not commuting with the conserved quantity that
do not admit a repeatable or first-kind measurement, and which cannot be accurately measured if the Yanase
condition holds. To illustrate this, let us introduce the following model. Consider a system HS ≃ C3 with the
orthonormal basis {|−1⟩, |0⟩, |1⟩}, and the conserved quantity NS =

∑
n n|n⟩⟨n| ≡ |1⟩⟨1| − | − 1⟩⟨−1|. Consider

also the class of binary observables Eλ := {Eλ(+),Eλ(−)} acting in HS , defined by

Eλ(±) := λ|±⟩⟨±| + (1 − λ)|∓⟩⟨∓| + 1
2 |0⟩⟨0|, (19)

where 1/2 < λ ⩽ 1 and |±⟩ := 1√
2 (|1⟩ ± |−1⟩). In the absence of any constraints, all observables in this

class admit first-kind measurements. For example, since Eλ is commutative, then the corresponding Lüders
instrument is a first-kind (but not repeatable) measurement of Eλ. On the other hand, Eλ admits a repeatable
measurement if and only if λ = 1, in which case an instrument with operations I±(·) = tr[Eλ(±)·]|±⟩⟨±| is a
repeatable measurement of Eλ. Since Eλ is unsharp, even when λ = 1, then Theorem 3.2 does not rule out
accurate or repeatable measurements for such an observable, provided an appropriate apparatus preparation.
But now note that when λ = 1, both effects have eigenvalue 1 and 0, and we have P1(±) = |±⟩⟨±| and
P0(±) = |∓⟩⟨∓|, and so P = P0(±) + P1(±) = |1⟩⟨1| + | − 1⟩⟨−1|. It is easily verified that in such a case,

[Eλ(±),PNSP] = [Eλ(±), NS ] = | ∓ 1⟩⟨±1| − | ± 1⟩⟨∓1| ≠ O.

By Theorem 3.3, it follows that when λ = 1, a measurement of Eλ that is constrained by an average conservation
law cannot be repeatable or even first-kind, and must violate the Yanase condition. However, the effects of Eλ
when λ < 1 do not commute with the conserved quantity, and have neither eigenvalue 1 nor eigenvalue 0. In
such a case, Theorem 3.3 does not rule out accurate or first-kind (but not repeatable) measurements.

3.4 The Wigner-Araki-Yanase theorem without the Yanase condition
Traditionally, the Yanase condition is justified by applying the repeatability part of the WAY theorem to the
pointer observable; if the pointer observable is sharp, and we consider its measurement as being implemented by
a conservative interaction between one measuring apparatus and another, then the pointer observable will admit
a repeatable measurement only if it commutes with the conserved quantity. Repeatability of the measurement of
the pointer observable is deemed a natural requirement for the possibility of measurement, since an experimenter
should be able to confirm the measurement outcome by repeated observations of the apparatus: there must
be a stable record of the measurement outcomes. However, such an argument suffers from two drawbacks.
Firstly, it applies only to sharp pointer observables. Secondly, it runs into the problem of infinite regress,
since we have now shifted the role of the ultimate pointer observable from the first apparatus to the second;
repeatability of the first pointer observable can be abandoned if the second admits a repeatable measurement,
in which case the experimenter may continue to verify the measurement outcomes. In Appendix (J), we show
that the measurability part of the WAY theorem—Theorem 3.2 and Theorem 3.3—can be justified without an
appeal to the Yanase condition, but rather by imposing a conservation law on the total measurement process,
i.e., including pointer objectification. Such conservation is shown to give rise to the so-called “weak” Yanase
condition [Zτ , N ] = O, where Zτ (x) := E∗(1S ⊗ Z(x)) is the “Heisenberg-evolved” pointer observable [32].
Subsequently, it is shown that if the weak Yanase condition is satisfied, then Eq. (16) (with ∥ΓE

ξ (N2)−ΓE
ξ (N)2∥

replaced by Var (NA, ξ)), Eq. (17), and Eq. (18) will hold.

4 Fixed points and non-disturbing measurements in the presence of conservation
laws

In Sec. 3 we provided general quantitative bounds for measurement disturbance, when observables E and F are
measured in succession and when the first measurement is subject to a conservation law. As we saw, these
bounds generally do not prohibit non-disturbance for an unsharp F that does not commute with the conserved
quantity. In this section, we provide tighter restrictions on the possibility of non-disturbance that depend on
the structure of the fixed-point set F(I∗

X ), which intimately depends on the properties of observable E and the
states that are left invariant by the E-channel IX . We first consider the case where F(I∗

X ) is a von Neumann
algebra, which is guaranteed to be the case when F(IX ) contains a faithful state. Next, we relax the faithfulness
condition on the states in F(IX ), and obtain similar restrictions for non-disturbance in the finite-dimensional
setting. Finally, we show that in the finite-dimensional case, the first-kindness statement of our generalisation
of WAY in Theorem 3.3 can be extended to a quantitative bound.
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4.1 Non-disturbance and von Neumann algebras
By Theorem 3.1, when a sharp observable F is not disturbed, then the upper bound of Eq. (12) vanishes,
implying that non-disturbance is possible only if [F(y), NS ] ∈ F(I∗

X ). But in Appendix (H) we provide a tighter
upper bound than that of Eq. (12), which vanishes if both F ⊂ F(I∗

X ) and F2 := {F(y)2 : y ∈ Y} ⊂ F(I∗
X ) hold,

in which case non-disturbance will be possible only if [F(y), NS ] ∈ F(I∗
X ). While non-disturbance of F trivially

implies that F2 ⊂ F(I∗
X ) when F is sharp, the implication F ⊂ F(I∗

X ) =⇒ F2 ⊂ F(I∗
X ) holds for all observables

whenever F(I∗
X ) is a von Neumann algebra, which is guaranteed to be the case whenever F(IX ) contains at

least one faithful state. We now show that in the presence of conservation laws, if the fixed-point set of the
measurement channel I∗

X is a von Neumann algebra, there are strong constraints imposed on the possibility of
non-disturbance.

Theorem 4.1. Let E := {E(x) : x ∈ X } and F := {F(y) : y ∈ Y} be observables acting in HS. Let M :=
(HA, ξ, E ,Z) be a measurement scheme for an E-instrument I, and assume that E conserves an additive quantity
N = NS ⊗ 1A + 1S ⊗ NA on average, where NS ∈ Ls(HS) and NA ∈ Ls(HA). If F(I∗

X ) is a von Neumann
algebra, then the following hold:

(i) F ⊂ F(I∗
X ) only if F commutes with E, with ∆NS := I∗

X (NS) −NS, and with {[E(x), NS ] : x ∈ X }.
(ii) I is a measurement of the first kind only if E is commutative and commutes with NS.

(iii) I is a repeatable measurement only if E is sharp and commutes with NS.
We note that the condition [E,F] = O in item (i) is independent of conservation, and was already shown in Ref.
[4]. The proof of the above theorem is given in Appendix (L) (Theorem L.1), and here is a rough sketch for
item (i). If F(I∗

X ) is an algebra, then F(I∗
X ) ⊂ E′, and so non-disturbance is possible only if [E,F] = O. But if

the measurement obeys a conservation law, and F ⊂ F(I∗
X ), then additionally it holds that [F(y), NS ] ∈ F(I∗

X ),
which by the multiplicability theorem implies that [F(y),∆NS ] = O. Finally, by [F(y), NS ] ∈ F(I∗

X ) ⊂ E′ and
[E,F] = O, it holds that [F(y), [E(x), NS ]] = [E(x), [F(y), NS ]] = O.

Assuming that F commutes with E, the additional necessary condition for non-disturbance, [F(y), [E(x), NS ]] =
O, is guaranteed to hold if either E commutes NS , or if F commutes with NS . Note that since F(I∗

X ) ⊂ E′

when the fixed-point set of the measurement channel is an algebra, whenever E does not commute with NS then
F must also commute with ∆NS ̸= O, which is not in general guaranteed by commutation of F with NS . Of
course, unless E = F, non-disturbance may be possible even if neither E nor F commute with NS . But by items
(ii) and (iii) of the above theorem, when E = F, i.e., when I is a first-kind or repeatable measurement of E, then
non-disturbance is possible only if E commutes with NS . Indeed, we see that when the fixed-point set of the
measurement channel is an algebra, then the constraints on repeatability and first-kindness are much stronger
than in the more general case as given by Theorem 3.2 and Theorem 3.3. We may therefore strengthen the
necessary conditions for repeatability and first-kindness that are given by the WAY theorem with the following:
in the presence of a conservation law, an unsharp and possibly non-commutative observable E not commuting
with the conserved quantity admits a repeatable or first-kind measurement only if the E-channel IX perturbs
all faithful states.

Let us now consider some interesting consequences of the above theorem. As shown by Proposition 6 in Ref.
[4], when the system is a qubit, i.e., dim(HS) = 2, then F(I∗

X ) is an algebra for any instrument I. See also
Corollary M.1 in Appendix (M.2). It follows that for qubits, the implications of Theorem 4.1 will hold in general.
Now let us assume that E is a binary observable with the effects

E(±) = 1
2 (1S ± λσ1) ,

where λ ∈ (0, 1] and σ1, σ2, σ3 are the Pauli operators. This observable is sharp when λ = 1, and is unsharp
when λ < 1. Since binary observables are commutative, then item (ii) of Theorem 4.1 will permit a first-kind
measurement of E so long as the conserved quantity commutes with σ1. On the other hand, by item (iii)
repeatability will be allowed only if λ = 1 also holds. This is not so surprising since repeatability is permitted
only when all effects have eigenvalue 1, with such condition being satisfied for qubit observables only when the
observable is sharp. Now let us assume that the conserved quantity is NS = σ3, so that it does not commute
with E, which implies that repeatability and first-kindness will be ruled out. But can a measurement of E not
disturb some other observable? Note that [E(±), σ3] = ∓λiσ2. By item (i), a non-trivial observable F will be non-
disturbed only if it commutes with σ1 and with σ2, which is clearly impossible. Indeed, for qubits in the presence
of conservation, non-disturbing measurements are permitted only if [E,F] = [E, NS ] = [F, NS ] = O.

Now let us consider the case where an observable E is measured by the Lüders instrument IL defined in Eq. (1).
If E is commutative, then it holds that F(ILX

∗) = E′ is a von Neumann algebra (as the commutant of a self-
adjoint subset of HS), even in infinite dimensions [76, 77]. But recall that the Lüders instrument is a first-kind
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measurement if it is compatible with a commutative observable. By item (ii) of Theorem 4.1 it follows that in
the presence of a conservation law, a commutative E admits a Lüders instrument only if E commutes with the
system part of the conserved quantity. Now let us consider an observable E that may be non-commutative, but
commutes with NS . Note that in this case, unless dim(HS) < ∞, then F(ILX

∗) is not necessarily an algebra,
since in infinite dimensions there exist non-commutative observables E such that F(ILX

∗) ̸⊂ E′ [78, 79]. But
since E′ ⊂ F(ILX

∗) always holds, then [E, NS ] = O =⇒ Nk
S ∈ F(ILX

∗) for all k ∈ N. That is, the Lüders
measurement of E commuting with NS will fully conserve NS . Recall that in such a case, non-disturbance
will not be ruled out for any observable F that commutes with E (see Corollary H.2). Indeed, it will hold that
∆NS = O, and so any F will trivially commute with ∆NS . But does an observable E commuting with NS always
admit a Lüders measurement in the presence of a conservation law? We shall now show that in the presence of
a full conservation law, and where the apparatus part of the conserved quantity is highly non-degenerate, such
measurements will require a large coherence in the apparatus preparation. This surprising observation can be
seen as a “converse” WAY theorem.

Proposition 4.1. Let M := (HA, ξ, E ,Z) be a measurement scheme for an instrument I acting in HS. Assume
that E fully conserves an additive quantity N = NS ⊗ 1A + 1S ⊗ NA, where NS ∈ Ls(HS) and NA ∈ Ls(HA),
and that IX fully conserves NS. Define the subspace of HA that is involved during the measurement process as

HA(meas) :=
⋃

ρ∈S(HS )

supp(Λ(ρ)) ∪ supp(ξ) ⊆ HA,

where Λ is the conjugate channel to IX defined in Eq. (5). Then either HA(meas) is contained within a single
degenerate eigenspace of NA, or Var (NA, ξ) := tr[N2

Aξ]−tr[NAξ]2 must be large. Additionally, if I is an extremal
instrument, and if HA(meas) is not contained within a single degenerate eigenspace of NA, then the quantum
Fisher information Q(NA, ξ) as defined in Eq. (13) must be large.
Note that even if I is not a Lüders instrument, by item (iii) of Lemma C.1 it holds that if I is compatible
with observable E then IX fully conserves NS only if [E, NS ] = O. Moreover, let us note that the Lüders E-
instrument is extremal whenever the effects of E are linearly independent [80]. The proof of the above proposition
is provided in Appendix (K), and here we present a rough sketch. In the case that E fully conserves N and
IX fully conserves NS then both the expected value and the variance of NA must not change as a result of the
measurement interaction. That is, tr[NAΛ(ρ)] = tr[NAξ] and Var (NA,Λ(ρ)) = Var (NA, ξ) for all ρ ∈ S(HS).
It follows that if ξ is an eigenstate of NA, i.e., if ξ has support only in a single degenerate eigenspace of NA,
then Λ(ρ) must live in the same eigenspace for all ρ. That is, NA must be “effectively” fully degenerate, in
the sense that HA(meas) must be contained within a single degenerate eigenspace of NA. This generalises
an observation made in Ref. [81], which held only in the case of Lüders measurements of sharp observables,
implemented by normal measurement schemes satisfying the Yanase condition. But in many physically relevant
situations NA will not be (effectively) fully degenerate—for example, the apparatus may be a system with a
conserved quantity NA that is completely non-degenerate. In such cases, when the interaction between system
and apparatus obeys a full conservation law, an instrument that fully conserves NS can be implemented only if
the apparatus preparation is not an eigenstate of NA, which implies that Var (NA, ξ) must be large. Finally, if
the instrument is extremal, and NA is not (effectively) fully degenerate, then for every pure state decomposition
ξ =

∑
i qiPϕi , the uncertainty of NA in ϕi must be large, which implies that the apparatus preparation must

have a large coherence as quantified by the quantum Fisher information.

4.2 Non-disturbance and operator spaces
Due to the Schauder–Tychonoff fixed point theorem [82], all E-channels IX have at least one fixed state.
However, it may be that none of these are faithful. In such a case, the fixed-point set of the dual channel I∗

X is
not necessarily a von Neumann algebra, but rather forms an operator space [83]. This setting has been much
less investigated, and in Appendix (M.1) we provide some novel analysis of the structure of such fixed-point sets.
While the discussion thus far has been applicable for infinite-dimensional systems—except in some examples—in
this section we shall always assume that dim(HS) < ∞.

We define the minimal support projection P on the fixed-point set F(IX ) as

P = min{Q : Q is a projection, ρ = QρQ∀ ρ ∈ F(IX )}. (20)

In other words, for all projections Q and fixed states ρ ∈ F(IX ) such that ρ = QρQ, it holds that Q ⩾ P .
Note that P = 1S if and only if F(IX ) contains a faithful state, in which case F(I∗

X ) is an algebra, so that we
recover the results of Theorem 4.1. We now provide a generalisation of this result which accounts for situations
where P may be smaller than the identity, i.e., where the E-channel IX may perturb all faithful states. Here,
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we define PEP := {PE(x)P : x ∈ X } and PFP := {PF(y)P : y ∈ Y} as restrictions of observables E and F in
PHS .

Theorem 4.2. Let E := {E(x) : x ∈ X } and F := {F(y) : y ∈ Y} be observables acting in HS. Let M :=
(HA, ξ, E ,Z) be a measurement scheme for an E-instrument I, and assume that E conserves an additive quantity
N = NS ⊗ 1A + 1S ⊗ NA on average, where NS ∈ Ls(HS) and NA ∈ Ls(HA). If P is the minimal support
projection on F(IX ), then the following hold:

(i) F ⊂ F(I∗
X ) only if PFP commutes with PEP , with P∆NSP := PI∗

X (NS)P − PNSP , and with
{[PE(x)P, PNSP ] : x ∈ X }.

(ii) I is a measurement of the first kind only if PEP is commutative and commutes with PNSP .
(iii) I is repeatable only if PEP is sharp and commutes with PNSP .
The proof is provided in Appendix (M.2) (Theorem M.1) and it follows from similar arguments as those used
in Theorem 4.1. That is, by noting that there exists a faithful fixed state in the subspace PHS , we observe that
the projection of the fixed-point set F(I∗

X ) onto the subspace PHS is a von Neumann algebra.

As a simple example, let us consider the case where E is measured by a nuclear instrument. The operations
of a nuclear instrument I are written as Ix(·) = tr[E(x)·]σx, where {σx} is a family of states. It is simple
to verify that in such a case, P is the minimal projection on ∪x supp(σx). Additionally, if E is a norm-1
observable, and for every x the support of σx is contained within the eigenvalue-1 eigenspace of E(x), then such
an instrument will be a repeatable measurement of E. Every observable admits a nuclear instrument and, as
shown in Corollary 1 of Ref. [4], every instrument compatible with a rank-1 observable is nuclear. Now assume
that I does not disturb some observable F. Since the dual E-channel may be written as I∗

X (·) =
∑
x tr[·σx]E(x),

we observe that F ⊂ F(I∗
X ) implies that F(y) =

∑
x p(y|x)E(x). That is, non-disturbance is possible only if F

is a classical post-processing of E. But note that unless E is commutative, this does not generally imply that F
must commute with E. However, item (i) of Theorem 4.2 states that PFP must commute with PEP and with
P∆NSP . Given that P∆NSP = PI∗

X (NS)P − PNSP =
∑
x tr[NSσx]PE(x)P − PNSP , then [PFP, PEP ] = O

implies that the commutation of PFP with P∆NSP simplifies to [PFP, PNSP ] = O. Indeed, in the case where
∪x supp(σx) = HS so that P = 1S , it follows that only observables F that commute with both the measured
observable E, and with the system part of the conserved quantity NS , will be non-disturbed.

While the implications of the above theorem depend on the minimal support projection P on the fixed states
of the measurement channel IX , and hence on the specific measurement implementation, we may use the
structure of the fixed-point set to obtain necessary conditions for first-kindness that depend only on the measured
observable. In Appendix (M.3), we provide some necessary conditions for non-disturbance that are independent
of conservation laws, showing that non-disturbance is intimately related to distinguishability. In particular, we
show that if I is a first-kind measurement of E, then this observable must be a classical post-processing of a
norm-1 observable G ⊂ F(I∗

X ), and that there exists a family of states {ρz} that are perfectly distinguishable by
a measurement of G such that {IX (ρz)} remain perfectly distinguishable. Next, we use these results to obtain
a quantitative form of the WAY theorem for first-kindness, presented below.

Theorem 4.3. Consider a measurement scheme M := (HA, ξ, E ,Z) for a nontrivial observable E with the
instrument I acting in HS. Assume that I is a measurement of the first kind, and that E conserves an additive
quantity N = NS ⊗ 1A + 1S ⊗ NA on average, where NS ∈ Ls(HS) and NA ∈ Ls(HA). For each outcome x
associated with a non-trivial effect E(x), let Kmax(x) and Kmin(x) be subspaces of HS defined by

Kmax(x) := {ψ ∈ HS : E(x)ψ = ∥E(x)∥ψ}, Kmin(x) := {ϕ ∈ HS : (1S − E(x))ϕ = ∥1S − E(x)∥ϕ}.

