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Study the charging process 
of moving quantum batteries 
inside cavity
Maryam Hadipour 1, Soroush Haseli 1,2*, Hazhir Dolatkhah 3 & Maryam Rashidi 4

In quantum mechanics, quantum batteries are devices that can store energy by utilizing the principles 
of quantum mechanics. While quantum batteries has been investigated largely theoretical, recent 
research indicates that it may be possible to implement such a device using existing technologies. 
The environment plays an important role in the charging of quantum batteries. If a strong coupling 
exists between the environment and the battery, then battery can be charged properly. It has also 
been demonstrated that quantum battery can be charged even in weak coupling regime just by 
choosing a suitable initial state for battery and charger. In this study, we investigate the charging 
process of open quantum batteries mediated by a common dissipative environment. We will consider 
a wireless-like charging scenario, where there is no external power and direct interaction between 
charger and battery. Moreover, we consider the case in which the battery and charger move inside the 
environment with a particular speed. Our results demonstrate that the movement of the quantum 
battery inside the environment has a negative effect on the performance of the quantum batteries 
during the charging process. It is also shown that the non-Markovian environment has a positive effect 
on improving battery performance.

There exist a thermodynamic role for batteries, which is that of a work reservoir. It is well known that traditional 
batteries are electrochemical devices that store energy from external sources and provide that energy to other 
machines, allowing them to be operated remotely without the need for a power source. In recent years, batter-
ies have become essential devices, in both size and storage capacity, ranging from large car traction batteries 
of 500kWh to tiny 100mWh cells used in small electronic  devices1. With the constant miniaturization of such 
devices, batteries are also becoming smaller and smaller, so as their unit cells approach molecules and atoms, 
quantum mechanical effects must be taken into consideration when describing  them2–5. In quantum mechanics, 
quantum battery (QB) is a d-dimensional energy storage quantum system with non-degenerate energy levels 
that relies on the principles of quantum mechanics to operate and store  energy6,7. Despite the fact that QBs are 
still a theoretical concept, some progress has been made in developing experimental systems that demonstrate 
some of the principles involved in quantum energy  storage8–12. QBs are designed using quantum theory concepts 
such as quantum coherence and quantum entanglement. In addition to being more efficient and having a greater 
energy density, QBs have the potential to be smaller and lighter than conventional classical batteries. What are 
the best conditions for a QB? That is the first question we should answer when discussing about QBs. It should 
be noted that one of the most important characteristics of a good QB is its ability to store as much energy as 
possible in the shortest possible time. It is also important for a QB to be able to discharge the energy sufficiently 
in an optimal period of time. The internal energy of a QB, as well as the work that can be extracted from it, are 
important indicators of the battery’s  quality13–20.

Quantum mechanics traditionally deals with isolated systems that are completely isolated from their sur-
rounding environment. The concept of open quantum systems arises from the interaction between physical sys-
tems and their surroundings. As a result of these interactions, energy, information, or particles may be exchanged 
between the system and its environment. Decoherence is one of the most challenging aspects of studying open 
quantum systems. In quantum physics, decoherence occurs when interaction of the quantum system with the 
environment lead to a loss of quantum  coherence21–23.

