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The phase transition of the classical Ising model on the Sierpiński carpet, which has the fractal dimension
log3 8 ≈ 1.8927, is studied by an adapted variant of the higher-order tensor renormalization group method.
The second-order phase transition is observed at the critical temperature Tc ≈ 1.478. Position dependence of
local functions is studied through impurity tensors inserted at different locations on the fractal lattice. The
critical exponent β associated with the local magnetization varies by two orders of magnitude, depending on
lattice locations, whereas Tc is not affected. Furthermore, we employ automatic differentiation to accurately
and efficiently compute the average spontaneous magnetization per site as a first derivative of free energy with
respect to the external field, yielding the global critical exponent of β ≈ 0.135.
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I. INTRODUCTION

The understanding of phase transitions and critical phe-
nomena plays an important role in condensed matter physics
[1]. Systems on regular lattices are the major target of such
studies, where elementary models exhibit translationally in-
variant states, which are scale invariant at criticality. It has
been known that critical behavior is controlled by global
properties, such as dimensionality and symmetries. This is the
concept of universality.

If we focus our attention on inhomogeneous lattices, there
is a group of fractal lattices which are self-similar and exhibit
noninteger Hausdorff dimensions. Geometrical details, such
as lacunarity and connectivity, could thus modify the proper-
ties of their critical phenomena. An important aspect of the
fractal lattices is the ramification, which is the smallest num-
ber of bonds that have to be cut to isolate an arbitrarily large
bounded subset surrounding a point. In early studies by Gefen
et al. [2–5], it was shown that the short-range classical spin
models on finitely ramified lattices exhibit no phase transition
at nonzero temperature.

The ferromagnetic Ising model on the fractal lattice that
corresponds to the Sierpiński carpet is one of the most ex-
tensively studied models with fractal lattice geometry. Monte
Carlo studies combined with the finite-size scaling method
have been performed [6–11], including the Monte Carlo renor-
malization group (RG) method [12]. The critical temperature
Tc is relatively well estimated within the narrow range 1.47 �
Tc � 1.50, where one of the most recent estimates is Tc =
1.495(5) by Bab et al. [11]. On the other hand, estimates of
critical exponents are still fluctuating, since it is rather hard to
collect sufficient numerical data for a precise finite-size scal-
ing analysis [13]. This is partially so because an elementary
lattice unit can contain too many sites, and there are a variety
of choices with respect to boundary conditions. This situation
persists even in a recent study by means of a path-counting

approach [14]. Yet, a number of issues remain unresolved con-
cerning uniformity of fractal systems in the thermodynamic
limit [10].

Recently, we showed that the higher-order tensor renor-
malization group (HOTRG) method [15] can be used as an
appropriate numerical tool for studies of certain types of frac-
tal systems [16–19]. The method is based on the real-space
RG and, therefore, the self-similar property of fractal lattices
can be treated in a natural manner. In this paper, we apply
the HOTRG method to the Ising model on the fractal lattice
that corresponds to the Sierpiński carpet. The method enables
us to estimate Tc from the temperature dependence of the
entanglement entropy s(T ). To check the uniformity in the
thermodynamic functions, we choose three distinct locations
on the lattice and calculate the local magnetization m(T )
and the bond energy u(T ). As trivially expected, these local
functions, m(T ) and u(T ), yield the identical Tc . Contrary to
the naive intuition, the critical exponent β, which is associ-
ated with the local magnetization m(T ) ∝ (Tc − T )β , strongly
depends on the location of measurement, and the estimated
exponent β can vary within two orders of magnitude with
respect to the three different locations on the fractal lattice,
where the local functions are calculated.

Recent research has demonstrated the effectiveness of au-
tomatic differentiation, a technique derived from deep learn-
ing, for accurately and efficiently computing higher-order
derivatives in tensor network algorithms [20,21]. Automatic
differentiation is based on a computation graph representing
the sequence of elementary computation steps in a directed
acyclic graph. This technology can propagate gradients with
machine precision throughout the computation process. In
tensor network algorithms, the implementation of numeri-
cally stable differentiation through linear algebra operations,
such as singular value decomposition (SVD), is crucial. By
applying automatic differentiation to our tensor network frac-
tal, we can accurately calculate the average spontaneous
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FIG. 1. Buildup process of a discrete analog of the Sierpiński
carpet. The circles represent the lattice points where the Ising spins
are located. The vertical and horizontal links denote the interacting
pairs. The first three units n = 1, 2, and 3 are shown. For each unit n,
we draw the corners C (n) by thick lines. We label the shaded regions
X (1) and X (2).

magnetization as the first derivative of the free energy with
respect to the external field. Unlike numerical derivatives, this
approach avoids introducing numerical errors due to finite step
sizes. Once the magnetization is computed, we can extract the
global critical exponent β.