Kmax(x) and Kmin(x) are orthogonal, and for all unit vectors ψ ∈ Kmax(x) and ϕ ∈ Kmin(x), it holds that

|⟨ψ|NSϕ⟩| ⩽ ∥NS∥
(

∥E(x)∥ 1
2 (1 − ∥1S − E(x)∥) 1

2 + (1 − ∥E(x)∥) 1
2 ∥1S − E(x)∥ 1

2

)
. (21)

For a proof, see Appendix (M.4) (Theorem M.3). We note that if E commutes with NS , then Theorem 4.3
imposes no restrictions on first-kindness. This is because so long as E(x) is non-trivial and commutes with NS ,
then the lower bound of Eq. (21) vanishes. On the other hand, if for any non-trivial E(x) not commuting with
NS it holds that ⟨ψ|NSϕ⟩ ≠ 0 for some ψ ∈ Kmax(x) and ϕ ∈ Kmin(x), then E admits a first-kind measurement
only if either (i) ∥E(x)∥ < 1 or (ii) ∥1S − E(x)∥ < 1. This is so because if both (i) and (ii) are violated, i.e., if
∥E(x)∥ = ∥1S −E(x)∥ = 1, then the upper bound of Eq. (21) vanishes. It follows that, in such a case, E(x) cannot
have both 1 and 0 as an eigenvalue: such an observable must be highly unsharp. Indeed, we may also recover
the first-kindness statement of Theorem 3.3 directly from Theorem 4.3, which is presented as Corollary M.3
in Appendix (M.4). This raises an interesting question: will Eq. (21) also hold if we abandon the requirement
of first-kindness, and instead assume that the measurement satisfies the Yanase condition? This question is
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beyond the scope of the present paper, but the answer may highlight to what extent the necessary conditions
for measurability and non-disturbance will continue to satisfy the “symmetry” witnessed so far in WAY-type
theorems.

To demonstrate that Theorem 4.3 provides much stronger constraints than Theorem 3.3, let us consider again
the simple model of a binary observable Eλ := {Eλ(+),Eλ(−)} acting in HS ≃ C3 introduced surrounding
Eq. (19). Recall that Theorem 3.3 did not rule out first-kind measurements of Eλ for any 1/2 < λ < 1. But
now note that Kmax(±) = span{|±⟩}, Kmin(±) = span{|∓⟩}, ∥Eλ(±)∥ = ∥1S − Eλ(±)∥ = λ, ∥NS∥ = 1, and
|⟨±|NS |∓⟩| = 1. By Theorem 4.3, it follows that such an observable admits a first-kind measurement only
if

1 ⩽ 2
√
λ(1 − λ),

which cannot be satisfied for any 1/2 < λ < 1; indeed, the above inequality is satisfied only if λ = 1/2, in which
case Eλ(±) = 1S/2 are trivial effects.

5 Conclusions
We have provided a number of general and operational bounds which capture measurement error and distur-
bance, with emphasis on the setting in which there is a conservation law—both “full” conservation, and the
weaker notion of “average” conservation. We obtained new, quantitative versions of the WAY theorem, which
generalise previous work in several respects, going beyond normal measurement schemes, and not assuming that
the observable to be measured is sharp. The work presented surrounding the WAY theorem was also studied in
the novel setting of sequential measurements for general pairs of observables, and the quantitative bounds were
further refined by the analysis of the fixed point structure of the measurement channel in settings which have
received scant attention.

We saw that the large apparatus coherence played a key role for measurability and non-disturbance in the
presence of a full conservation law, pointing to the requirement of “large” apparatus. This points further to
possible deep connections between the WAY theorem and the rapidly developing theory of quantum reference
frames, analysed so far only when the conserved quantity has a conjugate phase [42, 41]. While necessary,
however, the large apparatus coherence was shown to not be sufficient for good measurements; we saw that
conservation laws impose strict constraints on the error or disturbance for unsharp observables that admit
definite values.

Our work suffers from the drawback that many physically arising conserved quantities are unbounded. Very
recently, the measurability part of the WAY theorem for sharp target observables was proven in the setting of
unbounded conserved quantities, where the conservation law is stated as the invariance of the unitary group
generated by the conserved quantity under the action of the measurement interaction [84]. The measurability
question for unsharp target observables, as well as the question of disturbance, should also be systematically
studied when the conserved quantity is unbounded. This is a technically challenging endeavour and we save it
for future work.
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A Properties of operations
Operations allow for the construction of an “operator-valued inner product”, which will be frequently used in this
paper. For an operation Φ∗ : L(K) → L(H), we define the sesquilinear mapping ⟨⟨·|·⟩⟩ : L(K) × L(K) → L(H)
by

⟨⟨A|B⟩⟩ := Φ∗(A∗B) − Φ∗(A∗)Φ∗(B), (22)

to hold for all A,B ∈ L(K). The following lemma shows that such a map mimics several important properties
of an inner product.
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Lemma A.1. For all A,B,C ∈ L(K), the sesquilinear mapping defined in Eq. (22) satisfies: (i) ⟨⟨A|B+λC⟩⟩ =
⟨⟨A|B⟩⟩ + λ⟨⟨A|C⟩⟩ for all λ ∈ C; (ii) ⟨⟨A|B⟩⟩ = ⟨⟨B|A⟩⟩∗; (iii) ⟨⟨A|A⟩⟩ ⩾ O; and (iv) the Cauchy-Schwarz
inequality

⟨⟨A|B⟩⟩⟨⟨B|A⟩⟩ ⩽ ∥⟨⟨B|B⟩⟩∥⟨⟨A|A⟩⟩.

Proof. (i) trivially follows from linearity of operations, while (ii) follows from the fact that an operation preserves
the involution, i.e., Φ∗(A)∗ = Φ∗(A∗). (iii) follows from Kadison’s inequality, or the two-positivity of CP maps
[85, 86]. To show this, note that by Stinespring’s dilation theorem [87] we may write Φ∗(A) = V ∗(A ⊗ 1K′)V ,
where V : H → K⊗K′ is a linear operator. Since Φ∗ is sub-unital, it must hold that Φ∗(1K) = V ∗(1K ⊗1K′)V ≡
V ∗V ⩽ 1H, with equality if Φ∗ is a channel, in which case V is an isometry. By the C* identity we therefore
have ∥V V ∗∥ = ∥V ∗V ∥ ⩽ 1, which implies that O ⩽ V V ∗ ⩽ 1K ⊗ 1K′ . By Eq. (22) we may therefore write

⟨⟨A|B⟩⟩ = V ∗(A∗ ⊗ 1K′)π∗π(B ⊗ 1K′)V, (23)

where π = π∗ :=
√
1K ⊗ 1K′ − V V ∗. That ⟨⟨A|A⟩⟩ ⩾ O trivially follows.

Finally, we prove the Cauchy-Schwarz inequality which, for the case of channels, was proven by Janssens in
Lemma 1 of Ref. [53]. The proof for the case of general operations is identical; by Eq. (23) we may write

⟨⟨A|B⟩⟩⟨⟨B|A⟩⟩ = V ∗(A∗ ⊗ 1K′)π∗π(B ⊗ 1K′)V V ∗(B∗ ⊗ 1K′)π∗π(A⊗ 1K′)V
⩽ ∥π(B ⊗ 1K′)V V ∗(B∗ ⊗ 1K′)π∗∥V ∗(A∗ ⊗ 1K′)π∗π(A⊗ 1K′)V
= ∥V ∗(B∗ ⊗ 1K′)π∗π(B ⊗ 1K′)V ∥V ∗(A∗ ⊗ 1K′)π∗π(A⊗ 1K′)V
= ∥⟨⟨B|B⟩⟩∥⟨⟨A|A⟩⟩.

In the second line we have used the fact that for any self-adjoint operator A ∈ Ls(H), it holds that B∗AB ⩽
∥A∥B∗B for all B ∈ L(H), while in the third line we have used the C* identity ∥AA∗∥ = ∥A∗A∥ for all
A ∈ L(H).

Note that the sesquilinear mapping in Eq. (22) does not satisfy the positive definiteness property in general,
that is, ⟨⟨A|A⟩⟩ = O does not imply A = O. This plays an important role in the multiplicability theorem [86],
which can be seen as a consequence of Lemma A.1:

Corollary A.1. Let Φ∗ : L(K) → L(H) be an operation, and consider an operator B ∈ L(K). The following
hold:

(i) If Φ∗(B∗B) = Φ∗(B∗)Φ∗(B), then Φ∗(AB) = Φ∗(A)Φ∗(B) for all A ∈ L(K).
(ii) If Φ∗(BB∗) = Φ∗(B)Φ∗(B∗), then Φ∗(BA) = Φ∗(B)Φ∗(A) for all A ∈ L(K).

Proof. Let us first prove (i). If ⟨⟨B|B⟩⟩ = Φ∗(B∗B) − Φ∗(B∗)Φ∗(B) = O, then ∥⟨⟨B|B⟩⟩∥ = 0. Therefore, by
Lemma A.1 we have for all A ∈ L(K) the following:

O ⩽ ⟨⟨A∗|B⟩⟩⟨⟨A∗|B⟩⟩∗ = ⟨⟨A∗|B⟩⟩⟨⟨B|A∗⟩⟩ ⩽ O.

This implies that ⟨⟨A∗|B⟩⟩ = Φ∗(AB) − Φ∗(A)Φ∗(B) = O. Similarly for (ii), ⟨⟨B∗|B∗⟩⟩ = Φ∗(BB∗) −
Φ∗(B)Φ∗(B∗) = O implies that for all A ∈ L(K) we have

O ⩽ ⟨⟨B∗|A⟩⟩∗⟨⟨B∗|A⟩⟩ = ⟨⟨A|B∗⟩⟩⟨⟨B∗|A⟩⟩ ⩽ O,

which implies that ⟨⟨B∗|A⟩⟩ = Φ∗(BA) − Φ∗(B)Φ∗(A) = O.

Lemma A.1 also has the following useful consequence:

Corollary A.2. Let Φ∗ : L(K) → L(H) be an operation. Given the sesquilinear mapping defined in Eq. (22),
for all A,B ∈ L(K) it holds that

∥[Φ∗(A),Φ∗(B)] − Φ∗([A,B])∥ ⩽∥⟨⟨A|A⟩⟩∥ 1
2 ∥⟨⟨B∗|B∗⟩⟩∥ 1

2 + ∥⟨⟨A∗|A∗⟩⟩∥ 1
2 ∥⟨⟨B|B⟩⟩∥ 1

2 . (24)

Proof. Let us first write

[Φ∗(A),Φ∗(B)] − Φ∗([A,B]) = ⟨⟨B∗|A⟩⟩ − ⟨⟨A∗|B⟩⟩,
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which gives

∥[Φ∗(A),Φ∗(B)] − Φ∗([A,B])∥ ⩽ ∥⟨⟨B∗|A⟩⟩∥ + ∥⟨⟨A∗|B⟩⟩∥. (25)

By Lemma A.1 and the C* identity ∥A∗∥ = ∥A∥ = ∥A∗A∥ 1
2 = ∥AA∗∥ 1

2 for all A ∈ L(H), we therefore have

∥⟨⟨B∗|A⟩⟩∥ = ∥⟨⟨B∗|A⟩⟩⟨⟨A|B∗⟩⟩∥ 1
2 ⩽ ∥⟨⟨A|A⟩⟩∥ 1

2 ∥⟨⟨B∗|B∗⟩⟩∥ 1
2 ,

∥⟨⟨A∗|B⟩⟩∥ = ∥⟨⟨B|A∗⟩⟩⟨⟨A∗|B⟩⟩∥ 1
2 ⩽ ∥⟨⟨A∗|A∗⟩⟩∥ 1

2 ∥⟨⟨B|B⟩⟩∥ 1
2 .

Inserting the above inequalities in Eq. (25) gives the bound in Eq. (24).

Finally, we present the following useful properties of operations:

Lemma A.2. Let Φ∗ : L(K) → L(H) be an operation. For any effects A ∈ Lp(K) and B ∈ Lp(H), it holds that

∥Φ∗(A2) − Φ∗(A)2∥ ⩽ 2∥Φ∗(A) −B∥ + ∥B −B2∥.

Proof. This inequality (for channels) was given as Eq.(4) in Ref. [88]; the proof below follows Theorem 2 of
Ref. [89]. Let us first define C := Φ∗(A) − B for notational simplicity. Now, given that O ⩽ A ⩽ 1K implies
A2 ⩽ A, we may write

Φ∗(A2) − Φ∗(A)2 ⩽ Φ∗(A) − Φ∗(A)2

= [C,B] + C
(
1H − Φ∗(A) −B

)
+B −B2,

and so we have the bound

∥Φ∗(A2) − Φ∗(A)2∥ ⩽ ∥[C,B]∥ + ∥C
(
1H − Φ∗(A) −B

)
∥ + ∥B −B2∥

⩽ ∥[C,B]∥ + ∥C∥∥1H − Φ∗(A) −B∥ + ∥B −B2∥
⩽ ∥[C,B]∥ + ∥C∥ + ∥B −B2∥
⩽ 2∥C∥ + ∥B −B2∥.

In the third line we use the fact that A and B are effects which, given that Φ∗ is an operation, gives O ⩽
Φ∗(A) + B ⩽ 21H. This in turn implies that ∥1H − Φ∗(A) − B∥ ⩽ 1. The inequality in the final line follows
from Robertson’s uncertainty relation, by which we have

∥[C,B]∥ = sup
∥ϕ∥=1

|⟨ϕ|i[C,B]ϕ⟩| ⩽ 2
√

⟨ϕ|C2ϕ⟩ − ⟨ϕ|Cϕ⟩2
√

⟨ϕ|B2ϕ⟩ − ⟨ϕ|Bϕ⟩2

⩽ 2∥C∥
√

⟨ϕ|B2ϕ⟩ − ⟨ϕ|Bϕ⟩2

⩽ ∥C∥.

The final line follows from the fact that O ⩽ B ⩽ 1H implies
√

⟨ϕ|B2ϕ⟩ − ⟨ϕ|Bϕ⟩2 ⩽ 1/2.

Lemma A.3. Let Φ∗ : L(K) → L(H) be an operation. Assume that Φ∗(A) = O for some A ∈ Lp(K). It holds
that

Φ∗(AB) = Φ∗(BA) = O

for all B ∈ L(K).

Proof. First, let us note that for any B ∈ Lp(K), we have

O ⩽ Φ∗(ABA) ⩽ ∥B∥Φ∗(
√
AA

√
A) ⩽ ∥B∥∥A∥Φ∗(A) = O,

and so Φ∗(ABA) = O. By the two-positivity of CP maps, it follows that for any B ∈ L(K) we have

O = Φ∗(AB∗BA) ⩾ Φ∗(AB∗)Φ∗(BA) ⩾ O.

The claim immediately follows.
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B Faithful fixed states and von Neuman algebras
Recall that for channels Φ : T (H) → T (H), and their duals Φ∗ : L(H) → L(H), the fixed-point sets are defined
as

F(Φ) := {T ∈ T (H) : Φ(T ) = T}, F(Φ∗) := {A ∈ L(H) : Φ∗(A) = A}.

Lemma B.1 (Lindblad). Assume that F(Φ) contains a faithful state. Then F(Φ∗) is a von Neumann algebra.

Proof. Suppose B ∈ F(Φ∗), and define the operator Φ∗(B∗B) − Φ∗(B∗)Φ∗(B) = Φ∗(B∗B) − B∗B, which is
positive due to the two-positivity of CP maps. Let F(Φ) contain a faithful state ω. Then we have

tr[ω(Φ∗(B∗B) −B∗B)] = tr[ω(B∗B −B∗B)] = 0.
But since ω is faithful and Φ∗(B∗B)−B∗B is positive, tr[ω(Φ∗(B∗B)−B∗B)] = 0 implies that Φ∗(B∗B) = B∗B.
Corollary A.1 therefore implies that for all A ∈ L(H),

Φ∗(AB) = Φ∗(A)B.
Therefore, if A ∈ F(Φ∗), then Φ∗(AB) = AB, and so F(Φ∗) is closed under multiplication and is therefore a
∗-algebra. Finally, if F(Φ∗) is an algebra, then F(Φ∗) = {Ki,K

∗
i }′ := {A ∈ L(H) : [Ki, A] = [K∗

i , A] = O∀i},
with {Ki} any Kraus representation of Φ [90], making F(Φ∗) a von Neumann algebra (as the commutant of a
self-adjoint subset of L(H)) [55].

If F(Φ∗) is a von Neumann algebra, it holds that for any self-adjoint operator A ∈ F(Φ∗), the spectral measure
of A is also contained in F(Φ∗). In the case that A has a discrete spectrum, i.e., A =

∑
n λnPn, this implies

that {Pn} ⊂ F(Φ∗).

C Fixed points of instrument channels
Here we prove a useful result regarding the fixed-point structure of the E-channel I∗

X , describing a non-selective
measurement of an observable E, which we shall use in several places in this paper.

Lemma C.1. Let I be an instrument compatible with an observable E acting in HS. The following hold:
(i) If E is sharp, then F(I∗

X ) ⊂ I∗
X (L(HS)) ⊂ E′.

(ii) If F(I∗
X ) is a von Neumann algebra, then F(I∗

X ) ⊂ E′.
(iii) If IX fully conserves a self-adjoint operator A ∈ Ls(HS), then A ∈ E′.

Proof. All E-compatible instruments I admit a measurement scheme M := (HA, ξ, E ,Z). Therefore, by the
channel ΓE

ξ defined in Eq. (3), we may write [E(x), I∗
X (A)] = [ΓE

ξ (1S ⊗ Z(x)),ΓE
ξ (A⊗1A)]. Since [1S ⊗ Z(x), A⊗

1A] = O, and Z(x) are positive operators, then by the sesquilinear mapping ⟨⟨A|B⟩⟩ := ΓE
ξ (A∗B)−ΓE

ξ (A∗)ΓE
ξ (B)

and Corollary A.2 we obtain

∥[E(x), I∗
X (A)]∥ ⩽ ∥⟨⟨1S ⊗ Z(x)|1S ⊗ Z(x)⟩⟩∥ 1

2

(
∥⟨⟨A⊗ 1A|A⊗ 1A⟩⟩∥ 1

2 + ∥⟨⟨A∗ ⊗ 1A|A∗ ⊗ 1A⟩⟩∥ 1
2

)
. (26)

Since Z(x) are effects, it follows that
⟨⟨1S ⊗ Z(x)|1S ⊗ Z(x)⟩⟩ = ΓE

ξ (1S ⊗ Z(x)2) − ΓE
ξ (1S ⊗ Z(x))2 ⩽ ΓE

ξ (1S ⊗ Z(x)) − ΓE
ξ (1S ⊗ Z(x))2 = E(x) − E(x)2.

On the other hand, we have ⟨⟨A ⊗ 1A|A ⊗ 1A⟩⟩ = I∗
X (A∗A) − I∗

X (A∗)I∗
X (A) and ⟨⟨A∗ ⊗ 1A|A∗ ⊗ 1A⟩⟩ =

I∗
X (AA∗) − I∗

X (A)I∗
X (A∗). We thus obtain from Eq. (26) the bound

∥[E(x), I∗
X (A)]∥ ⩽ ∥E(x) − E(x)2∥ 1

2

(
∥I∗

X (A∗A) − I∗
X (A∗)I∗

X (A)∥ 1
2 + ∥I∗

X (AA∗) − I∗
X (A)I∗

X (A∗)∥ 1
2

)
. (27)

Now we may prove (i). If E is sharp, then the upper bound of Eq. (27) vanishes and so for all A ∈ L(HS),
I∗

X (A) ∈ E′. As such, I∗
X (L(HS)) ⊂ E′. That F(I∗

X ) ⊂ I∗
X (L(HS)) is trivial.