Since environmental effects on quantum systems cannot be avoided, studying QBs from the open quantum 
systems perspective seems  essential24–30. A wide range of research has previously been conducted on the effects 
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of environmental parameters and memory effects on the charging and discharging processes of  QBs25–30. As 
we will model the QB using open quantum system theory, we will first briefly discuss about the open quantum 
systems. It is possible to classified the evolution of open quantum systems into two categories: Markovian and 
non-Markovian  evolution21–23. In Markovian evolution, the future state of a system depends only on its current 
state, not on its past. Consequently, the evolution of the system has no memory and can be modeled using a 
Lindblad master equation (differential equation which describes the evolution of the system’s density matrix 
over time). In other words, in Markovian regime, the state of the system at time t + 1 depends on the state of the 
system at time t alone and not on the state of the system at earlier times. Mathematically, this can be expressed 
as ρt+1 = �(ρt) , where ρt is the density matrix of the system at time t, and � is the quantum dynamical map 
of the system’s evolution. In systems with weak couplings to their environments, or in those with short-range 
interactions, Markovian properties can emerge. In contrast, non-Markovian evolution involves a system whose 
future state is dependent on both its current and past states. Accordingly, we can say that memory plays a crucial 
role in the evolution of a system. Non-Markovian evolution means that the state of an open quantum system at 
time t + 1 depends not only on its state at time t, but also on its state at every previous time. Mathematically, this 
can be expressed as ρt+1 = �(ρt , ρt−1, ρt−2, ...) . In non-Markovian evolution, the system may exhibit delayed 
or oscillatory responses to external perturbations due to memory effects. It should be noted that evolution that 
does not follow the Markovian model arises when a system is strongly coupled with its environment or when 
there is long-range interaction between the system and the environment. There are several implications of 
non-Markovian evolution for the dynamics of quantum systems, including quantum revivals, decoherence-free 
subspaces, and quantum memory effects. In this study, the charging process of open QBs will be studied in both 
a Markovian and a non-Markovian regime. While the strong coupling regime is ideal for the highest battery 
charging efficiency, the weak coupling regime will also be investigated here. By selecting the appropriate initial 
state for the battery and the charger, QB can be charged to an acceptable level in weak coupling regime, i.e. when 
Markovian evolution  occurs31. In recent works, the charging process has been improved by using an intermediate 
quantum object between the charger and the  battery31,32.

In the present study, we are focusing on the strategy presented in Ref.31. As well as charger-mediated energy 
transfer, Tabesh et al. have considered an environment-mediated case for the open QBs in Ref.31. The scenario 
includes a realistic scenario for spontaneous discharge of QBs and energy leakage from the batteries. In their 
model the composite system, including the QB and charger, is analyzed as a two-qubit system. They also suggest 
that the QB can be charged by using the environment as an intermediary, without an external field or direct 
connection to the charger. A scenario in which this type of charging process could occur is known as a wireless-
like charging process. We consider the case in which the system, including QB and charger, moves within the 
environment with particular speed. In this study, it will be investigated how the moving of the QB and charger 
affects the charging process of QB. The moving of quantum systems has been shown to have a negative effect on 
the charging process and can lead to a reduction in the charging performance of a QB. This work is organized 
in the following manner: In Sec. II, the short introduction about the amount of work that one can extract from 
a QB has been provided. In Sec. III, the model of charging process will be introduced. In Sec. IV the details of 
the charging process of the QB will be studied. The results will be summarized in Sec. V.

Ergotropy
Let us start from a process that the QB is thermally isolated and does not undergo any heat exchange with its 
surroundings. Furthermore, the process is cyclic, i.e., at the end of process the system returns to its initial Ham-
iltonian. Any such process can be given by a unitary transformation,

in which HB is the Hamiltonian of the QB and V(t ′) is the time dependent fields that will be used to extract energy 
from the QB and constant � has been set equal to 1 ( � = 1 ) throughout the paper. Since the process is cyclic, 
V(t ′) vanishes at the beginning and at the end, V(0) = V(t) = 0 . The work extracted by such a procedure is

where ρB is the state of QB. By a proper choice of V(t ′) , any unitary transformation U can be generated. Therefore, 
the maximal amount of work that one can extract from a QB in a cyclic unitary process, known as  ergotropy19, 
is given by

where the minimum is taken over the set of all accessible unitary transformations. It has been shown that for any 
given state ρB there is a unique state that maximizes the above relation, this state is called the passive  state33–36 and 
one can obtain this state via some unitary transformation that rearranges the eigenvalues of ρB in non-increasing 
order. In other words, the maximal extractable work can be written  as37–39

where σB is passive state of ρB . The passive state σB has a non-increasing population with respect to its Hamilto-
nian HB and [HB, σB] = 0. Furthermore, if one can write the spectral decomposition of the density matrix of QB 
and its corresponding Hamiltonian in the following way

(1)U(t) = exp

{

−i

∫ t

0
dt′[HB + V(t ′)]

}

,

(2)W(ρB) = Tr(HBρB)− Tr(HBUρBU
†),

(3)W = Tr(HBρB)−min
U

Tr(HBUρBU
†),

(4)W = Tr(HBρB)− Tr(HBσB),
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where d is the dimension of the Hilbert space and pi and ǫi are the eigenvalues of the density matrix ρB and Ham-
iltonian HB respectively. |pi� and |ǫi� are the eigenstates of the density matrix ρB and Hamiltonian HB respectively. 
So, the passive state σB can be written  as35

and the ergotropy can be obtained  as19

where δi,j is the Kronecker delta function.

