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The quantum speed limit (QSL) of the Jaynes-Cummings model with detuning for arbitrary initial states is 
investigated. We mainly focus on the influences of the detuning, width of Lorentzian spectral density, and 
coherence of the initial state on the non-Markovian speedup evolution in an open system. It is found that 
even in the Markovian regime, increasing the detuning parameter leads to quantum speedup. Moreover, 
we reveal that the QSL has an inverse relation with the population of the initial excited state. Notably, we 
show that the QSL depends on the quantum coherence of the system’s initial state such that the maximal 
coherent state can saturate its bound.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

In the study of time evolution of quantum systems, the first 
question that comes to mind is how fast a quantum process 
evolves to an orthogonal state? Trying to find the answer of this 
question is the starting point to understand the concept of quan-
tum speed limit (QSL). Actually, the QSL is the maximum evolution 
speed of a quantum system. Knowing the QSL of the evolution of a 
quantum system is useful and has particular importance in various 
fields of quantum physics, such as quantum communication [1], 
quantum computation [2], and quantum metrology [3]. In fact, 
the existence of decoherence makes the attempt to estimate the 
evolution time of a quantum process to be of key importance in 
designing quantum control protocols. In order to design quantum 
control protocols in the implementation of quantum information 
tasks, estimating the evolution time of a quantum process is of 
key importance.

How to speedup the evolution of quantum systems is one of the 
fundamental problems and questions in quantum theory [4–9]. The 
shortest possible time for a quantum system to transition from an 
initial state to a final state separated by a predetermined distance 
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is known as the QSL time [10–19]. Based on theoretical and exper-
imental study models, QSL time has a wide range of operational 
applications in quantum computation and transportation [20–24]. 
Besides, the study of QSL time is of key importance in the devel-
opment of quantum information technology and quantum optimal 
theory [25–28]. The concept of QSL time has been also used in the 
study of quantum batteries [29–32].

The first definition for QSL time is provided for the case of 
closed quantum systems whose their time evolution is described 
by the unitary time evolution operator. In Ref. [33], Mandelstam 
and Tamm (MT) show that the minimal time required for a closed 
quantum system to transform from an initial state to an orthogo-
nal one is described by the following bound

τ ≥ π h̄

2�E
, (1)

where �E is the energy variance of the system with �E2 =
〈ψ |H2|ψ〉 − 〈ψ |H |ψ〉2 and H is the Hamiltonian of system. The 
bound in Eq. (1) is known as MT bound. In addition, Margolus and 
Levitin (ML) have obtained another bound based on the average 
energy as [34]

τ ≥ π h̄
, (2)
2E
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where E = 〈ψ |H |ψ〉 is mean energy. It is also assumed that the en-
ergy of the ground state E0 is zero. The bound in Eq. (2) is known 
as ML bound. By combining the MT and ML bound, a unified tight 
bound can be obtained for closed quantum systems as [35]

τ ≥ max{ π h̄

2�E
,
π h̄

2E
}. (3)

By using various metrics such as trace distance, Bures angle and 
relative purity, MT and ML bounds have been successfully gen-
eralized [36–41]. In addition, for both unitary and non-unitary 
evolutions, a tight bound for QSL time can be obtained by the dis-
tance between the Bloch vectors describing the state of the system 
[42,43]. The ratio between QSL time and the actual evolution time 
determines whether is it possible to speedup the dynamical evolu-
tion. If this ratio is equal to unity, then the QSL bound is saturated 
and there is no possibility of speeding up the dynamical evolu-
tion. If the ratio of the QSL time to actual evolution time is less 
than one, then the QSL bound is not saturated and there exist the 
potential for dynamical evolution speedup.

