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Superconducting systems that simultaneously lack space-inversion and time-reversal symmetries have recently
been the subject of a flurry of experimental and theoretical research activities. Their ability to carry supercurrents
with magnitudes depending on the polarity (current direction)—termed the supercurrent diode effect—might
be practically exploited to design dissipationless counterparts of contemporary semiconductor-based diodes.
Magnetic Josephson junctions realized in the two-dimensional electron gas (2DEG) within a narrow quantum
well through proximity to conventional superconductors perhaps belong to the most striking and versatile
platforms for such supercurrent rectifiers. Starting from the Bogoliubov–de Gennes approach, we provide a
minimal theoretical model to explore the impact of the spin-orbit coupling and magnetic exchange inside
the 2DEG on the Andreev bound states and Josephson current-phase relations. Assuming realistic junction
parameters, we evaluate the polarity-dependent critical currents to quantify the efficiency of these Josephson
junctions as supercurrent diodes, and discuss the tunability of the Josephson supercurrent diode effect in terms of
spin-orbit coupling, magnetic exchange, and transparency of the nonsuperconducting weak link. Furthermore, we
demonstrate that the junctions might undergo current-reversing 0–π -like phase transitions at large-enough mag-
netic exchange, which appear as sharp peaks followed by a sudden suppression in the supercurrent-diode-effect
efficiency. The characteristics of the Josephson supercurrent diode effect obtained from our model convincingly
reproduce many unique features observed in recent experiments, validating its robustness and suitability for
further studies.
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I. INTRODUCTION

Since their initial experimental discovery in synthesized
(Nb/Ta/V)n-based superlattices [1], nonreciprocal supercur-
rent phenomena have attracted enormous interest and have
been thoroughly investigated in various systems covering,
e.g., twisted magic-angle bi- and trilayer graphene [2–4],
proximitized topological insulators [5–7] and van der Waals
heterostructures [8,9], as well as Josephson junctions [6,10–
17]. Their ability to carry supercurrents of different magnitude
depending on the polarity, which motivated terming them
supercurrent diodes [18], makes these systems promising can-
didates for future applications in dissipation-free electronics
and information technology.

Nonreciprocal supercurrents are most commonly induced
combining the spin-orbit coupling (SOC) [19,20] of a space-
inversion-symmetry-lacking material with a simultaneously
time-reversal-symmetry-breaking magnetic exchange inter-
action [1,6,8,9,11–15,21], such as the Zeeman coupling
triggered by an appropriately aligned external magnetic field
or an intrinsic exchange splitting. Detecting the supercurrent
diode effect (SDE) might therefore serve as a probe of bro-
ken space-inversion and time-reversal symmetries, which is
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often accumulated in the common name noncentrosymme-
try [22–25].

From the theoretical point of view, different microscopic
and phenomenological explanations of the SDE have been
proposed. The first approach [17,26–30], elaborating on the
understanding of the SDE in quasi-2D superconductors, relied
on a shift of the SOC-split Fermi surfaces through the Zeeman
coupling, which resulted in a finite Cooper-pair momentum
and thus in a helical phase that revealed a nonreciprocal cur-
rent response. The second one [11,12,16,31–33] linked the
SDE in Josephson junctions to a strong phase-asymmetry of
the Andreev-bound-state spectra [34], which likewise origi-
nated from the competition of SOC and Zeeman coupling.
Since the coherent Cooper-pair transport through Josephson
junctions is mediated by electrons tunneling via these An-
dreev bound states, the phase-asymmetry will be imprinted
on the Josephson current-phase relation (CPR) and endow
the CPR with an anomalous ϕ0-phase shift [31,35–51], the
SDE [32,33], and even current-reversing 0–π -like phase tran-
sitions [43,46,52–56]. Moreover, a phenomenological account
of the SDE in both thin films and Josephson junctions was pro-
vided in Ref. [21] by means of a generalized Ginzburg-Landau
functional tailored to noncentrosymmetric interactions trig-
gered within the superconducting condensate.

Analytical calculations [31] suggested that |ϕ0| scales, in
the simplest case, linearly with the product of the SOC and
Zeeman-coupling strengths, and inversely with the square
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of the velocity components of the incident electrons (holes)
that are parallel to the current direction. Since these veloc-
ity components are different for different transverse channels
of two-dimensional junctions, the CPRs of the individual
channels acquire distinct ϕ0-shifts. In multichannel Joseph-
son junctions, the total CPR emerges as the sum of all
these channels’ CPRs and therefore gets strongly distorted.
Its asymmetry and anharmonicity with respect to the su-
perconducting phase difference ϕ finally results in different
magnitudes of the positive and negative critical currents as a
clear fingerprint of the (DC) Josephson SDE, on which we
will focus in this work.

As a brief comment, apart from the ϕ0-shifts and polarity-
dependent critical currents that can be probed by DC
measurements, also the inflection point of the total CPR will
be shifted, which can be probed in an AC regime and leads
to the magnetochiral anisotropy of the Josephson inductance,
usually referred to as AC SDE [10–12,16]. However, both the
AC and DC SDEs can be undoubtedly explained in terms of a
single theory that gives access to the full CPR of the junction.

In this paper, we present such a detailed theoretical study
that illustrates the ramifications of the Rashba SOC [57,58]
and magnetic exchange on the Andreev-bound-state spectra,
and hence on the therefrom resulting Josephson-transport
characteristics. We focus on ballistic two-dimensional mul-
tichannel Josephson junctions with a simple, but interaction-
wise complex, model Hamiltonian that promotes a sizable and
robust (DC) Josephson SDE, along with pronounced global
ϕ0-shifts in the total CPRs and current-reversing 0–π -like
transitions. We demonstrate that these phenomena are con-
nected such that 0–π -like transitions can be identified by
means of the critical-current asymmetries that are imprinted
on the SDE efficiencies. Moreover, we explore the tunabil-
ity of the SDE in terms of SOC, magnetic exchange, and
transparency of the junction, assuming experimentally realis-
tic parameters, and reproduce all characteristic SDE features
observed in recent experiments [11,12,16] on Al-gated InAs
2DEG-based Josephson junctions in an external in-plane mag-
netic field.

The paper is organized in the following way. In Sec. II,
we elaborate on the theoretical model that we apply to com-
pute the Andreev bound states and CPRs of the 2DEG-based
Josephson junctions. The CPRs are crucial to extract the po-
larity dependence of the critical current and to quantify the
SDE. We discuss and thoroughly analyze the results of our
numerical calculations in Sec. III, with a special emphasis on
the modifications the Andreev spectra and CPRs experience
in the presence of magnetic exchange (Secs. III A and III B),
and on the Josephson SDE (Sec. III C). We briefly conclude
our analyses and comment on our results in Sec. IV.