The structure of this paper is as follows. In the next section,
we explain the recursive construction of the fractal lattice
and express the partition function of the system in terms
of contractions among tensors. In Sec. III, we introduce the
HOTRG method for the purpose of keeping the numerical cost
realistic. The way of measuring the local functions m(T ) and
u(T ) is explained. Numerical results are shown in Sec. IV.
Position dependence of the local functions is observed. In the
last section, we summarize the obtained results and discuss
the reason for the pathological behavior of the fractal system.

II. MODEL REPRESENTATION

There are several different types of discrete lattices that can
be identified as the Sierpiński carpet. Among them, we choose
the one constructed by the extension process shown in Fig. 1.
In the first step (n = 1), there are eight spins in the unit, as
shown on the left. The Ising spins σ = ±1 are represented
by the circles and the ferromagnetic nearest-neighbor interac-
tions are denoted by the horizontal and vertical lines. In the
second step (n = 2), the eight units are grouped to form a
new extended unit, as shown in the middle. Now, there are
64 spins on the 9×9 square lattice grid. On the right side,
we show the third step (n = 3). Generally, in the nth step,
an extended unit contains 8n spins on the 3n×3n lattice. The
Hausdorff dimension of this lattice is dH = log3 8 ≈ 1.8927
in the thermodynamic limit n → ∞.

In the series of the extended units we have thus constructed,
there is another type of recursive structure. In Fig. 1 at the
bottom of each unit, we have drawn a pyramidlike area by
the thick lines. One can identify four such pyramidlike areas
within each unit (enumerated by n), and each area can be
called the corner C(n). The corners are labeled C(1), C(2), and
C(3) from left to right therein. It should be noted that there are

FIG. 2. Structure of the initial corner matrix C (1)
i j in Eq. (3) and

the four-leg tensor X (1)
i jkl in Eq. (6).

only 2n−1 spin sites in common, where two adjacent corners
meet.

In the case n = 2 drawn in the middle, we shaded a region
on the left, which contains six sites, and label the region X (1).
Having observed the corner C(2) at the bottom, we found that
the corner consists of two rotated pieces of X (1) and four
pieces of C(1). In n = 3, we shaded a larger region X (2) (in
the similar manner as X (1)), which now contains 36 sites. We
can recognize that X (2) consists of seven pieces of X (1) and
the two pieces of C(1). We have thus identified the following
recursive relations, which build up the fractal:

(1) Each nth unit contains four pieces of C(n),
(2) C(n+1) contains two pieces of X (n) and four pieces of

C(n),
(3) X (n+1) contains seven pieces of X (n) and two pieces of

C(n).
The Hamiltonian of the Ising model, which is constructed

on the series of finite-size systems n = 1, 2, 3, . . ., has the
form

H (n) = −J
∑
〈ab〉

σaσb. (1)

The summation runs over all pairs of the nearest-neighbor
Ising spins, as shown by the circles in Fig. 1. The spin po-
sitions are labeled by the lattice indices a and b. They are
connected by the lines, which correspond to the ferromagnetic
interaction J > 0, and no external magnetic field is imposed.
First, we calculate the partition function (expressed in arbi-
trary step n)

Z (n) =
∑

exp

[
− H (n)

kBT

]
(2)

as a function of temperature T , where the summation is taken
over all spin configurations and where kB denotes the Boltz-
mann constant. At initial step n = 1, we define the corner
matrix

C(1)
i j =

∑
ξ=±1

exp[Kξ (σa + σb)], (3)

where K = J/kBT , and the matrix indices i = (σa + 1)/2 and
j = (σb + 1)/2 take the value either 0 or 1. The structure on
the right-hand side is graphically shown in Fig. 2 (top), and the
summation taken over the spin ξ is denoted by the filled circle.
We have chosen the ordering of the indices i and j, which is
opposite if comparing C(1)

i j with the corresponding graph. The
partition function of the smallest unit (n = 1), which contains
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FIG. 3. Extension of the local matrix C (n) in Eq. (7) (on the left)
and the tensor X (n) in Eq. (8) (on the right).

