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Semiconductor quantum dots in which electrons or holes are isolated via electrostatic potentials
generated by surface gates are promising building blocks for semiconductor-based quantum technology.
Here, we investigate double-quantum-dot (DQD) charge qubits in GaAs capacitively coupled to high-
impedance superconducting quantum interference device array and Josephson-junction array resonators.
We tune the strength of the electric-dipole interaction between the qubit and the resonator in situ using
surface gates. We characterize the qubit-resonator coupling strength, the qubit decoherence, and the
detuning noise affecting the charge qubit for different electrostatic DQD configurations. We find all
quantities to be systematically tunable over more than one order of magnitude, resulting in reproducible
decoherence rates Γ2=2π < 5 MHz in the limit of high interdot capacitance. In the opposite limit,
by reducing the interdot capacitance, we increase the DQD electric-dipole strength and, therefore, its
coupling to the resonator. Employing a Josephson-junction array resonator with an impedance of
approximately 4 kΩ and a resonance frequency of ωr=2π ∼ 5.6 GHz, we observe a coupling strength
of g=2π ∼ 630 MHz, demonstrating the possibility to operate electrons hosted in a semiconductor DQD in
the ultrastrong-coupling regime (USC). The presented results are essential for further increasing the
coherence of quantum-dot-based qubits and investigating USC physics in semiconducting QDs.
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I. INTRODUCTION

The semiconductor material platform [1,2] promises
scalable realizations of quantum bits (qubits) with long
coherence time, fast operation, and a wide range of
tunability [3]. Electrons and holes are confined on small
islands, called quantum dots (QDs), defined by electrostatic
gates fabricated on top of semiconducting host materials
[1,4,5]. QD devices can be studied directly in transport or

remotely by a nearby charge detector, such as a quantum
point contact or another quantum dot [1]. Recently, semi-
conducting QDs have also been successfully embedded in
circuit quantum electrodynamics (cQED) architectures,
enabling the study of double [6,7] and triple quantum dots
[8] via their electric dipolar interaction with a microwave
resonator. Strong coupling between resonator microwave
photons and charge [9–11] and spin [8,12,13] degrees of
freedom in the QDs has been achieved. Although the spin
degree of freedom is of particular interest for quantum
information applications, charge noise in the host substrate
remains a major limitation [14,15]. Even operation of the
quantum devices at sweet spots—configurations in the
parameter space where critical system properties are
minimally affected by noise in the control parameters
[16–21]—can mitigate its effects only to a limited extent.
Therefore, understanding and improving the coherence and
control of the charge degree of freedom in semiconductor
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systems is of special interest also for future spin qubit
applications. In fact, all recent successful cQED imple-
mentations of spins of electrons confined in QDs [8,12,13]
rely on coupling the spin to the electric field of microwave
photons via a controlled hybridization of the spin and
orbital degrees of freedom, in effect allowing the spin qubit
to acquire an electric-dipole moment. The strength of this
dipole coupling can be tuned by controlling the spin-orbit
degree of hybridization. This allows one to find a com-
promise between a charge qubit with a short coherence but
large coupling to cavity photons and the more protected
pure spin qubit with small or negligible coupling to cavity
photons [22].
In this paper, we describe a strategy to systemat-

ically tune the double-quantum-dot (DQD) electric-dipole
strength which controls the coupling rate between the DQD
charge system and a superconducting microwave resonator.
The approach is based on altering the magnitude of the
DQD interdot capacitance while maintaining the interdot
tunneling rate close to the resonator frequency. We explore
different configurations of the DQD confinement potential
created by the surface metallic depletion gates and dem-
onstrate how to efficiently assess the magnitude of
the DQD dipole strength in a given configuration. As
we explain in Sec. II, increasing the interdot capacitance
lowers the electric-dipole strength of the DQD.
In this paper, we present experiments on two distinct

devices [reported in Figs. 1(a), 1(c), 1(d), and 1(e) and
Figs. 1(b), 1(e), 1(f), and 1(g), respectively] with which we
explore a range of the DQD electric-dipole strengths and
analyze the DQD decoherence, sensitivity to charge noise,
and coupling to the resonator.
In a set of experiments performed with the first device,

we systematically decrease the DQD electric-dipole
strength by exploring regimes in which the interdot mutual
capacitance Cm becomes the dominant contribution to the
DQD capacitance. In all of these DQD configurations,
the DQD-cavity system is in the strong-coupling regime,
namely, in a configuration where the coupling strength
between the radiation and the quantum two-level system (g)
exceeds the total decoherence of the coupled systems.
In the first device [see Figs. 1(a), 1(c), 1(d), and 1(e)], the

DQD is coupled to a superconducting quantum inter-
ference device (SQUID) array resonator. We systematically
decrease the DQD electric-dipole strength by exploring
regimes with increasing interdot mutual capacitance Cm.
This allows us to generate a high degree of resilience
against charge noise.Wemake extensive use of the frequency
tunability of the SQUID-array resonator [see Figs. 1(a)
and 1(d)]. We reproducibly achieve a decoherence rate
of only a few megahertz for DQD charge qubits in
GaAs=AlGaAs operated in the tens of electrons regime
[23], which substantially increases the visibility of the
vacuum Rabi mode splitting for a DQD-resonator hybrid
device, essential for spectroscopic characterization of the

coherent electron-photon hybridization. Furthermore, we
show that the reduced sensitivity to charge noise also
considerably increases the qubit coherence even at finite
DQD detuning.
In the second device, a DQD is coupled to a Josephson-

junction array resonator [see Figs. 1(b), 1(e), 1(f), and
1(g)]. We explore the same tuning strategy of the
DQD confinement potential as used in the first device
but aiming for maximizing the DQD electric-dipole
strength. We increase the coupling rate of the DQD to
the microwave resonator and approach the ultrastrong-
coupling (USC) regime [24–26]. The USC is a configu-
ration where the vacuum Rabi frequency (g) becomes an
appreciable fraction of the uncoupled eigenfrequencies of

(c)

(g)

(d)(a) (b)

(f)(e)