II. THEORETICAL MODEL

We consider a ballistic superconductor/ferromagnet/
superconductor (S/F/S) Josephson junction realized in a two-
dimensional electron gas (2DEG) that is proximitized by an
s-wave superconductor and driven by Rashba SOC. As an
example, one could consider a narrow InAs quantum well
with epitaxially grown aluminium top gates [10]. The 2DEG
proximitized with superconducting correlations spans the re-

Josephson
current

Andreev
states

S S
F

FIG. 1. 2DEG-based Josephson junction, with the transverse
width W , consisting of two semi-infinite proximitized super-
conducting (S) regions (x < 0 and x > 0) and the delta-like
ferromagnetic (F ) tunnel barrier at x = 0. The latter introduces the
tunnel potential V to modify the transparency of the junction link
and additionally accounts for the in-plane magnetic exchange field
EXC that acts on the spin degrees and is aligned perpendicular to
the Josephson current. The current is triggered by a superconducting
phase difference ϕ along the junction, which induces the tunneling of
Cooper pairs via the discrete Andreev bound states that are localized
in the F region. The width W of the junction controls the number of
the transverse Andreev modes (channels).

gions x < 0 and x > 0, which are connected by a delta-like
ferromagnetic tunnel barrier at x = 0 that serves as weak link;
see Fig. 1 for a schematic illustration. The barrier accounts
not only for the in experiments often reduced interfacial trans-
parencies of the junction [10], but additionally for exchange
correlations due to, e.g., an intrinsic magnetic exchange split-
ting or Zeeman coupling triggered by an applied external
magnetic field. Since we focus on the ultrathin barrier and
on systems for which the Rashba SOC dominates, we neglect
all magnetism-induced pair-breaking effects outside the ferro-
magnetic barrier.

A. Andreev bound states

We model the 2DEG-based S/F/S junction by means of
the stationary Bogoliubov–de Gennes Hamiltonian [59]

ĤBdG =
[

Ĥe �̂S (x)

�̂
†
S (x) Ĥh

]
, (1)

where

Ĥe =
[
− h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2

)
− μ

]
σ̂0 − iα

(
σ̂x

∂

∂y
− σ̂y

∂

∂x

)

+ (V d σ̂0 + EXCd σ̂y) δ(x) (2)

represents the single-particle Hamiltonian of electrons and
Ĥh = −σ̂yĤ∗

e σ̂y of their hole counterparts. Throughout the
text, σ̂0 and σ̂i stand, correspondingly, for the 2 × 2 identity
and the ith Pauli matrices in spin space. To simplify the
analytical calculations, we assume that the effective masses m,
as well as the Fermi level μ, are the same throughout the
junction. Similarly, we assume a uniform strength α for the
Rashba SOC that originates from the broken space-inversion
symmetry. Moreover, the delta-like barrier with an effective
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scattering length d is characterized by the scalar potential V
and the magnetic exchange EXC acting perpendicular to the
current direction. While the first accounts for the reduced
junction transparency [60–67], the second gives the two spin
projections along the junction direction different energies.
The delta-like model enormously simplifies the modeling of
the system at the analytical level (we briefly comment on its
validity in Sec. III B). However, it also needs to be mentioned
that the finite thickness of the link in real junctions typically
imprints a highly nontrivial angular dependence on its tunnel-
ing transparency. Earlier works demonstrated, for example,
that thin (nearly delta-like) links mostly favor the tunneling
of (quasi)particles that are incident under sufficiently large
angles with respect to the normal plane (known as the “ac-
ceptance cone”) [68–70], which means that channels with
larger |ky| shall contribute with a larger weight to the total
Josephson current, which would be itself beneficial for our
model. However, for simplicity, we do not account for this
effect in the present study and leave it open for its follow-up.

Inside the superconducting regions, we assume an s-wave
coherence governed by the pairing potential

�̂S (x) = �0[	(−x) + eiϕ	(x)]σ̂0, (3)

where �0 > 0 refers to the magnitude of the proximity-
induced superconducting gap in the 2DEG and ϕ to the
corresponding superconducting phase difference. Approxi-
mating �̂S through a step function, without a self-consistent
treatment, is the standard approximation [71] assuming that
spatial variations of the gap are developing on a length scale
smaller than the coherence length.

As the wave vector ky parallel to the junction interface stays
conserved, a general bound-state solution of the Bogoliubov–
de Gennes equation, ĤBdG
(x, y) = E
(x, y), with |E | <

�0 factorizes into


(x, y) = ψ (x) eikyy, (4)

where the component along the junction ψ (x) reads

ψ (x < 0) = Ae−iq⇑
x,ex

⎡
⎢⎢⎢⎢⎣

iα′
⇑u

u

iα′
⇑v

v

⎤
⎥⎥⎥⎥⎦+ Beiq⇑

x,hx

⎡
⎢⎢⎢⎢⎣

iα̃′
⇑v

v

iα̃′
⇑u

u

⎤
⎥⎥⎥⎥⎦

+ Ce−iq⇓
x,ex

⎡
⎢⎢⎢⎢⎣

−iα′
⇓u

u

−iα′
⇓v

v

⎤
⎥⎥⎥⎥⎦+ Deiq⇓

x,hx

⎡
⎢⎢⎢⎢⎣

−iα̃′
⇓v

v

−iα̃′
⇓u

u

⎤
⎥⎥⎥⎥⎦, (5)

and correspondingly,

ψ (x > 0) = Eeiq⇑
x,ex

⎡
⎢⎢⎢⎢⎣

iα⇑ueiϕ

ueiϕ

iα⇑v

v

⎤
⎥⎥⎥⎥⎦+ Fe−iq⇑

x,hx

⎡
⎢⎢⎢⎢⎣

iα̃⇑veiϕ

veiϕ

iα̃⇑u

u

⎤
⎥⎥⎥⎥⎦

+ Geiq⇓
x,ex

⎡
⎢⎢⎢⎢⎣

−iα⇓ueiϕ

ueiϕ

−iα⇓v

v

⎤
⎥⎥⎥⎥⎦+ He−iq⇓

x,hx

⎡
⎢⎢⎢⎢⎣

−iα̃⇓veiϕ

veiϕ

−iα̃⇓u

u

⎤
⎥⎥⎥⎥⎦.

(6)

Contrary to the solution for the scattering states (if |E | > �0),
we do not need to account for incoming waves in the bound-
state ansatz for ψ (x). The effect of Rashba SOC, which mixes
both spin projections in a ky-momentum-dependent way, is
included into the spinor amplitudes through the distinguished
α-labels

α⇑ = q⇑
x,e − iky√

(q⇑
x,e)2 + k2

y

, α̃⇑ = − q⇑
x,h + iky√

(q⇑
x,h)2 + k2

y

,

α⇓ = q⇓
x,e − iky√

(q⇓
x,e)2 + k2

y

, α̃⇓ = − q⇓
x,h + iky√

(q⇓
x,h)2 + k2

y

,

α′
⇑ = − q⇑

x,e + iky√
(q⇑

x,e)2 + k2
y

, α̃′
⇑ = q⇑

x,h − iky√
(q⇑

x,h)2 + k2
y

,

α′
⇓ = − q⇓

x,e + iky√
(q⇓

x,e)2 + k2
y

, α̃′
⇓ = q⇓

x,h − iky√
(q⇓

x,h)2 + k2
y

.

