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Abstract
The maximal evolution speed of any quantum system can be expressed by the quantum speed
limit time. In this paper, we consider a model in which the system has a correlation with the
environment. The influence of the initial correlation between the system and environment on the
quantum speed limit is investigated. It is shown that the appearance of non-Markovianity effects
causes the speedup of quantum evolution. Moreover, we demonstrate the dependence of
quantum dynamical speedup on the quantum coherence of the correlated initial state.

Keywords: quantum speed limit, non-Markovianity, correlated initial state, quantum coherence
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1. Introduction

The question of how fast a quantum system can transform
from an initial state to an orthogonal state is a starting point to
study the quantum speed limit (QSL). The main goal of this
study is to find the general bounds that exist for any system
which can be used to limit the time (from below) taken for the
state of a system to be distinguishable from its initial state.
The bounds are known as QSL time. Indeed, QSL time is the
shortest possible time for the evolution of the system from an
initial state to the final orthogonal state. The study of QSL
time has particular importance for quantum communication
[1], computation [2], metrology [3], and many other areas of
quantum physics. The QSL time can be used to obtain the
shortest time needed to charge the quantum battery [4] and it
is also used to find the minimum time required to implement
quantum gates in quantum computing [5]. In [6], using the
geometry of the quantum state space, the inverse QSL is
introduced and its application in quantum batteries is also
discussed.

The first results of the studies on QSL time for closed
quantum systems were presented by Mandelstam and Tamm
(MT) [7]. They showed that for an evolution generated by a

time-independent Hamiltonian, the shortest possible time for
the transformation of an initial pure state to its final ortho-
gonal state is bounded by

( )
E2

, 1t
p
D

 

where ∣ ∣ ∣ ∣E H H2 2y y y yD = á ñ - á ñ is the standard devia-
tion of time-independent Hamiltonian H and ÿ is the reduced
Planck constant. The key point of the MT bound (1) is its
dependence on the standard deviation of the system energy. A
lot of work has been done to extend the MT bound, however,
the most effective result has been obtained by Margolus and
Levitin (ML), who have presented the new bound as [8]

( )
E2

, 2t
p 

where E= 〈H〉 is the average energy over the ground state of
the system. The bound in equation (2) is known as ML bound.
So, for unitary evolution that connects two pure and ortho-
gonal states, the bound for the QSL is not unique, and usually
a comprehensive bound can be introduced by combining MT
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and ML bounds as follows
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In the practical scenario, real quantum systems interact with
their surroundings, such systems are called open quantum
systems [9, 10]. In recent years, the study of the QSL for open
quantum systems has received much attention [11–28]. The
geometric approach is usually used to obtain the desired
bound for the QSL in open quantum systems. In [13], Taddei
et al have introduced a bound for the QSL in open quantum
systems by using Fisher information for the total Hilbert
space of the system and its environment. Escher et al devel-
oped their results in [29]. The authors of [12] have used
relative purity to introduce a QSL bound for open quantum
systems. They showed that when the evolution is in the
Lindblad form, the bound is equivalent to the MT bound.
Moreover, Deffner and Lutz [11] have introduced a bound for
the QSL using the Bures angle, which covers both MT and
ML bounds. They also showed that the non-Markovian
effects can speed up the quantum process. In recent years, due
to the fact that it is difficult to access an initial pure state in
practical scenarios, studying the QSL for mixed initial states
has been the subject of some works ([30, 31]). In addition to
providing different bounds, some works have been done on
the issue of QSL, such as the dependence of QSL on the
initial state [32], and many other works [33–51].

In this paper, a comprehensive bound is considered for the
QSL based on the function of relative purity, which can be
applied to any mixed initial state [31]. Based on this bound, we
investigate the QSL for a correlated initial state. It is observed
that the QSL depends on the non-Markovianity of the evolution,
the amount of initial correlation between the system and the
environment, and the initial coherence of the system. We show
that in addition to the non-Markovian effects, the initial corre-
lation between the system and the environment can speed up the
evolution of the quantum system. Besides, we reveal that
strengthening the coupling of the system with the environment
enhances the bound on the QSL.

The work is organized as follows. In section 2, the main
structure of the model that will be used in this work is pre-
sented. In section 3, the non-Markovian feature of the model
and parameters that are effective in the non-Markovian
evolution will be studied. In section 4, the QSL for a corre-
lated initial state will be investigated. Finally, the results will
be summarized in section 5.