eight spins, is then expressed as

Z (1) =
∑
i jkl

C(1)
i j C(1)

jk C(1)
kl C(1)

li , (4)

and can be abbreviated to Tr [C(1)]
4
. We will express Z (n) for

arbitrary n > 1 in the same trace form

Z (n) = Tr [C(n)]4 (5)

by means of the corner matrix C(n)
i j , where each one undergoes

extensions, as we define in the following.
Let us notice that the region X (1) appears from the step

n = 2. The Boltzmann weight corresponding to this region
X (1) can be expressed by the four-leg (fourth-order) tensor

X (1)
i jkl =

∑
ξη

exp[K (σaσb + σcσd + ξη)]

× exp[Kξ (σa + σd ) + Kη(σb + σc)], (6)

where the spin locations are depicted in Fig. 2 (bottom). We
have additionally introduced new indices k = (σc + 1)/2 and
l = (σd + 1)/2. Now we can mathematically represent the re-
cursive relations in terms of contractions among the matrices
C(n) and tensors X (n). Figure 3 shows the graphical representa-
tion of the extension processes. Taking the contraction among
the two tensors X (n) and the four matrices C(n), as shown
in Fig. 3 (left), we obtain the extended corner matrix C(n+1)

through the corresponding formula

C(n+1)
i j = C(n+1)

(i1i2 )( j1 j2 )

=
∑

abcde f

C(n)
a j2

X (n)
abc j1

C(n)
f c C(n)

db X (n)
dei1 f C

(n)
i2e , (7)

where the new indices i and j, respectively, represent the
grouped indices (i1i2) and ( j1 j2). Apparently, the diagram
in Fig. 3 (left) is more convenient than Eq. (7) for the bet-
ter understanding of the contraction geometry. This relation
can be easily checked for the case n = 1 after comparing
Figs. 1–3.

Similarly, the extension process from X (n) to X (n+1) shown
in Fig. 3 (right) can be expressed by the formula

X (n+1)
i jkl = X (n+1)

(i1i2 )( j1 j2 )(k1k2 )(l1l2 )

=
∑
abcde f
ghprqs

X (n)
abl1 pX (n)

bck2l2
X (n)

cdqk1
X (n)

f gda

× X (n)
e f ri1

X (n)
gh j1sX

(n)
i2 j2heC

(n)
r p C(n)

sq , (8)

where we have again abbreviated the grouped indices to i =
(i1i2), j = ( j1 j2), k = (k1k2), and l = (l1l2). This relation can
be checked for the case n = 1 by comparing the area X (1) and
X (2) in Fig. 1.

Through the iterative extension of the tensors, we can for-
mally obtain the corner matrix C(n)

i j for arbitrary n, and express
Z (n) by Eq. (5). The free energy per spin is then

f (n) = − 1

8n
kBT ln Z (n) (9)

since the nth unit contains 8n spins. This function converges
to a value f (∞) in the thermodynamic limit n → ∞, where
convergence with respect to n is rapid, and n = 35 is sufficient
in the numerical analyses. The specific heat per site can be
evaluated by taking the second derivative of the free energy

c f (T ) = −T ∂2

∂T 2 f (∞). Furthermore, the global spontaneous
magnetization m f can be evaluated as the first derivative of
the free energy f (∞) with respect to the external field h:

m f (T ) = − ∂ f (∞)

∂h

∣∣∣∣
h→0

. (10)

To avoid numerical errors due to the finite step as in the case
of the numerical derivative, we calculate the global magneti-
zation m f according to the Eq. (10) accurately and efficiently
using automatic differentiation applied to the tensor network
program for the partition function of the fractal lattice in our
study.

III. RENORMALIZATION GROUP TRANSFORMATION

The matrix dimension of C(n) is 2n−1 by definition. There-
fore, it is impossible to keep all the matrix elements faithfully
in numerical analysis, when n is large. The situation is more
severe for X (n), which has four indices. By means of the
HOTRG method [15], it is possible to reduce the tensor-leg
dimension, the degree of freedom, down to a realistic number.
The reduction process is performed by the RG transformation
U , which is created from the higher-order SVD [22] applied
to the extended tensor X (n+1)

i jkl .