The electron-hole content in ψ (x) is encoded in the
energy-dependent (and generally complex-valued) Bardeen—
Cooper—Schrieffer (BCS) coherence factors

u =

√√√√√1

2

⎛
⎝1 +

√
1 − �2

0

E2

⎞
⎠, v =

√
1 − u2, (7)

while the electron-like and hole-like quasiparticle wave vec-
tors in Andreev approximation—i.e., for μ � E ,�0—are
given by

q⇑
x,e ≈ q⇑

x,h ≈
√

k2
F

(√
1 + λ2

SOC − λSOC
)2 − k2

y (8)

and

q⇓
x,e ≈ q⇓

x,h ≈
√

k2
F

(√
1 + λ2

SOC + λSOC
)2 − k2

y . (9)

For a more compact notation, we introduce the Fermi wave
vector kF = √

2mμ/h̄ and the dimensionless effective SOC
strength λSOC = (mα)/(h̄2kF ).

Requiring interfacial continuity of ψ (x),

ψ (x)|x=0− = ψ (x)|x=0+ , (10)

and the delta-function-characteristic jump in the first deriva-
tive

h̄2

2md

(
∂

∂x
ψ (x)

∣∣∣∣
x=0+

− ∂

∂x
ψ (x)

∣∣∣∣
x=0−

)

=

⎡
⎢⎢⎣V − EXC

⎛
⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

⎞
⎟⎟⎠
⎤
⎥⎥⎦ψ (x)

∣∣∣∣∣∣∣∣
x=0−

(11)
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yields a homogeneous system of algebraic equations for
the unknown wave-function amplitudes A, . . . ,H. Requiring
its nontrivial solution leads to the secular equation for the
Andreev-bound-state energies E that we solve numerically.
After determining E , the above algebraic system—along
with the normalization condition for ψ (x)—fully specifies
the amplitudes A, . . . ,H in terms of a single ampli-
tude, say, E , which we choose to be real. As convenient
for the Blonder—Tinkham—Klapwijk formalism [72], we
define the dimensionless Z = (2mV d )/(h̄2kF ) and λXC =
(2mEXCd )/(h̄2kF ) parameters that quantify, respectively, the
strengths of the corresponding interactions (scalar and ex-
change) with respect to the Fermi energy. For example,
tunneling through metal/superconductor interfaces possess-
ing Z = 0.5 corresponds to the interfacial transparency of τ =
1/[1 + (Z/2)2] ≈ 0.94, which agrees well with the recent
experimental results in InAs 2DEG-based Josephson junc-
tions [10]. If not otherwise stated, we therefore use Z = 0.5
for all calculations below.

Continuity of ψ (x) at x = 0 allows us to express the
amplitudes entering ψ (x < 0) in terms of the amplitudes of
ψ (x > 0),

(A, B, C, D) = (E, F, G, H) · M, (12)

where the entries of M, depending on ky and ϕ, follow af-
ter some algebra from Eqs. (5), (6), and (10). Analogously,
the boundary condition for the derivatives of ψ (x), Eq. (11),
leads to another set of equations, which—after substituting
Eq. (12)—can be rewritten as

0 = (E, F, G, H) · N, (13)

where the entries of N follow again from standard, but
cumbersome, algebra. Reorganizing Eq. (13) for the earlier
determined bound-state energy E (zeroing the determinant
of N), we can finally express all other wave-function am-
plitudes in terms of just a single one, e.g., in terms of E ,
yielding

F = �1 E, G = �2 E, H = �3 E, (14)

and

(A, B, C, D) = E (1, �1, �2, �3) · M

≡ E (�1,�2,�3,�4). (15)

Employing the normalization condition for ψ (x) yields a
condition for E = |E |,

1 =
∫ ∞

−∞
dx |ψ (x)|2

≈
{

[|u|2 + |v|2]

I(q⇑
x,e)

[|�1|2 + |�2|2 + 1 + |�1|2]

+ [|u|2 + |v|2]

I(q⇓
x,e)

[|�3|2 + |�4|2 + |�2|2 + |�3|2]

}
|E |2,

(16)

which we solve to consecutively determine the wave-function
amplitudes and get the full Andreev-bound-state wave func-
tion 
(x, y). As a comment, each bound state with energy
�0 > E � 0 comes along with a state with energy −�0 <

−E � 0 due to electron-hole symmetry. In what follows, we
use the Andreev bound states with positive energies only.

B. Josephson current

Electric current through the S/F/S junction carried by
Cooper pairs comes from the Andreev-reflection processes
in the F region. At a given temperature T , phase differ-
ence ϕ, and fixed ky, the corresponding Andreev bound state

(x, y) = ψ (x) eikyy contributes to the tunneling-current den-
sity an average amount of

j
 = lim
x→0

{
〈ψ (x > 0)| ĵ|ψ (x > 0)〉 tanh

(
E

2kBT

)}
, (17)

where
ĵ = − e

∂ĤBdG

h̄∂kx
= −e

[
1 0

0 −1

]

⊗
[
−i h̄

m
∂
∂x i α

h̄

−i α
h̄ −i h̄

m
∂
∂x

]
(18)

refers to the corresponding current-density operator along the
transport direction (x̂) that we resolved within the particle-
hole space in terms of the tensor product with the σ̂z-Pauli
matrix. Thereby, e stands for the (positive) elementary charge
and kB for the Boltzmann constant. Plugging the bound-state
wave functions into the current formula, Eq. (17), and sum-
ming over all transverse channels (i.e., integrating over all
possible transverse momenta ky ∈ [−kF ; kF ]) as well as all
distinct bound-state branches, the total Josephson current as
a function of ϕ (CPR) is given by

IJ (ϕ) = − e
∑
E>0

W

2π

∫ kF

−kF

dky
h̄

m

{
R

[
q⇑

x,e + (α⇑)∗ + α⇑
2

λSOCkF

]
|E |2 − R

[
q⇑

x,h − (α̃⇑)∗ + α̃⇑
2

λSOCkF

]
|F |2

+ R

[
q⇓

x,e − (α⇓)∗ + α⇓
2

λSOCkF

]
|G|2 − R

[
q⇓

x,h − (α̃⇓)∗ + α̃⇓
2

λSOCkF

]
|H|2

}
[|u|2 + |v|2] tanh

(
E

2kBT

)
, (19)

where W stands for the transverse width of the junction
that controls the number of transverse modes (channels) in-
volved in transport. Note that the provided Josephson-current
formula is a generalization of the usual thermodynamic rela-

tion [73] that computes the Josephson current from the deriva-
tives of the Andreev-bound-state dispersion with respect to
the superconducting phase difference ϕ. The advantage of
Eq. (19) is a better numerical stability and more user-friendly
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implementation. When presenting our numerical results
in Sec. III, we always normalize the Josephson current
with respect to (eRS )/(π�0), where RS = (π2h̄)/(e2kFW )
stands for the Sharvin resistance of a perfectly transpar-
ent two-dimensional point contact; the normalized current
(IJeRS )/(π�0) is thus independent of the transverse width W
(number of channels). Furthermore, the Josephson current is
always evaluated at zero temperature.