Now we prove (ii). Assume that A ∈ F(I∗
X ), which implies that A∗ ∈ F(I∗

X ). But if F(I∗
X ) is a von Neumann

algebra, this implies that A∗A,AA∗ ∈ F(I∗
X ), and so the upper bound of Eq. (27) vanishes. Consequently, we

see that for all A ∈ L(HS), A ∈ F(I∗
X ) =⇒ A ∈ E′, which implies that F(I∗

X ) ⊂ E′.
Finally, let us prove (iii). Let A be a self-adjoint operator, and assume that IX fully conserves A. By Definition 2
it holds that I∗

X (Ak) = Ak for k = 1, 2, and so once again the upper bound of Eq. (27) vanishes, implying that
A ∈ E′.
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D Disturbance, commutation, and compatibility
The pair of observables E := {E(x) : x ∈ X } and F := {F(y) : y ∈ Y} acting in HS are compatible, or jointly
measurable, if they admit a joint observable G := {G(x, y) : (x, y) ∈ X × Y} so that∑

y∈Y
G(x, y) = E(x),

∑
x∈X

G(x, y) = F(y) ∀x ∈ X , y ∈ Y. (28)

If E and F do not admit a joint observable, then they are incompatible [21]. Now let I be an E-compatible
instrument, and assume that F ⊂ F(I∗

X ). In such a case, we may choose G as G(x, y) = I∗
x(F(y)), which satisfies

Eq. (28). It follows that non-disturbance implies compatibility, and so for two incompatible observables E and
F, no E-instrument I exists that satisfies F ⊂ F(I∗

X ). Note that while non-disturbance requires compatibility,
compatibility does not guarantee non-disturbance. For instance, while any observable is compatible with itself,
for every informationally complete observable the fixed-point set of its compatible channel is trivial. Indeed, the
size of the fixed-point set of an E-channel is strongly related to the amount of information given by E as shown
in Ref. [16]. Furthermore, as shown in Ref. [4], there exist pairs of compatible observables E and F where E
admits an instrument that does not disturb F, but all possible F-instruments necessarily disturb E. This further
demonstrates that unlike compatibility, non-disturbance is not symmetric.

As shown in Ref. [88], the pair of observables E and F are compatible only if

∥[E(x),F(y)]∥ ⩽ 2∥E(x) − E(x)2∥ 1
2 ∥F(y) − F(y)2∥ 1

2 ∀x ∈ X , y ∈ Y. (29)

Commutation is a sufficient condition for compatibility; if E commutes with F, then there is a joint observable G
with effects G(x, y) = E(x)F(y) ≡ (

√
E(x)

√
F(y))∗(

√
E(x)

√
F(y)). On the other hand, if either E or F is sharp,

in which case the upper bound of Eq. (29) vanishes, then commutation is a necessary condition for compatibility
[91]. For two non-commuting observables to be compatible, therefore, their effects must be sufficiently unsharp.
We now provide a bound for the disturbance of F by an E-instrument I, in terms of the commutation between
the effects of E and F.

Proposition D.1. Consider the observables E and F acting in HS, and let ∥δ(y)∥ be the disturbance of the
effects of F caused by an E-instrument I. Then for all x ∈ X and y ∈ Y it holds that

∥[E(x),F(y)]∥ ⩽ ∥δ(y)∥ + 2∥E(x) − E(x)2∥ 1
2 ∥I∗

X (F(y)2) − I∗
X (F(y))2∥ 1

2 . (30)

If F is non-disturbed by I, that is, if δ = 0, then for all x ∈ X and y ∈ Y it holds that

∥[E(x),F(y)]∥ ⩽ 2∥E(x) − E(x)2∥ 1
2 ∥I∗

X (F(y)2) − F(y)2∥ 1
2 . (31)

Proof. By Eq. (8), we may write

[E(x),F(y)] = [δ(y),E(x)] + [E(x), I∗
X (F(y))]. (32)

Every E-instrument I admits a measurement scheme M := (HA, ξ, E ,Z). Using the channel ΓE
ξ defined in Eq. (3),

we may therefore write [E(x), I∗
X (F(y))] = [ΓE

ξ (1S ⊗Z(x)),ΓE
ξ (F(y)⊗1A)]. Given that [1S ⊗Z(x),F(y)⊗1A] = O,

then by the sesquilinear mapping ⟨⟨A|B⟩⟩ := ΓE
ξ (A∗B) − ΓE

ξ (A∗)ΓE
ξ (B) and Corollary A.2, we obtain from

Eq. (32) the bound

∥[E(x),F(y)]∥ ⩽ ∥[δ(y),E(x)]∥ + 2∥⟨⟨1S ⊗ Z(x)|1S ⊗ Z(x)⟩⟩∥ 1
2 ∥⟨⟨F(y) ⊗ 1A|F(y) ⊗ 1A⟩⟩∥ 1

2 . (33)

Since E(x) is an effect, then as shown in Lemma A.2 we have ∥[δ(y),E(x)]∥ ⩽ ∥δ(y)∥. As shown in Lemma C.1,
we have ⟨⟨1S ⊗ Z(x)|1S ⊗ Z(x)⟩⟩ ⩽ E(x) − E(x)2 and ⟨⟨F(y) ⊗ 1A|F(y) ⊗ 1A⟩⟩ = I∗

X (F(y)2) − I∗
X (F(y))2. We

therefore obtain from Eq. (33) the bound given in Eq. (30). If F is non-disturbed by I, then ∥δ(y)∥ = 0 and
I∗

X (F(y))2 = F(y)2 for all y. We thus arrive at Eq. (31).

We see that when E commutes with F the lower bound of Eq. (31) vanishes, in which case Proposition D.1 does
not prohibit non-disturbance. Indeed, in the case of commuting observables there always exists a non-disturbing
instrument; since E′ ⊂ F(ILX

∗) always holds, where IL is the Lüders E-instrument defined in Eq. (1), then a
Lüders measurement of E is guaranteed not to disturb any F commuting with E [63]. On the other hand, if
E does not commute with F, then Proposition D.1 allows us to obtain a lower bound for the disturbance that
results given any E-compatible instrument, determined only by the unsharpness and non-commutation of E and
F:
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Corollary D.1. Consider the setup of Proposition D.1. For all x ∈ X and y ∈ Y, it also holds that

∥[E(x),F(y)]∥ ⩽ ∥δ(y)∥ + 2∥E(x) − E(x)2∥ 1
2

(
2∥δ(y)∥ + ∥F(y) − F(y)2∥

) 1
2

. (34)

Proof. Since F(y) are effects and I∗
X is a channel, then by Lemma A.2 we have ∥I∗

X (F(y)2) − I∗
X (F(y))2∥ ⩽

2∥δ(y)∥ + ∥F(y) − F(y)2∥. As such, Eq. (34) is obtained directly from Eq. (30).

Note that while Corollary D.1 provides a lower bound for the disturbance, which is strictly positive whenever
either E or F is sharp and these observables do not commute, such a lower bound will differ depending on
whether E or F is sharp; if E is sharp, we have δ ⩾ maxx,y ∥[E(x),F(y)]∥, whereas if F is sharp but E is unsharp,
the lower bound for the disturbance may be smaller. Let us illustrate this with the following example. Consider
a system HS ≃ C2, with the orthonormal basis {|0⟩, |1⟩}, and define |±⟩ := 1√

2 (|0⟩±|1⟩). Now consider a pair of

binary observables A = {A(a) : a = 0, 1} and Bλ = {Bλ(b) : b = ±} acting in HS , defined by A(a) = |a⟩⟨a| and
Bλ(b) = λ|b⟩⟨b| + (1 − λ)12 for some 0 ⩽ λ ⩽ 1. It is simple to verify that ∥[A(a),Bλ(b)]∥ = λ

2 for any a = 0, 1
and b = ±. Now we may evaluate the disturbance of one of these observables caused by a Lüders measurement
of the other. The disturbance of Bλ(b) by a Lüders measurement of A reads ∥δ(b)∥ = λ

2 for each b. Since A is
sharp, then by setting E = A and F = Bλ, we see that the inequality in Eq. (34) is tight. On the other hand,

the disturbance of A(a) by a Lüders measurement of Bλ reads ∥δ(a)∥ = 1−
√

1−λ2

2 for each a, which is smaller

than λ
2 for 0 < λ < 1.

Let us now consider the case of non-disturbance more carefully. First, let us note that when we set ∥δ(y)∥ = 0,
Eq. (34) reduces to the compatibility bound of Eq. (29), and states that for non-disturbance to be possible when
E and F do not commute, then both observables must be sufficiently unsharp so as to be compatible. To be
sure, compatibility is a necessary condition for non-disturbance, and the fact that Eq. (34) does not contradict
the compatibility bound is not surprising. On the other hand, in the case of non-disturbance this bound is
also not very informative—it is possible for two observables to be compatible, while a measurement of one still
disturbs the other. To gain a better understanding of non-disturbance, let us consider instead Eq. (31), the
upper bound of which is smaller than the upper bound in Eq. (34) when we set ∥δ(y)∥ = 0, and vanishes if both
F ⊂ F(I∗

X ) and F2 := {F(y)2 : y ∈ Y} ⊂ F(I∗
X ) hold. We immediately see that while unsharpness of both E

and F is necessary for non-disturbance when E and F do not commute, it is not sufficient; as shown in Ref. [4]
there are at least two classes of unsharp observables F where given any instrument I, i.e., including instruments
that measure an unsharp observable E that does not commute with F but is still compatible with F, it holds
that F ⊂ F(I∗

X ) guarantees F2 ⊂ F(I∗
X ): if F is a rank-1 observable, or if F is an “informationally equivalent

coarse-graining” of a sharp observable.

Let us consider the first option. If F is a rank-1 observable, then all the effects of F may be written as
F(y) = λyPy, where Py is a rank-1 projection operator and λy ∈ (0, 1]. As shown in [92], all observables E
that are compatible with a rank-1 observable F are the post-processings of F, that is, the effects of E may be
written as E(x) =

∑
y p(x|y)F(y), where {p(x|y)} is a family of non-negative numbers satisfying

∑
x p(x|y) = 1

for all y. It follows that so long as F is a non-commutative rank-1 observable, then there exists an unsharp
observable E that is compatible with F but does not commute with F. But note that I∗

X (F(y)) = F(y) if and
only if I∗

X (Py) = Py. As such, I∗
X (F(y)2) = λ2

yI∗
X (Py) = λ2

yPy = F(y)2. It follows that F will be non-disturbed
by an E-compatible instrument I only if E commutes with F.

Let us now consider the second option. We say that F is an informationally equivalent coarse-graining of a
sharp observable G := {G(z) : z ∈ Z} if there exists an invertible stochastic matrix M such that

F(y) =
∑
z

My,zG(z), G(z) =
∑
y

M−1
z,yF(y).

F and G are informationally equivalent because a measurement of F produces different probability distributions
for two states ρ1 and ρ2 if and only if these states produce different probability distributions given a measurement
of G. Since G is sharp, then F(y)2 =

∑
zM

2
y,zG(z). Now assume that F ⊂ F(I∗

X ). It is simple to verify that this
implies G ⊂ F(I∗

X ). Therefore, we have I∗
X (F(y)2) =

∑
zM

2
y,zI∗

X (G(z)) =
∑
zM

2
y,zG(z) = F(y)2. Once again,

F will be non-disturbed by an E-compatible instrument I only if E commutes with F.

Both of the above examples offer a very simple interpretation in terms of compatibility. If F is a rank-1
observable, then non-disturbance of F implies non-disturbance of sharp rank-1 effects Py. Since non-disturbance
requires compatibility, this implies that E must commute with all Py, and hence with F. On the other hand,
if F is a classical coarse-graining of a sharp observable G, then non-disturbance of F implies non-disturbance of
G, and by compatibility E must commute with G. Since the effects of F are constructed as a mixture of the
(projective) effects of G, this concludes that E must commute with F.
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E Properties of repeatable instruments
In this section, we prove a series of useful results regarding the structure of repeatable instruments, and the
measurement schemes that implement them.

Proposition E.1. Let M := (HA, ξ, E ,Z) be a measurement scheme for an E-compatible instrument I acting
in HS. If I is repeatable, then the following hold:

(i) For all x ∈ X and n ∈ N, it holds that E(x) = ΓE
ξ (E(x)n ⊗ 1A) = ΓE

ξ (1S ⊗ Z(x)n).
(ii) For all x ∈ X , it holds that E(x) and Z(x) have 1 as an eigenvalue, and so there exist projection operators

P(x) ∈ Lp(HS) and Q(x) ∈ Lp(HA) which project onto the eigenvalue-1 eigenspaces of E(x) and Z(x),
respectively.

(iii) For all x, y ∈ X , it holds that P(x)E(y) = P(x)P(y) = δx,yP(x) and Q(x)Z(y) = Q(x)Q(y) = δx,yQ(x).
(iv) For all x ∈ X and A ∈ L(HS ⊗ HA), it holds that ΓE

ξ (Pc(x) ⊗ 1AA) = ΓE
ξ (APc(x) ⊗ 1A) = O and

ΓE
ξ (1S ⊗ Qc(x)A) = ΓE

ξ (A1S ⊗ Qc(x)) = O, where Pc(x) := E(x) − P(x) and Qc(x) := Z(x) − Q(x).
(v) For all A ∈ L(HS ⊗ HA), it holds that ΓE

ξ (A) = ΓE
ξ (RAR), where R :=

∑
x∈X P(x) ⊗ Q(x).

(vi) For all x ∈ X , A ∈ L(HS), and B ∈ L(HA), it holds that I∗
X (E(x)A) = I∗

X (AE(x)) = I∗
X (P(x)AP(x)) and

Λ∗(Z(x)B) = Λ∗(BZ(x)) = Λ∗(Q(x)BQ(x)).
(vii) For all x ∈ X and A ∈ L(HS), it holds that I∗

x(A) = I∗
x(P(x)AP(x)).

Proof. (i): The repeatability condition implies that for all x ∈ X , it holds that E(x) = I∗
x(E(x)) = ΓE

ξ (E(x) ⊗
Z(x)). It follows that for any state ρ ∈ S(HS), we have

tr[ρE(x)] = tr[ρΓE
ξ (E(x) ⊗ Z(x))]

⩽ tr[ρΓE
ξ (E(x)2 ⊗ 1A)] 1

2 tr[ρΓE
ξ (1S ⊗ Z(x)2)] 1

2

⩽ tr[ρΓE
ξ (E(x) ⊗ 1A)] 1

2 tr[ρΓE
ξ (1S ⊗ Z(x))] 1

2

= tr[ρE(x)].

Here, the second line follows from the Cauchy-Schwarz inequality, the third line follows from the fact
that E(x) and Z(x) are effects and so E(x)2 ⩽ E(x) and Z(x)2 ⩽ Z(x), and the final line follows from the
fact that repeatability implies first-kindness and that M is a measurement scheme for E. As the second
inequality must be an equality, we thus have E(x) = ΓE

ξ (E(x)n ⊗ 1A) = ΓE
ξ (1S ⊗ Z(x)n) for n = 1, 2. To

show that the relations hold for all n ∈ N, it suffices to show that for all ρ, the Cauchy-Schwarz inequality
and the above arguments implies

0 ⩽ tr[ρΓE
ξ ((E(x)n − E(x)n+1) ⊗ 1A)] ⩽ tr[ρΓE

ξ (E(x)2(n−1) ⊗ 1A)] 1
2 tr[ρΓE

ξ ((E(x) − E(x)2)2 ⊗ 1A)] 1
2

⩽ tr[ρΓE
ξ (E(x)2(n−1) ⊗ 1A)] 1

2 tr[ρΓE
ξ ((E(x) − E(x)2) ⊗ 1A)] 1

2 = 0,

and so it holds that ΓE
ξ ((E(x)n−E(x)n+1)⊗1A) = O. Similar steps show that ΓE

ξ (1S ⊗(Z(x)n−Z(x)n+1)) =
O. The claims are thus obtained by induction.

(ii): Note that for any operation Φ∗ : L(K) → L(H), it holds that ∥Φ∗(A)∥ ⩽ ∥A∥ for all A ∈ L(K). As
such, by (i) we have ∥E(x)∥ = ∥ΓE

ξ (E(x)2 ⊗ 1A)∥ ⩽ ∥E(x)2∥ = ∥E(x)∥2. But since E(x) is an effect it also
holds that ∥E(x)∥ ⩾ ∥E(x)∥2. It follows that ∥E(x)∥ is either zero or one. As we assume that E(x) is not
vanishing, then ∥E(x)∥ = 1 follows. Similarly, we have 1 = ∥E(x)∥ = ∥ΓE

ξ (1S ⊗Z(x))∥ ⩽ ∥Z(x)∥, and since
Z(x) is an effect, then it must hold that ∥Z(x)∥ = 1.
Now we shall show that E(x) has 1 as an eigenvalue, i.e., there exists a unit-vector ψ ∈ HS such that
E(x)ψ = ψ. If this is not so, then we would have limn→∞ E(x)n = O, which would contradict (i).
Therefore, there exists a projection operator P(x) that projects onto the eigenvalue-1 eigenspace of E(x).
Similar arguments hold for Z(x) and Q(x).

(iii): For each x, define Pc(x) := E(x) − P(x). Since E(x) is an effect and P(x) projects onto the eigenvalue-
1 eigenspace of E(x), it trivially holds that ψ ∈ supp(P(x)) =⇒ ψ ∈ ker(Pc(x)). Now, given that
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ψ ∈ supp(P(x)) implies that P(x)ψ = ψ, and denoting the null vector in HS as ∅, we have

∅ = (1S − P(x))ψ
= (1S − E(x))ψ + Pc(x)ψ
= (1S − E(x))ψ

=
∑
y ̸=x

E(y)ψ.

By positivity of E(y), the above equation implies that∑
y ̸=x

⟨ψ|E(y)ψ⟩ =
∑
y ̸=x

⟨
√

E(y)ψ|
√

E(y)ψ⟩ = 0,

which can be satisfied only if
√

E(y)ψ = ∅ =⇒ E(y)ψ = ∅ for all y ̸= x. We thus have ψ ∈
supp(P(x)) =⇒ ψ ∈ ker(E(y)) ∀ y ̸= x, and so the support of P(x) must be orthogonal to the sup-
port of E(y) for all y ̸= x. That P(x) and P(y) for x ̸= y have orthogonal supports follows trivially.
Similar arguments hold for Q(x), Z(y), and Q(y).