2. Model

Here, we consider a model in which a two-level system  is
coupled to its environment . In this model, just the pure
decoherence of the qubit is considered as a mechanism for
decoherence and the energy dissipation is ignored. The model
can be described by the following Hamiltonian [52]

( )H H H H , 4SR= + + 

where H z0w s= indicates the Hamiltonian of the system

with ω0 which is the qubit energy splitting,
( ) ( ) ( )†H h a ad

0ò w w w w=
¥

 is the environment Hamilto-

nian, and [ ( ) ( ) ( ) ( )]†H g a g ad z0ò ws w w w w= +
¥

* is the
interaction Hamiltonian. In the above Hamiltonian, σz is the z-
component of the Pauli matrix, a(ω) and a†(ω) are the bosonic
annihilation and creation operators, respectively, h(ω) is the
real-valued spectrum function which describes the environ-
ment, and g(ω) is the function that characterizes the coupling.
The whole Hamiltonian can be rewritten in block-diagonal
form as [53]

[ ] ( )H H H H H Hdiag , , , 50w= =  + -    

where  is the identity operator in the environment Hilbert
space. The correlated initial state for the system environment
can be written as

∣ ( ) ∣ ∣ ∣ ∣ ( )c e c g0 , 6e g0Y ñ = ñ Ä W ñ + ñ Ä W ñl

where |e〉 and |g〉 describe the excited and ground states of the
system respectively, cg and ce are two non-zero complex
numbers that satisfy ∣ ∣ ∣ ∣c c 1g e

2 2+ = . Besides, ∣ 0W ñ and ∣W ñl
are the states of the environment where ∣ 0W ñ denotes an
environment ground state and

∣ [( )∣ ( )∣ ] ( )D f1 , 71
0 0h l lW ñ = - W ñ + W ñl l

-

where { }( ) [ ( ) ( ) ( ) ( )]†D f f a f aexp d
0ò w w w w w= -
¥

* is

the displacement operator for an arbitrary square-integrable
function f. Considering that the state presented in Eq.(7)
should be normalized 〈Ωλ|Ωλ〉= 1, the coefficient ηλ is
obtained as follows

( ) ( ) ∣ ( )∣ ( )D f1 2 1 Re . 82 2 2
0 0h l l l l= - + + - áW W ñl

Above, the term Re means the real part of a complex number.
The parameter λ ä [0, 1] specifies the initial entanglement
between the system and the environment. If this value is
λ= 0, it means that the system and the environment are
initially uncorrelated, while for λ= 1 there exists the greatest
possible entanglement between the system and the environ-
ment. By considering the initial state of the composite system
(6), the state of the system-environment at time t can be
written as follows

∣ ( ) ∣ ∣ ( ) ∣ ∣ ( ) ( )t c e t c g t , 9e gy yY ñ = ñ Ä ñ + ñ Ä ñ+ -

where ∣ ( ) ( )∣t H texp i 0y ñ = - W ñ+ + and ∣ ( ) ( )t H texp iy ñ = -- -

∣W ñl . The reduced density matrix of the system ( )trl is
obtained by giving partial trace over the environment as

( ) [∣ ( ) ( )∣] ( )t t ttr , 10r = Y ñáYl
 

with more details, the explicit form of the above density
matrix is obtained as follows
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with

( ) [ ] ( )( ) ( ) ( )t e e 1 e e , 12t r t t s t1 i2 2i0k h l l= - +l l
w- - - - F

2

Commun. Theor. Phys. 75 (2023) 075101 A Gholizadeh et al



where [54, 55]
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In the above equations, f (ω) and J(ω) are the real function and
the effective spectral density of the environment respectively,
which are given by

( ) ( )

( ) ( ) ( )

f

J

exp 2 ,

exp 2 , 14

c

c

1
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w w w w

w aw w w

= -

= -

n

m

-

-
/

where α is the positive constant that describes the system-
environment coupling, ωc is the cutoff frequency, and μ is the
ohmicity parameter. Note that the three cases −1< μ< 0,
μ= 0, and μ> 0 correspond to the sub-ohmic, ohmic, and
super-ohmic environments, respectively [56]. To study the
evolution of the system in the model, the dynamics can be
examined in two cases: (i) sub-ohmic and ohmic environ-
ments and (ii) super-ohmic environments. From a funda-
mental point of view, it is preferable to consider the super-
ohmic case μ> 0. From (13), one can obtain the following
equations for the super-ohmic environment

( ) ( ) [ ( )]
( )

( ) ( ) [ ( )]
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r t
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where v

2
c = m+ , and Γ(. ) is the Euler gamma function.