Scenario of charging process
The model consists of three subsystems: a quantum charger A, a QB B, and a common environment E that is 
acting as a mediator between QB and charger. A schematic representation of the model is shown in Fig. 1.

In this scenario, the QB and charger are both considered as the two-level systems with excitation state |ej� 
and ground state |gj� , with two qubits having the same transition frequency ω1 = ω2 . Here, the first qubit ( j = 1 ) 
with transition frequency ω1 = ωA will be considered as charger and the seconed one ( j = 2 ) with transition 
frequency ω2 = ωB will be considered as QB. It is assumed that QBs and chargers interact with a global environ-
ment and there is no direct interaction between them. QB and charger are assumed to move along the Z-axis of 
a cavity at a constant speed vi , which in general can vary for each qubit. It is possible to write the Hamiltonian 
of the model as follows

Where f(t) is a dimensionless function. f(t) plays the role of an on-off switch, such that it equals to 1 for t ∈ [0, τ ] 
and zero elsewhere, and τ is the charging time of QB. It is assumed that for t < 0 the QB and charger do not have 
interaction with environment. In Eq. (9), H0 is the total free Hamiltonian which can be written as

where σ̂ i
± is the Pauli raising and lowering operators for ith qubit and ωi is the transition frequency of ith qubit. 

âk and â†k are the annihilation and creation operators of the kth mode of the cavity, respectively. The interaction 
Hamiltonian Hint can be written as

(5)ρB =
d

∑

i=1

pi|pi��pi| p1 ≥ p2 ≥ ... ≥ pd ,

(6)HB =
d

∑

i=1

εi|εi��ǫi| ε1 ≤ ε2 ≤ ... ≤ εd ,

(7)σB = UρBU
† =

d
∑

i=1

pi|ǫi��ǫi|,

(8)W =
d

∑

i,j

piǫj

(

∣

∣

〈

pi | ǫj
〉∣

∣

2 − δi,j

)

,

(9)H = H0 + f (t)Hint ,

(10)H0 =
2

∑

j=1

ωjσ̂
j
+σ̂

j
− +

∑

k

ωkâ
†
kâk ,

(11)Hint =
2

∑

j=1

∑

k

βjσ̂
j
+gkM

j
k(z)âk +H .c.

Figure 1.  Schematic representation of the model.



4

Vol:.(1234567890)

Scientific Reports |        (2023) 13:10672  | https://doi.org/10.1038/s41598-023-37800-y

www.nature.com/scientificreports/

It should be noted that βj is what represents the speed of jth qubit inside the cavity and gk defines the coupling 
constant between qubits and the kth mode of a cavity. The motion of the qubits is limited along the z-axis of the 
 cavity40. In the general case of two qubits moving at different speeds along the z-axis, the shape function of the 
jth qubit motion Mj

k(z) can be expressed as follows

with βj = vj/c, and Ŵ = L/c , where L is the size of the cavity and c is the speed of light. In the above relation, the 
sine term is due to the boundary conditions. The boundary conditions are such that the shape function Mj

k(z) 
must be non-zero at z = 0 and zero at z = L . There has been a classical approach to dealing with the transla-
tional motion of the qubits ( z = vt ). It should be noted that the de Broglie wavelength �B of the qubits is much 
smaller than the resonant transition wavelength �0 ( �B/�0 << 1)41. So, it can be concluded that βj << 1 . The 
dimensionless collective coupling constant αT and relative strengths rj can be written as αT = (α2

1 + α2
2)