(iv): It trivially holds that ∥Pc(x)∥ < 1 and ∥Qc(x)∥ < 1. We thus have limn→∞ Pc(x)n = O and limn→∞ Qc(x)n =
O. As stated in (iii), the supports of P(x) and Pc(x) are orthogonal, and so it holds that P(x)Pc(x) =
Pc(x)P(x) = O. As such, for all n ∈ N we have E(x)n = P(x)+Pc(x)n. Similarly, Z(x)n = Q(x)+Qc(x)n.
By (i), it holds that ΓE

ξ (E(x)n ⊗ 1A) = ΓE
ξ (P(x) ⊗ 1A) + ΓE

ξ (Pc(x)n ⊗ 1A) = E(x) for all n ∈ N, and so
it must hold that ΓE

ξ (Pc(x) ⊗ 1A) = limn→∞ ΓE
ξ (Pc(x)n ⊗ 1A) = O. Similarly, E(x) = ΓE

ξ (1S ⊗ Q(x)) +
ΓE
ξ (1S ⊗ Qc(x)n) for all n ∈ N implies that ΓE

ξ (1S ⊗ Qc(x)) = O. The claim follows from Lemma A.3.
(v): First, let us note that by repeatability, it holds that ΓE

ξ (E(x) ⊗ Z(y)) = I∗
y (E(x)) = O for all x ̸= y. By

Lemma A.3, it follows that ΓE
ξ (E(x) ⊗ Z(y)A) = ΓE

ξ (AE(x) ⊗ Z(y)) = O holds for all A and x ̸= y. We
may therefore write

ΓE
ξ (A) =

∑
x,x′,y,y′

ΓE
ξ (E(x) ⊗ Z(x′)AE(y) ⊗ Z(y′))

=
∑
x,y

ΓE
ξ (E(x) ⊗ Z(x)AE(y) ⊗ Z(y))

=
∑
x,y

ΓE
ξ (P(x) ⊗ Q(x)AP(y) ⊗ Q(y)) = ΓE

ξ (RAR).

In the final line, we have used the fact that E(x) = P(x) + Pc(x) and Z(x) = Q(x) + Qc(x), together with
(iv).

(vi): We may write

I∗
X (E(x)A) = ΓE

ξ (R(E(x)A⊗ 1A)R)
= ΓE

ξ (P(x)AP(x) ⊗ Q(x))
= ΓE

ξ (P(x)AP(x) ⊗ 1S) − ΓE
ξ (P(x)AP(x) ⊗ Q(x)⊥)

= ΓE
ξ (P(x)AP(x) ⊗ 1S) = I∗

X (P(x)AP(x)).

The first line follows from (v), and the third line follows from the definition Q(x)⊥ := 1S − Q(x). The
final line is obtained by (v) and noting that (P(x)AP(x) ⊗ Q(x)⊥)R = P(x)AP(x) ⊗ Q(x)⊥Q(x) = O. The
relation I∗

X (AE(x)) = I∗
X (P(x)AP(x)) holding for all A trivially follows from above and by observing that

I∗
X (E(x)A∗)∗ = I∗

X (AE(x)) and I∗
X (P(x)A∗P(x))∗ = I∗

X (P(x)AP(x)).
Similarly, we may write

Λ∗(Z(x)B) = ΓE
ξ (R(1S ⊗ Z(x)B)R)

= ΓE
ξ (P(x) ⊗ Q(x)BQ(x))

= ΓE
ξ (1S ⊗ Q(x)BQ(x)) − ΓE

ξ (P(x)⊥ ⊗ Q(x)BQ(x))
= ΓE

ξ (1S ⊗ Q(x)BQ(x)) = Λ∗(Q(x)BQ(x)).
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(vii): We may write

I∗
x(A) = ΓE

ξ (R(A⊗ Z(x))R)
= ΓE

ξ (P(x)AP(x) ⊗ Q(x))
= ΓE

ξ (P(x)AP(x) ⊗ Z(x)) − ΓE
ξ (P(x)AP(x) ⊗ Qc(x))

= ΓE
ξ (P(x)AP(x) ⊗ Z(x)) = I∗

x(P(x)AP(x)).

In the first line we have used (v), in the third line we use Q(x) = Z(x) − Qc(x), and in the final line we
use (iv).

Let us highlight one interesting property of repeatable instruments: if I is repeatable, then for all input states
ρ, the output states will be perfectly distinguishable. For the input state ρ, we define the normalised post-
measurement states as ρx := Ix(ρ)/tr[Ix(ρ)] for any x satisfying tr[Ix(ρ)] > 0. By item (vii) of the above
proposition, the Schrödinger picture operations of a repeatable instrument satisfy Ix(T ) = P(x)Ix(T )P(x) for
all x and T ∈ T (HS), and so ρx will have support only in the eigenvalue-1 eigenspace of E(x). But by item (iii),
such eigenvalue-1 eigenspaces are orthogonal, and so it holds that ρxρy = ρyρx = O for all x ̸= y.

F Conservation laws
Recall that by Definition 1 a channel Φ conserves N on average if Φ∗(N) = N , while by Definition 2 Φ fully
conserves N if Φ∗(Nk) = Nk for all k ∈ N. We shall now show that full conservation is in fact equivalent to
just the first two moments being conserved, and that is is also equivalent to “invariance” of the unitary group
generated by N under the action of Φ∗, i.e., that Φ∗(eitN ) = eitN for all t ∈ R.

Proposition F.1. Let Φ : T (H) → T (H) be a channel, and let N ∈ Ls(H) be a self-adjoint operator. The
following statements are equivalent:

(i) Φ fully conserves N .
(ii) Φ∗(Nk) = Nk for k = 1, 2.

(iii) Φ∗(eitN ) = eitN for all t ∈ R.

Proof. (i) =⇒ (ii): This is trivial.
(ii) =⇒ (i): Assume that Φ∗(Nk) = Nk for k = 1, 2. For any k ⩾ 2, Corollary A.1 implies that Φ∗(Nk+1) =
Φ∗(NkN) = Φ∗(Nk)N . The claim follows by induction.
(ii) =⇒ (iii): Define f(t) := Φ∗(eitN ). Since N is bounded, eitN is bounded and strongly continuous, and Φ∗

is a channel, then f(t) is infinitely differentiable. Now assume that Φ∗(Nk) = Nk for k = 1, 2. It follows that

d

dt
f(t) = iΦ∗(NeitN ) = iNΦ∗(eitN ) = iNf(t),

where the second equality follows from Corollary A.1. Indeed, by induction we obtain (dk/dtk)f(t) = ikNkf(t)
for all k ∈ N. Since f(0) = 1, by Taylor expansion around t = 0 we observe that

Φ∗(eitN ) =
∞∑
k=0

tk

k!

(
dk

dtk
f(t)

) ∣∣∣∣
t=0

=
∞∑
k=0

iktk

k! N
k = eitN .

(iii) =⇒ (i): Assume that Φ∗(eitN ) = eitN for all t ∈ R. It follows that

dk

dtk
Φ∗(eitN ) = dk

dtk
eitN =⇒ Φ∗(NkeitN ) = NkeitN

holds for all k ∈ N and all t. Since eitN = 1 when t = 0, it follows that Φ∗(Nk) = Nk for all k.

A property that channels may enjoy is “covariance” under the action of a unitary group, i.e., that Φ∗(eitNAe−itN ) =
eitNΦ∗(A)e−itN holds for all t ∈ R and A ∈ L(H). While a channel may be coavariant while not invariant—for
example, Φ∗(·) = tr[·ω]1 such that [ω,N ] = O is covariant but not invariant—we now show that invariance
implies covariance.

Accepted in Quantum 2023-05-25, click title to verify. Published under CC-BY 4.0. 24



Corollary F.1. Let Φ : T (H) → T (H) be a channel, and let N ∈ Ls(H) be a self-adjoint operator. If Φ fully
conserves N , then for all t ∈ R and A ∈ L(H) it holds that

Φ∗(eitNAe−itN ) = eitNΦ∗(A)e−itN

Proof. Let us define V (t) := eitN for notational simplicity. By Proposition F.1, full conservation of N by
Φ implies that Φ∗(V (t)) = V (t) for all t. In particular, noting that V (t)∗ = V (−t), this implies that
Φ∗(V (t)∗V (t)) − Φ∗(V (t)∗)Φ∗(V (t)) = Φ∗(1) − 1 = O. As such, by Corollary A.1 it follows that

Φ∗(V (t)AV (−t)) = V (t)Φ∗(AV (−t)) = V (t)Φ∗(A)V (−t).

We note that the condition Φ∗(Nk) = Nk for k = 1, 2 was taken as a potential definition of conservation
simpliciter in Ref. [93]. However, the authors here conjectured that, in finite dimensions, the condition
Φ∗(N2) = N2 may be dropped, and that (in our formulation) both average and full conservation are equivalent.
We shall now address this issue: by a simple counter-example, we shall show that average and full conservation
are in fact not equivalent for general channels, even in finite dimensions.

Let us consider a system H ≃ C3 with an orthonormal basis {| − 1⟩, |0⟩, |1⟩}. Now consider N =
∑
n n|n⟩⟨n| ≡

|1⟩⟨1| − | − 1⟩⟨−1|, and a channel Φ∗ defined by

Φ∗(A) = ⟨1|A|1⟩|1⟩⟨1| + ⟨−1|A| − 1⟩| − 1⟩⟨−1| + ⟨+|A|+⟩|0⟩⟨0|,

to hold for all A ∈ L(H), where we define |+⟩ := 1√
2 (|1⟩ + | − 1⟩). It is simple to verify that Φ∗(N) = N , that

is, Φ conserves N on average. However, Φ∗(N2) = 1 ̸= N2, and so Φ does not fully conserve N . Since full
conservation is equivalent to invariance, then it follows that Φ is also not invariant. Indeed, we can easily verify
that Φ is not covariant either; for example, if we choose A = |+⟩⟨+|, then it holds that

Φ∗(eitN |+⟩⟨+|e−itN ) = 1
2(|1⟩⟨1| + | − 1⟩⟨−1|) + cos(t)2|0⟩⟨0|,

eitNΦ∗(|+⟩⟨+|)e−itN = 1
2(|1⟩⟨1| + | − 1⟩⟨−1|) + |0⟩⟨0|,

which coincide only when t is an integer multiple of π.

While the above discussion shows that average conservation is in general a weaker condition than full con-
servation, we shall now show that in the special case of unitary channels, average and full conservation are
equivalent:

Lemma F.1. Let Φ(·) := U(·)U∗ be a unitary channel, with U ∈ L(H) a unitary operator, and let N ∈ Ls(H)
be a self-adjoint operator. The following statements are equivalent:

(i) [U,N ] = O.
(ii) Φ conserves N on average.

(iii) Φ fully conserves N .

Proof. (i) ⇐⇒ (ii), (i) =⇒ (iii), and (iii) =⇒ (ii) are trivial. To show (iii) =⇒ (i), let us first write

[U,N ]∗[U,N ] = Φ∗(N2) +N2 − Φ∗(N)N −NΦ∗(N).

If Φ fully conserves N , then the right hand side vanishes. But since the left hand side is a positive operator, then
it holds that [U,N ] = O. Finally, we shall show that (ii) =⇒ (iii). Since Φ is unitary, then Φ∗(A∗)Φ∗(B) =
U∗A∗UU∗BU = U∗A∗BU = Φ∗(A∗B) holds for all A,B ∈ L(H). If Φ∗(N) = N , it follows that Φ∗(N2) = N2.
The claim follows from Proposition F.1.

G Bounds for measurement error under conservation laws
Here we provide quantitative trade-off relations for measurement error under additive conservation laws, both
average and full.
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Theorem G.1. Let M := (HA, ξ, E ,Z) be a measurement scheme for an observable acting in HS, and assume
that E conserves an additive quantity N = NS ⊗1A+1S ⊗NA on average, where NS ∈ Ls(HS) and NA ∈ Ls(HA).
Let ∥ϵ(x)∥ be the error in measuring the effects of the target observable E, as defined in Eq. (7). Then for all
x ∈ X it holds that

∥[E(x), NS ] − Λ∗([Z(x), NA])∥ ⩽ 2∥NS∥∥ϵ(x)∥ + 2∥ΓE
ξ (N2) − ΓE

ξ (N)2∥ 1
2

(
2∥ϵ(x)∥ + ∥E(x) − E(x)2∥

) 1
2

, (35)

where ΓE
ξ is the channel defined in Eq. (3), and Λ is the conjugate channel to IX defined in Eq. (5).

Proof. By Eq. (7), we have

[E(x), NS ] − Λ∗([Z(x), NA]) = [NS , ϵ(x)] + [Λ∗(Z(x)), NS ] − Λ∗([Z(x), NA]).

Since N is additive, average conservation of N by E implies that ΓE
ξ (N) = Γξ(N) = NS + tr[NAξ]1S . It follows

that for all A ∈ L(HS), [A,NS ] = [A,ΓE
ξ (N)], and so we may write [Λ∗(Z(x)), NS ] = [ΓE

ξ (1S ⊗ Z(x)),ΓE
ξ (N)].

Moreover, by additivity of N we have ΓE
ξ ([1S ⊗ Z(x), N ]) = ΓE

ξ (1S ⊗ [Z(x), NA]) = Λ∗([Z(x), NA]). We may
therefore write

[E(x), NS ] − Λ∗([Z(x), NA]) = [NS , ϵ(x)] + [ΓE
ξ (1S ⊗ Z(x)),ΓE

ξ (N)] − ΓE
ξ ([1S ⊗ Z(x), N ]). (36)

By the sesquilinear mapping ⟨⟨A|B⟩⟩ = ΓE
ξ (A∗B) − ΓE

ξ (A∗)ΓE
ξ (B) and Corollary A.2 we obtain from Eq. (36)

the bound

∥[E(x), NS ] − Λ∗([Z(x), NA])∥ ⩽ ∥[NS , ϵ(x)]∥ + 2∥⟨⟨N |N⟩⟩∥ 1
2 ∥⟨⟨1S ⊗ Z(x)|1S ⊗ Z(x)⟩⟩∥ 1

2 .

Note that ∥[NS , ϵ(x)]∥ ⩽ 2∥NS∥∥ϵ(x)∥, and that ⟨⟨N |N⟩⟩ = ΓE
ξ (N2)−ΓE

ξ (N)2 by definition. Given that 1S ⊗Z(x)
and E(x) are effects and ΓE

ξ is a channel, Lemma A.2 gives ∥⟨⟨1S ⊗Z(x)|1S ⊗Z(x)⟩⟩∥ ⩽ 2∥ϵ(x)∥+∥E(x)−E(x)2∥.
We thus obtain the bound given in Eq. (35).

Proposition G.1. Let M := (HA, ξ, E ,Z) be a measurement scheme for an observable acting in HS, and assume
that E fully conserves an additive quantity N = NS ⊗ 1A + 1S ⊗ NA, where NS ∈ Ls(HS) and NA ∈ Ls(HA).
Let ∥ϵ(x)∥ be the error in measuring the effects of the target observable E, as defined in Eq. (7). Then for all
x ∈ X it holds that

∥[E(x), NS ] − Λ∗([Z(x), NA])∥ ⩽ 2∥NS∥∥ϵ(x)∥ + 1
2Q(NA, ξ)

1
2 , (37)

where Q(NA, ξ) denotes the quantum Fisher information of NA in the state ξ. Additionally, if E is an extremal
observable and M is a measurement scheme for E, then for all x ∈ X it holds that

∥[E(x), NS ] − Λ∗([Z(x), NA])∥ ⩽ Q(NA, ξ)
1
2 ∥E(x) − E(x)2∥ 1

2 . (38)

Proof. Let {qi, ϕi} be an arbitrary ensemble of unit vectors that satisfies ξ =
∑
i qiPϕi

. We may thus write
ΓE
ξ (·) =

∑
i qiΓE

ϕi
(·), where ΓE

ϕi
(·) ≡ ΓE

Pϕi
(·). Given the additivity of N and the conservation law, we may rewrite

Eq. (36) as

[E(x), NS ] − Λ∗([Z(x), NA]) = [NS , ϵ(x)] +
∑
i

qi

(
[ΓE
ϕi

(1S ⊗ Z(x)),ΓE
ϕi

(N)] − ΓE
ϕi

(1S ⊗ [Z(x), NA])
)
.

By the sesquilinear mappings ⟨⟨A|B⟩⟩i := ΓE
ϕi

(A∗B)−ΓE
ϕi

(A∗)ΓE
ϕi

(B), Corollary A.2 and Lemma 3.1, we obtain
the bounds

∥[E(x), NS ] − Λ∗([Z(x), NA])∥ ⩽ 2∥NS∥∥ϵ(x)∥ + 2
∑
i

qiVar (NA, ϕi)
1
2 ∥ΓE

ϕi
(1S ⊗ Z(x)2) − ΓE

ϕi
(1S ⊗ Z(x))2∥ 1

2 .

Since both Z(x) and ΓE
ϕi

(1S ⊗ Z(x)) are effects, we obtain

∥ΓE
ϕi

(1S ⊗ Z(x)2) − ΓE
ϕi

(1S ⊗ Z(x))2∥ 1
2 ⩽ ∥ΓE

ϕi
(1S ⊗ Z(x)) − ΓE

ϕi
(1S ⊗ Z(x))2∥ 1

2 ⩽ 1/2.
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We thus arrive at the bound

∥[E(x), NS ] − Λ∗([Z(x), NA])∥ ⩽ 2∥NS∥∥ϵ(x)∥ +
∑
i

qiVar (NA, ϕi)
1
2

⩽ 2∥NS∥∥ϵ(x)∥ +
(∑

i

qiVar (NA, ϕi)
) 1

2

,

where the second line follows from the concavity of the square root. By choosing the ensemble {qi, ϕi} that
gives the quantum Fisher information as in Eq. (13), we arrive at the bound in Eq. (37).
Now assume that E is an extremal observable [94]. This implies that for any pair of observables E(1) and E(2),
and any λ ∈ (0, 1), the effects of E can be decomposed as E(x) = λE(1)(x)+(1−λ) E(2)(x) only if E = E(1) = E(2).
It follows that if M is a measurement scheme for E, that is, if ϵ = 0, then ΓE

ϕi
(1S ⊗ Z(x)) = E(x) for all i.

Consequently, we obtain the bounds ∥ΓE
ϕi

(1S ⊗ Z(x)2) − ΓE
ϕi

(1S ⊗ Z(x))2∥ 1
2 ⩽ ∥E(x) − E(x)2∥ 1

2 for all i, which
gives

∥[E(x), NS ] − Λ∗([Z(x), NA])∥ ⩽ 2
(∑

i

qiVar (NA, ϕi)
) 1

2

∥E(x) − E(x)2∥ 1
2 .

Once again choosing the ensemble that gives the quantum Fisher information, we arrive at Eq. (38).

H Bounds for measurement disturbance under conservation laws
Here we provide quantitative trade-off relations for measurement disturbance under additive conservation laws,
both average and full. Note that here, the observable that may or may not be disturbed is not necessarily the
same observable that is measured by the instrument I.

Theorem H.1. Let M := (HA, ξ, E ,Z) be a measurement scheme for an instrument I acting in HS, and
assume that E conserves an additive quantity N = NS ⊗ 1A + 1S ⊗ NA on average, where NS ∈ Ls(HS) and
NA ∈ Ls(HA). Let ∥δ(y)∥ be the disturbance of the effects of an observable F := {F(y) : y ∈ Y} caused by I, as
defined in Eq. (8). Then for all y ∈ Y it holds that

∥[F(y), NS ] − I∗
X ([F(y), NS ])∥ ⩽ 2∥NS∥∥δ(y)∥ + 2∥ΓE

ξ (N2) − ΓE
ξ (N)2∥ 1

2 ∥I∗
X (F(y)2) − I∗

X (F(y))2∥ 1
2 , (39)

where ΓE
ξ is the channel defined in Eq. (3). If F is non-disturbed by I, that is, if δ = 0, then for all y ∈ Y it

holds that

∥[F(y), NS ] − I∗
X ([F(y), NS ])∥ ⩽ 2∥ΓE

ξ (N2) − ΓE
ξ (N)2∥ 1

2 ∥I∗
X (F(y)2) − F(y)2∥ 1

2 . (40)

Proof. By Eq. (8), we may write

[F(y), NS ] − I∗
X ([F(y), NS ]) = [NS , δ(y)] + [I∗

X (F(y)), NS ] − I∗
X ([F(y), NS ]).