III. DISCUSSION OF RESULTS

To analyze the Josephson transport through the 2DEG-
based S/F/S junctions, and understand the striking features
of the SDE in terms of spectral properties, we first calculate
the Andreev-bound-state energies following the methodol-
ogy sketched in Sec. II. We then numerically compute
the associated bound-state wave functions and evaluate the
Josephson current by means of Eq. (19). If not otherwise
stated, the Z-factor of the barrier equals Z = 0.5, whereas
the Rashba SOC α and the magnetic exchange EXC are var-
ied through their dimensionless parameters λSOC ∝ α/kF and
λXC ∝ (EXCd )/kF to scrutinize their impact on the bound-
state spectra and the resulting transport properties. Our results
are therefore not material-specific as they cover a wide range
of junction parameters irrespective of, e.g., the Fermi energy
of the 2DEG or the SOC and magnetic exchange strengths;
what matters are the relative ratios with respect to the Fermi
energy captured by the dimensionless Z , λSOC, and λXC.

A. Andreev bound states and Josephson CPRs;
nonmagnetic junctions

Figure 2 illustrates the dependence of the Andreev-bound-
state energies on the phase difference ϕ for nonmagnetic
Josephson junctions, λXC = 0, and various transverse mo-
menta ky. The dimensionless Rashba parameter λSOC = 0.4
corresponds to the realistic Rashba SOC strength [19,20]
of α ≈ 20 meV nm (assuming a typical mass of m = 0.1m0,
where m0 is the free-electron mass, and the Fermi energy of
μ = 1.5 meV [33,74]).

Although the junction itself is nonmagnetic, the Rashba
SOC breaks the twofold spin degeneracy of the Andreev
bound states at ky �= 0. Increasing |ky| from 0 to kF sweeps
therefore between a scenario in which SOC does not play
an important role and a regime in which the influence
of SOC on the Josephson junction gets maximized. For
each |ky| �= 0, we find two distinct spin-resolved Andreev
bound states at positive energies E+

1 (solid red curves)
and E+

2 > E+
1 (dashed blue curves), together with their

negative-energy counterparts E−
1 = −E+

1 and E−
2 = −E+

2 in
accordance with electron-hole symmetry. Such spin-split An-
dreev bound states might become relevant in connection with
superconducting spin Hall physics [75–84], as they facili-
tate finite, transversely spin-polarized supercurrents without
the need to break the time-reversal symmetry. At ky = 0,
SOC can indeed be neglected and the Andreev branches E±

1
and E±

2 merge into single doubly spin-degenerate branches
whose energies are—in good approximation—given by the
well-known result valid for an effectively one-dimensional

FIG. 2. Calculated Andreev-bound-state energies E±
1 (solid red

curves) and E±
2 (dashed blue curves) as functions of the super-

conducting phase difference ϕ for a nonmagnetic junction and
several transverse momenta ky; the other junction parameters are
Z = 0.5 and λSOC = 0.4. The insets illustrate the ky-resolved indi-
vidual contributions of the states to the total Josephson CPR. In the
nonmagnetic case, the Andreev bound states (CPRs) are symmetric
(point-symmetric) with respect to ϕ = 0.

short-junction [64,85,86]

E±
1 = E±

2 = ±
√

Z2 + 4 cos2(ϕ/2)

Z2 + 4
�0. (20)

To characterize the spin contents of the Andreev bound
states, we additionally evaluated their σ̂x-expectation values,
which yield their spin projections along the current-transport
axis. The Andreev states with energy E+

1 —closer to the center
of the superconducting gap—have dominant spin-down (spin-
up) projections along the x̂-axis for ky > 0 (ky < 0), while the
states with energy E+

2 —approaching the gap edge—possess
dominant spin-up (spin-down) projections for ky > 0 (ky <

0). The spin features of the negative-energy states follow from
time-reversal symmetry.

The spectra of the Andreev bound states at |ky| �= 0 can
be explained in terms of an effective trade-off between two
distinct interactions whose strengths depend on the consid-
ered ky-channel. On the one hand, if SOC is completely
absent, the energies of the Andreev bound states can be
extracted from Eq. (20) replacing Z by the effective, channel-

dependent, barrier parameter Z[ky] = Z/
√

1 − k2
y /k2

F [64].

This substitution accounts for the reduced wave-vector pro-
jection (electron velocity) along the x̂-current direction with
increasing |ky|, which makes it basically harder for electrons
to tunnel through the junction in channels with large |ky|. In-
creasing |ky| corresponds therefore to introducing larger, and
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channel-dependent, effective barrier strengths Z[ky] and ex-
pels the Andreev states (independent of their spin) spectrally
from the center of the gap, reaching E±

1 = E±
2 ≈ ±�0 in the

limit of |ky| → kF . On the other hand, nonzero SOC rises the
additional potential 〈ĤSOC〉[ky] ≈ αky〈σ̂x〉 in the Hamiltonian
in Eq. (2). As the sign of ky〈σ̂x〉 differs for the E±

1 - and
E±

2 -states (due to their opposite 〈σ̂x〉-spin contents mentioned
above), this term acts as a spin-split potential that effectively
subtracts from or adds to the global spin-independent tunnel
potential V (or its dimensionless counterpart Z). As a result,
the scattering for the E±

1 -branches gets suppressed, while
that for the E±

2 -branches is enhanced. Thus, increasing |ky|
spectrally pushes the E±

1 -states more toward the center of the
superconducting gap, while the E±

2 -states are expelled toward
the gap edges, as shown in Fig. 2 (see, for instance, the panel
for |ky| = 0.60kF ).