A real quantum system interacts with its surroundings and the 
environment disturbs the system as a huge resource of decoher-
ence and dispersion. The study of open quantum systems from var-
ious aspects has been the subject of many new researches in the 
field of quantum information in recent years due to their wide ap-
plication in quantum information protocols [44–46]. An attractive 
way of dealing with open quantum systems is through the flow 
of information between the system and its surroundings. From the 
insight of memory effects, the evolution of open quantum systems 
are divided into two categories: Markovian and non-Markovian. In-
deed, Markovian process is known as memory-less evolution. In 
Markovian process the information flow from system to environ-
ment monotonically. On the other hand, non-Markovian process is 
recognized as with memory process where the back-flow of in-
formation from the environment to the system will occur. In the 
non-Markovian process, the back-flow of information is associated 
with memory effects since the back-flow makes the future states 
of the system depend on its past states.

In Ref. [36], it is shown that the non-Markovian nature of 
the process speedup the quantum evolution. Actually, the non-
Markovian effects induce the unsaturated QSL bounds for open 
quantum dynamics. The mechanisms to speedup the quantum evo-
lution through the regulation of non-Markovianity have been stud-
ied both theoretically and experimentally [47–52]. Controlling and 
speeding up due to the non-Markovian feature of the quantum 
process is completely depend on the environmental parameters. 
Beside non-Markovian effects, other factors that cause the unsatu-
rated QSL bounds should also be considered [38,53].

In this work, the Jaynes-Cumming model with detuning will 
be considered. We will study the effects of non-Markovianity and 
detuning on QSL time. We first determine which environmen-
tal parameters with which values cause the non-Markovianity of 
quantum evolution, and then we study the effect of these parame-
ters on the QSL time. In this study, it is shown that in addition to 
the non-Markovian effects, the speed of quantum evolution can be 
increased by adjusting the detuning parameter, even in Markovian 
evolution. Moreover, we will consider the effects of detuning δ and 
the width of the Lorantzian spectral density λ on QSL time. No-
tably, we reveal that in the case of short reservoir correlation time, 
the non-Markovian effects speedup quantum evolution. We also 
find that increasing the detuning parameter and deviation from 
the resonance mode will speedup the quantum process for both 
Markovian and non-Markovian processes.

The work is organized as follows. In Sec. 2, the considered 
model is introduced. The non-Markovianity for considered model 
is studied in Sec. 3. The QSL time for considered model will be 
2

investigated in Sec. 4. Finally, we will summarize the results in 
Sec. 5.

2. The model

Let us consider a two level system with excited state |e〉 and 
ground state |g〉. The system interacts with an environment consist 
of the quantized modes of high-Q cavity [54,55]. The model can be 
characterized by the following Hamiltonian

H = 1

2
ω0σ+σ− +

∑
k

ωkb†
kbk +

∑
k

(gkσ+bk + g∗
k σ−b†

k), (4)

where ω0 is transition frequency from excited to ground state, σ+
and σ− are rising and lowering operators respectively, ωk is the 
frequency of the kth field mode of cavity, bk and b†

k are annihi-
lation and creation operators respectively and gk quantifies the 
coupling between the system and environment. We consider the 
case in which there exist a single excitation in the total system, so 
the initial state of the whole system can be expressed as

|ψ(0)〉 = c1(0)|e〉S |0〉E +
∑

k

ck(0)|g〉S |1k〉E , (5)

where |0〉E shows the vacuum state of the environment and |1k〉E

is the state of environment with excitation in kth mode. Hence the 
state of total system at any time t can be written as

|ψ(t)〉 = c1(t)|e〉S |0〉E +
∑

k

ck(t)|g〉S |1k〉E . (6)

By using the Schrödinger equation, a series of differential equa-
tions for probability amplitudes c1(t) and ck(t) can be obtained as

ċ1(t) = −i
∑

k

gk exp [i (ω0 − ωk) t] ck(t), (7)

ċk(t) = −ig∗
k exp [−i (ω0 − ωk) t] c1(t). (8)