Since N is additive, average conservation of N by E implies that ΓE
ξ (N) = Γξ(N) = NS + tr[NAξ]1S . It follows

that for all A ∈ L(HS), [A,NS ] = [A,ΓE
ξ (N)]. We may therefore write [I∗

X (F(y)), NS ] = [ΓE
ξ (F(y) ⊗1A),ΓE

ξ (N)].
Additionally, by additivity of N we may write ΓE

ξ ([F(y) ⊗ 1A, N ]) = ΓE
ξ ([F(y), NS ] ⊗ 1A) = I∗

X ([F(y), NS ]). We
thus arrive at

[F(y), NS ] − I∗
X ([F(y), NS ]) = [NS , δ(y)] + [ΓE

ξ (F(y) ⊗ 1A),ΓE
ξ (N)] − ΓE

ξ ([F(y) ⊗ 1A, N ]). (41)

By the sesquilinear mapping ⟨⟨A|B⟩⟩ := ΓE
ξ (A∗B) − ΓE

ξ (A∗)ΓE
ξ (B) and Corollary A.2 we obtain from Eq. (41)

the bound

∥[F(y), NS ] − I∗
X ([F(y), NS ])∥ ⩽ ∥[NS , δ(y)]∥ + 2∥⟨⟨N |N⟩⟩∥ 1

2 ∥⟨⟨F(y) ⊗ 1A|F(y) ⊗ 1A⟩⟩∥ 1
2 . (42)

By definition, we have ⟨⟨F(y) ⊗ 1A|F(y) ⊗ 1A⟩⟩ = I∗
X (F(y)2) − I∗

X (F(y))2 and ⟨⟨N |N⟩⟩ = ΓE
ξ (N2) − ΓE

ξ (N)2.
Noting that ∥[NS , δ(y)]∥ ⩽ 2∥NS∥∥δ(y)∥, we thus obtain from Eq. (42) the bound given in Eq. (39). If F is
non-disturbed by I, then ∥δ(y)∥ = 0 and I∗

X (F(y))2 = F(y)2 for all y. We thus arrive at Eq. (40).
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Corollary H.1. Consider the set-up of Theorem H.1. For all y ∈ Y it also holds that

∥[F(y), NS ] − I∗
X ([F(y), NS ])∥ ⩽ 2∥NS∥∥δ(y)∥ + 2∥ΓE

ξ (N2) − ΓE
ξ (N)2∥ 1

2

(
2∥δ(y)∥ + ∥F(y) − F(y)2∥

) 1
2

.

Proof. Since F(y) are effects and I∗
X is a channel, then by Lemma A.2 we have ∥I∗

X (F(y)2) − I∗
X (F(y))2∥ ⩽

2∥δ(y)∥ + ∥F(y) − F(y)2∥. The claim immediately follows from Eq. (39).

Corollary H.2. If E commutes with NS, and is measured by the Lüders instrument IL, then Theorem H.1
does not rule out non-disturbance of any observable F that commutes with E.

Proof. Since E′ ⊂ F(ILX
∗) always holds, then [E,F] = O implies that F ⊂ F(ILX

∗). But [E, NS ] = O implies
that ILX

∗(Nk
S ) = Nk

S for k = 1, 2. By the multiplicability theorem (Corollary A.1), it holds that ILX
∗(NSA) =

NSILX
∗(A) and ILX

∗(ANS) = ILX
∗(A)NS for all A ∈ L(HS), and so we obtain ILX

∗([F(y), NS ]) = [F(y), NS ]. In
such a case, the lower bound of Eq. (40) vanishes, and so no constraints are imposed on non-disturbance for
F.

Proposition H.1. Let M := (HA, ξ, E ,Z) be a measurement scheme for an instrument I acting in HS, and
assume that E fully conserves an additive quantity N = NS ⊗ 1A + 1S ⊗ NA, where NS ∈ Ls(HS) and NA ∈
Ls(HA). Let ∥δ(y)∥ be the disturbance of the effects of an observable F = {F(y) : y ∈ Y} caused by I, as defined
in Eq. (8). Then for all y ∈ Y it holds that

∥[F(y), NS ] − I∗
X ([F(y), NS ])∥ ⩽ 2∥NS∥∥δ(y)∥ + 1

2Q(NA, ξ)
1
2 , (43)

where Q(NA, ξ) denotes the quantum Fisher information of NA in the state ξ. Additionally, if I is an extremal
instrument, then for all y ∈ Y it holds that

∥[F(y), NS ] − I∗
X ([F(y), NS ])∥ ⩽ 2∥NS∥∥δ(y)∥ + Q(NA, ξ)

1
2 ∥I∗

X (F(y)2) − I∗
X (F(y))2∥ 1

2 . (44)

Proof. Let {qi, ϕi} be an arbitrary ensemble of unit vectors that satisfies ξ =
∑
i qiPϕi

. We may thus write
ΓE
ξ (·) =

∑
i qiΓE

ϕi
(·), where ΓE

ϕi
(·) ≡ ΓE

Pϕi
(·). By the conservation law and additivity of N , we may therefore

rewrite Eq. (41) as

[F(y), NS ] − I∗
X ([F(y), NS ]) = [NS , δ(y)] +

∑
i

qi

(
[ΓE
ϕi

(F(y) ⊗ 1A),ΓE
ϕi

(N)] − ΓE
ϕi

([F(y) ⊗ 1A, N ])
)
,

which, by the sesquilinear mappings ⟨⟨A|B⟩⟩i := ΓE
ϕi

(A∗B) − ΓE
ϕi

(A∗)ΓE
ϕi

(B), Corollary A.2, and Lemma 3.1
gives the bound

∥[F(y), NS ] − I∗
X ([F(y), NS ])∥ ⩽ 2∥NS∥∥δ(y)∥ + 2

∑
i

qiVar (NA, ϕi)
1
2 ∥ΓE

ϕi
(F(y)2 ⊗ 1A) − ΓE

ϕi
(F(y) ⊗ 1A)2∥ 1

2 .

Since both F(y) and ΓE
ϕi

(F(y) ⊗ 1A) are effects, we have

∥ΓE
ϕi

(F(y)2 ⊗ 1A) − ΓE
ϕi

(F(y) ⊗ 1A)2∥ 1
2 ⩽ ∥ΓE

ϕi
(F(y) ⊗ 1A) − ΓE

ϕi
(F(y) ⊗ 1A)2∥ 1

2 ⩽
1
2 .

We thus arrive at the bound

∥[F(y), NS ] − I∗
X ([F(y), NS ])∥ ⩽ 2∥NS∥∥δ(y)∥ +

∑
i

qiVar (NA, ϕi)
1
2

⩽ 2∥NS∥∥δ(y)∥ +
(∑

i

qiVar (NA, ϕi)
) 1

2

,

where the second line follows from the concavity of the square root. By choosing the ensemble {qi, ϕi} that
gives the quantum Fisher information as in Eq. (13), we arrive at Eq. (43).
Now assume that I is an extremal instrument [59]. This implies that for any pair of instruments I(1) and
I(2), and any λ ∈ (0, 1), the operations of I can be decomposed as Ix(·) = λ I(1)

x (·) + (1 − λ) I(2)
x (·) only if

I = I(1) = I(2). It holds that ΓE
ϕi

(· ⊗ 1A) = I∗
X (·) for all i, and so we obtain

∥[F(y), NS ] − I∗
X ([F(y), NS ])∥ ⩽ 2∥NS∥∥δ(y)∥ + 2

(∑
i

qiVar (NA, ϕi)
) 1

2

∥I∗
X (F(y)2) − I∗

X (F(y))2∥ 1
2 .

Once again, by choosing the ensemble that gives the quantum Fisher information, we arrive at Eq. (44).
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I Proof for Generalised WAY theorem 2
Here, we shall provide a detailed proof for Theorem 3.3 presented in the main text.

Theorem I.1 (Generalised WAY theorem 2). Let M := (HA, ξ, E ,Z) be a measurement scheme for an E-
instrument I acting in HS, and assume that E conserves an additive quantity N = NS ⊗ 1A + 1S ⊗ NA on
average, where NS ∈ Ls(HS) and NA ∈ Ls(HA). If either I is a measurement of the first kind, or the Yanase
condition [Z, NA] = O is satisfied, then for any effect E(x) that has both eigenvalue 1 and 0, it holds that

P[E(x), NS ]P = [E(x),PNSP] = O, (45)

where P := P0(x) + P1(x), with P0(x) and P1(x) orthogonal projections onto the eigenvalue-0 and eigenvalue-1
eigenspaces of E(x), respectively.

Proof. Let us first note that E(x)P = PE(x) = P1(x), and E(x)⊥P = PE(x)⊥ = P0(x), where E(x)⊥ := 1S −E(x).
Indeed, P0(x) may equivalently be considered as the projection onto the eigenvalue-1 eigenspace of E(x)⊥. Now
define the operation ΓE

ξ,P : L(HS ⊗ HA) → L(HS) as ΓE
ξ,P(·) := PΓE

ξ (·)P, where ΓE
ξ is the unital CP map

defined in Eq. (3). If M is a measurement scheme for E, then ΓE
ξ,P(1S ⊗ Z(x)) = P1(x). Given 1 ⩾ ∥Z(x)∥ ⩾

∥ΓE
ξ,P(1S ⊗ Z(x))∥ = ∥P1(x)∥ = 1, it follows that ∥Z(x)∥ = 1. Therefore, by the two-positivity of CP maps, and

the relation A∗BA ⩽ ∥B∥A∗A for self-adjoint B, we observe that

P1(x) = ∥Z(x)∥ΓE
ξ,P(1S ⊗ Z(x)) ⩾ ΓE

ξ,P(1S ⊗ Z(x)2) ⩾ ΓE
ξ,P(1S ⊗ Z(x))2 = P1(x),

and so

ΓE
ξ,P(1S ⊗ Z(x)2) = ΓE

ξ,P(1S ⊗ Z(x))2 = P1(x). (46)

Now note that by additivity of N , and the conservation law, it holds that ΓE
ξ,P(N) = PNSP + tr[NAξ]P. If the

Yanase condition holds, we may write

P[E(x), NS ]P = [PE(x)P,PNSP]
= [ΓE

ξ,P(1S ⊗ Z(x)),ΓE
ξ,P(N)]

= ΓE
ξ,P([1S ⊗ Z(x), N ])

= ΓE
ξ,P(1S ⊗ [Z(x), NA]) = O.

The third line follows from Eq. (46) and the multiplicability theorem (Corollary A.1), and the final line follows
from the Yanase condition. As such, we arrive at Eq. (45).
Now let us abandon the Yanase condition, but instead assume that I is a first-kind measurement for E. This
implies that ΓE

ξ,P(E(x)⊗1A) = P1(x). Since ∥E(x)∥ = 1, then by the two-positivity of CP maps, and the relation
A∗BA ⩽ ∥B∥A∗A for self-adjoint B, we obtain

P1(x) = ∥E(x)∥ΓE
ξ,P(E(x) ⊗ 1A) ⩾ ΓE

ξ,P(E(x)2 ⊗ 1A) ⩾ ΓE
ξ,P(E(x) ⊗ 1A)2 = P1(x),

and so

ΓE
ξ,P(E(x)2 ⊗ 1A) = ΓE

ξ,P(E(x) ⊗ 1A)2 = P1(x). (47)

By the same arguments as in item (i) of Proposition E.1, one can show from Eq. (46) and Eq. (47) that
ΓE
ξ,P(1S ⊗ Z(x)n) = ΓE

ξ,P(E(x)n ⊗ 1A) = P1(x) for all n ∈ N. Consequently, by the same arguments as in item
(iv) of Proposition E.1, it follows that ΓE

ξ,P(1S ⊗ (Z(x) − Q(x))) = O, where Q(x) is the projection onto the
eigenvalue-1 eigenspace of Z(x), and ΓE

ξ,P((E(x) − P1(x)) ⊗ 1A) = O. Moreover, by Eq. (46) , Eq. (47), the
multiplicability theorem (Corollary A.1), and defining Z(x)⊥ := 1A − Z(x), it follows that

ΓE
ξ,P(E(x) ⊗ Z(x)⊥) = ΓE

ξ,P(E(x) ⊗ 1A)ΓE
ξ,P(1S ⊗ Z(x)⊥) = P1(x)PE(x)⊥P = P1(x)P0(x) = O,

ΓE
ξ,P(E(x)⊥ ⊗ Z(x)) = ΓE

ξ,P(E(x)⊥ ⊗ 1A)ΓE
ξ,P(1S ⊗ Z(x)) = PE(x)⊥PP1(x) = P0(x)P1(x) = O,

and so by the same arguments as in items (v) and (vi) of Proposition E.1 it follows that

ΓE
ξ,P(E(x)A⊗ 1A) = ΓE

ξ,P(AE(x) ⊗ 1A) = ΓE
ξ,P(P1(x)AP1(x) ⊗ 1A) (48)
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for all A ∈ L(HS). By additivity of N , and the conservation law, we may therefore write

P[E(x), NS ]P = [PE(x)P,PNSP]
= [ΓE

ξ,P(E(x) ⊗ 1A),ΓE
ξ,P(N)]

= ΓE
ξ,P([E(x) ⊗ 1A, N ])

= ΓE
ξ,P([E(x), NS ] ⊗ 1A) = O.

The third line follows from Eq. (47) and Corollary A.1, while the final line follows from Eq. (48). Once again
we arrive at Eq. (45).

J The Weak Yanase condition from conservation laws
Thus far, we have only considered the case where the measurement interaction E between system and apparatus
conserves an additive quantity N . However, pointer objectification will also result in state changes, and it
may be the case that the expected value of N will change as a result. Now let us provide a generalised
prescription of measurement schemes that captures also the state changes due to pointer objectification. Recall
that M := (HA, ξ, E ,Z) is a measurement scheme for an observable E acting in HS if E(x) = Γξ ◦ E∗(1S ⊗ Z(x)).
Now consider the tuple M̃ := (HA, ξ,J ), where J := {Jx : x ∈ X } is an instrument acting in HS ⊗ HA. M̃ is
also a measurement scheme for E if E(x) = Γξ ◦ J ∗

x (1S ⊗1A). It is straightforward to show that this is satisfied
if J is compatible with the “Heisenberg-evolved” pointer observable

Zτ (x) := E∗(1S ⊗ Z(x)), (49)

that is, if J ∗
x (1S ⊗ 1A) = Zτ (x). We say that M̃ obeys a full (average) conservation law if the channel JX

fully (on average) conserves a quantity N . The operations Jx can be constructed as a sequential application
of the channel E followed by the operations of some Z-compatible instrument acting in HA, the latter of which
provides a physical characterisation of the pointer objectification process. In such a case, a sufficient condition
for conservation of N by JX is the conservation of N by both E and the Z-channel. But it may be the case
that E fully conserves N while the Z-channel conserves N only on average, and vice versa. In such cases, the
channel JX will conserve N only on average.

By Lemma C.1, it holds that if JX conserves N on average, and if either Zτ is sharp or if JX also fully conserves
N , then

[Zτ , N ] = O. (50)

This commutation relation is known as the weak Yanase condition [32]. We note that if E conserves N on
average and if either Zτ is sharp or if E also fully conserves N , then the Yanase condition implies the weak
Yanase condition. First, let us assume that Zτ is sharp. Since Z(x) is an effect then by two-positivity of
CP maps we have Zτ (x) = E∗(1S ⊗ Z(x)) ⩾ E∗(1S ⊗ Z(x)2) ⩾ E∗(1S ⊗ Z(x))2 = Zτ (x), and so we have
E∗(1S ⊗ Z(x)2) = E∗(1S ⊗ Z(x))2. On the other hand, if E fully conserves N then E∗(N2) = E∗(N)2 = N2. In
either case, by Corollary A.1 we have

[Zτ (x), N ] = [E∗(1S ⊗ Z(x)), E∗(N)] = E∗([1S ⊗ Z(x), N ]) = E∗(1S ⊗ [Z(x), NA]),

and so if [Z(x), NA] = O, then [Zτ (x), N ] = O. Moreover, if E(·) = U(·)U∗ is a unitary channel, and E conserves
N , then [Zτ (x), N ] = U∗(1S ⊗ [Z(x), NA])U . In such a case the weak Yanase condition is equivalent to the
Yanase condition; multiplying both sides of the equality U∗(1S ⊗ [Z(x), NA])U = O by U from the left and by
U∗ from the right shows that [Zτ (x), N ] = O ⇐⇒ [Z(x), NA] = O. However, in general it may be the case that
the weak Yanase condition is satisfied but the Yanase condition is violated.

The following proposition shows that if the weak Yanase condition is satisfied, then the measurability part of the
WAY theorem will hold. Moreover, we see that there are cases where a large coherence of the conserved quantity
in the apparatus is necessary for good measurements even without a full conservation law—for example, if either
the interaction channel E or the Z-channel conserves N only on average, but Zτ is sharp, in which case the weak
Yanase condition is guaranteed to hold.
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Proposition J.1. Let M := (HA, ξ, E ,Z) be a measurement scheme for an observable acting in HS, and let
∥ϵ(x)∥ be the error in measuring the effects of the target observable E. Assume that M satisfies the weak
Yanase condition [Zτ , N ] = O, where Zτ is the Heisenberg-evolved pointer observable defined in Eq. (49) and
N = NS ⊗ 1A + 1S ⊗NA, where NS ∈ Ls(HS) and NA ∈ Ls(HA). Then for all x ∈ X it holds that

∥[E(x), NS ]∥ ⩽ 2∥NS∥∥ϵ(x)∥ + 2Var (NA, ξ)
1
2

(
2∥ϵ(x)∥ + ∥E(x) − E(x)2∥

) 1
2

, (51)

and

∥[E(x), NS ]∥ ⩽ 2∥NS∥∥ϵ(x)∥ + 1
2Q(NA, ξ)

1
2 , (52)

where Var (NA, ξ) := tr[N2
Aξ] − tr[NAξ]2 and Q(NA, ξ) is the the quantum Fisher information of NA in ξ as

defined in Eq. (13). Additionally, if M is a measurement scheme for E, then for any effect E(x) that has both
eigenvalue 1 and 0, it holds that

P[E(x), NS ]P = [E(x),PNSP] = O, (53)

where P = P0(x) + P1(x), with P0(x) and P1(x) orthogonal projections onto the eigenvalue-0 and eigenvalue-1
eigenspaces of E(x), respectively.

Proof. By Eq. (7), we may write ϵ(x) := ΓE
ξ (1S ⊗ Z(x)) − E(x) ≡ Γξ(Zτ (x)) − E(x). By additivity of N we have

Γξ(N) = NS + tr[NAξ]1S , and so we may write

[E(x), NS ] = [NS , ϵ(x)] + [Γξ(Zτ (x)),Γξ(N)].

Since Γξ is a channel, and the weak Yanase condition [Zτ , N ] = O holds, then by the sesquilinear map ⟨⟨A|B⟩⟩ :=
Γξ(A∗B) − Γξ(A∗)Γξ(B) and Corollary A.2 we obtain

∥[E(x), NS ]∥ ⩽ 2∥NS∥∥ϵ(x)∥ + 2∥Γξ(N2) − Γξ(N)2∥ 1
2 ∥Γξ(Zτ (x)2) − Γξ(Zτ (x))2∥ 1

2 .