Inspecting Eq. (8) for λSOC > 0, we see that there exists a
critical magnitude of the transverse momentum∣∣kcrit.

y

∣∣ = kF
(√

1 + λ2
SOC − λSOC

)
, (21)

such that the spin-up wave vectors q⇑
x,e and q⇑

x,h of quasi-
particles become purely imaginary for |ky| > |kcrit.

y |, and the
corresponding ky-modes no longer contribute to the Joseph-
son current—for λSOC = 0.4, |kcrit.

y | ≈ 0.68kF . In terms of
Andreev bound states, the E±

2 -branches at |ky| > |kcrit.
y | be-

come indeed flat bands (with respect to ϕ) pinned at the
gap-edges ±�0 that do not carry any Josephson currents, as
seen, e.g., for |ky| = 0.80kF in Fig. 2. These arguments do not
apply to the spin-down quasiparticle wave vectors, Eq. (9),
which remain real for all λSOC > 0, and allow for the current-
carrying in-gap E±

1 -states at any |ky| < kF , establishing the
E±

1 -Andreev states as the main channels to transport Cooper
pairs.

B. Andreev bound states and Josephson CPRs;
magnetic junctions

S/F/S junctions with simultaneously broken space-
inversion and time-reversal symmetries were intensively
studied [31,35–51] in connection with the anomalous Joseph-
son effect leading to ϕ0-shifted CPRs, provided that the
exchange field has a nonzero component perpendicular to the
current flow. In the magnetic 2DEG-based Josephson junction
with Rashba SOC considered in this work, it is crucial that
many ky-channels contribute to transport. As we will demon-
strate below, the CPRs of different ky-channels will acquire
distinct individual ϕ0-shifts that depend on |ky| and become
maximal as |ky| → kF . The superposition of all ky-channels’
CPRs gives the total CPR IJ (ϕ), Eq. (19), then an anhar-
monically distorted shape with a global ϕ0-shift, and with
different magnitudes of positive—I+

c —and negative—I−
c —

critical currents. Such junctions can therefore act as Josephson
supercurrent diodes, and polarity-wise rectify supercurrents
from dissipative currents.

Figure 3 shows the Andreev spectra for magnetic Joseph-
son junctions with the same values of Z and λSOC, and the
same transverse momenta ky, as in the nonmagnetic case. For
the exchange parameter, we use λXC = 1.5, which becomes
equivalent to EXCd ≈ 36 meV nm (assuming the same mass

FIG. 3. Calculated Andreev-bound-state energies E±
1 (solid red

curves) and E±
2 (dashed blue curves) as functions of the super-

conducting phase difference ϕ for a magnetic junction and several
transverse momenta ky; the junction parameters are Z = 0.5, λSOC =
0.4, and λXC = 1.5. The insets illustrate the ky-resolved individ-
ual contributions of the states to the total Josephson CPR. In the
magnetic case, the Andreev bound states and CPRs develop an asym-
metry with respect to ϕ = 0 at larger |ky| (i.e., at |ky| � |kcrit.

y |). When
superimposed, the different asymmetries of different ky-channels
imprint a global ϕ0-distortion on the total Josephson CPR and result
in the Josephson SDE. The junction is overall in the 0-like state.

and Fermi energy as stated in the nonmagnetic part); for a
typical link thickness of about d = 100 nm [10–12,16], this
gives feasible values of the exchange splitting below 1 meV
that could be experimentally realized either through proximity
to a strong ferromagnetic top layer or through the Zeeman
splitting induced by magnetic fields of a few hundred mT
(depending on the g-factor of the 2DEG).

The numerically obtained bound-state spectral character-
istics can be qualitatively understood in a similar way as in
the nonmagnetic case, accounting for the additional exchange-
generated potential 〈ĤXC〉[ky] that now needs to be considered
along with Z[ky] and 〈ĤSOC〉[ky]. In what follows, we sum-
marize the main findings of our numerical analyses. The
exchange term expels the E±

2 -states even stronger from the
center of the superconducting gap than in the nonmagnetic
case, indicating that the E±

2 -branches play again only a very
minor role for the total Josephson current. Contrary, the
E±

1 -states remain well inside the superconducting gap, carry
most of the Josephson current, and can—at certain exchange
splittings λXC that depend on ky—even cross zero energy;
see Fig. 3. Computing the individual CPRs associated with
the E±

1 -states of the distinct ky-channels (see the insets in
Fig. 3), we deduce that these zero-energy crossings of the
E±

1 -states signify the exchange splittings at which the CPRs
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of these ky-channels experience 0–π transitions [52–56] and
their current contributions reverse their sign (at a fixed phase
difference ϕ). As the total Josephson current is neverthe-
less still the superposition of many independent transverse
channels, 0–π transitions in single ky-channels do usually not
yet facilitate a global 0–π transition of the whole 2DEG-based
junction [87]. An experimental study of the transition regime
in two-dimensional junctions could hence become quite chal-
lenging, as one would need to individually address transport
through single ky-channels to detect the 0–π transitions.

Zero-energy (bound) states, accompanied by changes of
the particle-hole, spatial, and spin contents [64] of the ground-
state wave function, were already proposed to be indicative
of phase transitions back in the 1970s [88]. We applied this
concept to one-dimensional S/F/S Josephson junctions in our
earlier work [64], and showed that this phase transition is
indeed the current-reversing 0–π transition. [89]. Compared
to the one-dimensional case, it is worth mentioning that the
strength of λXC that is necessary to trigger the zero-energy
crossings of the Andreev bound states in the 2DEG-based
junction additionally depends on ky. Specifically, while the
ky = 0-channel requires the largest exchange, the channels
with elevated |ky| already allow for zero-energy Andreev
states at (much) smaller exchange. If the Rashba SOC is
weak compared to the exchange, the bound-state energies
of one-dimensional S/F/S junctions are well describable by
an analytical formula that is at full length stated as Eq. (2)
in Ref. [64]. To generalize this formula to the present two-
dimensional context, one needs to resubstitute Z (λSC in
Ref. [64]) and λXC (λMA in Ref. [64]) for each individual
ky-channel as

Z[ky] = Z√
1 − k2

y /k2
F

and λXC[ky] = λXC√
1 − k2

y /k2
F

. (22)

As we briefly mentioned in the nonmagnetic case, this resub-
stitution effectively accounts for the lowered x̂-projections of
the electron velocities due to their nonzero transverse mo-
menta in channels with |ky| �= 0. Thus, the Andreev bound
states forming in the two-dimensional magnetic junction (and
at weak SOC) behave even for |ky| �= 0 still similarly to their
one-dimensional counterparts, but with the “renormalized”
channel-specific Z[ky] and λXC[ky] barrier and exchange pa-
rameters, respectively. This observation has a profound impact
since even an exchange λXC that is too weak to induce 0–
π transitions in the one-dimensional case can now cause a
“renormalized” λXC[ky] at large enough |ky| that is sufficient
to trigger such transitions—at least in the individual CPRs
of these ky-channels; see, e.g., our numerical calculations in
Fig. 3.