3. Non-Markovianity

According to the structural features of the environment, the
quantum evolution can be classified into two categories: (a)
Markovian (without memory) and (b) non-Markovian (with
memory). In the Markovian process, the environment acts as a
waster for the system information and information sinks from
the system into the environment. Actually, in Markovian
evolution, information leaks from the system to the environ-
ment and there is no back-flow from the environment to the
system. While there exists a back-flow of information from
the environment to the system during the evolution in the
non-Markovian case. Up to now, several computational cri-
teria have been introduced for the qualitative study of the non-
Markovianity of quantum evolution [57–72]. In [58], Breuer
et al have used state distinguishability to quantify the degree
of non-Markovianity. They have interpreted the increment of
state distinguishability as the return of information from the
environment to the system. In this work, based on the state
distinguishability, the non-Markovian criterion is considered

as follows

( ) ( )
( )

N t tmax d . 16
0 01,2
ò s=

r s>

In the above relation, ( )ts is the time derivative of trace
distance

( ) ( ( ) ( )) ( )t
t
D t t

d

d
, , 171 2s r r=

where ( ) ∣ ∣D , tr1 2
1

2 1 2r r r r= - is the trace distance that
quantifies the distinguishability between two quantum states
ρ1 and ρ2 (note that ∣ ∣ †A A A= and 0�D� 1). It should be
noted that for the whole dynamical semigroups and all time-
dependent Markovian evolution, we possessσ(t)� 0 while
for σ(t)> 0, the evolution is non-Markovian. In other words,
it can be said that in non-Markovian evolution, distinguish-
ability increases in some time intervals. From equation (16), it
is clear that quantifying the degree of non-Markovianity
needs the performance of an optimization process over all
pairs of initial states ρ1,2(0).

In [73], it has been shown that the optimal state pairs are
orthogonal. Therefore, orthogonal states ( ) ∣ ∣01

0r = +ñá+l=

and ( ) ∣ ∣02
0r = -ñá-l= , where ∣ (∣ ∣ )e g 2ñ = ñ  ñ , can be

considered optimal states. For these optimal states, the trace
distance at time t is obtained as

( ( ) ( )) ∣ ( )∣ ( )D t t t, , 181 2 0
2r r k= l=

where κλ(t) is presented in equation (12).
Now, the effects of the ohmicity parameter μ and cou-

pling constant α on the degree of non-Markovianity N are
investigated. Figure 1 shows the degree of non-Markovianity
as functions of μ, α, and v with fixed values λ= 0 and
ωc= ω0= 1. In figure 1(a), non-Markovianity is represented
as functions of μ and α with v= 0.01. As can be seen from
this plot, for α; 0.01, the degree of non-Markovianity has its
maximum value at μ; 5, but for μ> 6 and μ< 1, it is equal
to zero for all values of α, indicating the Markovian
dynamics. It can also be noticed that for different values of
ohmicity parameter in a certain interval 1� μ� 6, the degree
of non-Markovianity decreases by increasing α.

Figure 1(b) represents the non-Markovianity as functions of
α and v with μ= 5. We see that the degree of non-Markovianity
has its maximum value for α= 0.01. It can also be detected that
for all values of v, the degree of non-Markovianity decreases
when the value of α decreases or increases from α= 0.01. By
comparing figures 1(a) and (b), one can conclude that to have a
non-Markovian evolution for the considered model, it is enough
to hold μ= 5 and α= 0.01, regardless of the value of v. In a
similar way, it can be said that for μ> 6, the evolution is
Markovian regardless of the values of α and v.

4. Quantum speed limit

In this section, the QSL is investigated for our considered model.
Due to the initial correlation between the system and the
environment, it is not possible for the initial state of the system
to be pure. So, to calculate the QSL, it should be considered that

3
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the initial state is mixed. In [30, 31], the authors have introduced
QSL for the mixed initial states. Here, the method presented in
[31] is used to study the QSL for the considered model.