1/2 and 
rj = αj/αT . The parameters r1 and r2 satisfy the r21 + r22 = 1 . The weak and strong coupling regime can be explore 
by changing αT . Let us consider the initial state which has the following form

where |0.�R is the multimode vacuum state. From Eq. (13), it can be seen that there exist no excitation in the 
modes of cavity and the qubits are in entangled state. The state of the system at time t can be obtained as

where |1k� is the state of the cavity with just one excitation in kth mode. By substituting Eq. (14) into the time-
dependent Schrödinger equation, the differential equations for the time-dependent probability amplitude are 
obtained as follows

where δ(j)k = ωj − ωk . It is assumed that the two qubits have same transition frequency ωA = ωB . So, it is con-
cluded that δ(A)k = δ

(B)
k  . By integrating Eq. (16) and putting its result in Eq. (15), two integro-differential equations 

can be obtained for c1(t) and c2(t) as follows

From the above relations, it can be seen that the dynamics of the system depend on the speed of the qubits. Sup-
pose two qubits have the same velocity β1 = β2 = β . It may be useful to emphasize that at the beginning of the 
interaction, different positions are assumed for the qubits. The same velocity of the qubits assures us that this 
spatial separation between qubits does not change over time. In other words, the qubits are sufficiently separated 
from each other (from their initial points of interaction) that no qubit-qubit interaction will occur as time goes 
on. As a result of these considerations, it can be shown that Eq. (17) could be rewritten as follows

where F
(

t, t′
)

=
∑

k

∣

∣gk
∣

∣

2
eiδk(t−t′)fk(vt)fk

(

vt′
)

 is the correlation function. Regardless of the spectral density of 
the environment and the speed of the qubits in the cavity, there is a fixed solution for Eqs. (18) and (19), which 
leads to a stable entangled state. The stable entangled state can be obtained by setting ̇cj = 0 in Eqs. (18) and (19). 
As a result, the long-living decoherence-free state can be obtained as follows

(12)M
j
k(z) = Mk(vjt) = sin[ωk(βjt − Ŵ)], j = 1, 2,

(13)|ψ0� =
(

c01|e, g� + c02|g , e�
)

|0�R ,

(14)
|ψ(t)� =c1(t)e

−iω1t |e, g�|0�R + c2(t)e
−iω2t |g , e�|0�R

+
∑

k

ck(t)e
−iωkt |g , g�|1k�,

(15)ċj(t) = −iαj
∑

k

gkfk
(

zj
)

ck(t)e
iδ
(j)
k t , j = 1, 2,

(16)ċk(t) = −ig∗k

2
∑

j=1

αjfk
(

zj
)

cj(t)e
−iδ

(j)
k t ,

(17)

ċ1(t) =−
∫ t

0

∑

k

∣

∣gk
∣

∣

2
eiδk(t−t′)

(

α2
1 fk(v1t)fk

(

v1t
′)c1

(

t′
)

+α1α2fk(v1t)fk
(

v2t
′)c2

(

t′
))

dt′,

ċ2(t) =−
∫ t

0

∑

k

∣

∣gk
∣

∣

2
eiδk(t−t′)

(

α2
2 fk(v2t)fk

(

v2t
′)c2

(

t′
)

+α1α2fk(v2t)fk
(

v1t
′)c1

(

t ′
))

dt′.

(18)ċ1(t) = −
∫ t

0
F
(

t, t′
)(

α2
1c1

(

t ′
)

+ α1α2c2
(

t ′
))

dt′,

(19)ċ2(t) = −
∫ t

0
F
(

t, t′
)(

α2
2c2

(

t ′
)

+ α1α2c1
(

t ′
))

dt′,

(20)|ψ−� = r2|e, g� − r1|g , e�.
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There is no decoherence or change in the above state over time. Due to the fact that |ψ−� does not evolve over 
time, the only time evolution we can observe is that of its orthogonal state

The survival amplitude of the above state can be described as Q (t) = �ψ+ | ψ+(t)� . It satisfies

We assume that the two qubits interact with an environment that has a Lorantzian spectral density 
J(ω) = W2