Analogously to the nonmagnetic scenario, the Andreev-
bound-state spectra for |ky| > |kcrit.

y | support only current-
carrying E±

1 -in-gap states, while their E±
2 -counterparts are

pinned to the gap edges ±�0 and again flat bands (with
respect to ϕ) not contributing to the Josephson current. Re-
markably, for |ky| > |kcrit.

y | (≈0.68kF at λSOC = 0.4), (i) the
E±

1 -bands manifestly lack the symmetry with respect to a
reversal of ϕ and (ii) the CPRs, associated with the E±

1 -bound
states, acquire clearly observable and for the individual ky-
channels different in magnitude ϕ0-shifts (whose amplitudes

continuously increase with increasing |ky|), which—after av-
eraging over all channels’ CPRs [16] [90]—results in a
nonzero global ϕ0-shift and distortion of the total CPR with
different magnitudes of the positive and negative critical
Josephson currents, and thereby in the Josephson SDE; see
Figs. 3 and 4(c).

Why do we not observe ϕ0-shifts at |ky| < |kcrit.
y |? As

we explained earlier, it is the simultaneous breaking of
space-inversion and time-reversal symmetries that causes the
anomalous ϕ0 (and finally also the SDE), suggesting that
actually all transverse channels should develop finite ϕ0-
phase shifts in their CPRs, independent of their respective
|ky|. However, this would require that the magnetic link had
a finite thickness (like in real junctions) such that solv-
ing the Bogoliubov–de Gennes equation yields Andreev-state
wave functions that inherently break time-reversal symmetry
through the exchange-split wave vectors inside the link. To
provide an analytical study, which allows us to relate the SDE
characteristics to spectral properties of Andreev bound states,
we reduced the magnetic link to the delta-like form, where
the breakdown of the time-reversal symmetry enters through
the interfacial boundary conditions [see Eq. (11)]. The time-
reversal-symmetry breaking is therefore not explicitly seen for
all ky-modes, but only if |ky| exceeds a certain threshold; this
turns out to be equivalent to |kcrit.

y | defined by Eq. (21). Then,
the spin-up and spin-down components of the Andreev-state
wave functions 
(x, y) [recall Eq. (4)] acquire different spec-
tral characters—the first is described by an evanescent wave,
as the spin-up wave vector becomes fully imaginary, while the
second still corresponds to propagating solutions—maximally
breaking the spin (time-reversal) symmetry of the Andreev
states and leading to sizable ϕ0.

The existence of the threshold |kcrit.
y | and formation of ϕ0

only in channels with |ky| � |kcrit.
y | are hence specific to the ap-

plied delta-like model, and the model might initially seem to
be quite a rigid approximation of real junctions. Nevertheless,
a detailed analysis of the results extracted from the delta-like
model and comparison with the experimental data of Al-gated
InAs 2DEG-based Josephson junctions [16] in the short-
junction limit [10,33,91], in which the thickness of the link
is small compared to the superconducting coherence length,
showed that our approach is valid in this regime to capture
the fundamental SDE physics. The ϕ0-shifts are, in general,
underestimated in our model as the contributions of the |ky| <

|kcrit.
y |-channels are not included. This could be compensated

through a rescaling of the phenomenological magnetic-
exchange parameter λXC, as we demonstrate in Ref. [16].

So far, we displayed the Andreev bound states and their
contributions to the Josephson current for a discrete set of
transverse momenta |ky|—namely, the 0.05, 0.20, 0.40, 0.60,
0.80, and 1 multiples of the Fermi wave vector kF . To con-
vincingly show all the trends on a finer scale, Figs. 4(a)
and 4(b) illustrate the Andreev-bound-state energies and their
Josephson CPRs as color plots with a dense sampling of the
ϕ- and ky-ranges; all other parameters are the same as before
and, for simplicity, we just show the transport-dominating
E±

1 -states. The numerical results fully confirm our previous
conclusions, now at generic |ky|: (i) the zero-energy crossings
of the E±

1 -states coincide with 0–π reversals of the Josephson
current of the corresponding ky-channels and (ii) the strong
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FIG. 4. (a) Andreev-bound-state energies and (b) individual
Josephson CPRs of the transport-dominating E+

1 -Andreev branch,
displayed as color maps with a dense sampling of ϕ and ky; the
junction parameters are Z = 0.5, λSOC = 0.4, and λXC = 1.5. When
the transverse momentum |ky| exceeds its critical |kcrit.

y | [defined
by Eq. (21)], both quantities show a clear asymmetry in ϕ—acting
as a precursor of strongly distorted total Josephson CPRs and the
resulting Josephson SDE. (c) Total Josephson CPRs, summed over
all transverse ky-channels, for the indicated values of the magnetic
exchange λXC; the remaining junction parameters are the same as
in panels (a) and (b). Apart from the pronounced Josephson SDE—
i.e., clearly different magnitudes of positive and negative critical
currents—the junction undergoes a 0–π -like transition when raising
λXC from 1.5 to 2.2.
asymmetry with respect to ϕ = 0, coming along with pro-
nounced ϕ0-shifts, clearly develops for the bound states of the
channels with |ky| > |kcrit.

y |. As the total Josephson CPR of
the junction with given Z , λSOC, and λXC comes as a sum of

FIG. 5. Calculated Andreev-bound-state energies E±
1 (solid red

curves) and E±
2 (dashed blue curves) as functions of the supercon-

ducting phase difference ϕ for a strongly magnetic junction and
several transverse momenta ky; the junction parameters are Z = 0.5,
λSOC = 0.4, and λXC = 2.5. The insets illustrate the ky-resolved in-
dividual contributions of the states to the total Josephson CPR. The
junction is overall in the π -like state.

all its transverse channels, Eq. (19), the ϕ0-shifts developed in
the individual ky-channels give the total Josephson current a
pronounced anharmonic ϕ-dependence.

For the sake of completeness, and to better visualize the
aforementioned anharmonicity, we present the full CPRs of a
junction close to the 0–π transition, varying λXC in steps of
0.1 from 1.5 to 2.2, in Fig. 4(c). For λXC � 1.7, the junction
is in a 0-like state (see Fig. 3 for the spectral characteristics),
while it is already in a π -like state at λXC ≈ 2.0 (see Fig. 5
for the spectral characteristics); the interim exchange range
between 1.7 and 2.0 spans the transition region in which the
state of the junction is usually a mixture of both and hard to
uniquely discern. The reason to term the states 0- or π -like
is as follows [43,46]. Given the CPR IJ (ϕ), we compute the
Josephson energy EJ (ϕ) ∝ ∫ ϕ

0 dφ IJ (φ) as a function of the
superconducting phase difference ϕ and look for the position
of its global minimum to determine the energetically favored
junction ground state. The minima are neither strictly at 0 nor
at π phase difference, but close to these values motivating to
call the corresponding junction states 0-like in the first and
π -like in the second case. For the same reason, the phase
jump of the ground-state wave function when the junction
undergoes the 0–π transition is also not strictly π , but instead
rather a generic |�ϕGS| �= π , and we likewise term the tran-
sition 0–π -like. The �ϕGS-phase jumps during the 0–π -like
transitions are illustrated for two different SOCs in the plot of
the global ϕ0-shifts of the total Josephson CPRs versus λXC

that we provide in Fig. 6.
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FIG. 6. Anomalous (global) ϕ0-phase shifts extracted from
the total Josephson CPRs IJ (ϕ) as functions of the magnetic
exchange λXC and for two different Rashba-SOC parameters λSOC,
keeping Z = 0.5 constant. The jumps in ϕ0, indicated as �ϕGS,
correspond to the jumps of the ground-state phases that the junction
experiences when undergoing 0–π -like transitions [the blue curve
refers to the 0–π -like transition displayed in Fig. 4(c)].