Suppose that the tensor-leg dimension in X (n)
i jkl is D for each

index, i.e., i, j, k, l = 0, 1, . . . , D − 1. As we have shown in
Eq. (8), the dimension of the grouped index i = (i1i2) in
X (n+1)

(i1i2 )( j1 j2 )(k1k2 )(l1l2 ) is equal to D2. We reshape the four tensor
indices to form a rectangular matrix with the grouped index
(i1i2) and the remaining grouped index ( j1 j2k1k2l1l2) with the
dimension D6. Applying the SVD to the reshaped tensor, we
obtain

X (n+1)
(i1i2 )( j1 j2k1k2l1l2 ) =

∑
ξ

U(i1i2 ) ξ ωξ V( j1 j2k1k2l1l2 ) ξ , (11)

where U and V are generalized unitary, i.e., orthonormal,
matrices U T U = V T V = 1. We assume the decreasing or-
der for the singular values ωξ by convention. Keeping D
dominant degrees of freedom for the index ξ at most, we
regard the matrix U(i1i2 ) ξ as the RG transformation from (i1i2)
to the renormalized index ξ . For the purpose of clarifying
the relation between the original pair of indices (i1i2) and
the renormalized index ξ , we rename ξ to i and write the
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FIG. 4. The renormalization group transformations in Eq. (12)
(on the left) and Eq. (13) (on the right) applied, respectively, to
Eqs. (8) and (7) (cf. Fig. 3).

RG transformation as U(i1i2 ) i. In the same manner, we obtain
U( j1 j2 ) j , U(k1k2 ) k , and U(l1l2 ) l , where we have distinguished the
transformation matrices by their indices.

The RG transformation is then performed as

X (n+1)
i jkl ←

∑
i1 i2 j1 j2
k1k2 l1 l2

U(i1i2 ) i U( j1 j2 ) j U(k1k2 ) k U(l1l2 ) l

× X (n+1)
(i1i2 )( j1 j2 )(k1k2 )(l1l2 ), (12)

where the sum is taken over the indices on the connected lines
in Fig. 4 (left). The left arrow used in Eq. (12) represents the
replacement of the expanded tensor X (n+1)

(i1i2 )( j1 j2 )(k1k2 )(l1l2 ) for the

renormalized one X (n+1)
i jkl . Since the RG transformation matri-

ces U are obtained from SVD applied to X (n+1)
(i1i2 )( j1 j2 )(k1k2 )(l1l2 ),

there is no guarantee that the RG transformation can be
straightforwardly applied to C(n+1)

(i1i2 )( j1 j2 ), as we have defined in
Eq. (7). It has been confirmed that the transformation

C(n+1)
i j ←

∑
i1 i2
j1 j2

U(i1i2 ) i U( j1 j2 ) j C(n+1)
(i1i2 )( j1 j2 ) (13)

is of use in the actual numerical calculation. The correspond-
ing diagram is shown in Fig. 4 (right).

We add a remark on the choice of the transformation matrix
U . In a trial calculation, once we tried to create U from
the corner matrix C(n+1)

i j by both SVD and diagonalization.
However, we encountered numerical instabilities, in which the
singular values (or eigenvalues) decayed to zero too rapidly,
especially, when n was large. Thus, we always create U from
SVD that is applied to X (n+1)

i jkl only.
With the use of these RG transformations, it is possible

to repeat the extension processes in Eqs. (7) and (8), and to
obtain a good numerical estimate for Z (n) and f (n) in Eq. (9).
The actual numerical calculations in this paper were per-
formed by a slightly modified procedure, which we describe
in detail in the Appendix. We split X (n)

i jkl into two halves and
represent each part by a three-leg tensor. This computational
trick allowed us to increase the leg dimension up to D = 30
or even larger.

A. Impurity tensors

In the framework of the HOTRG method, thermodynamic
functions, such as the magnetization per site m(T ) and the
internal energy per bond u(T ), can be calculated from the
free energy per site f (∞). Alternatively, these functions are

FIG. 5. Three positions A (on inner boundary), B (on outer
boundary), and Y (in innermost position) chosen for the observation
of local functions. The lower half of the unit n = 4 is drawn only.

obtained by inserting impurity tensors (separately derived
from C(n) and X (n)) into the tensor network of the entire
system. Since the fractal lattice under consideration is inho-
mogeneous, these thermodynamic functions can depend on
the position they are placed. To check the dependence, we
choose three typical locations A, B, and Y , as shown in Fig. 5
on the fractal lattice.