�/π[(ω − ω0)
2 + �

2] , where �−1 is the correlation time of the environment. Due to the imperfect 
reflection of the cavity mirrors, the cavity field spectrum exhibits a Lorentz broadening. The correlation function 
for qubits in such a cavity can be expressed as f

(

t − t ′
)

= W2e−�t42,43. In the limit � → 0 , the cavity is ideal and 
its correlation function corresponds to constant function f (τ ) = W2 . In this situation, system is reduced to the 
Jaynes-Cummings diatomic model with vacuum Rabi frequency R = αTW

44. In the Markovian limit (small 
correlation times �−1 ) the decay rate can be obtained as γ = 2R 2/� . For common parameter values, the model 
falls between these two limits. Under these circumstances, the correlation time can be calculated as follows

In continuous limit Ŵ → ∞ the above integral can be solved as

where �̄ ≡ �+ iω0 . By making use of the Laplace transformation and its inverse, the solution of Eq. (22) can 
be obtained  as45

where qi ’s ( i = 1, 2, 3 ) satisfy the following cubic equation

where y± = 1± β(1+ iω0/�) and R = R /� . Now, the time-dependent probability amplitude in Eq. (14) can 
be obtained as

Results and discussion
In this section, you will find a detailed description of all the steps involved in the charging process of the QB in 
the considered model. By taking the partial traces of Eq. (14) over each of the subsystems A and B, the reduced 
time-dependent density matrix associated with QB and charger at t = τ can be obtained as

In order to study the relationship between the energy of the QB and the charger, it will be useful to study the 
energy changes of them. The changes in internal energy of the QB that occur within the charging process can 
be expressed as

where HB = ωBσ
B
+σ

B
− is the Hamiltonian of QB, ρB(τ ) is the state of the QB at time τ . On the other hand, the 

internal energy changes of the charger during the charging process can be defined as

(21)|ψ+� = r1|e, g� + r2|g , e�.

(22)Q̇ (t) = −α2
T

∫ t

0
F
(

t, t′
)

Q
(

t ′
)

dt′.

(23)
F
(

t, t′
)

=W2
�

π

∫

dω
sin[ω(βt − Ŵ)] sin

[

ω
(

βt′ − Ŵ
)]

(ω − ω0)
2 + �2

× e−i(ω−ω0)(t−t′).

(24)F
(

t, t′
)

= W2

2
e−�(t−t′) cosh

[

β�̄
(

t − t ′
)

]

,

(25)

Q (t) =
(

q1 + y+
)(

q1 + y−
)

(

q1 − q2
)(

q1 − q3
) eq1�t

+
(

q2 + y+
)(

q2 + y−
)

(

q2 − q1
)(

q2 − q3
) eq2�t

+
(

q3 + y+
)(

q3 + y−
)

(

q3 − q1
)(

q3 − q2
) eq3�t ,

(26)q3 + 2q2 +
(

y+y− + R2

2

)

q+ R2

2
= 0,

(27)
c1(t) =

[

r22 + r21Q(t)
]

c01 − r1r2[1−Q(t)]c02,
c2(t) =− r1r2[1−Q(t)]c01 +

[

r21 + r22Q(t)
]

c02.

(28)
ρB(τ ) =|c2(τ )|2|e��e|B +

(

1− |c2(τ )|2
)

|g��g|B,
ρA(τ ) =|c1(τ )|2|e��e|A +

(

1− |c1(τ )|2
)

|g��g|A.

(29)�EB = Tr[HBρB(τ )]− Tr[HBρB(0)],

(30)�EA = Tr[HAρA(τ )]− Tr[HAρA(0)],
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where HA = ωAσ
B
+σ

B
− is the Hamiltonian of charger, ρA(τ ) is the state of the charger at time τ . Regarding Eq. 

(28), energy changes of the QB �EB and charger �EA can be obtained as

�EA indicates the amount of energy that the charger has lost during the charging process, and �EB indicates the 
amount of energy stored in the QB in that time. Using Eq. (4) along with Eq. (28), one can obtain the maximum 
amount of work that can be extracted from a QB at the end of the charging process under the cyclic unitary 
operations (ergotropy) as

where �(x) = {x x≥0
0 x<0 , is the Heaviside function. Here we consider the case in which ωA,B = ω0 . Also we have 

Wmax = ω0 . In the following, we study the dynamical behavior of the internal energy changes of the charger and 
QB during the charging process and the dynamical behavior of ergotropy for two different cases.