It can be assumed that there are no photons in the initial state 
of the whole system, which means that probability amplitude ck(0)

is equal to zero. By solving Eq. (8) and substituting the solution 
into Eq. (7), one can obtain the following integro-differential equa-
tion as

ċ1(t) = −
t∫

0

dt1 f (t − t1)c1(t). (9)

In the above equation, f (t − t1) describes the correlation function, 
which is related to the spectral density of the environment by the 
following relation

f (t − t1) =
∫

dω J (ω)exp[i(ω0 − ω)(t − t1)]. (10)

So, it can be said that the exact form of the probability amplitude 
c1(t) completely depends on the choice of the environment’s spec-
tral density. Herein, the Lorentzian spectral density with detuning 
will be considered as

J (ω) = 1

2π

γ λ2

(ω0 − ω − δ)2 + λ2
, (11)

where δ = ω0 − ωc is detuning and ωc is the center frequency 
of the cavity. Notice that the effective coupling between the qubit 
and the environment decreases with increasing detuning. In the 
Lorentzian spectral density, the parameter λ is the spectral width 
of the environment and is related to the correlation time of the en-
vironment as τE = λ−1. On the other hand, γ is related to the time 
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scale τS , during which the state of the system changes through 
τS = γ −1 [44]. By employing the Lorentzian spectral density, the 
correlation function of the environment f (t − t1) can be obtained 
as

f (t − t1) = 1

2
γ λexp[−(λ − iδ)(t − t1)]. (12)

By substituting the above equation in Eq. (9) and using the Laplace 
transformation, the integro-differential equation (9) is easily solved 
and the probability amplitude c1(t) is obtained as

c1(t) = c1(0)k(t), (13)

where

k(t) = e−(λ−iδ)t/2
[

cosh

(
�t

2

)
− λ − iδ

�
sinh

(
�t

2

)]
, (14)

with � = √
(λ − iδ)2 − 2γ λ. Also, the dynamics of the model can 

be described by the master equation having the following form

∂

∂t
ρ(t) = γ (t)

(
σρ(t)σ+ − 1

2
{σ+σ−,ρ(t)}

)
, (15)

where γ (t) is the time-dependent decay rate of the model which 
is defined as

γ (t) = Re

(
2γ λ sinh(�t/2)

� cosh(�t/2) + (λ − iδ) sinh(�t/2)

)
, (16)

in which Re(o) is the real part of o. The initial state of the system 
can be described by ρ(0) = ∑2

i, j=1 ρi j|i〉〈 j|. By solving the Eq. (15), 
the state of the system at time t can be obtained as

ρ(t) = �tρ(0) =
(

ρ11|k(t)|2 ρ12k(t)
ρ21k∗(t) 1 − ρ11|k(t)|2

)
, (17)

where �t is known as quantum dynamical map, which maps ini-
tial state at time t = 0 to the state at time t . The concept of 
quantum dynamical map will be described in the following sec-
tion. Also, the population of excited states at time t can be defined 
as [52]

Pt = ρ11|k(t)|2. (18)

3. Measuring non-Markovianity

In the theory of open quantum systems, the evolution of a 
quantum system can be described by a quantum dynamical map. 
The dynamics of an open quantum system can be described by a 
master equation. Let us suppose that the dynamical map is defined 
by a master equation in Lindblad form

∂

∂t
ρ(t) = Lρ(t), (19)

where L is the Lindbladian super-operator given as [56,57]

L�̂= −i[Ĥ, �̂] +
∑

i

γi

[
Âi�̂ Â†

i − 1

2
{ Â†

i Âi, �̂}
]

, (20)

where Ĥ is the Hamiltonian of the considered system, γi is decay 
rate and Âi ’s are Lindblad operators. If the Lindblad operators and 
decay rates are time-independent and decay rates have positive 
value, then Eq. (20) leads to a completely positive trace-preserving 
(CPTP) map �(t, 0) = exp[Lt]. For All t1, t2 ≥ 0, the CPTP map sat-
isfies the semi-group property as