As an example of such a single site function, let us consider
a tensor representation of the local magnetization. Looking at
the position of site A in Fig. 5, one finds that it is located on
the corner matrix C(1). Thus, the initial impurity tensor on that
location is expressed as

A(1)
i j =

∑
ξ=±1

ξ exp [K ξ (σi + σ j )], (14)

similar to Eq. (3). It is also easy to check that the initial
impurity tensor B(1), which is placed on a position different
from A, is expressed by the identical equation, so we have
A(1)

i j = B(1)
i j . Site Y lies inside the area X (1) and we define the

corresponding initial tensor for local magnetization as

Y (1)
i jkl =

∑
ξη

ξ + η

2
exp [K (σiσ j + σkσl + ξη)]

× exp [K ξ (σ j + σk ) + K η(σi + σl )], (15)

similarly to Eq. (6).
We can thus build up analogous extension processes of

tensors, each of which contains an impurity tensor we have
defined. The extension process of the impurity corner matrix
that contains A(1)

i j is then written as

A(n+1)
(i1i2 )( j1 j2 ) =

∑
abcde f

C(n)
a j2

X (n)
abc j1

A(n)
f c C(n)

db X (n)
dei1 f C

(n)
i2e , (16)

which is graphically shown in Fig. 6 (top left). Therein, the
RG transformation A(n+1)

(i1i2 )( j1 j2 ) → A(n+1)
i j is depicted by the

green lines with the open circles, which stand for U in accord
with Eq. (13). The impurity tensor placed around the site B
obeys the extension procedure

B(n+1)
(i1i2 )( j1 j2 ) =

∑
abcde f

C(n)
a j2

X (n)
abc j1

C(n)
f c B(n)

db X (n)
dei1 f C

(n)
i2e , (17)
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FIG. 6. Extension processes of the impurity tensor in Eq. (16)
(top left), Eq. (17) (top right), and Eq. (18) (bottom). The RG trans-
formations U are expressed by the external three green lines meeting
at the open circles.

as shown on the top right of Fig. 6 (top right). For the location
Y shown in Fig. 5, we take the contraction

Y (n+1)
(i1i2 )( j1 j2 )(k1k2 )(l1l2 ) =

∑
abcde f
ghprqs

X (n)
abl1 pX (n)

bck2l2
X (n)

cdqk1

× Y (n)
f gdaX (n)

e f ri1
X (n)

gh j1sX
(n)
i2 j2heC

(n)
r p C(n)

sq , (18)

which is depicted in Fig. 6 (bottom), where the graph is rotated
by the right angle for bookkeeping.

In the calculation of the local bond energy u(T ), the initial
tensors satisfy the equations

A(1)
i j = −J

2
(σi + σ j )

∑
ξ

ξ exp [Kξ (σi + σ j )], (19)

Y (1)
i jkl =

∑
ξη

−Jξη exp [K (σiσ j + σkσl + ξη)]

× exp [Kξ (σ j + σk ) + η(σi + σl )], (20)

recalling that B(1)
i j = A(1)

i j . Starting the extension processes
with these initial tensors, we can calculate the expectation
value of the bond energy around site A by means of the ratio

uA(T ) = lim
n→∞

Tr (A(n)[C(n)]3)

Tr ([C(n)]4)
. (21)

The convergence with respect to n is fast because of the frac-
tal geometry. It is straightforward to obtain the local energy
uB(T ) and uY(T ), as well as the local magnetization mA(T ),
mB(T ), and mY(T ) in the same manner.

IV. NUMERICAL RESULTS

For simplicity, we use the temperature scale with kB = 1
and fix the ferromagnetic interaction strength to J = 1. All
the shown data are obtained after taking a sufficiently large
number of system extensions, provided that the convergence
with respect to n has been reached. The degrees of freedom
D for each leg dimension is D = 28 at most. Apart from the
critical (phase transition) region, where D needs to be the
largest, we used D = 18, which sufficed to obtain the precise
and converged data we have used for drawing all the graphs.

FIG. 7. The entanglement entropy s(T ) in Eq. (22).

An analogous kind of the entanglement entropy s(T ) can
be calculated by the HOTRG method. After applying SVD to
the extended tensor, s(T ) can be naturally obtained from the
singular values ωξ in Eq. (11) through the formula

s(T ) = −
∑

ξ

ω2
ξ

�
ln

ω2
ξ

�
, (22)

where � = ∑
ξ ω2

ξ normalizes the probability. The entangle-
ment entropy s(T ) always exhibits stable convergence with
respect to n. Figure 7 shows the temperature dependence of
s(T ), which is obtained with D = 18. There is a sharp peak at
the critical temperature Tc , which can be roughly determined
as 1.48 from the data shown.