FIG. 1. Simplified circuit diagram and micrographs of the
devices. (a) [(b)] False-colored SEM micrograph of a section of
the SQUID [Josephson-junction] array resonator indicated by the
light [dark] orange rectangle in (c) [(f)]. Josephson junctions in
the array are highlighted in red. (c) False-colored optical micro-
graph of the measured device described in Sec. II, with a SQUID
array resonator (red), ground plane (light gray), fine (light gray),
and coarse (gold) gates defining the DQD. (d) [(g)] Schematic of
the device and control line indicating a simplified circuit diagram
of the SQUID [Josephson-junction] array resonator (red), drive
line (green), the DQD (cyan), and an external coil (black). CRPG;2,
CRPG;1, CΣ;2, CΣ;1, and Cm are the capacitance between the QD2

[QD1] and the resonator, total capacitance of QD2 [QD1], and
interdot capacitance, respectively. (e) Scanning electron micro-
graph of the areas indicated by yellow rectangles in (c) and
(f) showing the DQD fine gates (light gray) on the GaAs mesa
(dark gray). The plunger gate galvanically connected to the
resonator is highlighted in red. (f) False-colored optical micro-
graph of the measured device described in Sec. III, showing the
substrate (dark blue), the superconducting structures including
the Al fine gate forming the DQD (light blue), the Josephson-
junction array (red), and the microwave feedline (green).
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the system (ωr and ωq), frequently characterized by the
ratio g=ωr ≥ 0.1. In contrast to standard cavity-QED
scenarios, in the USC regime the routinely invoked rotat-
ing-wave approximation is no longer applicable, and the
antiresonant terms become significant [25,26]. Given the
small electric-dipole moment and high decoherence rates,
reaching the USC regime with a semiconductor DQD
system is more demanding than with superconducting
qubits. Here, we demonstrate that careful design and
tuning of the DQD confinement potential and using a
junction array resonator with a characteristic impedance
of approximately 4 kΩ allows us to reach a coupling
strength of g=2π ∼ 600–650 MHz at a resonator frequency
of ωr=2π ∼ 5.6 GHz.
The article is structured as follows: In Sec. II, we

discuss the DQD charge qubit and derive its sensitivity
to applied voltages and charge fluctuations, which is
central to the understanding of the experiments presented
in later sections. In Sec. III, we present measurements
aimed at maximizing the coherence of semiconductor
charge qubits. In Sec. IV, we demonstrate that we can
reach ultrastrong coupling to a superconducting resonator
in a device with an identical quantum dot design. We
conclude with Sec. V, where we give an outlook toward
future research enabled by our results. Technical details,
derivations, and supporting measurements are discussed
in the Appendixes.

II. DOUBLE-QUANTUM-DOT CHARGE QUBIT

In this work, we consider a DQD charge qubit [4]
coupled to a microwave resonator. We investigate its
coherence properties and coupling strength when system-
atically varying the electrostatic properties of the dots. The
qubit is modeled with a Hamiltonian characterized by two
parameters, the detuning between the two dots ϵ and the
tunneling amplitude Δ coupling them:

Hq ¼
1

2
ðϵσz þ ΔσxÞ≡ 1

2
ℏωqσ · ðcosφ; 0; sinφÞ: ð1Þ

Here, we introduce the mixing angle through tanφ ¼ ϵ=Δ,
the qubit energy ℏωq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ Δ2

p
, and the vector of Pauli

matrices σ. The Hamiltonian is written in the basis of
position states jli and jri, which differ in their charge
configuration by a single electron transferred across the
double dot. The finite overlap of these position states
results in the tunneling amplitude Δ, and their energy
difference defines the detuning ϵ ¼ ϵr − ϵl.
The DQD is defined through electrostatic gates con-

trolled via applied voltages. Its states can be characterized
by the number of charges in each dot. We define a vector of
charges q ¼ −eðn1; n2ÞT and gate voltages v. The latter
leads to induced gate charges on each dot through
qG ¼ −eðnG;1; nG;2ÞT ¼ −eCGv, with the gate capacitance
matrix CG and the electron charge e (for details, see

Appendix C). For a given charge-voltage configuration,
the electrostatic energy of the DQD results to [1]

Eðn1; n2; vÞ ¼
1

2
ðq − qGÞT · C−1

D · ðq − qGÞ: ð2Þ

Here, we introduce the DQD capacitance matrix

CD ¼
�

CΣ;1 −Cm

−Cm CΣ;2

�
; ð3Þ

with the total capacitance of the kth dot CΣ;k and the mutual
interdot capacitance Cm. In particular, the mutual capaci-
tance Cm is a parameter which is experimentally tunable
through modifications of the shape and distance of the
two dots.
The detuning ϵ in the Hamiltonian is defined as the

energy difference between two states whose charge con-
figuration differs by a single charge on either the left or
right dot. We can, thus, write

ϵ ¼ Eðn1; n2; vÞ − Eðn1 − 1; n2 þ 1; vÞ
¼ EC;1ð2n1 − 2nG;1 − 1Þ − EC;2ð2n2 − 2nG;2 þ 1Þ
þ 2EC;mðn2 − nG;2 − n1 þ nG;1 þ 1Þ; ð4Þ

where we define the charging energies EC;1=2 ¼ e2CΣ;2=1=
½2ðCΣ;1CΣ;2 − C2

mÞ� and EC;m ¼ e2Cm=½2ðCΣ;1CΣ;2 − C2
mÞ�.

To elucidate the effect of variations and fluctuations in
gate voltages δVG on the Hamiltonian parameters, we
define the induced variation in gate charge as δqG ¼
δVGðCG;1; CG;2ÞT . From Eq. (4), we then find the change
in ϵ to be

δϵ ¼ 2δVG½CG;1ðEC;1 − EC;mÞ − CG;2ðEC;2 − EC;mÞ�=e

≈
eδVG

CΣ þ Cm
ðCG;1 − CG;2Þ; ð5Þ

where in the last step we assume equal QDs with
CΣ;1 ¼ CΣ;2 ¼ CΣ. The generalization of Eq. (5) to the
case of dissimilar QDs is given in Appendix C.
We show that qubit electrical sensitivity, expressed in

Eq. (5), appears as an essential parameter for both qubit-
resonator coupling and coherence. Let us, therefore, ana-
lyze Eq. (5) in more detail. It states that the sensitivity to a
given gate voltage is larger if the two dots are coupled to it
differently, CG;1 ≠ CG;2, and is smaller if the dot mutual
capacitance Cm grows. The more tightly the two dots are
coupled, the less differently they respond to a voltage
change on a gate and the smaller is the DQD effective
dipole strength. This finding is a central point of this paper.
On the first look, Eq. (5) suggests a reduction in

electrical sensitivity by 1=ðCΣ þ CmÞ. However, the reduc-
tion is stronger, due to a sum rule that the capacitances
need to satisfy. To see that, we write a single-dot total
capacitance as
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CΣ ¼ Cm þ Cgnd þ
X
g