I. First case. We begin by assuming that the QB is completely empty, while the charger has a large amount 
of internal energy compared to the QB. A situation such as this occurs when the state of the composite quantum 
system, which includes the QB, the charger, and the environment, is as follows

In Fig. 2, the internal energy change of the QB is plotted in terms of the charging time τ and the speed of the 
moving QB β for both the Marovian and non-Markovian regimes. According to the assumptions made previ-
ously, the initial energy of the QB is equal to zero.

Fig. 2a illustrates the QB’s internal energy change as a function of time τ and speed of QB inside cavity β for 
the Markovian regime with R = 0.5 . In the Markovian regime R = 0.5 , it can be seen that the internal energy 
change of the QB decreases as the speed of the moving QB increases inside the cavity. The internal energy change 
of the QB �EB has been plotted in Fig. 2b for non-Markovian regime with R = 30 . Similar to our observations 
in the Markovian regime, in the non-markovian regime the energy changes of QB decrease with increasing the 
speed of QB inside cavity. In comparing Fig. 2a,b, it is evident that in Markovian regime the maximum value 
of stored energy in the QB is �Emax

B ≃ 0.25ω0 while in non-Markovian regime we have �Emax
B ≃ 0.9ω0 . So, it 

can be concluded that the amount of energy that can be stored in the QB is the greatest in the non-Markovian 
regime. Fig. 3, shows the internal energy changes of charger as a function of time τ and charger speed β . On the 
basis of the beginning assumption, it can be seen that the internal energy of charger has its maximum value at 
initial charging time.

From Fig. 3a, it can be seen that the amount of energy used by the charger to charge the QB decreases as 
the charger’s speed increases in Morkovian regime. Fig. 3b shows the same results for non-Markovian regime. 
It can also be seen that for non-Markovian regime the amount of energy wasted in the charger to charge the 
QB decreases with the increase in the speed of charger. It can be seen from the Fig. 3a,b that the charger loses 
more energy in the non-Markovian regime than in the Markovian regime. The maximum value of energy loss 
in Markovian regime is |�EA|max ≃ 0.7ω0 while it is |�EA|max ≃ 0.9ω0 in non-Markovian regime. Whenever 
the QB is initially completely empty in the Markovian regime, no work can be extracted from the QB, and the 

(31)�EA = ωA(|c1(τ )|2 − |c1(0)|2), �EB = ωB(|c2(τ )|2 − |c2(0)|2).

(32)W = ωB

(

2|c2(τ )|2 − 1
)

�(|c2(τ )|2 −
1

2
),

(33)|�(0)� = |e�A|g�B ⊗ |0�E , ( set c01 = 1, c02 = 0 in Eq. (13)).

Figure 2.  The energy changes of QB as a function of time and speed of qubits for the case in which the 
QB is completely empty of energy and the charger has the highest amount of energy i.e. for the initial state 
|�(0)� = |e�A|g�B ⊗ |0�E , with ω0 = 1.5× 109 . (a) Markovian dynamics with R = 0.5 . (b) Non-Markovian 
dynamics with R = 30.
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ergotropy is equal to zero at any time (a plot of its ergotropy has not been shown here). In Fig. 4a, the ergotropy 
of QB in non-Markovian regime has been plotted as a function of time /tau for different values of QB speed β . 
As can be seen, as the speed β increases, the amount of work that can be extracted from the QB decreases. In 
the Fig. 4b, the ergotropy has been plotted in terms of charging time τ and speed β . It can be seen that ergot-
ropy reaches its lowest value zero as the speed of QB increases. As a general result of the first case whenever 
the QB is initially completely empty, it can be said that the best efficiency in the charging process will be in the 
non-Markovian regime. Fig. 4 shows that when the battery does not move, that is, when β = 0 , the maximum 
work can be extracted from the QB (for β = 0 , we have W = 0.85Wmax ). It makes sense that a battery that is 
stationary will be charged more efficiently than a battery that is moving. In summary, it can be concluded that 
the movement of the QB in the cavity reduces the efficiency of the charging process of QB.