As shown in Lemma 3.1, additivity of N implies that ∥Γξ(N2) − Γξ(N)2∥ = Var (NA, ξ). On the other hand, by
Lemma A.2 we obtain ∥Γξ(Zτ (x)2) − Γξ(Zτ (x))2∥ ⩽ 2∥ϵ(x)∥ + ∥E(x) − E(x)2∥. As such, we obtain the bound
in Eq. (51). Eq. (52) and Eq. (53) are trivially obtained by adapting the arguments in Proposition G.1 and
Theorem I.1 to the above, i.e., by replacing Z with Zτ , and replacing the operations ΓE

ϕi
and ΓE

ξ,P with the
operations Γϕi

and Γξ,P, respectively.

K Proof of the “converse” WAY theorem
Here, we provide a proof for Proposition 4.1 presented in the main text.

Proposition K.1. Let M := (HA, ξ, E ,Z) be a measurement scheme for an instrument I acting in HS. Assume
that E fully conserves an additive quantity N = NS ⊗ 1A + 1S ⊗ NA, where NS ∈ Ls(HS) and NA ∈ Ls(HA),
and that IX fully conserves NS. Define the eigenspace of HA that is involved during the measurement process
as

HA(meas) :=
⋃

ρ∈S(HS)

supp(Λ(ρ)) ∪ supp(ξ) ⊆ HA,

where Λ is the conjugate channel to IX defined in Eq. (5). Then either HA(meas) is contained within a single
degenerate eigenspace of NA, or Var (NA, ξ) := tr[N2

Aξ]−tr[NAξ]2 must be large. Additionally, if I is an extremal
instrument, and if HA(meas) is not contained within a single degenerate eigenspace of NA, then the quantum
Fisher information Q(NA, ξ) as defined in Eq. (13) must be large.

Proof. Let us first observe that by Eq. (10), if E conserves N on average, then NS ∈ F(I∗
X ) implies that

irrespective of the apparatus preparation ξ, it holds that tr[NAΛ(ρ)] = tr[NAξ] for all ρ ∈ S(HS) or, equivalently,
that Λ∗(NA) = tr[NAξ]1S . That is, the expected value of the apparatus part of the conserved quantity does
not change as a result of the measurement interaction. While average conservation does not imply that the
variance must also stay the same, this implication can be shown to follow in the case of full conservation. By
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Definition 2, full conservation of N by E implies that Γξ(N2) = ΓE
ξ (N2), where ΓE

ξ is the channel defined in
Eq. (3). Given that ΓE

ξ (· ⊗ 1A) = I∗
X (·) and ΓE

ξ (1S ⊗ ·) = Λ∗(·), we thus obtain

N2
S + 2tr[NAξ]NS + tr[N2

Aξ]1S = ΓE
ξ (N2

S ⊗ 1A) + 2ΓE
ξ ((NS ⊗ 1A)(1S ⊗NA)) + ΓE

ξ (1S ⊗N2
A)

= ΓE
ξ (N2

S ⊗ 1A) + 2ΓE
ξ (NS ⊗ 1A)ΓE

ξ (1S ⊗NA) + ΓE
ξ (1S ⊗N2

A)
= I∗

X (N2
S ) + 2I∗

X (NS)Λ∗(NA) + Λ∗(N2
A)

= N2
S + 2tr[NAξ]NS + Λ∗(N2

A).

In the second line, we have used the fact that full conservation of NS by IX implies that ΓE
ξ (N2

S ⊗ 1A) =
ΓE
ξ (NS ⊗ 1A)2 = N2

S , and the multiplicability theorem (Corollary A.1). It follows that Λ∗(Nk
A) = tr[Nk

Aξ]1S for
k = 1, 2. As such, for any input state ρ of the system to be measured, it holds that

Var (NA,Λ(ρ)) = tr[N2
AΛ(ρ)] − tr[NAΛ(ρ)]2 = tr[N2

Aξ] − tr[NAξ]2 = Var (NA, ξ) .

Now assume that ξ is an eigenstate of NA, i.e., that there exists c ∈ R such that NAξ = c ξ. Since such
a condition is equivalent to a vanishing variance, then we see that Var (NA,Λ(ρ)) = Var (NA, ξ) = 0, and
so Λ(ρ) must also be eigenstates of NA with the same eigenvalue c. In fact, in such a case it holds that
Λ∗(Nk

A) = Λ∗(NA)k = tr[NAξ]k1S for k = 1, 2, which implies that tr[Nk
AΛ(ρ)] = tr[Nk

Aξ] = ck for all k ∈ N

and ρ ∈ S(HS). In other words, if ξ is an eigenstate of NA, then NA must be “effectively” fully degenerate,
i.e., HA(meas) must be contained within a single degenerate eigenspace of NA. Therefore, if HA(meas) contains
more than one degenerate eigenspace of NA, the apparatus must be prepared in a state with a large uncertainty
in NA.
Now assume that I is an extremal instrument, i.e., that for any λ ∈ (0, 1), the operations of I admit a
decomposition Ix(·) = λ I(1)

x (·) + (1 − λ) I(2)
x (·) only if I = I(1) = I(2). In such a case, it follows that if

M := (HA, ξ, E ,Z) is a measurement scheme for I, then for any pure state decomposition ξ =
∑
i qiPϕi , it holds

that (HA, ϕi, E ,Z) must also be measurement schemes for I. By the above arguments, it follows that unless NA

is effectively degenerate, then each ϕi must have a large uncertainty in NA, i.e., the quantum Fisher information
Q(NA, ξ) must be large.

L Faithful fixed states and measurement disturbance
Recall from Proposition D.1 and Theorem H.1 that under a conservation law, an E-instrument I will no disturb
an observable F only if

∥[E(x),F(y)]∥ ⩽ 2∥E(x) − E(x)2∥ 1
2 ∥I∗

X (F(y)2) − F(y)2∥ 1
2 ∀x ∈ X , y ∈ Y,

and

∥[F(y), NS ] − I∗
X ([F(y), NS ])∥ ⩽ 2∥ΓE

ξ (N2) − ΓE
ξ (N)2∥ 1

2 ∥I∗
X (F(y)2) − F(y)2∥ 1

2 ∀ y ∈ Y.

If F ⊂ F(I∗
X ) =⇒ F2 ⊂ F(I∗

X ), then the upper bound of the above equations vanish, and so F will be
non-disturbed only if [F,E] = O and [F(y), NS ] ∈ F(I∗

X ). By the multiplicability theorem (Corollary A.1),
the second condition can be shown to simplify to [F(y), NS ] = I∗

X ([F(y), NS ]) = [F(y), I∗
X (NS)], which reads

[F(y), I∗
X (NS) − NS ] = O. In Appendix (D) we saw that the implication F ⊂ F(I∗

X ) =⇒ F2 ⊂ F(I∗
X ) holds

if either F is sharp, rank-1, or a coarse-graining of a sharp observable. We now show that if F(I∗
X ) is a von

Neumann algebra, so that F ⊂ F(I∗
X ) =⇒ F2 ⊂ F(I∗

X ), similar and stronger constraints will hold for all
observables. To this end, let us first prove a useful lemma.

Lemma L.1. Let M := (HA, ξ, E ,Z) be a measurement scheme for an E-instrument I acting in HS. Assume
that E conserves an additive quantity N = NS ⊗ 1A + 1S ⊗ NA on average, where NS ∈ Ls(HS) and NA ∈
Ls(HA), and that F(I∗

X ) is a von Neumann algebra. Then for all A ∈ L(HS), the following implication holds:
A ∈ F(I∗

X ) =⇒ [A,NS ] ∈ F(I∗
X ) =⇒ [A,NS ] ∈ E′.

Proof. Recall that for all A ∈ L(HS), we have I∗
X (A) = ΓE

ξ (A⊗1A), where ΓE
ξ is the channel defined in Eq. (3).

Average conservation of N by E implies that

NS + tr[NAξ]1S = ΓE
ξ (NS ⊗ 1A) + ΓE

ξ (1S ⊗NA).
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Since F(I∗
X ) is a von Neumann algebra, it follows that for all A ∈ L(HS), A ∈ F(I∗

X ) =⇒ A∗A,AA∗ ∈ F(I∗
X )

which, by Corollary A.1, implies that AΓE
ξ (B) = ΓE

ξ ((A ⊗ 1A)B) and ΓE
ξ (B)A = ΓE

ξ (B(A ⊗ 1A)) for all B ∈
L(HS ⊗ HA). Therefore, for all A ∈ F(I∗

X ) we have

[A,NS ] = [A,ΓE
ξ (NS ⊗ 1A)] + [A,ΓE

ξ (1S ⊗NA)]
= ΓE

ξ ([A⊗ 1A, NS ⊗ 1A]) + ΓE
ξ ([A⊗ 1A,1S ⊗NA])

= ΓE
ξ ([A,NS ] ⊗ 1A) = I∗

X ([A,NS ]).

Consequently, we see that A ∈ F(I∗
X ) =⇒ [A,NS ] ∈ F(I∗

X ). But as shown in Lemma C.1, if F(I∗
X ) is a von

Neumann algebra then F(I∗
X ) ⊂ E′. It follows that A ∈ F(I∗

X ) =⇒ [A,NS ] ∈ E′.

We are now ready to prove the following:

Theorem L.1. Let E := {E(x) : x ∈ X } and F := {F(y) : y ∈ Y} be observables acting in HS. Let M :=
(HA, ξ, E ,Z) be a measurement scheme for an E-instrument I, and assume that E conserves an additive quantity
N = NS ⊗ 1A + 1S ⊗ NA on average, where NS ∈ Ls(HS) and NA ∈ Ls(HA). If F(I∗

X ) is a von Neumann
algebra, then the following hold:

(i) F ⊂ F(I∗
X ) only if F commutes with E, with ∆NS := I∗

X (NS) −NS, and with {[E(x), NS ] : x ∈ X }.
(ii) I is a measurement of the first kind only if E is a commutative observable that commutes with NS.

(iii) I is repeatable only if E is sharp and commutes with NS.

Proof. (i): By Lemma L.1, F(I∗
X ) ⊂ E′. Therefore, F ⊂ F(I∗

X ) =⇒ [E,F] = O. Moreover, the conservation
law implies that [F, NS ] ⊂ F(I∗

X ) must hold. Since F(I∗
X ) is an algebra, then F(y) ∈ F(I∗

X ) =⇒ F(y)2 ∈
F(I∗

X ). By Corollary A.1, it follows that I∗
X (F(y)NS) = F(y)I∗

X (NS) and I∗
X (NSF(y)) = I∗

X (NS)F(y), and
so I∗

X ([F(y), NS ]) = [F(y), I∗
X (NS)]. As such, I∗

X ([F(y), NS ]) = [F(y), NS ] =⇒ [F(y), I∗
X (NS) −NS ] = O.

Moreover, by Lemma L.1 F ⊂ F(I∗
X ) implies [F(y), NS ] ∈ E′. Since [A, [B,C]] = [B, [A,C]] + [C, [B,A]]

holds for all A,B,C ∈ L(HS), while [E,F] = O, then this implies that [F(y), [E(x), NS ]] = O.
(ii): I is a measurement of the first kind only if E ⊂ F(I∗

X ). Commutativity of E follows from (i). Now, let us
define NS(t) := eitE(x)NSe

−itE(x). We may write

d

dt
NS(t) = i[E(x), NS(t)],

from which we obtain

NS(t) = NS + i

∫ t

0
dt1[E(x), NS(t1)]

= NS + i

∫ t

0
dt1[E(x), NS ] −

∫ t

0
dt1

∫ t1

0
dt2 e

it2E(x)[E(x), [E(x), NS ]]e−it2E(x)

= NS + it[E(x), NS ].

In the final line we have used (i), which implies that [E(x), [E(x), NS ]] = O holds for all x. We thus obtain
the inequality

2∥NS∥ ⩾ ∥NS(t) −NS∥ = |t|∥[E(x), NS ]∥

for all t. Given that NS is a bounded operator, this is clearly satisfied only if [E(x), NS ] = O.
(iii): Since repeatability implies first-kindness, then by (ii) E must commute with NS . Sharpness of E follows

from item (i) of Proposition E.1 which gives I∗
X (E(x)2) = E(x) for a repeatable I, and the fact that if

F(I∗
X ) is a von Neumann algebra then E ⊂ F(I∗

X ) implies that E2 ⊂ F(I∗
X ).

We shall now give two examples where F(I∗
X ) is a von Neumann algebra, and so the implications of Theorem L.1

hold.

Lemma L.2. Consider the Lüders E-instrument IL acting in HS, defined in Eq. (1). If either (i) dim(HS) < ∞,
or (ii) E is commutative, then F(ILX

∗) is a von Neumann algebra.
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Proof. Let us first consider (i). Define the complete mixture ω := 1S/ dim(HS), which is faithful. It follows
trivially that ILX (ω) = ω, and so F(ILX ) contains a faithful state ω. By Lemma B.1 F(ILX

∗) is a von Neumann
algebra. Now let us consider (ii). Recall that F(I∗

X ) is a von Neumann algebra if F(I∗
X ) = {Ki,K

∗
i }′, with

{Ki} any Kraus representation of IX [55]. But for a Lüders instrument, we have {Ki,K
∗
i }′ = {

√
E(x)}′ = E′.

While E′ ⊂ F(ILX
∗) always holds, it was observed that in infinite-dimensional systems there exists E for which

F(ILX
∗) ̸⊂ E′ [78, 79]. However, it was shown in [63] that for binary observables, it always holds that F(ILX

∗) =
E′. Since binary observables are commutative, this led to the conjecture that the fixed-point set of the Lüders
E-channel is the commutant of E for all commutative observables [78], making F(ILX

∗) a von Neumann algebra,
which was later proven to be the case [76, 77].

Let us highlight an interesting consequence of the above lemma:

Corollary L.1. Let M := (HA, ξ, E ,Z) be a measurement scheme for an E-compatible Lüders instrument IL
acting in HS. Assume that E is commutative, and that E conserves an additive quantity N = NS ⊗1A +1S ⊗NA

on average. It holds that E commutes with NS.

Proof. If E ⊂ E′, then F(ILX
∗) = E′ is a von Neumann algebra. Moreover, it holds that E ⊂ F(ILX

∗), so that
the Lüders instrument for a commutative observable is a measurement of the first kind. It follows from item
(ii) of Theorem L.1 that E must commute with NS .

Lemma L.3. Assume that dim(HS) < ∞, and let G := {G(z) : z ∈ Z} be a rank-1 observable acting in HS. If
an instrument I does not disturb G, then F(I∗

X ) is a von Neumann algebra.

Proof. Since G(z) are rank-1 effects, we may write G(z) = λzPz, with λz ∈ (0, 1] and Pz a rank-1 projection. It
follows that G ⊂ F(I∗

X ) =⇒ {Pz} ⊂ F(I∗
X ). But we may write

tr[PzIX (Pz)] = tr[I∗
X (Pz)Pz] = tr[PzPz] = tr[Pz] = 1,

and so G ⊂ F(I∗
X ) =⇒ {Pz} ⊂ F(IX ). Consequently, we may construct the faithful state ω =

∑
z pzPz with

pz > 0 and
∑
z pz = 1, so that ω ∈ F(IX ). By Lemma B.1, F(I∗

X ) is a von Neumann algebra.

M Non-faithful fixed states and measurement disturbance
In this section we analyse the structure of the fixed-point set of arbitrary channels, which need not contain a
faithful state. From here, the results of the previous section are generalised. We then provide novel quanti-
tative bounds for first-kind measurements which complement our generalisation of the WAY theorem given in
Theorem 3.3.

Due to the Schauder–Tychonoff fixed point theorem [82], all channels Φ : T (HS) → T (HS) have at least one
fixed state. However, it may be that none of these are faithful. In such a case, the fixed-point set of the dual
channel is not necessarily a von Neumann algebra, but rather forms an operator space [83]. This setting has
been much less investigated, and its analysis forms the first part of this section. While the discussion thus far
has been applicable for infinite-dimensional systems—except in some examples—in this section we shall always
assume that d := dim(HS) < ∞.

M.1 Fixed-point structure of arbitrary channels
Consider a channel Φ : T (HS) → T (HS), and its dual in the Heisenberg picture Φ∗ : L(HS) → L(HS). We may
define the channels

Φav(·) := lim
N→∞

1
N

N∑
n=1

Φn(·), Φ∗
av(·) := lim

N→∞

1
N

N∑
n=1

Φ∗n(·), (54)

where Φn denotes n consecutive applications of Φ. Note that these limits exists since d < ∞. According to
the Jordan decomposition theorem, Φ∗ is represented as a summation of projections onto eigenspaces mul-
tiplied by the corresponding eigenvalues, and nilpotent operators whose eigenspaces are invariant subspaces;
Φ∗

av corresponds to the projection onto the subspace with eigenvalue 1. The fixed-point set F(Φ∗) forms an
operator space, i.e., a norm-closed vector subspace of the codomain of F(Φ∗), and Φ∗

av is a CP projection onto
F(Φ∗).
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Lemma M.1. Consider the channels Φ∗
av and Φav defined in Eq. (54). These have the following properties:

(i) Φ∗ ◦ Φ∗
av = Φ∗

av ◦ Φ∗ = Φ∗
av ◦ Φ∗

av = Φ∗
av and Φ ◦ Φav = Φav ◦ Φ = Φav ◦ Φav = Φav.

(ii) Φ∗
av(L(HS)) = F(Φ∗

av) = F(Φ∗) and Φav(T (HS)) = F(Φav) = F(Φ).

Proof. (i) is trivial, and so we shall only prove (ii). Let us first consider the Heisenberg picture channel Φ∗
av. That

F(Φ∗) ⊂ F(Φ∗
av) is trivial. Conversely, for any A ∈ F(Φ∗

av), by (i) we have Φ∗(A) = Φ∗ ◦Φ∗
av(A) = Φ∗

av(A) = A,
and therefore F(Φ∗

av) ⊂ F(Φ∗). It follows that F(Φ∗
av) = F(Φ∗). Similarly, for all A ∈ L(HS) it holds that

Φ∗
av ◦ Φ∗

av(A) = Φ∗
av(A), and thus Φ∗

av(L(HS)) ⊂ F(Φ∗
av). That F(Φ∗

av) ⊂ Φ∗
av(L(HS)) is trivial, and so we also

have Φ∗
av(L(HS)) = F(Φ∗

av). The relations in (ii) for the Schrödinger picture channel Φav follow from similar
arguments.

Now consider the state

ρ0 := Φav

(
1
d
1S

)
. (55)

By Lemma M.1, it holds that ρ0 ∈ F(Φav) = F(Φ). We define by P the minimal support projection on
ρ0:

P := min{Q : Q is a projection, ρ0 = Qρ0Q}. (56)

In other words, for all projections Q such that ρ0 = Qρ0Q, it holds that Q ⩾ P . Note that if P = 1S then
F(Φ) contains a faithful state. The following lemma provides some useful properties of P .

Lemma M.2. Consider the state ρ0 defined in Eq. (55), with the minimal support projection P as defined in
Eq. (56), and P⊥ := 1S − P its orthogonal complement. The following hold:

(i) Φ∗
av(P ) = 1S and Φ∗

av(P⊥) = O.
(ii) For all A ∈ L(HS), Φ∗

av(A) = Φ∗
av(PAP ).