Cg ¼ Cm þ Cout; ð6Þ

where we define its capacitance to ground as Cgnd and to
each gate as Cg. We also use Cout, the capacitance to the
outside world, as the total capacitance to everything else
except the other single dot. With this notation, we write the
variation of ϵ due to an applied voltage δVG as

δϵ ¼ eδVG
CG;1 − CG;2

Cout

CΣ − Cm

CΣ þ Cm
: ð7Þ

Here, we interpret the last term as the renormalization factor
for the dipolar energy of the system (see Appendix B)

η ¼ CΣ − Cm

CΣ þ Cm
¼ 1 − Cm=CΣ

1þ Cm=CΣ
: ð8Þ

If the dots have nonequal total capacitance (CΣ;1 ≠ CΣ;2), an
additional contribution appears in Eq. (7). However, the
definition of the factor η given in Eq. (8) remains the same;
seeAppendixC for details. In the rest of the paper, we refer to

η as dipole strength for brevity. The quantities defining the
dipole strength as given in Eq. (8) can be directly read off the
standard charging diagram of the double dot as illustrated in
Figs. 2 and 7.
Note that here we are not considering the concomitant

change in tunneling amplitude Δ when changing the
electrostatic confinement of the dot. This is because the
lever arm for changing the tunneling amplitude Δ in GaAs
QDs similar to the one considered here is typically at least
one order of magnitude smaller than for changes in ϵ [27].
Furthermore, in the experiments presented here, through
independent tuning of the T and CP gate voltages [see
Fig. 1(e)], we take care to keepΔ=h around 4.5–5.5 GHz in
all measurements (see Table I). In this way, we can
specifically investigate changes in the DQD coherence
properties and coupling strength when tuning mainly the
interdot capacitance Cm and, therefore, only the dipole
strength η.
Equations (7) and (8) allow a straightforward derivation

of the interaction between the charge qubit and the
resonator by replacing the voltage fluctuations δVG by
the voltage vacuum fluctuations of a superconducting

(c) (d)

(e) (f)

(a)

(b)

FIG. 2. DQD charge stability diagrams. (a) A schematic of a DQD charge stability diagram for a configuration with a large mutual
capacitance Cm, resulting in η ∼ 0.10. The black areas (lines) represent interdot (QDi-leadi) charge degeneracy regions. The dipole
strength η is determined directly from the charge stability diagrams. ΔVm and ΔVg are the voltage distance between the two triple points
and QD-lead energy degeneracies, respectively. (b) The same as (a) but for smaller Cm, resulting in η ∼ 0.70. (c)–(f) Measured DQD
charge stability diagrams obtained for four different DQD configurations in correspondence of four distinct values of Cm [decreasing
from (c) to (f)]. Each charge stability diagram is measured by monitoring the change in the phase Δϕ of the resonator reflectance in
response to the DQD gate voltages. The axes scales of the LSG and RSG gate voltages are kept the same in the four panels for ease of
comparison.
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resonator of frequency ωr ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
LrCr

p
, given by its capaci-

tance Cr and inductance Lr:

δVG ¼
ffiffiffiffiffiffiffiffi
ℏωr

2Cr

s
ðaþ a†Þ: ð9Þ

a is the annihilation operator of the resonator quantized
electromagnetic field. The strength of the resulting qubit-
resonator interactionHq−r ¼ ð1=2Þgσzðaþ a†Þ can be para-
metrized using the resonator impedance Zr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr=Cr

p
as

g ¼ ωr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2

ℏ
Zr

r
× η

CG;1 − CG;2

Cout
; ð10Þ

separating the contributions from the resonator and the DQD
charge qubit. Since instrumental constraints limit the reso-
nator frequency, the crucial resonator parameter when
aiming at maximizing the coupling strength is its impedance
Zr. The dot properties and systemgeometry enter through the
second term.
Equation (5) also encodes the qubit coupling to electrical

noise. To describe electrical noise, we consider uncontrolled
fluctuations of voltage VG, causing random fluctuations of
the qubit energy and, thus, decoherence. The latter is a
complex process, depending on the details of the time
correlations in these fluctuations. After analyzing most
typical scenarios [28], which we list in Appendix D, here
we restrict ourselves to dephasing due to singular noisewith a
1=f-type spectral function SðωÞ ¼ A=jωj;ωir < ω < ωc,
linearly coupled to the qubit. The low- and high-frequency
cutoffsωir andωc are typically defined through experimental
timescales. In the quasistatic approximation, where the noise
is considered static in each individual run of the experiment,
this leads to decay of the qubit off-diagonal density matrix
element with a Gaussian form [28] as

ln c1=flin ðτÞ ¼ −τ2
�
∂ℏωq

∂ϵ

�
2
�

∂ϵ

∂VG

�
2

A ln

�
ωc

ωir

�

≡ −τ2
�
∂ℏωq

∂ϵ

�
2

σ2ϵ ≡ −ðΓφτÞ2: ð11Þ

Here, τ denotes the evolution time, and cðτÞ is the
decay envelope. Introducing the pure dephasing time Γφ,
the expression can be written as a function of a dimen-
sionless parameter Γφτ. Additionally, the noise parameter
σϵ ∝ ∂ϵ=∂VG, given by Eq. (5), isolates the effects that are in
our focus. Finally, the noise of semiconducting charge
qubits is most probably not dominated by fluctuating
voltages of the gates but fluctuating charges of impurities.
We show in Appendix C that there is a relation analogous to
Eq. (7) describing detuning response to charge impurity
fluctuations.
The dipole strength as defined in Eq. (8) is experimen-