The evolution of open quantum systems can be described
by

( ) ( ), 19t t tr r= 

in which t denotes the time-dependent positive generator. In
[31], the authors used the function of relative purity [74] as a
distance measure, which is given by

( )
[ ]
[ ]

( ), arccos
tr

tr
. 20t

t
0

0

0
2

r r
r r
r

Q = ⎛

⎝
⎜

⎞

⎠
⎟

Based on the above function, the ML-type QSL bound for
open quantum systems can be obtained as [31]

[ ( )] [ ] ( )max
1

,
1

sin , tr , 21QSL
ML

op tr
2

0 0
2t r r r=

L L
Q

t t
t

⎧
⎨⎩

⎫
⎬⎭

with ( )( )
( )td t t

op tr 1

0 op trò rL =t t

t
  , where ( )t t i itrr l= å  and

( )t t op 1r l=  are the trace norm and operator norm for
( )t tr . Herein, λiʼs and λ1 are singular values and largest

singular value of ( )t tr .
Also, the MT-type bound on the QSL for non-unitary

dynamics can be expressed as follows

( )[ ( )] [ ] 22
1

sin , tr ,QSL
MT

hs
2

0 0
2t r r r=

L
Q

t
t

with ( )td t t
hs 1

0 hsò rL =t t

t
  where t i ihs

2l= å  is the

Hilbert-Schmidth norm of ( )t tr . Combining equations (21)
and (22), the unified bound on the QSL for non-unitary
dynamics can be formulated as

≔ [ ( )] [ ] ( )max
1

,
1

,
1

sin , tr . 23QSL op tr hs
2

0 0
2t r r r

L L L
Q

t t t
t

⎧
⎨⎩

⎫
⎬⎭

Notice that the ML-type bound based on the operator norm is
the sharpest QSL bound for non-unitary dynamics.

Now, the QSL can be checked for the considered model.
By putting t= 0 and c 1 2e g, = in equation (11), the cor-
related initial state is obtained as

( )
( )

( )1

2

1 0

0 1
. 240r

k
k

=
l

l*
⎜ ⎟
⎛
⎝

⎞
⎠

Hence, from equation (23), the QSL for the above correlated
initial state can be obtained as

∣ ( )∣ ∣ ( )∣ [ ( )]
∣ ( )∣

( )
t t

0 0 Re

d
, 25QSL

2

0ò
t

k k k t
k

=
-l l l
t

l

where τ is the actual driving time.

In order to show the effect of initial quantum coherence
of the correlated initial state on the QSL, it is necessary to
consider an analytic quantifier of quantum coherence [75–79].
Here, the l1-norm of coherence is considered to quantify the
quantum coherence as C(ρ)=∑i≠j|ρij|. The l1-norm quantum
coherence of the correlated initial state (24) can be obtained
as C(ρ0)= |κλ(0)|. So, it can be seen that the initial quantum
coherence depends on the initial correlation between the
system and the environment, i.e., λ. The quantum coherence
has its maximum value one for uncorrelated case λ= 0 and it
is equal to zero for the fully correlated case λ= 1. Thus, the
QSL in equation (25) can be rewritten as

( ) ( ) [ ( )]
∣ ( )∣

( )
C C

t t

Re

d
. 26QSL

0
2

0

0ò
t

r r k t

k
=

- l
t

l

Figure 2 shows the changes of both QSL and non-Mar-
kovianity in terms of the ohmicity parameter μ. In figure 2(a),
the QSL is sketched as a function of μ for correlated initial
state λ= 0.25 with v= α= 0.01 and driving time τ= 1.
Also, figure 2(b) represents the non-Markovianity in terms of
μ with λ= 0 and α= v= 0.01. Comparing plots 2(a) and (b),
we find that there exists an inverse qualitative relationship
between the QSL and non-Markovianity. Notably, for μ= 5,

Figure 1. (a) Non-Markovianity N as a function of coupling constant α and ohmicity parameter μ with v= 0.01. (b) N as a function of α and
v with μ= 5. For two plots λ= 0 and ωc = ω0 = 1.
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the degree of non-Markovianity has its maximum value,
while the QSL has its minimum value (see also figure 1).

In figure 3, the QSL and non-Markovianity are plotted as
a function of driving time τ. Figure 3(a) shows the QSL for
both Markovian μ= 8 and non-Markovian μ= 5 environ-
ments. As can be seen, for the non-Markovian regime, the
QSL is shorter than the Markovian regime. On the other hand,
figure 3(b) illustrates the degree of non-Markovianity as a
function of τ. As expected, the non-Markovianity is equal to
zero for all driving time when μ= 8. While for μ= 5, the
non-Markovian nature of the evolution is revealed from a
specific driving time. An interesting result can be detected by
comparing plots 3(a) and (b) is that before the appearance of

the non-Markovian nature for μ= 5, the QSL for both μ= 8
and μ= 5 coincide while, with the appearance of the non-
Markovian nature at time τ= 0.58, the QSL becomes shorter
than the case with μ= 8. Remarkably, it can be concluded
that the non-Markovianity nature leads to the speedup of
quantum evolution.