(iii) P = min{Q : Q is a projection, ρ = QρQ ∀ ρ ∈ F(Φ)}.
(iv) P = min{Q : Q is a projection, Φ∗

av(Q) = 1S}.
(v) Φ∗(P ) ⩾ P and Φ∗(P⊥) ⩽ P⊥.

Proof. (i): Since Φ∗
av is a channel, and O < P ⩽ 1S , it follows that O ⩽ Φ∗

av(P ) ⩽ 1S . But by Eq. (55)
tr[Φ∗

av(P )] = d tr[ρ0P ] = d, and so Φ∗
av(P ) = 1S . It trivially follows that Φ∗

av(P⊥) = Φ∗
av(1S) − Φ∗

av(P ) =
1S − 1S = O.

(ii): Since P is positive, then by (i) and Lemma A.3 it holds that Φ∗
av(P⊥A) = Φ∗

av(AP⊥) = O for all A. The
claim follows by noting that we may write A = (P + P⊥)A(P + P⊥).

(iii): By Lemma M.1 and (ii), for all A ∈ L(HS) and ρ ∈ F(Φ) we have tr[Aρ] = tr[Φ∗
av(A)ρ] = tr[Φ∗

av(PAP )ρ] =
tr[APρP ], and so ρ ∈ F(Φ) =⇒ ρ = PρP . Since P is the minimal support projection on ρ0 ∈ F(Φ), the
claim follows.

(iv): By (i), Φ∗
av(P ) = 1S holds. Suppose another projection Q satisfies Φ∗

av(Q) = 1S . Then (ii) implies that
Φ∗

av(PQP ) = Φ∗
av(Q) = 1S . As we have 1 = tr[(1S/d)Φ∗

av(PQP )] = tr[ρ0PQP ] = tr[ρ0Q], it follows that
Q ⩾ P .

(v): Since P is the smallest projection satisfying ρ0 = Pρ0P , while tr[ρ0Φ∗(P )] = tr[Φ(ρ0)P ] = tr[ρ0P ] = 1,
it follows that Φ∗(P ) ⩾ P , and hence Φ∗(P⊥) = Φ∗(1S) − Φ∗(P ) ⩽ 1S − P = P⊥.

Let us now define the operations

Φ∗
av,P (·) := PΦ∗

av(·)P, Φ∗
P (·) := PΦ∗(·)P. (57)

Note that Φ∗
av,P : L(HS) → L(HS) is not necessarily unital, since Φ∗

av,P (1S) = P ⩽ 1S . However, the restriction
of Φ∗

av,P to L(PHS) → L(PHS), which is also denoted by Φ∗
av,P , is unital and hence a channel, since P is the

identity in L(PHS) and Φ∗
av,P (P ) = P . The same holds for Φ∗

P .

Lemma M.3. Consider the operations defined in Eq. (57). The following hold:
(i) Φ∗

P (A) = Φ∗
P (PAP ) for all A ∈ L(HS).

(ii) Φ∗
av,P (A) = Φ∗

av,P (PAP ) for all A ∈ L(HS).
(iii) Φ∗

av,P is a completely positive projection L(HS) → L(PHS).
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(iv) F(Φ∗
av,P ) = Φ∗

av,P (L(PHS)).
(v) Φ∗

av is a bijection from F(Φ∗
av,P ) to F(Φ∗).

(vi) The inverse of Φ∗
av : F(Φ∗

av,P ) → F(Φ∗) is AdP : A 7→ PAP .

Proof. (i): By item (v) of Lemma M.2, it holds that O ⩽ Φ∗
P (P⊥) = PΦ∗(P⊥)P ⩽ PP⊥P = O, and so

Φ∗
P (P⊥) = O. By Lemma A.3, it holds that Φ∗

P (P⊥A) = Φ∗
P (AP⊥) = O for all A ∈ L(HS). Since

A = (P + P⊥)A(P + P⊥), the claim follows.
(ii): By item (ii) of Lemma M.2, Φ∗

av(A) = Φ∗
av(PAP ). The claim immediately follows.

(iii): By item (i) of Lemma M.1 and (ii) above, we have

Φ∗
av,P ◦ Φ∗

av,P (A) = Φ∗
av,P (PΦ∗

av(A)P ) = Φ∗
av,P ◦ Φ∗

av(A) = PΦ∗
av ◦ Φ∗

av(A)P = PΦ∗
av(A)P = Φ∗

av,P (A).

(iv): By (iii), it follows that for any A ∈ L(PHS), Φ∗
av,P (A) ∈ F(Φ∗

av,P ) and so Φ∗
av,P (L(PHS)) ⊂ F(Φ∗

av,P ).
The converse is trivial.

(v): For all A ∈ F(Φ∗) = F(Φ∗
av), there exists an operator PAP ∈ F(Φ∗

av,P ) such that Φ∗
av(PAP ) = Φ∗

av(A) =
A. Therefore, Φ∗

av is surjective. Now assume that there exists A ∈ F(Φ∗
av,P ) such that Φ∗

av(A) = O. This
implies that A = Φ∗

av,P (A) = PΦ∗
av(A)P = O. Therefore, Φ∗

av is injective.
(vi): Follows from above.

The above results have the following useful consequence:

Proposition M.1. Consider the operations Φ∗
av,P and Φ∗

P defined in Eq. (57). It holds that

F(Φ∗
av,P ) = F(Φ∗

P ) = PF(Φ∗
av)P = PF(Φ∗)P

is a von Neumann algebra in L(PHS).

Proof. Recall that the operation Φ∗
av,P : L(PHS) → L(PHS) is unital, where the unit in L(PHS) is P . Moreover,

ρ0 as defined in Eq. (55) is a faithful fixed point of Φav,P in T (PHS). By Lemma B.1, the fixed-point set F(Φ∗
av,P )

is a von Neumann algebra in L(PHS). Now we need only show that F(Φ∗
av,P ) = F(Φ∗

P ) = PF(Φ∗
av)P =

PF(Φ∗)P . That PF(Φ∗
av)P = PF(Φ∗)P trivially follows from Lemma M.1, which gives F(Φ∗) = F(Φ∗

av). That
F(Φ∗

av,P ) = PF(Φ∗)P follows from item (vi) of Lemma M.3, since the map AdP : A 7→ PAP is a bijection from
F(Φ∗) to F(Φ∗

av,P ). To show that F(Φ∗
av,P ) = F(Φ∗

P ), let us first define the operation Φ∗
P,av : L(HS) → L(PHS)

as

Φ∗
P,av(·) := lim

N→∞

1
N

N∑
n=1

Φ∗n
P (·).

But by item (i) of Lemma M.3, Φ∗
P (A) = Φ∗

P (PAP ), and so Φ∗n
P (A) = PΦ∗n(A)P for all A ∈ L(HS) and n ∈ N.

It follows that

Φ∗
P,av(·) = lim

N→∞

1
N

N∑
n=1

PΦ∗n(·)P = PΦ∗
av(·)P =: Φ∗

av,P (·).

Since Φ∗
av,P = Φ∗

P,av, it trivially follows that Φ∗
P ◦ Φ∗

av,P = Φ∗
av,P ◦ Φ∗

P = Φ∗
av,P ◦ Φ∗

av,P = Φ∗
av,P . Therefore,

F(Φ∗
av,P ) = F(Φ∗

P ) can be shown by the same arguments as in Lemma M.1

M.2 Measurement disturbance revisited
We are now ready to address the question of measurement disturbance, generalising the observations of The-
orem L.1. As before, let I := {Ix : x ∈ X } be an E-compatible instrument, with IX (·) :=

∑
x Ix(·) the

corresponding E-channel. By Eq. (54) and Eq. (57) we define

I∗
av(·) := lim

N→∞

1
N

N∑
n=1

I∗n
X (·), I∗

av,P (·) := PI∗
av(·)P, I∗

P (·) := PI∗
X (·)P,
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where as in Eq. (56), P is the minimal support projection of ρ0 := Iav( 1
d1S), which corresponds with the minimal

projection on the support of F(IX ). By Proposition M.1, F(I∗
av,P ) = F(I∗

P ) = PF(I∗
av)P = PF(I∗

X )P is a von
Neumann algebra in L(PHS). We define by PEP := {PE(x)P : x ∈ X } the restriction of E to an observable
in PHS , which satisfies

∑
x PE(x)P = P , and (PEP )′ := {A ∈ L(PHS) : [PE(x)P,A] = O∀x} denotes the

commutant of PEP in L(PHS). PFP is similarly defined.

Before generalising Theorem L.1 for the case where F(IX ) may not contain any faithful states, and thus F(I∗
X )

may not necessarily be a von Neumann algebra, let us first prove a generalisation of Lemma L.1.

Lemma M.4. Let M := (HA, ξ, E ,Z) be a measurement scheme for an E-instrument I acting in HS, and let
P be the minimal support projection on F(IX ). It holds that F(I∗

P ) ⊂ (PEP )′. Additionally, if E conserves
an additive quantity N = NS ⊗ 1A + 1S ⊗NA on average, where NS ∈ Ls(HS) and NA ∈ Ls(HA), then for all
A ∈ L(PHS) the following implication holds: A ∈ F(I∗

P ) =⇒ [A,PNSP ] ∈ F(I∗
P ) =⇒ [A,PNSP ] ∈ (PEP )′.

Proof. By Eq. (3), let us define the operation ΓE
ξ,P : L(HS ⊗ HA) → L(HS), B 7→ PΓE

ξ (B)P . It is easily verified
that I∗

P (A) = ΓE
ξ,P (A ⊗ 1A) for all A ∈ L(PHS), and PE(x)P = ΓE

ξ,P (1S ⊗ Z(x)). Note that by the same
arguments as item (i) of Lemma M.3, it can easily be shown that ΓE

ξ,P (B) = ΓE
ξ,P ((P ⊗ 1A)B(P ⊗ 1A)) holds

for all B ∈ L(HS ⊗ HA). It follows that ΓE
ξ,P is unital when restricted to L(PHS ⊗ HA) → L(PHS), and we

may equivalently write PE(x)P = ΓE
ξ,P (P ⊗ Z(x)).

By Proposition M.1, F(I∗
P ) is a von Neumann algebra in L(PHS), and so for all A ∈ L(PHS), if A ∈ F(I∗

P ),
then A∗A,AA∗ ∈ F(I∗

P ). By Corollary A.1 it holds that for all A ∈ F(I∗
P ) and B ∈ L(PHS ⊗ HA) we have

AΓE
ξ,P (B) = ΓE

ξ,P ((A⊗ 1A)B) and ΓE
ξ,P (B)A = ΓE

ξ,P (B(A⊗ 1A)). It follows that for all A ∈ F(I∗
P ) and x ∈ X

we have

[A,PE(x)P ] = [A,ΓE
ξ,P (P ⊗ Z(x))] = ΓE

ξ,P ([A⊗ 1A, P ⊗ Z(x)]) = O,

and so F(I∗
P ) ⊂ (PEP )′.

Now let us assume that E conserves an additive quantity N = NS ⊗ 1A + 1S ⊗ NA on average. This implies
that PΓξ(N)P = ΓE

ξ,P (N) = ΓE
ξ,P ((P ⊗ 1A)N(P ⊗ 1A)), and so

PNSP + tr[NAξ]P = ΓE
ξ,P (PNSP ⊗ 1A) + ΓE

ξ,P (P ⊗NA).

Since F(I∗
P ) is a von Neumann algebra in L(PHS), then by Corollary A.1 and the arguments above, it follows

that for all A ∈ F(I∗
P ) we have

[A,PNSP ] = [A,ΓE
ξ,P (PNSP ⊗ 1A)] + [A,ΓE

ξ,P (P ⊗NA)]
= ΓE

ξ,P ([A⊗ 1A, PNSP ⊗ 1A]) + ΓE
ξ,P ([A⊗ 1A, P ⊗NA])

= ΓE
ξ,P ([A,PNSP ] ⊗ 1A) = I∗

P ([A,PNSP ]).

We thus have A ∈ F(I∗
P ) =⇒ [A,PNSP ] ∈ F(I∗

P ), and since F(I∗
P ) ⊂ (PEP )′, it follows that [A,PNSP ] ∈

(PEP )′.

We are now ready to generalise Theorem L.1.

Theorem M.1. Let E := {E(x) : x ∈ X } and F := {F(y) : y ∈ Y} be observables acting in HS. Let
M := (HA, ξ, E ,Z) be a measurement scheme for an E-instrument I, and assume that E conserves an additive
quantity N = NS ⊗ 1A + 1S ⊗ NA on average, where NS ∈ Ls(HS) and NA ∈ Ls(HA). If P is the minimal
support projection on F(IX ), then the following hold:

(i) F ⊂ F(I∗
X ) only if PFP commutes with PEP , with P∆NSP := PI∗

X (NS)P − PNSP , and with
{[PE(x)P, PNSP ] : x ∈ X }.

(ii) I is a measurement of the first kind only if PEP is commutative and commutes with PNSP .
(iii) I is repeatable only if PEP is sharp and commutes with PNSP .

Proof. (i): By Proposition M.1, PF(I∗
X )P = F(I∗

P ), and so F ⊂ F(I∗
X ) implies that PFP ⊂ F(I∗

P ). By
Lemma M.4, it holds that PFP must commute with PEP , and that [PF(y)P, PNSP ] = I∗

P ([PF(y)P, PNSP ]).
Given that F(I∗

P ) is a von Neumann algebra, we have I∗
P ((PF(y)P )2) = I∗

P (PF(y)P )2 = (PF(y)P )2. By
Corollary A.1 it follows that [PF(y)P, PNSP ] = [PF(y)P, I∗

P (PNSP )]. By item (i) of Lemma M.3, it
holds that I∗

P (PNSP ) = I∗
P (NS) = PI∗

X (NS)P . Therefore, PFP must commute with P∆NSP . More-
over, by Lemma M.4 non-disturbance implies that [PF(y)P, PNSP ] ∈ (PEP )′, and since PFP commutes
with PEP , this implies that [PF(y)P, [PE(x)P, PNSP ]] = O must hold.
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(ii): If I is a measurement of the first kind, E ⊂ F(I∗
X ), it follows from Proposition M.1 that PEP ⊂ F(I∗

P ).
By Lemma M.4 PEP must be commutative, and since F(I∗

P ) is a von Neumann algebra, then for all
spectral projections R ∈ L(PHS) of PE(x)P it must hold that [R,PNSP ] commutes with PEP . But this
implies that [[R,PNSP ], R⊥] = O, where we define R⊥ := P − R. As such, given that PR = RP = R,
it holds that [RNSP − PNSR,R

⊥] = RNSR
⊥ + R⊥NSR = O. Multiplying from the left by R, we thus

have RNSR
⊥ = RNS(P −R) = O, and so RNSP = RNSR. Since the right hand side is self-adjoint, and

RNSP = RPNSP , it follows that [R,PNSP ] = O. Since this relation holds for all spectral projections R
of all effects of PEP , it follows that PEP must commute with PNSP .

(iii): Commutativity of PEP with PNSP follows from (ii) and the fact that repeatability implies first-kindness.
Sharpness of PEP follows from the fact that the fixed points of a repeatable instrument can have support
only in the eigenvalue-1 eigenspaces of E, as shown in Proposition E.1.

Note that if P = 1S , implying that F(IX ) contains a faithful state so that F(I∗
X ) is a von Neumann algebra,

then the above theorem reduces to Theorem L.1. Interestingly, in the case of qubits such an equivalence will
always hold, even if F(IX ) does not contain a faithful state. We demonstrate this by an alternative proof for
Proposition 6 in Ref. [4].

Corollary M.1. If dim(HS) = 2, then Theorem M.1 reduces to Theorem L.1.

Proof. Let us consider the minimal support projection P on the fixed-point set F(IX ). As all channels must
have at least one fixed state, then when dim(HS) = 2 it holds that, for any instrument I, either P = 1S or P
is a rank-1 projection. If P = 1S then F(IX ) contains a faithful state, so that by Lemma B.1 F(I∗

X ) is a von
Neumann algebra, and Theorem M.1 reduces to Theorem L.1. Now assume that P is a rank-1 projection, so that
for all A ∈ L(HS) it holds that PAP = λP , with some λ ∈ C. Recall from Lemma M.1 that F(I∗

X ) = F(I∗
av).

By item (ii) of Lemma M.2, for all A ∈ F(I∗
X ) it holds that A = I∗

av(A) = I∗
av(PAP ) = λI∗

av(P ) = λ1S , and
so F(I∗

X ) is a trivial von Neumann algebra containing only operators proportional to the identity. In this case,
the only non-disturbed observables are trivial, and will clearly commute with all of L(HS). In such a case we
may simply replace P with 1S in items (i)-(iii) of Theorem M.1, so that it reduces to Theorem L.1.

M.3 Non-disturbance and distinguishability
Here, we present some novel results regarding the structure of non-disturbing measurements that go beyond those
in the preceding sections, indicating an intimate relationship between non-disturbance and distinguishability.
These results hold for general instruments, are independent of conservation laws, and do not explicitly depend
on the support projection P on the fixed-point set of the specific measurement channel IX . First, let us show
that if an instrument I does not disturb a non-trivial observable, then there exists a family of distinguishable
states that remain distinguishable after a non-selective measurement by I.

Proposition M.2 (Non-disturbance implies distinguishability). Consider an instrument I acting in HS, and
assume that I does not disturb a non-trivial observable F. Then there exists a norm-1 observable G := {G(z) :
z ∈ Z} acting in HS that is non-disturbed by I, so that for every family of states {ρz : z ∈ Z} that are perfectly
distinguishable by a G measurement, {IX (ρz) : z ∈ Z} remain perfectly distinguishable by a G measurement.
Moreover, if F(IX ) contains a faithful state, then G can be taken as a sharp observable.

Proof. Suppose that a non-trivial observable F := {F(y) : y ∈ Y} is non-disturbed by I, i.e, F ⊂ F(I∗
X ) =

F(I∗
av). Given that F(I∗

av,P ) = PF(I∗
av)P (see Proposition M.1), this implies that PF(y)P ∈ F(I∗

av,P ). That
F is non-trivial implies that there must be a y for which PF(y)P is not proportional to P . If that were the case
every PF(y)P could be written as PF(y)P = cyP with some cy ⩾ 0, which would imply that F(y) = I∗

av(F(y)) =
I∗

av(PF(y)P ) = cyI∗
av(P ) = cy1S , and so F would be a trivial observable. Therefore F(I∗

av,P ) = PF(I∗
av)P is

a nontrivial von Neumann algebra in L(PHS), and there exists a family of projections R := {R(z) : z ∈ Z} ⊂
F(I∗

av,P ) satisfying R(z)R(y) = δz,yR(z) and
∑
z R(z) = P . We may consider R as a sharp observable acting in

PHS .
Using R, we may define a (generally unsharp) observable G acting in HS by

G := {G(z) = I∗
av(R(z)) : z ∈ Z},

where
∑
z G(z) = I∗

av(P ) = 1S . Given that I∗
X ◦ I∗

av = I∗
av (see Lemma M.1), it follows that G ⊂ F(I∗

X ), i.e.,
G is non-disturbed by I. Moreover, since PG(z)P = I∗

av,P (R(z)) = R(z) holds, then each (non-zero) effect of G
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has at least one eigenvector with eigenvalue 1, and so ∥G(z)∥ = 1. Moreover, if F(IX ) contains a faithful state,
then P = 1S , and so we have G(z) = PG(z)P = R(z), implying that G ≡ R is sharp. Now let us note that the
family of states {ρz} are perfectly distinguishable given a measurement of G if and only if ρz = P(z)ρzP(z),
where P(z) ⩾ R(z) projects onto the eigenvalue-1 eigenspace of G(z). In such a case it trivially holds that
tr[G(y)ρz] = δz,y. But Since G ⊂ F(I∗

X ), we also have

tr[G(y)IX (ρz)] = tr[I∗
X (G(y))ρz] = tr[G(y)ρz] = δz,y,

and so {IX (ρz)} continues to be perfectly distinguishable by a G measurement.