tally easily accessible and provides useful qualitative

predictions. Indeed, from Eq. (10), we see that the coupling
to the resonator theoretically scales proportionally to η.
Maximizing the coupling, therefore, calls for maximizing η,
i.e., minimizing the mutual capacitance of the two dots. If
the coherence of the DQD charge system is limited by
electric noise-induced dephasing, the coherence time
1=Γ2 ∼ 1=Γϕ is, according to Eq. (11), expected to scale
as 1=η, since Eqs. (7) and (8) give ∂ϵ=∂VG ∼ η. Therefore, a
maximally coherent charge qubit requires minimizing η.
The scaling 1=η is a consequence of the singular noise
resulting in a Gaussian decay form. Other relevant decay
channels, like relaxation and nonsingular noise, lead to a
scaling of the coherence time as ∝ 1=η2 (see Table III in
Appendix D) [28]. We thus expect that, depending on the
details of the dominant noise source in the experiments, the
qubit coupling quality factorQ ¼ g=Γ2 is either constant as
a function of η (for singular noise dominating dephasing) or
can be ∝ 1=η (for regular dephasing noise or if relaxation
dominates). The latter situation allows one to optimize Q
by tuning the mutual dot capacitance. In the following
Sec. III, we investigate which specific scenario is realized
in our system. We find that the charge-photon coupling
strength g and decoherence rate Γ2 are both in situ tunable
over an order of magnitude, while Q remains approxi-
mately constant. Minimizing the dipole strength, we
achieve Γ2=2π < 5 MHz. In Sec. IV, aiming at maximizing
the charge-photon coupling strength g, we employ a
resonator with an even larger impedance. Making use of
both terms in Eq. (10), we achieve charge-photon coupling
strength g=2π ∼ 630 MHz for a fundamental mode reso-
nator frequency of ωr=2π ∼ 5.6 GHz.

III. INCREASING CHARGE
QUBIT COHERENCE

In this section, we describe experiments performed on the
first device where we investigate a GaAs DQD charge qubit
strongly coupled to a SQUID array resonator [see Figs. 1(a),
1(c), 1(d), and 1(e)] [10,23]. We characterize the qubit
coherence properties and its coupling strength g to the
resonator. Aiming to reduce decoherence of the qubit,
we in situ explore different electrostatic confinement poten-
tials of the DQD in the few-electron regime (approximately
10–20) obtained by tuning the voltages applied to the
electrostatic gates defining the DQD [see Fig. 1(e)]. Each
configuration leads to a different strength of the effective
dipole interaction between the DQD and resonator, charac-
terized by a different dipole strength η as defined in Eq. (8).
We use a GaAs=AlGaAs heterostructure with a 2DEG

approximately 90 nm below the surface. Depletion gates are
used to define the DQD electrostatic potential. The right dot
plunger gate is galvanically connected to the resonator [see
Figs. 1(c) and 1(e)]. We measure the resonator response in
reflection via the drive line [indicated in green in Fig. 1(c)]
in a heterodyne detection scheme by monitoring the ampli-
tude (jS11j) and phase difference (Δϕ ¼ Arg½S11�) of the
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reflected signal [29]. An additional spectroscopy tone can be
applied through the same line. The secondDQD in the device
[Fig. 1(c)] is tuned deeply into Coulomb blockade and does
not participate in the reported experiment.
The impedance of the employed SQUID array resonator

[see Figs. 1(a) and 1(c)] is estimated to be ZSq
r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LSq=CSq
p

∼ 1 kΩ. Similar high-impedance resonators
have been previously shown to enable the strong-coupling
regime between a DQD and microwave photons [10]. A
magnetic flux, applied via a superconducting coil mounted
on the sample box, is used to tune the resonator in the
frequency range ωr=2π ∼ ½4.2; 5.7� GHz (see Table I).
The internal resonator dissipation κint and coupling to
the microwave feedline κext change with the resonator
frequency, as shown in Fig. 6(c) in Appendix A [30].
The DQD response to the gate voltages is characterized

by charge stability diagrams [4], which we measure by
recording the amplitude and phase response of the reflec-
tance of the resonator [6]. From those diagrams, we extract
the charging energies and capacitances of the DQD. In
Figs. 2(c)–2(f), we present four typical examples of DQD
charge stability diagrams realized within the same device
by in situ tuning the voltages on the four gates defining the
DQD [Fig. 1(e)]. The differences between the four con-
figurations lie mainly in different voltages applied to the
gates T and CG [cf. Fig. 1(e)] which control the interdot
tunnel barrier and are listed in Table II in Appendix A. For
ease of comparison, the axis scales are identical for the four
panels in Fig. 2. We highlight that these four different
configurations present similar interdot tunneling ampli-
tudesΔ despite the different gate voltage values (see Table I
in Appendix A).
Comparing the four DQD configurations shown in

Figs. 2(c)–2(f), we notice that the average spacing between
the DQD triple points [4] [maximal in Fig. 2(c)] decreases
relative to the spacing between two consecutive QD-
reservoir charge transitions [dashed lines in Figs. 2(c)–
2(f)]. This variation can be interpreted as a change in the
contribution of the interdot coupling capacitance (Cm) to
the total capacitance of the individual QDs (CΣ;1 and CΣ;2)
[4]. This translates into the dipole strength η [Eq. (8)]
covering the interval [0.1, 0.7] in our experiments. Both
Cm=CΣ and the dipole strength η can be determined from
the charge stability diagrams by considering the arrows
indicated in the schematics in Figs. 2(a) and 2(b). The red
arrow represents the distance of two adjacent DQD triple
points, and the blue arrow connects two consecutive elec-
tron transitions with the leads. As derived in Appendix A,
in the simplified case of symmetric QDs, CΣ;1 ¼CΣ;2 ¼CΣ,
and neglecting gate-cross capacitances, one finds Cm=
CΣ ¼ ΔVm=ðΔVg − ΔVmÞ and η ¼ 1 − ½ð2ΔVm=ΔVgÞ�.
ΔVm (ΔVg) represents the length of the red (blue) arrow
in Figs. 2(a) and 2(b). Furthermore, we emphasize that this
striking change of the DQD interdot capacitance is obtained
while keeping the interdot tunneling rate in the range