�(t1 + t2,0) = �(t1,0)�(t2,0). (21)
3

In this situation, the dynamical CPTP map describes a conventional 
Markovian process. Of course, it is possible that Hamiltonian Ĥ , 
the Lindblad operators Âi and decay rates have an explicit de-
pendence on time. In such a situation, Eq. (20) describes a time-
dependent Markovian process if the value of decay rate is positive 
at all times, i.e., γi(t) ≥ 0. In the time-dependent scenario, the dy-
namical map can be written as

�(t, t0) = T←− exp

⎡
⎣i

t∫
t0

L(s)ds

⎤
⎦ , (22)

where T←− is time ordering operator [58]. The Markovian quan-
tum dynamical maps �(t, 0) have special property that they satisfy 
the divisibility condition. The divisibility condition is defined in 
such a way that a CPTP map can be expressed as a composition 
of two other CPTP maps as

�(t2, t0) = �(t2, t1)�(t1, t0). (23)

It is important to mention that the value of decay rate γi(t) may 
become negative in some time intervals during the evolution. In 
such a situation, there is an intermediate dynamical map �(t2, t1)

which is not CPTP in the interval that γi(t) is negative. So, the di-
visibility condition violated in these intervals [59,60]. It is recalled 
that what has been introduced as a time-dependent Markovian 
process is based on the divisibility property. Many criteria for mea-
suring the non-Markovianity of the quantum process are based on 
the divisibility condition. However, some criteria are based on the 
back-flow of information from the environment to the system. In 
this work, we focus on a criterion that is based on the flow of in-
formation between the system and the environment. The employed 
measure is quantified by trace distance of a pair of arbitrary states 
ρ1(t) and ρ2(t), which is given by [59,60]

D(ρ1(t),ρ2(t)) = 1

2
‖ ρ1(t) − ρ2(t) ‖ . (24)

Actually, trace distance is a measure to quantify the distinguisha-
bility of a pair of quantum states. So, its changes during evo-
lution can be interpreted as the exchange of information be-
tween the system and the environment. If the distinguishabil-
ity of the two states in Eq. (24) decreases monotonically (Wt =
∂t D(ρ1(t), ρ2(t)) < 0), then it can be said that information contin-
uously flows from system to environment, however, the back-flow 
of information to the system will not occur and the process is 
Markovian. On the opposite side, Wt > 0 means that there exists 
the back-flow of information from the environment to the system 
and so the process is non-Markovian. Accordingly, Breuer et al. [61]
proposed a non-Markovian measure as

N (�) = max
ρ1(0),ρ2(0)

∫
Wt>0

Wtdt. (25)

Based on Eq. (25), it should be necessary to perform an optimiza-
tion process on all possible initial states ρ1(0) and ρ2(0) to deter-
mine the degree of non-Markovianity. In Ref. [61], it is shown that 
the maximum value of Eq. (25) will be obtained for initial states 
ρ1(0) = |0〉〈0| and ρ2(0) = |1〉〈1|, by considering a large sample 
set of pairs of initial states and using strong numerical evidence. 
By choosing these two initial states, the trace distance in Eq. (24)
for the model defined in this work in the previous section is ob-
tained as

D(ρ1(t),ρ2(t)) = |k(t)|2, (26)
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Fig. 1. Non-Markovianity (25) as functions of detuning parameter δ and spectral 
width of the environment λ.

where k(t) is given by Eq. (14).
To illustrate this result, Fig. 1 shows the non-Markovianity N

as a function of detuning parameter δ and spectral width of the 
environment λ. From this figure, one can see that in the resonance 
case when δ = 0, the non-Markovianity has its maximum value for 
small values of λ. While for the detuning case δ �= 0, the degree 
of non-Markovinity decreases with increasing the absolute values 
of detuning parameter δ. In the following, we will use the results 
extracted from Fig. 1 to study the QSL time for both Markovian 
and non-Markovian cases.