C. Characterization of the Josephson SDE

To further explore the Josephson SDE, we compute
the Josephson CPRs at different values of magnetic
exchange λXC, and extract the corresponding positive and
negative critical currents I+

c and I−
c —serving as the global

maxima and minima of IJ (ϕ) along the interval ϕ ∈ [−π ; π ].
The results are illustrated in Figs. 7(a) and 7(b) for the Rashba
SOCs λSOC = 0.4 and λSOC = 1.6, respectively.

In the nonmagnetic junction (i.e., when λXC = 0), the total
CPR IJ (ϕ) is always strictly point-symmetric with respect to
zero phase (recall Fig. 2), and both the positive and negative
critical currents I+

c and I−
c are equal in magnitude. Increasing

the magnetic exchange λXC distorts IJ (ϕ), as we explained
in detail in Sec. III B, and produces a noticeable difference
between I+

c and |I−
c |, i.e., the Josephson SDE. Enlarging

λXC > 0 suppresses |I−
c | stronger than I+

c , particularly at an
elevated value of SOC, and vice versa for λXC < 0. Scrutiniz-
ing Figs. 7(a) and 7(b) in greater detail, we observe that the
|I−

c |-curves develop local cusps, beyond which the amplitudes
of |I−

c | decrease slower with further increasing λXC, at λXC ≈
1.5 for λSOC = 0.4 and λXC ≈ 1.8 for λSOC = 1.6. To unravel
the physical meaning of these cusps, the insets of Fig. 7
illustrate the λXC-dependence of the critical superconducting
phase differences ϕ+

c and ϕ−
c , which are the phase differences

corresponding to the critical currents I+
c and I−

c . The cusps in
|I−

c | indeed correspond to those λXC at which the critical phase
ϕ−

c jumps from negative to positive values, and indicate hence
the “first act” of the aforementioned 0–π -like transition.

The “second act”, such that the junction has undergone
the full 0–π -like transition, requires that accordingly ϕ+

c
jumps from positive to negative values, which is indicated
by the cusps that occur in the I+

c -curves. Interestingly, while
both “acts” of the 0–π -like transition happen for weak SOC
(nearly) at the same magnetic exchange and might be well
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FIG. 7. Polarity dependence of the critical Josephson currents I+
c

and |I−
c |, displayed as functions of the magnetic exchange λXC; the

other junction parameters are (a) Z = 0.5 and λSOC = 0.4, as well as
(b) Z = 0.5 and λSOC = 1.6. The insets show the modulations of the
critical superconducting phase differences ϕ+

c and ϕ−
c —defined by

I+
c = IJ (ϕ+

c ) and I−
c = IJ (ϕ−

c )—with λXC. Jumps in ϕ±
c correspond to

cusps (smoothness fractures) in I+
c and |I−

c |, and indicate the “first”
and “second acts” of the 0–π -like transition, as described in the text.

observable in experiments, strong λSOC requires a much larger
λXC to drive the 0–π -like transition. This could make it
experimentally more challenging to study 0–π -like transi-
tions in 2DEGs with extraordinarily strong SOC or small
Fermi energy. The physical reason is the rather intricate in-
terplay between the “quasi-sinusoidal” and ϕ0-shifted CPRs
of transverse channels with |ky| smaller and larger than |kcrit.

y |,
respectively; see discussion in Sec. III B and Fig. 3.

The figure of merit distinguishing 0-like junction states
from their π -like counterparts [see, e.g., Fig. 4(c)] is the
amount of the area enclosed by the total IJ (ϕ)-curve and the
positive ϕ-axis, i.e., A = ∫ π

0 dϕ IJ (ϕ). Let us focus on the
separate contributions to that area coming from the chan-
nels with |ky| smaller and larger than |kcrit.

y |, respectively, for
junctions in the 0-like state (λSOC = 0.4, λXC = 1.5), Fig. 3,
and π -like state (λSOC = 0.4, λXC = 2.5), Fig. 5. Looking
at the channels’ resolved “quasi-sinusoidal” CPRs for |ky| <

|kcrit.
y | ≈ 0.68kF , we observe that their contributions to A are

negative in both studied cases (and become even more nega-
tive when λXC is enhanced from 1.5 to 2.5), i.e., their CPRs
always favor negative critical Josephson currents at positive
phase differences. Contrarily, the behavior of the ϕ0-shifted
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CPRs of the |ky| > |kcrit.
y | ≈ 0.68kF -channels is different at

λXC = 1.5 and λXC = 2.5. In the first case, Fig. 3, they
contribute to A positively, i.e., they counteract the “quasi-
sinusoidal” modes and hence favor positive critical Joseph-
son currents at positive phase differences. In total, these
positive current contributions dominate over the “quasi-
sinusoidal” modes, and the junction is overall still in the
0-like state. For λXC = 2.5, Fig. 5, the ϕ0-shifted modes
lower their positive contributions to A [effectively their
anomalous ϕ0-phases are shifted and the nodes of their
individual IJ (ϕ)-curves move closer to ϕ = π/2] and the
junction switches to the π -like state. Knobs to control
the 0–π -like transitions are the SOC strength, which sets
the magnitude of |kcrit.

y | according to Eq. (21) and hence
the weights of “quasi-sinusoidal” and ϕ0-shifted modes,
and the magnetic exchange strength that controls the ϕ0-shifts
of the |ky| > |kcrit.

y |-channels.
To quantify the efficiency of the SDE of the 2DEG-based

magnetic Josephson junctions, we evaluate

ηc = �Ic

Ic(0)
= I+

c − |I−
c |

Ic(0)
, (23)

which measures the difference between the magnitudes of
positive and negative critical currents at generic exchange
λXC relative to the critical current Ic(0) of the nonmagnetic
junction. Figure 8(a) shows ηc as a function of λXC and for
various SOC strengths λSOC. It is remarkable that—despite the
minimality of our model—the calculated diode efficiencies
convincingly reproduce all experimentally determined char-
acteristics reported for Al-gated InAs 2DEG-based Josephson
junctions in Refs. [11,12,16]: (i) a weak “kink” (soft steep-
ness) at small λXC, (ii) followed by a nearly linear increase
that reaches (iii) a maximum (in terms of a sharp peak at
realistic SOC), and (iv) a down-turn (that can even be accom-
panied by a sign reversal at large-enough λSOC), with a final
fading at large λXC.