4 GHz < Δ=h < 6 GHz. The ability to control Δ and η
independently allows us to probe the interaction with the
resonator in both resonant and dispersive regimes.
In total, we study 11 different DQD configurations from

which we extract the parameters summarized in Table I. For
three of these configurations, we present in Fig. 3 the hybri-
dized qubit-resonator energy spectrum [see Figs. 3(a)–3(d)],
a measurement of the intrinsic DQD charge qubit linewidth
[see Fig. 3(e)], and a measurement of the root-mean-square
amplitude of the detuning noise σϵ defined in Eq. (11) [see
Fig. 3(f)]. The data plotted in Figs. 3(d) and 3(e) are taken at
charge degeneracy (ϵ ¼ 0).
In Figs. 3(a)–3(c), we show three examples of hybridized

spectra in the strong-coupling regime for different dipole
strengths. The DQD stability diagrams of the three configu-
rations in Figs. 3(a)–3(c) are shown in Figs. 2(e), 2(d), and
2(c), respectively, in corresponding colors.We tune theDQD
gate voltages and the SQUID array resonance frequency to
reach the resonance condition ωq ¼ ωr at approximately
zero detuning ϵ. Varying the DQD detuning, we observe the
characteristic shifts in the dispersive regime and clear
indications of an avoided crossing [9,10] at resonance. We
analyze the hybridized spectrum and extract the coupling
strength g, resonator resonance frequency ωr=2π, and DQD
tunneling amplitude Δ by fitting the observed resonances to
the spectrum extracted from the system Hamiltonian (see
Appendix F for details). TheHamiltonian spectrum is plotted
by dashed lines in Figs. 3(a)–3(c).
When comparing these three configurations, we take

note of a correlation between the coupling strength g
and the visibility of the reflected signal (Rabi modes
splitting) around the avoided crossing. Figure 3(d) shows
the line cuts at the resonance [detuning indicated by black
arrows in Figs. 3(a)–3(c)] visualizing the correlation
between the coupling strength and the visibility of the
Rabi modes splitting. Furthermore, increasing η, we
observe a distinct increase of the linewidth of the Rabi
modes ½ΓR ∼ ðκext þ κintÞ=2þ Γ2�, extracted by fitting the
data to a sum of two Lorentzian lines [see the solid line
in Fig. 3(d)], and a clear reduction in the depth of the
two Lorentzian [compare the y axis for the three panels in
Fig. 3(d)]. This suggests that the dipole strength also has a
strong influence on the system decoherence.
We investigate in more detail the correlations between

the measured dipole strength η and the observed coherence
of the charge qubit. Using two-tone spectroscopy [10,31],
we measure the intrinsic qubit linewidth at charge degen-
eracy (ϵ ¼ 0) and its sensitivity to the noise of the detuning
parameter induced by the charge noise of the DQD
electromagnetic environment [32]. Measuring the power
dependence of the qubit linewidth, we extract the zero
power linewidth (PS → 0) [see Fig. 3(e)], from which we
determine the intrinsic DQD charge decoherence rate Γ2

[10,31]. In this experiment, we reach a DQD linewidth as
low as approximately 4.5� 0.2 MHz for a configuration
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with η ¼ 0.10� 0.07. In contrast, by in situ tuning to a
configuration with η ¼ 0.71� 0.03, the DQD charge qubit
linewidth increases by a factor of 8.
At ϵ ¼ 0, the charge qubit is first-order insensitive to

charge noise, since ∂ωq=∂ϵ ¼ 0. Measuring the depend-
ence of the qubit linewidth against the detuning ϵ, we
extract the detuning noise σϵ according to Eq. (11) [see
Figs. 3(f) and 4(c) and also Refs. [21,23] ]. The extraction
of σϵ in two-tone spectroscopy is performed at a larger
resonator readout power explaining the lower error bars on
the extracted linewidths and the higher value of qubit
linewidth at ϵ ¼ 0 compared to Fig. 3(e). We notice that σϵ
clearly decreases for lower η.

The measurements presented in Fig. 3 indicate that
increasing the capacitance ratio Cm=CΣ reduces the reso-
nator-DQD coupling strength g [Fig. 3(d)], the qubit
decoherence Γ2 ≡ δνðPS → 0Þ [Fig. 3(e)], and the sensi-
tivity of the qubit energy to detuning noise [Fig. 3(f)] [33].
The reduced sensitivity of the DQD to charge noise is
engineered through a large mutual capacitance of strongly
coupled QDs.
We summarize results of similar measurements

for all 11 investigated DQD configurations in Fig. 4.
In order to systematically compare the coupling strength g
of the different configurations, we normalize it
to [34]

(a) (b) (c)

(d) (e) (f)

FIG. 3. The dependence of the coupling strength g and DQD coherence rates ΓR and Γ2 for DQD configurations with dipole strengths
η ¼ 0.42, 0.17, 0.10. (a)–(c) Resonator reflectance amplitude jS11j versus DQD detuning ϵ for three representative values of the dipole
strength η ∼ 0.42� 0.08 (blue curve), η ∼ 0.17� 0.08 (green curve), and η ∼ 0.10� 0.07 (red curve) [corresponding to the DQD
charge stability diagrams in Figs. 2(c), 2(b), and 2(a), respectively]. (d) Resonator amplitude response jS11j (dots) versus probe
frequency ωp=2π at ϵ ¼ 0 [see the black arrow in (a)–(c)], displaying well-resolved vacuum Rabi mode splittings. The solid line is a fit
to the sum of two Lorentzian lines. The quoted ΓR is computed as an average of the two linewidths. (e) Squared qubit linewidth δν2q
(dots) versus spectroscopy drive power Ps, measured via two-tone spectroscopy [10]. The dashed lines are linear fits. The zero-power
linewidths Γ2 are given. (f) Qubit linewidth δνq (dots) versus dðℏωÞ=dϵ extracted from two-tone spectroscopy [10]. The dashed lines are
linear fits. Their slopes define σϵ according to Eq. (11).
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ḡ⊥ ¼ gðωr=2π ¼ Δ=h ¼ 5 GHzÞ ¼ g
Δ
ℏωr

5 GHz
ωr=2π

: ð12Þ

The normalization aims to systematically account for the
small differences in the resonator frequency or inductance
and in DQD tunneling amplitude Δ [10] at which the
experiments are performed (see Table I and Appendix H).
The normalized coupling strength ḡ⊥=2π ranges from 41.6
to 250.6 MHz. The dependence of the normalized cou-
pling ḡ⊥ on η agrees with the linear relation [see Fig. 4(a)]
derived as Eq. (10).
A similar dependence on η is also observed for the