II. Second case. Now we consider the case in which the initial state of the total system composed of QB, 
charger and environment has the following form

Figure 3.  The energy changes of charger as a function of time and speed of qubits for the case in which the 
QB is completely empty of energy and the charger has the highest amount of energy i.e. for the initial state 
|�(0)� = |e�A|g�B ⊗ |0�E , with ω0 = 1.5× 109 . (a) Markovian dynamics with R = 0.5 . (b) Non-Markovian 
dynamics with R = 30.

Figure 4.  (a) Dynamics of W/Wmax as a function of time for non-Markovian regime for different values 
of qubit speed β , with R = 30 and ω0 = 1.5× 109 , for the initial state |�(0)� = |e�A|g�B ⊗ |0�E . (b) Density 
plot of W/Wmax as a function of time τ and qubit speed β for non-Markovian regime, with R = 30 and 
ω0 = 1.5× 109 , for the initial state |�(0)� = |e�A|g�B ⊗ |0�E.
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with α± = �ψ±|�(0)� . Where |ψ−� is a subradiant state of the Hamiltonian, which is decoherence-free, that is 
not affected during time evolutionas and its orthogonal state is |ψ+� . They have been introduced in Eq. (20) and 
Eq. (21), respectively. From a physical perspective, this state is chosen since it is less likely to be incoherent as a 
result of interaction with the environment. Even in a weak coupling regime (Markovian evolution), it is possible 
to extract work from the QB by selecting some appropriate coefficients for α± and r1 , r231. In this case the solution 
for amplitude c1(τ ) and c2(τ ) can be find as

Let us consider the case where the initial state of the total system in Eq. (34), has the following coefficients 
α− = r1 =

√
3/2 . In Fig. 5a, the internal energy changes of QB in Markovian regime for second case in Eq. (34) 

has been plotted in terms of time τ and the speed of QB β . As can be seen in this case the the maximum internal 
energy change of QB is �Emax

B ≃ 0.3ω0 . Fig. 5b, represents the internal energy changes of QB in non-Markovian 
regime. In non-Markovian regime the maximum value of stored energy is �Emax

B ≃ 0.7ω0 . From Fig. 5a,b, it 
can be see that the non-Markovian regimes, as compared to Markovian regimes, provide a greater amount of 
energy storage in QB.

Fig. 6 shows the changes of internal energy of charger in terms of time τ and speed of charger inside environ-
ment. From Fig. 6a, it can be seen that in Morkovian regime the amount of energy wasted in the charger to charge 
the QB decreases with increasing the speed of the charger inside environment. Fig. 6b represents the change 
of charger energy in non-Markovian regime. It can also be seen that for non-Markovian regime the amount of 
energy wasted in the charger to charge the QB decreases with the increase in the speed charger. As the result 
from Fig. 6a,b, it can be seen that the highest energy loss occurs in the non-Markovian regime as compared to 
the Markovian regime.

Fig. 7 shows the amount of work that can be extracted from the battery in the Markovian regime. Here, 
the situation is different from the previous case where the QB is initially empty and the state of total system 
is in product form. It should be noted that in the second case the state of the QB and charger is considered as 
a superposition of decoherence-free state and its orthogonal state. From Fig. 7a, it can be seen that the work 
can be extracted from QB, even in the Markovian regime by selecting this state with suitable coefficients for 
the QB and charger. As can be seen the ergotropy in Markovian regime reaches approximately to the amount 
of W = 0.12Wmax . As a result, it can be seen again that there is a decrease in the amount of work that can be 
extracted from the battery as the speed at which the battery is moving in the environment increases.

Fig. 8, represents the ergotropy in non-Markovian regime. There exist similar results as what was observed in 
the Markovian regime regarding the amount of work that can be extracted from the QB in the non-Markovian 
regime, with the difference being that the amount of work that can be extracted in the non-Markovian regime 
is greater than what can be extracted in the Markovian regime. From Fig. 8a,b, it can be also seen that in non-
Markovian regime the amount of work that can be extracted from QB decreases with increasing the speed of 
QB inside environment.