Based on our critical-current analyses, we can describe
these features in terms of their physical origin. The sharp
peaks—feature (iii)—stem from the cusps experienced by
|I−

c |, which play the crucial role in the “first act” of the 0–
π -like transition; since |I−

c | drops into a local minimum, ηc

[see Eq. (23)] maximizes. Analogously, the diode efficiency
gets down-turned—feature (iv)—around the I+

c -cusps, which
indicate the “second act” of the 0–π -like transition. At large-
enough SOC, ηc even reverses its sign when further increasing
λXC. As explained in detail in a recent work [33], these
sign changes are not necessarily a signature of the 0–π -like
transition, which agrees well with our numerical results. For
example, at λSOC = 0.4, ηc does not experience a (visible)
sign change, whereas the CPRs shown in Fig. 4(c) undoubt-
edly reflect a 0–π -like transition. Instead, the ηc-sign reversals
were attributed to an asymmetry in the I±

c –λXC relations, i.e.,
|I±

c (λXC)| �= |I±
c (−λXC)| [also visible in Figs. 7(a) and 7(b)],

in Ref. [33], serving as another fingerprint of the simultaneous
breakdown of space-inversion and time-reversal symmetries.
Inspecting Figs. 7(a) and 7(b), the maximal critical-current
amplitudes as functions of λXC occur at finite |λ∗

XC|. Con-
trarily, if SOC were absent, the critical currents |I±

c | would
always be symmetric with respect to the sign of λXC with

FIG. 8. (a) Calculated Josephson SDE efficiencies ηc [defined by
Eq. (23)] as functions of the magnetic exchange λXC and for indicated
values of Rashba λSOC; the other junction parameters are the same as
in Fig. 7. (b) Same as in (a), but as color map with a denser sampling
of λSOC and λXC. The cuts, indicated by the dashed colored lines,
correspond to the curves displayed in (a).

their maxima at λXC = 0. As the shift |λ∗
XC| increases with

the SOC strength α, the I±
c –λXC relations become more asym-

metric with stronger SOC. The authors of Ref. [33] predicted
a nearly linear dependence of |λ∗

XC| on α, which can be used to
determine the SOC strength from experimental measurements
of the critical currents. From Figs. 7(a) and 7(b), we see that
the I+

c - and |I−
c |-curves may eventually cross due to these

asymmetric I±
c –λXC relations, what indicates the sign reversal

of ηc.
The weak “kink” and the afterwards nearly linear increase

of the diode efficiency at smaller λXC [features (i) and (ii)] are
again related to the qualitatively different CPRs of the individ-
ual ky-channels. The slope of the “kink” rises with increasing
λSOC; see Fig. 8(a). As explained before, larger λSOC means
lower |kcrit.

y | and the contributions of the ϕ0-shifted modes
become more dominant. At small magnetic exchange, these
ϕ0-shifts imprint a nearly linear λXC-dependence on ηc [31].

To cover the whole range of junction parameters, Fig. 8(b)
shows the diode efficiency as a function of both the SOC and
magnetic exchange strengths. The results confirm our pre-
vious observations, covering the maximal ηc-peaks of about
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FIG. 9. Polarity dependence of the critical Josephson currents I+
c

and |I−
c |, displayed as functions of the magnetic exchange λXC and

for λSOC = 0.4; the barrier Z-parameters are (a) Z = 1 and (b) Z = 2.
The shift λ∗

XC of the critical-current maxima strongly depends on
the junction transparency through Z . (c) Calculated Josephson SDE
efficiencies ηc [defined by Eq. (23)] as functions of the magnetic
exchange λXC for λSOC = 0.4 and indicated Z-values of the tunnel
barrier.

30 % diode efficiency and the (possible) sign change of ηc

at elevated SOC. Apart from the good qualitative agreement,
also the order of magnitude of the Josephson SDE extracted
from our theoretical model compares reasonably well with the
experimental values (about 20 %) measured in Al-gated InAs
2DEG-based junctions [11,12,16].

Another knob to tune the Josephson SDE—except for the
SOC—is the Z-parameter of the delta-like tunnel barrier,

which is experimentally determined by the transparency of
the nonsuperconducting weak link. In all calculations dis-
cussed so far, we assumed a rather small value of Z =
0.5 to model the highly transparent junctions (transparency
τ = 1/[1 + (Z/2)2] ≈ 0.94) corresponding to recent experi-
ments [11,12,16]. However, Fig. 9(c) suggests that it might
be worth to focus on less-transparent junctions in future ex-
periments, as some of the most striking SDE features—i.e.,
the sharp ηc-peaks and, more interestingly, the SDE sign
reversals—appear then in a more prominent way. As ex-
plained above, the sign reversals of ηc are related to the
asymmetric |λ∗

XC|-shift of the critical-current maxima. Our
calculations shown in Figs. 9(a) and 9(b) suggest that |λ∗

XC|
does not only depend on the SOC strength α as explored
in Ref. [33], but even more strongly on the barrier param-
eter Z . Larger Z (reduced interfacial transparency) results
in a greatly enhanced critical-current asymmetry and more
clearly apparent sign changes of ηc. From that viewpoint, one
reason that these sign changes were hardly discernible in the
experiment [11,12,16] might be that the junction transparency
was even larger than the theoretically assumed τ ≈ 0.94.

IV. CONCLUSION

To summarize, we formulated a minimal theoretical
model capturing the spectral—Andreev bound states—
and transport—Josephson current—characteristics of 2DEG-
based ballistic Josephson junctions with ultrathin ferromag-
netic weak links. Investigating a wide range of realistic
junction parameters, we analyzed the impact of magnetic
exchange, SOC, and junction transparency on the underly-
ing Josephson CPRs—scrutinizing their distortion, anomalous
ϕ0-phase shift, Josephson SDE, and 0–π -like transitions. We
quantified the diode effect in terms of the SDE efficiency ηc

that can reach values beyond 30 %, and demonstrated that
ηc depends on the magnetic exchange λXC in a unique way,
which agrees reasonably well with recent experiments. Our
model allows to unveil current-reversing 0–π -like transitions
or extract the magnitude of the SOC from experimental mea-
surements of ηc. Finally, we showed that the SDE can be
even further enhanced through reducing the transparency of
the weak link. This might open a promising path for future
experimental works provided that mostly junctions with high
transparency have been investigated so far.
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