DQD decoherence Γ2 [Fig. 4(b)] and detuning noise σϵ
[Fig. 4(c)], as modeled by Eq. (11). In order to display the
linear relation between coupling strength ḡ⊥ and DQD

decoherence Γ2, we plot both quantities in Fig. 4(d). The
scattered ðΓ2; ḡ⊥Þ data lie within the 3σ confidence interval
of the linear fit. The proportionality relation is additionally
highlighted by inspecting the quality factor of the reso-
nator-qubit hybrid systemQ ¼ ḡ⊥=Γ2 [35]. In Fig. 4(e), we
observe that Q does not show a strong dependence on the
dipole strength η, but it is scattered around a mean value of
9.7 with a standard deviation of 2.2, indicating that the
coherence of the system is likely dominated by dephasing
due to singular charge noise (see Sec. I).
For a circuit QED architecture realized with semicon-

ductor QDs and superconducting resonators, the strong-
coupling regime has been reached only recently [9,10].
Intrinsic limitations are the high decoherence rate of
the orbital-charge degree of freedom and the small

(a) (d)

(b)

(c)

(e)

(f)

FIG. 4. Coupling strength and decoherence parameters extracted for 11 DQD gate bias voltage configurations. (a) Normalized
coupling ḡ⊥ [see Eq. (12)] of the DQD charge qubit to the resonator versus the dipole strength η. (b) Qubit linewidth Γ2 versus η. The
linewidth is extracted as in Fig. 3(e). (c) Effective detuning noise of the DQD charge qubit σϵ versus η, obtained as in Fig. 3(f). For two
configurations in correspondence with η ¼ 0.123 and 0.709, we cannot extract σϵ due to either spurious resonances or enhanced
sensitivity to detuning noise, respectively. (d) DQD linewidth Γ2 versus the normalized coupling. The data in (a)–(d) are fitted to a linear
model plotted as dashed lines, and the fit parameters are stated in the panels. The dark [light] blue area represents the one- [two-]sigma
confidence interval. (e) The quality factor ḡ⊥=Γ2 versus η. (f) Visibility of the vacuum Rabi modes (at resonance) ð1 − jS11jÞ ¼
2κext=ðκext þ κint þ 2Γ2Þ versus η. The inset shows an example of a vacuum Rabi mode splitting, with the black arrow indicating the
visibility of a Rabi mode at the resonance.
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electric-dipole moment of electrons confined in QDs. The
high qubit decoherence implies low visibility of the vacuum
Rabi mode splitting, even if strong coupling is reached [10].
In Appendix F 4, we derive an expression for the visibility
of the vacuum-Rabi mode splitting for a single-port reso-
nator coupled to a DQD and tested in reflection.
In the case of a DQD and resonator being tuned into
resonance, we find ð1 − jS11jÞ ¼ 2κext=ðκext þ κint þ 2Γ2Þ.
The estimated visibility is plotted in Fig. 4(f) for the
different DQD configurations explored in this study.
When tuning the DQD into a configuration where the
interdot capacitance is the dominant contribution (η → 0),
the Rabi mode splitting visibility is considerably increased
despite a reduction in the coupling strength. Furthermore, it
is instructive to consider the system cooperativity, defined as
C ¼ ḡ2⊥=½Γ2ðκext þ κintÞ�, representing a dimensionless
measure of the light-matter interaction strength in our
hybrid system. As reported in Appendix G [see Fig. 9(a)],
we achieve C > 100 by making use of the described tuning
strategy for the DQD electric dipolar energy. It represents
the highest cooperativity reported so far for hybrid QD-
resonator systems (see Ref. [35] for a comparison), even
when comparing to hybrid spin-photon systems.
To summarize this section, we realize a DQD coupled

to a SQUID array resonator. We observe a striking and
clear dependence of the DQD-resonator coupling strength,
DQD charge decoherence rate, and DQD detuning noise
on the dipole strength, parametrized by η, as defined in
Eq. (8). The characterization of different DQD con-
figurations, realized by changing in situ the voltages
applied to the DQD depletion gates over an extensive
voltage range, demonstrates the possibility to reduce the

charge qubit decoherence rate down to less than 5 MHz,
thanks to the reduced DQD electric-dipole strength. The
improved charge coherence allows one to considerably
increase the visibility of the charge qubit-resonator Rabi
vacuum mode splitting at small coupling strengths (see
Appendix F).

IV. ULTRASTRONG COUPLING WITH
A JUNCTION ARRAY RESONATOR

In Sec. III, we investigate the possibility to in situ tune
the DQD dipolar coupling energy. We explore the trade-off
between the qubit-resonator coupling and the DQD charge
decoherence rate. In this section, we show that the same
strategy allows us to approach the ultrastrong-coupling
regime. With this goal in mind, we realize a second device.
It is similar to the first device from the DQD side, but the
SQUID array resonator is replaced by a more compact
Josephson-junction (JJ) array resonator [36]. Replacing
SQUIDs with single Josephson junctions in the array
makes the resonator fixed in frequency, reducing the
flexibility on tuning parameters. On the other hand, as
illustrated in Fig. 1(b) and explained in Appendix E, the
change reduces the dimensions of the array unit. We,
thus, achieve overall a higher total Josephson inductance
with a shorter array: The length of the JJ resonator is
approximately 70 μm, instead of approximately 250 μm
for the SQUID array [compare Figs. 1(a) and 1(b) and
Figs. 1(c) and 1(f)]. The JJ array resonator has a lower stray
capacitance to ground CJJ

gnd ∼ 5 fF, with a total inductance
of LJJ

tot ∼ 100 nH and, in turn, a resonator impedance
ZJJ
r ∼ 4 kΩ. Parameters of the SQUID and JJ arrays are

compared in Table V.