Taking the numerical derivative with respect to T for
the calculated local energies uA(T ), uB(T ), and uY(T ), re-
spectively, we obtain the specific heats cA(T ), cB(T ), and
cY(T ), as shown Fig. 8. We observe a sharp peak in cY(T )
at Tc , whereas there is only a rounded maximum in cA(T )
and cB(T ), and their peak positions do not coincide with Tc

FIG. 8. Specific heats cA(T ), cB(T ), cY (T ), and c f (T ). The inset
shows the derivative of the specific heat with respect to temperature
∂T c.
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FIG. 9. The local magnetization mY(T ), mA(T ), and mB(T ).

associated with position Y . The specific heat per site c f (T )
defined in Sec. II as well as cA(T ) and cB(T ) demonstrate a
weak singularity at Tc . This fact can be confirmed by taking
their derivatives with respect to T , i.e., ∂c

∂T , which leads to
the identical singularity at Tc , as shown in the inset of Fig. 8.
The result clearly manifests that the critical behavior strongly
depends on the location, where the measurements of the bond
energy are carried out.

Figure 9 shows the local magnetizations mA(T ), mB(T ),
and mY(T ) with respect to temperature T , under the condition
that D = 18. They fall to zero simultaneously at the identi-
cal Tc , while the critical exponent β in m(T ) ∝ (Tc − T )β is
significantly different for each case. From the plotted mA(T ),
we obtain β ≈ 0.52, and from mB(T ) we obtain β ≈ 0.78.
In both cases, we use the rough estimate Tc ≈ 1.478, and
the data in the range |Tc − T | < 0.015 are considered for
numerical fitting. Since the variation in mY(T ) is too rapid
to capture β under the condition D = 18, we increase the
tensor-leg freedom up to D = 30. As can be seen in Fig. 10,
both critical temperature Tc and exponent β obtained from
the local magnetization mY(T ) appear to be well converged
when D � 28. Figure 11 shows mY(T ) zoomed-in around

FIG. 10. Critical temperature Tc (black circles) and critical expo-
nent β (red squares) with respect to the bond dimension D obtained
from the local magnetization mY(T ).

FIG. 11. Detailed view of mY(T ) when D = 30. Inset: The
power-law behavior below Tc = 1.47829 plotted with the exponent
β = 0.0044(4).

T ∼ 1.478. It should be noted that a small numerical error is
strongly amplified in the temperature region |T − Tc | � 10−5.
Therefore, the data points in this narrow region were excluded
from the fitting analysis. Then, we obtain Tc ≈ 1.47829. The
estimated critical exponent β = 0.0044(4) is roughly two
orders of magnitude smaller than β obtained from mA(T )
and mB(T ). In a similar manner, as we have observed for
the specific heat, the critical behavior of the model strongly
depends on the location of the impurity tensors A, B, and Y on
the Sierpiński carpet.

The global spontaneous magnetization m f calculated
according to Eq. (10) using automatic differentiation is pre-
sented in Fig. 12. For D = 18, the fitting of m f (T ) in the
region T � Tc yields Tc ≈ 1.478 and β ≈ 0.135. The relative
difference between D = 16 and D = 18 in the estimate of β

is around 0.1%. The linear dependence (dashed lines) of mβ−1

f
below Tc is shown in the inset of Fig. 12.

FIG. 12. The global magnetization mf (T ) when D = 16 and
D = 18. Inset: The power-law behavior below Tc .
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V. CONCLUSIONS AND DISCUSSIONS

We have investigated the phase transition of the ferromag-
netic Ising model on the Sierpiński carpet. The numerical
procedures in the HOTRG method are modified, so they fit the
recursive structure in the fractal lattice. We have confirmed
the presence of the second-order phase transition, which is
located around Tc ≈ 1.478, in accordance with the previous
studies [6–11]. Notably, the HOTRG method used in this
study achieved numerical convergence of physical observ-
ables with k ∼ 35 iterative extensions (generations) of the
system, which is significantly higher than the maximum value
of k � 8 reached by Monte Carlo studies. This demonstrates
the effectiveness of the HOTRG method for studying phase
transitions on fractal lattices. Moreover, the global behavior
of the entire system captured by the free energy per site f (∞)

exhibits the presence of a very weak singularity at Tc , as we
observed in Ref. [16].

What is characteristic of this fractal lattice is the position
dependence in the local magnetization m(T ) and local energy
u(T ). For example, we find that the critical exponent β differs
by a couple of orders of magnitude, which corresponds to
the fact that the measured magnetization depends on position,
where the impurity tensor is placed on the fractal lattice. A key
feature appears in the local energy uY(T ), where we deduce a
sharp peak in its temperature derivative, cY(T ), contrary to the
smooth behavior in c f (T ), being the averaged specific heat.
Intuitively, such a position dependence would be explained by
the density of sites around the pinpointed location. Around
site Y, the spins are interconnected more densely than those
around boundary sites A and B in Fig. 5. One might find
a similarity with the critical behavior on the Bethe lattice
[23,24], where the singular behavior is only visible deep in-
side the system, whereas the free energy is represented by an
analytic function of T for the entire lattice. Lastly, let us also
mention that the position dependence of the critical exponents
we observed in this study is analogous to the surface critical
behavior captured by boundary tensor network methods in
Refs. [25,26].