4. QSL time

In recent works, various methods have been proposed to study 
the QSL time. The geometric approach in quantum information 
theory is usually applied to introduce a criterion for quantifying 
the QSL time of quantum evolution. In Ref. [37], the authors have 
provided the QSL time for mixed initial states. Here, we use the 
method which has introduced by them. In their work, the function 
of relative purity has been used to define the QSL time, which is 
given by

�(ρ(0),ρ(t)) = arccos

(√
tr[ρ(0)ρ(t)]

tr[ρ(0)2]

)
. (27)

Based on the metric introduced in Eq. (27), a comprehensive ex-
pression of QSL time for the mixed initial states is obtained as 
follows

τQ S L = max

{
1

�
op
τ

,
1

�tr
τ

,
1

�hs
τ

}
sin2[�(ρ(0),ρ(τ ))]tr[ρ(0)2],

(28)

where τ is the actual driving time and

�
op
τ = 1

τ

τ∫
0

dt ‖ ρ̇(t) ‖op,

�tr
τ = 1

τ

τ∫
0

dt ‖ ρ̇(t) ‖tr,

�hs
τ = 1

τ

τ∫
0

dt ‖ ρ̇(t) ‖hs, (29)

where ‖ ρ̇(t) ‖op= λ1 is the operator norm of ρ̇(t) (λ1 is the largest 
singular value of ρ̇(t)), ‖ ρ̇(t) ‖tr= ∑

i λi is the trace norm of ρ̇(t)
4

Fig. 2. (a) QSL time (35), (b) population of excited states Pτ = ρ11|k(τ )|2 (18), 
and (c) non-Markovianity (25) versus δ/γ for both Markovian (λ = 3γ ) and non-
Markovian (λ = 0.01γ ) regimes with driving time τ = 10. For two plots (a) and (b) 
we set rx = ry = rz = 0.5.

(λi ’s are the all singular values of ρ̇(t)) and ‖ ρ̇(t) ‖hs=
√∑

i λ
2
i is 

the Hilbert-Schmidth norm of ρ̇(t). In Eq. (28), if the denominator 
of the fraction is �op

τ and �tr
τ , we have generalized ML type QSL 

bound for open quantum systems, while if it is �hs
τ , we have MT 

type bound on the QSL time for non-unitary dynamics.
For a matrix like B , the following inequality holds for the norms 

which are used in Eq. (28)

‖ B ‖tr≥‖ B ‖hs≥‖ B ‖op . (30)

From Eq. (30), one can obtain the following order for denominator 
in Eq. (28) as

�
op
τ ≤ �hs

τ ≤ �tr
τ . (31)

It is clear from above equation that ML type bound based on the 
operator norm is the tightest QSL time bound for non-unitary evo-
lution.

Now, we would like to use this bound to investigate the effects 
of environmental parameter on QSL time for the model which has 
described in Sec. 2. According to the fact that the bound can be 
used for the mixed initial states, let us consider a general two-level 
system. In the Bloch representation, the general initial two-level 
state can be written as

ρ(0) = 1

2

(
1 + rz rx − iry

rx + iry 1 − rz

)
, (32)

where rx , ry and rz are components of the Bloch vector r. So, from 
Eq. (17), the density matrix at time t can be written as

ρ(t) = 1

2

(
(1 + rz)|k(t)|2 (rx − iry)k(t)
(rx + iry)k∗(t) 2 − (1 + rz)|k(t)|2

)
. (33)

As mentioned before, the ML type bound of QSL time based on the 
operator norm is the tightest bound, therefore, the QSL time can 
be considered as

τQ S L = 1

�
op
τ

sin2[�(ρ(0),ρ(τ ))]tr[ρ(0)2], (34)

From Eq. (33) and using Bloch representation, the QSL time is ob-
tained as

τQ S L = (1 − k(τ ))[r2
x + r2

y + rz(1 + rz)(1 + k(τ ))]
1 ∫ τ |k̇(t)