(b) (c)(a)

FIG. 5. Investigation of a bias configuration approaching the ultrastrong-coupling regime for a DQD coupled to a JJ array resonator.
(a) Charge stability diagram of the DQD measured by monitoring the change in resonator reflectance amplitude jS11j for the extracted
dipole strength η ¼ 0.72� 0.08. (b) Resonator amplitude response jS11j taken by varying the DQD detuning ϵ along the gray line
indicated in (a) by applying appropriately chosen voltages to the two side gates. The red (blue) line represents a fit to the Rabi (JC) model
(see Appendix F). (c) Measured resonator reflectance jS11j (dots) versus probe frequency ωp extracted at resonance for ϵ=h ¼ 0.15 GHz
[black arrows in (b)], displaying a vacuum Rabi mode splitting. The orange line represents a fit to a Rabi master equation model. The JJ
array resonator losses are κint=2π ¼ 19.5� 0.1 MHz and κext=2π ¼ 5.7� 0.1 MHz.
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Aiming at realizing the USC regime with semicon-
ductor quantum dots, we investigate a DQD configuration
corresponding to the largest dipole strength that we are able
to achieve (η ≈ 0.72). As discussed in Sec. III, we detect the
amplitude and phase of the signal reflected off the reso-
nator. We configure the DQD tunneling amplitude close to
Δ=h ∼ ωr=2π and change the DQD detuning. Upon bring-
ing the qubit energy into resonance with the resonator,
ωq ∼ ωr, a clear avoided crossing is observed in the
resonator reflectance [see Figs. 5(b) and 13(b)]. It is a
sign of reaching the strong-coupling regime.
The data are in excellent agreement with the spectrum

of the hybridized system numerically calculated using
g, ωr, and Δ as adjustable parameters. We fit a Rabi
(red solid line) and a Jaynes-Cummings (JC) (blue
dashed line) model and present the results in Fig. 5(b).
We extract coupling strength gR=2π ∼ 620� 2 MHz
(gJC=2π ∼ 637� 2 MHz) from which we can estimate
gR;JC=ωr ∼ 0.11� 0.01, reaching the ultrastrong-coupling
regime [24–26]. The discrepancy between the values
obtained from the Rabi and JC fits can be explained by
the onset of the USC regime as the rotating-wave approxi-
mation starts to break down [37]. The resonator reflectance
jS11j versus probe frequency ωp at the DQD-resonator
detuning value indicated by the black arrow in Fig. 5(b)
(resonant condition) is shown in Fig. 5(c). By fitting a
master equation model [see the solid orange line in
Fig. 5(c)] to the measured jS11j, we extract a DQD
decoherence of Γ2=2π ∼ 149� 2 MHz and a Rabi mode
splitting of 2g=2π ∼ 1258� 3 MHz. Resolving the two
dips of the vacuum Rabi mode splitting indicates that
the system is still in the strong-coupling regime despite the
extra decoherence introduced by the large DQD electric-
dipole strength.

V. CONCLUSIONS

We have realized two hybrid devices with which we have
studied charge configurations at the two extremes of the
explored tunable DQD electric-dipole strength. We have
demonstrated the systematic control of the DQD electric-
dipole strength, allowing us to explore a broad range of
different regimes in the same device. In particular, we have
demonstrated that it is possible to decrease the electric
dipolar coupling energy of the DQD by tuning it into a
configuration in which the interdot mutual capacitance Cm
becomes the dominant contribution of the total DQD
capacitance. In such a configuration, the small dipole
strength (η → 0) reduces both the DQD coupling to the
resonator and its decoherence rate, down to g=2π ∼
40 MHz and Γ2=2π < 5 MHz, respectively.
We have made use of the DQD dipole strength control

reported here to reduce the decoherence rate of DQD
devices used in some of our previous works. It has led to the
observation of a DQD qubit linewidth down to Γ2=2π ∼
3 MHz in a similar device [23,38]. These decoherence rates

are well below values reported typically for semiconductor
charge qubits, usually observed to be above hundreds of
megahertz or even up to several gigahertz [10,16,39]. The
possibility to achieve these remarkably low decoherence
rates for a DQD charge qubit enabled the realization
of time-resolved dispersive readout [23], and distant
qubit-qubit interaction mediated by virtual microwave
photons [38,40].
Here, we have provided a detailed explanation and a

method to engineer low charge decoherence by modifying
the contribution of the interdot capacitance Cm to the total
QD capacitance, which we can easily assess and tune by
exploring the DQD stability diagram. Furthermore, this
work sheds new light on the puzzling observation reported
by different experiments on the QD-resonator hybrid
system [23,41] which reported that g and Γ2 can vary
considerably within the same device configured in different
regions of the DQD charge stability diagrams.
In addition, we show that, by using the same tuning

strategy of the DQD confinement potential but striving to
maximize the DQD electric dipolar coupling energy, we
can considerably increase the DQD-resonator coupling
strength. This is achieved by configuring the DQD gate
voltages to minimize the interdot capacitance Cm. To
further increase the coupling strength, we implemented a
more compact Josephson-junction array resonator with
reduced stray capacitance with respect to a SQUID array
resonator. This results in a ZJJ

r ∼ 4 kΩ resonator imped-
ance. The JJ array resonator enabled a maximum coupling
of g=2π ∼ 630 MHz for a fundamental mode resonator
frequency of ωr=2π ∼ 5.6 GHz. In this way, we realize the
ultrastrong-coupling regime between electrons hosted in a
semiconductor DQD and a microwave resonator. By
increasing the resonator impedance even further and by
defining DQDs in shallower 2DEGs, or in semiconductor
nanowires and Si-CMOS devices, where a higher gate lever
arm (up to 0.75 in Ref. [42]) has been demonstrated for
QDs, it may well be possible to achieve g=ωr ∼ 0.4–0.5.
This could enable more advanced investigations of the
effects of the breakdown of the rotating-wave approxima-
tion in this class of light-matter hybrid devices [24–26].
Recent experiments with holes confined in 2D-Ge

heterostructures have reported effective charge and gate noise
lower by a factor of 2–4 with respect to Si and GaAs 2DEG
systems [43], estimated by recording the current fluctuations
of a charge detector over long waiting times. Applying the
dipole strength tuning strategy described in this paper to holes
confined in QDs defined in 2D-Ge systems may enact a
substantial improvement in the coherence properties of the
charge degree of freedom. This could enable a more clear
study of the ultrastrong-coupling physics in the η → 1 limit
and the potential to extend the coherence for aDQD charge or
spin qubit in the η → 0 limit even further.
Understanding and improving the coherence and control

of the electron and hole charge degree of freedom in
semiconductor systems is of paramount importance also for
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future spin qubit applications, especially for systems where
the spin is strongly hybridized with the orbital degree via a
large real [44] or artificial spin-orbit field [45], enabling
coupling with microwave photons. We anticipate that these
findings will be of great significance for state-of-the-art
charge and/or spin qubits as well as any hybrid QD-cavity
designs, which are currently all limited by electrical noise.
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APPENDIX A: EXPERIMENTAL
DETERMINATION OF THE