Finally, we leveraged automatic differentiation to compute
the global spontaneous magnetization m f (T ), which repre-
sents the average magnetization over all site locations. This
approach allowed us to overcome the challenges associated
with averaging impurities over all site locations on the fractal
lattice. Our analysis revealed that the associated global critical
exponent β ≈ 0.135, which is intermediate between the local
exponents associated with mA (β ≈ 0.52) and mB (β ≈ 0.78)
on the one hand and mY (β ≈ 0.004) on the other hand,
but much closer to the former. Notably, the global critical
exponent we report in this paper is consistent with estimates
from previous Monte Carlo studies, as reported in the liter-
ature [6–8,10–12]. Our findings have important implications
for understanding the critical behavior of magnetic systems
on fractal lattices and could guide future experimental and
theoretical investigations.

The current study can be extended to other fractal lattices,
e.g., variants of the Sierpiński carpet or a fractal lattice we had
already studied earlier [16], where the positional dependence
of the impurities has not been examined yet. Another point to
consider is to investigate more variations of the locations on

the fractal lattice to analyze the mechanism of the nontrivial
position-dependent behavior we observed.
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APPENDIX A: EFFICIENT MODEL REPRESENTATION
AND RG TRANSFORMATION

Here, we define a computationally more efficient tensor
network representation introduced in the main text. This is
achieved by replacing the corner matrix C by its two halves
and reexpressing the fourth-order tensor X in terms of two
third-order tensors. Using this approach, the overall computa-
tional cost is reduced from O(D10) to O(D8) and the memory
cost is reduced from O(D8) to O(D6), where D is the bond
dimension cutoff.

1. Initialization

At initial step n = 1, we define left and right halves of the
corner matrix [cf. Eq. (3)],

C(1),+
i j = exp[K (σa + σb)] (A1)

and

C(1),−
i j = exp[K (σb + σa)], (A2)

respectively, where the matrix indices i = (σa + 1)/2 and
j = (σb + 1)/2 take the value either 0 or 1. Notice that the
(left half) C+ is indexed left to right whereas the (right half)
C− is indexed right to left, as seen in Fig. 13.

At the same time, we initialize the two halves (i.e., third-
order tensors) of the X region (i.e., fourth-order tensor) as
follows [cf. Eq. (6)]:

X (1),+
i jk = exp[K (σaσb + σbσc + σcσd + σdσa)], (A3)

and

X (1),−
i jk = exp[K (σdσc + σcσb + σbσa + σaσd )], (A4)

where k is a combined index obtained from c and d , i.e., k =
σc + 1 + (σd + 1)/2, and it takes four integer values (0 to 3).
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FIG. 13. Structure of the initial half-corner matrices C (1),+ and
C (1),− in Eqs. (A1)-(A2) and two 3-leg tensors X (1),+

i jk and X (1),−
i jk in

Eqs. (A3) and (A4).

Notice that X + is indexed clockwise, whereas X − is indexed
anticlockwise, see Fig. 13.

2. Extensions

The extended corner-matrix halves C(n+1),+ and C(n+1),−
are

C(n+1),+
i j = C(n+1),+

(i1i2 )( j1 j2 )

=
∑
abcde

X (n),+
i1ae X (n),−

cbe C(n),+
i2d C(n),+

a j2
C(n),+

b j1
C(n),−

cd (A5)

and

C(n+1),−
i j = C(n+1),−

(i1i2 )( j1 j2 )

=
∑
abcde

X (n),−
bce X (n),+

ai1e C(n),−
a j2

C(n),−
b j1

C(n),−
i2d C(n),+

cd , (A6)

respectively, where the new indices i and j, represent the
grouped indices (i1i2) and ( j1 j2), respectively, see lower row
of Fig. 14.