In figure 4, the QSL is illustrated as a function of driving
time for different values of correlation parameter λ= 0.25,
0.50, 0.75, and 1 in both Markovian and non-Markovian
regimes. These plots reveal the effect of initial correlation on
the QSL in Markovian and non-Markovian cases. It can be
found that for both Markovian and non-Markovian cases, the
QSL will be shorter with increasing the initial correlation
between the system and the environment.

In figure 5(a), the QSL is plotted as a function of
correlation parameter λ with driving time τ= 1. From
figure 5(a), for both Markovian μ= 8 and non-Markovian
μ= 5 evolutions, the QSL becomes shorter as the correlation
parameter increases. As shown in equation (26), the QSL
depends on the coherence of the initial state of the system.
Therefore, to justify the result obtained from figure 5(a), the
coherence of the initial state of the system is drawn in terms
of λ in figure 5(b). As expected, the quantum coherence of the
initial state of the system diminishes with increasing the
correlation parameter λ.

In figure 6(a) the QSL is sketched as a function of cou-
pling parameter α. As can be seen, the QSL grows with the
increase of the coupling parameter α and reaches a constant
value at α= 0.1. Figure 6(b) represents the non-Markovianity
in terms of coupling parameter α. Again, from plots 6(a) and
(b) as well as figure 1, one can observe that in the non-
Markovian regime (α≈ 0.01), the QSL is shorter than in the
Markovian case (α≈ 0.1).

Finally, figure 7 displays the QSL as functions of the
coupling parameter α and driving time τ for both Markovian

Figure 3. (a) QSL time as a function of driving time τ for both
Markovian μ= 8 and non-Markovian μ= 5 environments with
λ= 0.25. (b) Non-Markovianity versus τ for μ= 8 and μ= 5 with
λ= 0. For two plots α= v= 0.01, and ωc = ω0 = 1.

Figure 4. QSL as a function of driving time τ for different values of
initial correlation between system and environment, λ= 0.25, 0.50,
0.75, and 1. (a) Markovian regime μ= 8 and (b) non-Markovian
regime μ= 5. For two plots α= v= 0.01, and ωc = ω0 = 1.

Figure 2. (a) QSL for a correlated initial state (24) as a function of
ohmicity parameter μ with λ= 0.25 and τ= 1. (b) Non-Marko-
vianity in terms of μ with λ= 0. For two plots α= v= 0.01, and
ωc = ω0 = 1.
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and non-Markovian dynamics when the correlation parameter
is λ= 0.25. From figure 7(a), we find that the QSL does not
alter with α changes for the Markovian case. However,
figure 7(b) shows that in a non-Markovian regime, the QSL
increases as α growths.

5. Conclusion

The QSL has been studied in an open quantum system with
the initial correlation between the system and the environ-
ment. Specifically, we used the QSL bound based on the
function of the relative purity introduced in [31]. First, we
examined the considered model from the aspect of memory

effects and determined the range of environmental parameters
that cause the process to be non-Markovian. After that, we
examined the effects of non-Markovianity of quantum evol-
ution on QSL and found that the non-Markovian effects lead
to shorter QSL. In other words, non-Markovian effects can
speed up quantum evolution. We also observed that the initial
coherence of the quantum system is directly related to the
QSL, e.g., the highest QSL belongs to the initial states with
the higher quantum coherence. As another result of this work,
we found that increasing the initial correlation between the
system and the environment leads to a decrease in the QSL.
Indeed, the effect of the initial correlation between the system
and environment on QSL originates from the dependence of
QSL on quantum coherence. Moreover, we revealed that the
increasing coupling parameter leads to a boost in QSL for the
non-Markovian evolution.

Competing interests

The authors declare no competing interests.

Figure 5. (a) QSL versus the correlation parameter λ for Markovian
μ= 8 and non-Markovian μ= 5 regimes. (b) The l1-norm of
coherence C(ρ0) in terms of λ. For two plots α= v= 0.01,
ωc = ω0 = 1, and τ= 1.

Figure 6. (a) QSL as a function of coupling parameter α for driving
time τ= 1 with λ= 0.25 and (b) non-Markovianity versus α with
λ= 0. For two plots v= 0.01, ωc = ω0 = 1, and μ= 5.

Figure 7.QSL as functions of coupling parameter α and driving time
τ with v= 0.01, ωc = ω0 = 1, and λ= 0.25. (a)Markovian μ= 8 (b)
non-Markovian μ= 5 regimes.
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