√
r2

x + r2
y + 4k(t)2(1 + rz)2|dt

. (35)
τ 0
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Fig. 3. (a) Non-Markovianity as functions of δ/γ and λ/γ for driving time τ = 30, and (b) QSL time with rx = ry = rz = 0.5 for driving time τ = 30.
Fig. 4. (a) QSL time, (b) population of excited states, and (c) non-Markovianity ver-
sus the actual evolution time τ for both Markovian (λ = 3γ ) and non-Markovian 
(λ = 0.01γ ) regimes at resonance case δ/γ = 0. For two plots (a) and (b) we set 
rx = ry = rz = 0.5.

Fig. 5. (a) QSL time and (b) population of excited states in terms of actual evolution 
time τ for different values of detuning parameter δ in Markovian regime with λ =
3γ and rx = ry = rz = 0.5.

In Fig. 2a, the QSL time is plotted versus detuning parameter δ/γ . 
Two cases will be considered: Markovian and non-Markovian dy-
namics. From Fig. 1, one can choose λ = 3γ and λ = 0.01γ to have 
the Markovian and non-Markovian dynamics, respectively. For both 
Markovian and non-Markovian dynamics, the actual driving time 
has considered to be τ = 10. It can be seen that the QSL time for 
non-Markovian dynamics is shorter than Markovian case. Besides, 
the population of excited states Pτ is plotted versus detuning pa-
5

Fig. 6. (a) QSL time and (b) population of excited states in terms of actual evolution 
time τ for different value of detuning parameter δ in non-Markovian regime with 
λ = 0.01γ and rx = ry = rz = 0.5.

rameter in Fig. 2b. As can be seen, the population of excited states 
increases with increasing detuning parameter for both markovian 
and non-Markovian dynamics. Therefore, it can be concluded that 
there exists inverse relation between the population of excited 
states and the QSL time. Moreover, Fig. 2c shows the degree of 
non-Markovianity during actual evolution time versus detuning pa-
rameter. We see for λ = 3γ , the evolution is Markovian while for 
λ = 0.01γ , we have non-Markovian dynamics. It is also observed 
that the degree of non-Markovianity decreases with increasing de-
tuning parameter, in agreement with Fig. 1.

In Fig. 3, the QSL time and non-Markovianity are shown as 
a density plot in terms of λ/γ and δ/γ for a detailed analysis. 
By comparing the two plots, it can be found that the QSL time 
in the non-Markovian regime is shorter than that in the Marko-
vian regime, which indicates that the non-Markovian effects can 
speedup the evolution compared to the Markovian effects.

Now, in Fig. 4a, we illustrate the QSL time as a function 
of actual driving time τ in both Markovian (λ = 3γ ) and non-
Markovian (λ = 0.01γ ) regimes for δ = 0. As expected, the QSL 
time for non-Markovian regime is shorter than that of the Marko-
vian regime. Fig. 4b shows the time variation of the population of 
excited states Pτ for both Markovian and non-Markovian regimes. 
By comparing Fig. 4a and Fig. 4b, it can be seen that there is an 
inverse relation between the QSL time and the population of ex-
cited states Pτ . In Fig. 4c, the degree of non-Markovianity is plot-
ted in terms of actual evolution time τ . As expected for λ = 3γ , 
non-Markovianity is zero for all actual time while for λ = 0.01γ
at τ = 24.3, the non-Markovian nature of the evolution is re-
vealed. The interesting point in Fig. 4 is that with the revelation of 
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Fig. 7. QSL time as functions of quantum coherence of initial state C(ρ0) and the detuning parameter δ when population of initial excited state is P0 = 1/2 at τ = 10. (a) 
Markovian dynamics with λ = 3γ and (b) non-Markovian dynamics with λ = 0.01γ .
the non-Markovian nature of the evolution at τ = 24.3, the non-
monotonic behavior of population of excited states will be started 
and the QSL time will be shorter than the QSL time in Markovian 
regime.