(34)|�(0)� = (α−|ψ−� + α+|ψ+�)⊗ |0�E ,

(35)
c1(τ ) =c2α− + r1Q(τ )α+,

c2(τ ) =− c1α− + r2Q(τ )α+.

Figure 5.  The energy changes of QB as a function of time and speed of qubits for the initial state 
|�(0)� = (α−|ψ−� + α+|ψ+�)⊗ |0�E , with α− = r1 =

√
3/2 and ω0 = 1.5× 109 . (a) Markovian dynamics 

with R = 0.5 . (b) Non-Markovian dynamics with R = 30.
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Outlook and summary
An open QB can be defined as a quantum system that is capable of storing and releasing energy under the 
influence of its surroundings or an external environment. This interaction with the environment is crucial as it 
affects the battery’s performance and efficiency. The performance and efficiency of QB can be reduced because 
of energy loss, decoherence, and thermalization due to the interaction with the environment. However, the 
environment can also be used to enhance certain aspects of the open QB. For instance, environmental coupling 
can assist in the initialization of the battery or enable energy transfer processes to take place in a more efficient 
manner. This study examined the charging process of a QB-charger that moves with a particular speed inside 
the common environment. In this model, wireless-like charging model has been considered and the battery and 
charger have no interaction with each other. In this work, two cases were considered. First, it is assumed that 
the battery is completely empty and that the charger has the greatest amount of energy. In the first case, when 
the coupling is weak, the QB can be charged while no work can be extracted from it. It is due to the fact that, in 
Markovian regime we do not have a back-flow of information from the environment to  system31 and there is an 
amplification of decoherence effects and ergotropy is generally zero. In the strong coupling regime, the QB can 
be properly charged and the ergotropy is non-zero. In non Markovian regime the evolution of a QB is influenced 
by its environment in a way that retains memory of past interactions. This memory effect leads to the decrement 
of decoherence effects which makes the possibility of extracting non-zero work from the battery. In the second 

Figure 6.  The energy changes of charger as a function of time and speed of qubits for the initial state 
|�(0)� = (α−|ψ−� + α+|ψ+�)⊗ |0�E , with α− = r1 =

√
3/2 and ω0 = 1.5× 109 . (a) Markovian dynamics 

with R = 0.5 . (b) Non-Markovian dynamics with R = 30.

(a) (b)

Figure 7.  (a) Dynamics of W/Wmax as a function of time in Markovian regime for different values of qubit 
speed β , for the initial state |�(0)� = (α−|ψ−� + α+|ψ+�)⊗ |0�E , with α− = r1 =

√
3/2 , R = 0.5 and 

ω0 = 1.5× 109 . (b) Dynamics of W/Wmax as a function of time τ and qubit speed β in Markovian regime for 
the initial state |�(0)� = (α−|ψ−� + α+|ψ+�)⊗ |0�E , with α− = r1 =

√
3/2 , R = 0.5 and ω0 = 1.5× 109.
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case, a situation was assumed in which the state of the battery and charger is considered as a superposition of 
decoherence-free state and its orthogonal state. In this case, the results are the same as the first case, with the 
difference that in the second case, due to the existence of the decoherence-free state, it is possible to extract work 
from the battery in Markovian regime.

Furthermore, it was observed that the movement of the QB inside the environment has an adverse effect 
on the charging of the QB. The speed of the QB can affect the rate of energy exchange from the environment 
to the QB, and thus has an effect on the performance of the charging process of the QB. It was observed that 
for both Markovian and non-Markovian regime the performance of QB decreases with increasing the speed of 
QB inside environment. It can be concluded that when the QB moves quickly, it may not have sufficient time 
to exchange energy with environment, which could lead to a less efficient charging process. However, when the 
qubit moves slowly, it may have sufficient time to exchange energy with environment, which could lead to a less 
efficient charging process.

Data availability
The datasets used and analysed during the current study available from the corresponding author on reasonable 
request.
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