In the special case where I is a measurement of the first kind, we may strengthen the above result as fol-
lows:

Theorem M.2. Let I be an instrument compatible with a non-trivial observable E acting in HS. If I is a
measurement of the first kind, then E is described by a classical post-processing of a norm-1 observable G :=
{G(z) : z ∈ Z} with properties given in Proposition M.2, i.e.,

E(x) =
∑
z

p(x|z)G(z), (58)

where {p(x|z)} is a family of non-negative numbers that satisfy
∑
x p(x|z) = 1 for each z.

Proof. Assume that the E-instrument I is a measurement of the first kind, that is, E ⊂ F(I∗
X ). It follows that

PEP ⊂ F(I∗
av,P ). In fact, we can show that PEP ⊂ F(I∗

av,P ) ∩ F(I∗
av,P )′. First, recall from Proposition M.2

that if E is non-trivial then there exists a family of projections R := {R(z) : z ∈ Z} ⊂ F(I∗
av,P ), satisfying

R(z)R(y) = δz,yR(z) and
∑
z R(z) = P . If PEP ̸⊂ F(I∗

av,P ) ∩ F(I∗
av,P )′, then R can be chosen so that

[PE(x)P,R(z)] ̸= O for some x and z. But note that R ⊂ F(I∗
av,P ) = PF(I∗

X )P implies that the observable
{PI∗

x(R(z))P, PI∗
x(1S − R(z))P : x ∈ X } is a joint measurement for PEP and the sharp observable {R(z), P −

R(z)}. By compatibility, it follows that [PE(x)P,R(z)] = O must hold for all x and z, and so PEP must be
contained in the Abelian algebra F(I∗

av,P ) ∩ F(I∗
av,P )′. Consequently, R ⊂ F(I∗

av,P ) ∩ F(I∗
av,P )′ can be chosen

so as to simultaneously diagonalise all PE(x)P , that is, we may write PE(x)P =
∑
z p(x|z)R(z). Recalling that

E(x) = I∗
av(E(x)) = I∗

av(PE(x)P ), then defining the observable G by G(z) = I∗
av(R(z)) gives us Eq. (58). As in

Proposition M.2 it holds that G ⊂ F(I∗
X ), G is a norm-1 observable, if F(IX ) contains a faithful state then G

is also sharp, and if {ρz} are perfectly distinguishable by a G measurement then so are {IX (ρz)}.

Finally, we present the following implication of the above theorem:

Corollary M.2. Let I be an instrument compatible with a non-trivial observable E acting in HS, and assume
that I is a measurement of the first kind. For any outcome x associated with a non-trivial effect E(x), and for
any pair of unit vectors ψ, ϕ ∈ HS satisfying E(x)ψ = ∥E(x)∥ψ and (1S − E(x))ϕ = ∥1S − E(x)∥ϕ, respectively,
it holds that ψ and ϕ are orthogonal, and that F (IX (Pψ), IX (Pϕ)) = 0, where F (ρ, σ) := tr[

√√
ρσ

√
ρ] is the

fidelity between states ρ and σ.

Proof. For each outcome x, we may coarse-grain E into a binary observable {E(x),E(x) := 1S − E(x)}. By
Theorem M.2, first-kindness implies that E(x) =

∑
z p(x|z)G(z) and E(x) =

∑
z p(x|z)G(z), with p(x|z) := 1 −

p(x|z), where {G(z) : z ∈ Z} is a norm-1 observable with properties given in Proposition M.2, while {p(x|z)} is a
family of non-negative numbers satisfying

∑
x′ p(x′|z) = 1 for each z. Now let us define pmax(x) := maxz{p(x|z)}

and pmin(x) := minz{p(x|z)} as the maximum and minimum values of the set {p(x|z)}. We may thus define
the sets Zmax := {z ∈ Z : p(x|z) = pmax(x)} and Zmin := {z ∈ Z : p(x|z) = pmin(x)}. Using such sets, we may
define G(Zmax) :=

∑
z∈Zmax

G(z) and G(Zmin) :=
∑
z∈Zmin

G(z). Since G is norm-1, then we may also define
P(Zmax) :=

∑
z∈Zmax

P(z) and P(Zmin) :=
∑
z∈Zmin

P(z), where P(z) is the projection onto the eigenvalue-1
eigenspace of G(z). Since E(x) is assumed to be non-trivial, then it must hold that Zmax ∩Zmin = ∅. If this were
not so, it would hold that all p(x|z) are the same, in which case E(x) ∝ 1S . Consequently, P(Zmax)P(Zmin) = O.
Now let us note that

∥E(x)∥ = sup
∥ψ∥=1

⟨ψ|E(x)ψ⟩ = sup
∥ψ∥=1

∑
z

p(x|z)⟨ψ|G(z)ψ⟩.

We may now show that a unit vector ψ satisfies E(x)ψ = ∥E(x)∥ψ if and only if P(Zmax)ψ = ψ. Let us first
prove the only if statement. For any unit vector ψ, it holds that ⟨ψ|E(x)ψ⟩ ⩽ pmax(x), which follows from the
fact that p(x|z) are positive numbers and that {⟨ψ|G(z)ψ⟩} is a probability distribution, with the upper bound
being saturated when ⟨ψ|G(Zmax)ψ⟩ = 1. But this in turn is satisfied only if ⟨ψ|P(Zmax)ψ⟩ = 1, in which case

Accepted in Quantum 2023-05-25, click title to verify. Published under CC-BY 4.0. 39



P(Zmax)ψ = ψ. As such, it follows that ∥E(x)∥ = pmax(x), and the unit vector ψ satisfies E(x)ψ = ∥E(x)∥ψ
only if P(Zmax)ψ = ψ. The if statement is trivial.
By similar arguments as above, we may show that ∥1S − E(x)∥ = ∥E(x)∥ = pmax(x) = 1 − pmin(x), and that
the unit vector ϕ satisfies (1S − E(x))ϕ = ∥1S − E(x)∥ϕ if and only if P(Zmin)ϕ = ϕ. Since E(x) is non-
trivial, then as argued above ψ and ϕ are orthogonal, and perfectly distinguishable by a G measurement. By
Proposition M.2 it holds that IX (Pψ) and IX (Pϕ) are also perfectly distinguishable by a G measurement, that
is, F (IX (Pψ), IX (Pϕ)) = 0.

M.4 Measurements of the first kind, distinguishability, and the Wigner-Araki-Yanase theorem
We shall now use the results in the preceding section to obtain quantitative bounds for first-kind measurements
in the presence of a conservation law, that complement our generalisation of the WAY theorem given in Theo-
rem 3.3. To this end, let us first provide a generalisation of Theorem 2 in Ref. [27], which we shall use in the
sequel:

Lemma M.5. Let M := (HA, ξ, E ,Z) be a measurement scheme for an E-instrument I acting in HS, and
assume that E conserves an additive quantity N = NS ⊗ 1A + 1S ⊗ NA on average, where NS ∈ Ls(HS) and
NA ∈ Ls(HA). For any pair of orthogonal unit vectors ψ, ϕ ∈ HS, the following will hold:

|⟨ψ|NSϕ⟩| ⩽ ∥NA∥F (IX (Pψ), IX (Pϕ)) + ∥NS∥F (Λ(Pψ),Λ(Pϕ)), (59)

where Λ is the conjugate channel to IX defined in Eq. (5), and F (ρ, σ) is the fidelity between states ρ and σ.

Proof. Let us consider the augmented Hilbert space HA ⊗ K so that ξ ∈ S(HA) admits the purification ξ =
trK[Pφ], with the unit vector φ ∈ HA ⊗ K. Moreover, if K is sufficiently large, then by Stinespring’s dilation
theorem the channel E∗ can be expressed as E∗(A) = V ∗(A ⊗ 1K)V for all A ∈ L(HS ⊗ HA), where V :
HS ⊗ HA → HS ⊗ HA ⊗ K is an isometry. By additivity of N , and orthogonality of ψ, ϕ, we have

⟨ψ ⊗ φ|Nϕ⊗ φ⟩ = ⟨ψ|NSϕ⟩.

On the other hand, average conservation of N by E implies that

N = E∗(N) = V ∗(NS ⊗ 1A ⊗ 1K)V + V ∗(1S ⊗NA ⊗ 1K)V.

We therefore have

|⟨ψ|NSϕ⟩| ⩽ |⟨ψ ⊗ φ|V ∗(NS ⊗ 1A ⊗ 1K)V ϕ⊗ φ⟩| + |⟨ψ ⊗ φ|V ∗(1S ⊗NA ⊗ 1K)V ϕ⊗ φ⟩|. (60)

For any observable G := {G(z)} acting in HA, we may write

|⟨ψ ⊗ φ|V ∗(NS ⊗ 1A ⊗ 1K)V ϕ⊗ φ⟩|

= |
∑
z

⟨ψ ⊗ φ|V ∗(NS ⊗ G(z) ⊗ 1K)V ϕ⊗ φ⟩|

⩽ ∥NS∥
∑
z

|⟨ψ ⊗ φ|V ∗(1S ⊗ G(z) ⊗ 1K)V ϕ⊗ φ⟩|

⩽ ∥NS∥
∑
z

|⟨ψ ⊗ φ|V ∗(1S ⊗ G(z) ⊗ 1K)V ψ ⊗ φ⟩| 1
2 |⟨ϕ⊗ φ|V ∗(1S ⊗ G(z) ⊗ 1K)V ϕ⊗ φ⟩| 1

2

= ∥NS∥
∑
z

tr[1S ⊗ G(z)E(Pψ ⊗ ξ)] 1
2 tr[1S ⊗ G(z)E(Pϕ ⊗ ξ)] 1

2

= ∥NS∥
∑
z

tr[G(z)Λ(Pψ)] 1
2 tr[G(z)Λ(Pϕ)] 1

2 .

In the third line we have used the Cauchy-Schwarz inequality, in the fourth line we used Stinespring’s dilation
theorem together with the fact that φ is a purification of ξ, and in the final line we use the definitions of the partial
trace and the conjugate channel Λ. Now, note that the fidelity satisfies F (ρ, σ) = minG

∑
z tr[G(z)ρ] 1

2 tr[G(z)σ] 1
2

[95, 96]. Therefore, choosing G so as to obtain the fidelity, we have

|⟨ψ ⊗ φ|V ∗(NS ⊗ 1A ⊗ 1K)V ϕ⊗ φ⟩| ⩽ ∥NS∥F (Λ(Pψ),Λ(Pϕ)).

Using similar steps, we may also write

|⟨ψ ⊗ φ|V ∗(1S ⊗NA ⊗ 1K)V ϕ⊗ φ⟩| ⩽ ∥NA∥F (IX (Pψ), IX (Pϕ)).

By Eq. (60), we thus obtain Eq. (59).
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We are now ready to prove our main result in this section:

Theorem M.3. Consider a measurement scheme M := (HA, ξ, E ,Z) for a nontrivial observable E with the
instrument I acting in HS. Assume that I is a measurement of the first kind, and that E conserves an additive
quantity N = NS ⊗ 1A + 1S ⊗ NA on average, where NS ∈ Ls(HS) and NA ∈ Ls(HA). For each outcome x
associated with a non-trivial effect E(x), let Kmax(x) and Kmin(x) be subspaces of HS defined by

Kmax(x) := {ψ ∈ HS : E(x)ψ = ∥E(x)∥ψ}, Kmin(x) := {ϕ ∈ HS : (1S − E(x))ϕ = ∥1S − E(x)∥ϕ}.

Kmax(x) and Kmin(x) are orthogonal, and for all unit vectors ψ ∈ Kmax(x) and ϕ ∈ Kmin(x), it holds that

|⟨ψ|NSϕ⟩| ⩽ ∥NS∥
(

∥E(x)∥ 1
2 (1 − ∥1S − E(x)∥) 1

2 + (1 − ∥E(x)∥) 1
2 ∥1S − E(x)∥ 1

2

)
. (61)

Proof. For each outcome x associated with a non-trivial effect E(x), we may coarse-grain E into a binary
observable {E(x),E(x) := 1S − E(x)}. By Corollary M.2, it holds that for any unit vectors ψ ∈ Kmax(x)
and ϕ ∈ Kmin(x), ψ and ϕ are orthogonal—implying that Kmax(x) and Kmin(x) are orthogonal subspaces—and
F (IX (Pψ), IX (Pϕ)) = 0. As such, given the average conservation of N by the interaction channel E , Lemma M.5
implies that the following inequality must hold:

|⟨ψ|NSϕ⟩| ⩽ ∥NS∥F (Λ(Pψ),Λ(Pϕ))

⩽ ∥NS∥
∑
a=x,x

tr[Z(a)Λ(Pψ)] 1
2 tr[Z(a)Λ(Pϕ)] 1

2

= ∥NS∥
∑
a=x,x

⟨ψ|E(a)ψ⟩ 1
2 ⟨ϕ|E(a)ϕ⟩ 1

2

= ∥NS∥
(

∥E(x)∥ 1
2 (1 − ∥1S − E(x)∥) 1

2 + (1 − ∥E(x)∥) 1
2 ∥1S − E(x)∥ 1

2

)
.

The second line uses the fact that for any states ρ, σ, it holds that F (ρ, σ) ⩽
∑
a tr[F(a)ρ] 1

2 tr[F(a)σ] 1
2 for any

observable F [95, 96]. The third line uses the fact that Λ is the conjugate channel to IX defined in Eq. (5), and
so it holds that tr[Z(a)Λ(ρ)] = tr[E(a)ρ] for all ρ and a = x, x. To see how the final line is obtained, note that we
have ⟨ψ|E(x)ψ⟩ = ∥E(x)∥ and ⟨ϕ|(1S −E(x))ϕ⟩ = ∥1S −E(x)∥ by construction. For the first term, i.e., a = x, we
obtain ⟨ψ|E(a)ψ⟩ = ∥E(x)∥ and ⟨ϕ|E(a)ϕ⟩ = ⟨ϕ|(1S − (1S − E(x)))ϕ⟩ = 1 − ⟨ϕ|(1S − E(x))ϕ⟩ = 1 − ∥1S − E(x)∥.
The second term for a = x is obtained in a similar manner.

Let us note that if E commutes with NS , then Theorem M.3 imposes no restrictions on first-kindness. To see this,
let us note that for any (possibly trivial) effect E(x), and for any unit vectors ψ, ϕ satisfying E(x)ψ = ∥E(x)∥ψ
and (1S − E(x))ϕ = ∥1S − E(x)∥ϕ, it holds that ⟨ψ|E(x)NSϕ⟩ = ∥E(x)∥⟨ψ|NSϕ⟩ and ⟨ψ|NSE(x)ϕ⟩ = (1 − ∥1S −
E(x)∥)⟨ψ|NSϕ⟩. It follows that if [E(x), NS ] = O then either (i) ⟨ψ|NSϕ⟩ = 0, or (ii) ∥E(x)∥ + ∥1S − E(x)∥ = 1.
Condition (i) implies that the lower bound of Eq. (61) vanishes, and so no constraint is imposed. On the other
hand, condition (ii) implies that ∥E(x)∥ + ∥1S − E(x)∥ = 1 + (pmax(x) − pmin(x)) = 1, where we recall from
Corollary M.2 that pmax(x) = ∥E(x)∥ and pmin(x) = 1 − ∥1S − E(x)∥ are the largest and smallest values from
the set {p(x|z)} given by Theorem M.2. Such equality is satisfied if and only if pmax(x) = pmin(x) = λ, in which
case by Eq. (58) it follows that E(x) = λ1S is a trivial effect. But Eq. (61) applies only to non-trivial effects,
and so no constraints are imposed in such a case.

Let us now show that the first-kindness statement of Theorem 3.3 may be recovered directly from Eq. (61).
Corollary M.3. Consider a measurement scheme M := (HA, ξ, E ,Z) for an E-instrument I acting in HS, and
assume that E conserves an additive quantity N = NS ⊗ 1A + 1S ⊗ NA on average, where NS ∈ Ls(HS) and
NA ∈ Ls(HA). If I is a measurement of the first kind, then for all effects E(x) that have both eigenvalue 1 and
0,

P[E(x), NS ]P = [E(x),PNSP] = O,

where P = P0(x) + P1(x), with P0(x) and P1(x) orthogonal projections onto the eigenvalue-0 and eigenvalue-1
eigenspaces of E(x), respectively.

Proof. It is trivial to verify that supp(P1(x)) ≡ Kmax(x) and supp(P0(x)) ≡ Kmin(x) as defined in Theorem M.3.
Any φ ∈ supp(P) may be written as φ = αψ + βϕ, where ψ ∈ Kmax(x) and ϕ ∈ Kmin(x) are unit vectors and
α, β ∈ C. Since ∥E(x)∥ = ∥1S −E(x)∥ = 1 for any effect that has both eigenvalue 1 and 0, then by Theorem M.3
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it follows that ⟨φ|P1(x)NSP0(x)φ⟩ = α∗β⟨ψ|NSϕ⟩ = 0 for all φ ∈ supp(P). It follows that P1(x)NSP0(x) =
P1(x)NS(P − P1(x)) = O, which implies that P1(x)NSP = P1(x)NSP1(x). Since the right hand side is self-
adjoint, and P1(x) = P1(x)P = PP1(x), it follows that [P1(x),PNSP] = O. But since P1(x) = E(x)P = PE(x),
we have [E(x),PNSP] = P[E(x), NS ]P = O. This completes the proof.
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[23] E. P. Wigner, Zeitschrift für Phys. A Hadron. Nucl. 133, 101 (1952).
[24] P. Busch, (2010), arXiv:1012.4372 .
[25] H. Araki and M. M. Yanase, Phys. Rev. 120, 622 (1960).
[26] L. Loveridge and P. Busch, Eur. Phys. J. D 62, 297 (2011).
[27] T. Miyadera and H. Imai, Phys. Rev. A 74, 024101 (2006).
[28] G. Kimura, B. Meister, and M. Ozawa, Phys. Rev. A 78, 032106 (2008).
[29] P. Busch and L. Loveridge, Phys. Rev. Lett. 106, 110406 (2011).
[30] P. Busch and L. D. Loveridge, in Symmetries Groups Contemp. Phys. (WORLD SCIENTIFIC, 2013) pp.

587–592.
[31] A.  Luczak, Open Syst. Inf. Dyn. 23, 1 (2016).
[32] M. Tukiainen, Phys. Rev. A 95, 012127 (2017).
[33] H. Tajima and H. Nagaoka, (2019), arXiv:1909.02904 .
[34] S. So ltan, M. Fra̧czak, W. Belzig, and A. Bednorz, Phys. Rev. Res. 3, 013247 (2021).
[35] M. Ozawa, Phys. Rev. Lett. 89, 3 (2002).
[36] T. Karasawa and M. Ozawa, Phys. Rev. A 75, 032324 (2007).
[37] T. Karasawa, J. Gea-Banacloche, and M. Ozawa, J. Phys. A Math. Theor. 42, 225303 (2009).
[38] M. Ahmadi, D. Jennings, and T. Rudolph, New J. Phys. 15, 013057 (2013).
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