In Fig. 5a, the QSL time is plotted versus actual driving time τ
for different values of detuning parameter δ in Markovian regime 
with λ = 3γ . From this plot, it can be seen that the QSL time de-
creases with increasing detuning parameter δ in Markovian regime. 
It is an interesting result because in the absence of non-Markovian 
effects and just by adjusting the detuning parameter δ, the evo-
lution speed has been increased. On the other hand, Fig. 5b rep-
resents the population of excited states Pτ versus τ for the same 
values in Fig. 5a. From Fig. 5b, we see that the population of ex-
cited states increases with increasing the detuning parameter.

Fig. 6 is similar to Fig. 5, with the difference that the QSL 
time and the population of excited states have been shown in a 
non-Markovian regime. In Fig. 6a, it can be observed that for the 
non-Markovian regime, we have quantum speedup with increasing 
the detuning parameter. Here, although the non-Markovian effects 
themselves are effective for protecting the population of excited 
states, one can notice that the increase in the detuning parameter 
δ still plays an important role in protecting the population.

Notably, by using the l1-norm of coherence measure C(ρ) =∑
i �= j |〈i|ρ| j〉| to quantify the quantum coherence [62,63], it can 

be concluded that the coherence of the initial state ρ0 (32) is ob-

tained as C(ρ0) =
√

r2
x + r2

y . Also, the z-component of the Bloch 
vector rz can be expressed in terms of the population of initial 
excited state from Eq. (18), which we denote it by rz = 2P0 − 1. 
Considering these cases, Eq. (35) can be rewritten in terms of the 
coherence of the initial state and the population of initial excited 
state as

τQ S L = (1 − k(τ ))[C(ρ0)
2 + 2P0(2P0 − 1)(1 + k(τ ))]

1
τ

∫ τ
0 |k̇(t)

√
C(ρ0)2 + 16k(t)2 P 2

0|dt
. (36)

In Fig. 7, the QSL time has been shown as function of the quan-
tum coherence of initial state C(ρ0) and detuning parameter for 
both Markovian and non-Markovian regimes. From Fig. 7a, we see 
that in the Markovian regime, the QSL time has direct relation with 
the coherence of initial state such a way that with increasing the 
coherence of initial state, the QSL time increases. Besides, it is ob-
served that the QSL time decreases with increasing the value of the 
detuning parameter. In a similar way, we have same interpretation 
for Fig. 7b with the difference that the dynamics is non-Markovian 
and the QSL time is shorter than Markovian regime in Fig. 7a.
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5. Conclusion and outlook

In this work, the quantum speedup mechanisms involving the 
regulation of detuning in Jaynes-Cumming model are investigated. 
Here, the relative purity based quantum speed limit bound is se-
lected to study the quantum speedup in Jaynes-Cumming model 
with detuning. We have first determined the range of environmen-
tal parameters in which the non-Markovian nature of the evolution 
becomes obvious. It is observed that the non-Markovian effects 
lead to quantum speedup in both resonance and detuning cases in 
a certain condition. As the main result of the work, it can be said 
that even in the Markovian regime, increasing the detuning pa-
rameter δ leads to quantum speedup. In other words, even in the 
absence of memory effects, the evolution speed can be increased 
with the detuning parameter. It was also observed that the ini-
tial state of the system has a direct effect on the quantum speed 
limit time. Moreover, we have revealed that the quantum speed 
limit has an inverse relation with the population of the initial ex-
cited state. It is also shown that the quantum speed limit time 
depends on the quantum coherence of the system’s initial state 
such that the maximal coherent state can saturate the quantum 
speed limit bound. An interesting topic concerns the relationship 
between the quantum Fisher information [64–66] and quantum 
speed limit. This issue will be explored in a forthcoming work.
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