Similarly, the extension relations for X (n+1),+ and X (n+1),−
are

X (n+1),+
i jk = X (n+1),+

(i1i2 )( j1 j2 )(k1k2k3 )

=
∑
abcde f

gmn

X (n),+
ni1g X (n),+

i2 j2e X (n),+
j1m f

× X (n),−
dae X (n),−

ab f X (n),−
bck2

X (n),−
cdg C(n),+

nk3
C(n),−

mk1
, (A7)

X (n+1),−
i jk = X (n+1),−

(i1i2 )( j1 j2 )(k1k2k3 )

=
∑
abcde f

gmn

X (n),+
dae X (n),+

cdg X (n),+
bck2

X (n),+
ab f

× X (n),−
ni1g X (n),−

i2 j2e X (n),−
j1m f C(n),+

mk1
C(n),−

nk3
, (A8)

where we have abbreviated the grouped indices to i = (i1i2),
j = ( j1 j2), k = (k1k2), and l = (l1l2), see the upper row of
Fig. 14.

FIG. 14. The extension of the half-corner matrices C (n),+ (lower
left) and C (n),− (lower right) according to Eqs. (A5) and (A6), respec-
tively, and the tensors X (n+1),+ (upper left) and X (n+1),− (upper right)
according to Eqs. (A7) and (A8), respectively.

3. Mapping to the original model representation

The full corner matrix C(n) and the tensor X (n) can be
obtained at each step n of the iterative extension process in
a straightforward way:

C(n)
i j =

∑
k

C(n),+
jk C(n),−

ki (A9)

and

X (n)
i jkl =

∑
q

X (n),+
lkq X (n),−

i jq , (A10)

respectively. This relation is depicted in Fig. 15.

4. RG transformation

First, we reshape the extended tensor X (n+1),+
(i1i2 )( j1 j2 )(k1k2k3 ) into

a matrix X̃ (n+1),+
(i1i2 )( j1 j2k1k2k3 ). The projector U is calculated using

FIG. 15. Upper row: Mapping between the corner matrix C and
its halves C+ and C− in Eq. (A9). Lower row: Mapping the tensor X
and its halves X + and X − (lower row) in Eq. (A10).
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FIG. 16. The renormalization group transformations in
Eq. (A14) (lower left), Eq. (A15) (lower right), Eq. (A16) (upper
left), and Eq. (A17) (upper right).

the SVD applied to X̃ (n+1),+:

X̃ (n+1),+
(i1i2 )( j1 j2k1k2k3 ) =

D∑
ξ=1

U(i1i2 ) ξ ωξ V( j1 j2k1k2k3 ) ξ . (A11)

To truncate the degrees of freedom associated with the
grouped index k = (k1k2k3), we perform SVD on matrix

˜̃X (n+1),+
(k1k2k3 )(i1i2 j1 j2 ) = X (n+1),+

(i1i2 )( j1 j2 )(k1k2k3 ),

˜̃X (n+1),+
(k1k2k3 )(i1i2 j1 j2 ) =

K1∑
ξ=1

U ′
(k1k2k3 ) ξ ω′

ξ V ′
(i1i2 j1 j2 ) ξ , (A12)

where the sum corresponds to the largest K1 singular val-
ues. Lastly, we prepare a projector for the grouped index
j = ( j1 j2) in C̃(n+1),+

( j1 j2 )(i1i2 ) = C(n+1),+
(i1i2 )( j1 j2 ),

C̃(n+1),+
( j1 j2 )(i1i2 ) =

K2∑
ξ=1

U ′′
( j1 j2 ) ξ ω′′

ξ V ′′
(i1i2 ) ξ , (A13)

where the sum corresponds to the largest K2 singular values.
The RG transformation is then performed using the three

different projectors U , U ′, and U ′′ as follows (see Fig. 16):

C(n+1),+
i j ←

∑
i1i2 j1 j2

U(i1i2 ) i U ′′
( j1 j2 ) j C(n+1),+

(i1i2 )( j1 j2 ), (A14)

C(n+1),−
i j ←

∑
i1i2 j1 j2

U(i1i2 ) i U ′′
( j1 j2 ) j C(n+1),−

(i1i2 )( j1 j2 ), (A15)

X (n+1),+
i jk ←

∑
i1 i2 j1 j2
k1k2k3

U(i1i2 ) i U( j1 j2 ) j U ′
(k1k2k3 ) k

×X (n+1),+
(i1i2 )( j1 j2 )(k1k2k3 ), (A16)

X (n+1),−
i jk ←

∑
i1 i2 j1 j2
k1k2k3

U(i1i2 ) iU( j1 j2 ) j U ′
(k1k2k3 ) k

×X (n+1),−
(i1i2 )( j1 j2 )(k1k2k3 ). (A17)
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