DIPOLE STRENGTH η

In the following, we describe how the dipole strength η
and the set of capacitance parameters CLSG;1, CRSG;1, CΣ;1,
CLSG;2, CRSG;2, CΣ;2, and Cm are determined from the

DQD charge stability diagram. Here, CLSG;i [CRSG;i] is the
capacitance between the left [right] side plunger gate and
the ith dot, and CΣ;i is the total capacitance of the ith dot.
Cm describes the interdot mutual capacitance. Together
with the tunneling amplitude Δ, these parameters com-
pletely characterize the DQD system in our simplified
model. A summary of the extracted parameters for the 11
studied DQD configurations is given in Table I. Some of
these parameters are also plotted in Fig. 6. We cannot
measure the capacitances between the resonator gate and
the QDs (the resonator gate lever arm), since the gate is
galvanically connected to ground via the resonator and,
thus, cannot be dc biased.
The voltages applied to the T and CG gates [see Fig. 1(e)]

are changed over hundreds ofmillivolts in order to realize the
change of Cm=CΣ necessary to explore the different η
reported. Typically, smaller changes of a few millivolts are
applied to fine-tune the interdot tunneling rate Δ=h by a few
gigahertz, in order to realize the resonant condition with the
resonator.
Dashed lines in the charge stability diagram [4] in Fig. 7

represent the plunger gate voltage differences between
two consecutive sets of triple points for which the only
difference is that the effective charge of one dot changes
by one electron charge e, while the total electrostatic energy
remains constant. Hence, one finds the four equations

0
BBB@

CLSG;1

CRSG;1

CLSG;2

CRSG;2

1
CCCA ¼

0
BBB@

ΔVL;1 −ΔVR;1 0 0

0 0 ΔVL;1 −ΔVR;1

−ΔVL;2 ΔVR;2 0 0

0 0 −ΔVL;2 ΔVR;2

1
CCCA

−1

·

0
BBB@

e

0

0

e

1
CCCA; ðA1Þ

where the voltage differences ΔVL;1, ΔVR;1, ΔVL;2, and ΔVR;2 are given by the length of the dashed lines in Fig. 7. The
charging energy, which is given by Eq. (2) in the main text, can be rewritten as

En1;n2ðnG;iÞ ¼ EC;1ðn1 − nG;1Þ2 þ EC;2ðn2 − nG;2Þ2 þ EC;mðn1 − nG;1Þðn2 − nG;2Þ; ðA2Þ

TABLE I. Extracted parameters for the 11 DQD configurations presented in Fig. 4 in Sec. III in the main text.

Index CΣ;1 (fF) CΣ;2 (fF) Cm (fF) η g=2π (MHz) Γ2=2π (MHz) σϵ ðμeVÞ Δ=h (MHz) ωr=2π (MHz)

1 0.561� 0.034 0.634� 0.071 0.488� 0.041 0.101� 0.064 41.63� 0.06 4.5� 0.2 0.171� 0.006 5420.8� 0.2 5437.0� 0.1
2 0.433� 0.037 0.474� 0.061 0.358� 0.041 0.117� 0.088 54.9� 0.1 4.8� 0.2 0.113� 0.009 5568.6� 0.3 5575.6� 0.14
3 0.599� 0.056 0.565� 0.034 0.473� 0.038 0.103� 0.065 48.8� 0.2 4.5� 0.2 0.107� 0.007 5435.1� 0.5 5578.6� 0.11
4 0.554� 0.068 0.41� 0.075 0.364� 0.060 0.204� 0.105 75.7� 0.2 5.5� 0.2 0.250� 0.008 5137.4� 0.4 5117.6� 0.14
5 0.656� 0.065 0.70� 0.053 0.506� 0.052 0.123� 0.079 56.4� 0.5 6.7� 0.2 � � � 5482� 3 5578.4� 0.4
6 0.611� 0.053 0.54� 0.058 0.443� 0.046 0.168� 0.071 86.3� 0.2 7.2� 0.2 0.120� 0.007 5633.5� 0.4 5649.0� 0.2
7 0.265� 0.045 0.31� 0.051 0.191� 0.034 0.184� 0.092 87.2� 0.4 6.5� 0.8 0.34� 0.007 5276� 1 5283.7� 0.6
8 0.333� 0.031 0.27� 0.041 0.250� 0.026 0.172� 0.078 111.1� 0.3 9.6� 0.3 0.273� 0.005 5145� 1 5180.3� 0.2
9 0.136� 0.045 0.32� 0.037 0.058� 0.017 0.419� 0.073 153.6� 1.9 28.3� 1.2 0.42� 0.02 4453� 4 4440.9� 0.3
10 0.330� 0.050 0.20� 0.023 0.048� 0.007 0.709� 0.031 260.5� 3.5 36.8� 0.9 � � � 4772.7� 9 4745.5� 0.9
11 0.412� 0.029 0.20� 0.050 0.257� 0.029 0.273� 0.076 65.9� 0.7 8.5� 1.1 0.328� 0.005 4243� 2 4271.6� 0.2

IN SITU TUNING OF THE ELECTRIC-DIPOLE … PHYS. REV. X 12, 031004 (2022)

031004-11



where ni is the number of electrons in dot i. Here, we
introduce nG;i, representing the effective number of elec-
trons induced on dot i by the voltages on the gates. In our
experiment, a voltage change on the left (right) side gate,
denoted by ΔVL (ΔVR), results in a change ΔnG;1 (ΔnG;2)
of nG;1 (nG;2) according to

�ΔnG;1
ΔnG;2

�
¼ 1

e

�
CLSG;1 CRSG;1

CLSG;2 CRSG;2

�
·

�
ΔVL

ΔVR

�
; ðA3Þ

and the charging energy matrix is represented by�
EC;1 EC;m=2

EC;m=2 EC;2

�
¼ e2

2

�
CΣ;1 −Cm

−Cm CΣ;2

�−1
: ðA4Þ

Now we consider the solid black lines in Fig. 7 that
connect adjacent triple points which are split due to the
mutual interdot capacitance Cm. In the following, we use
them to extract Cm, CΣ;1, and CΣ;2. Without losing general-
ity, we consider the triple point at the intersects of the
fð0; 0Þ; ð0; 1Þ; ð1; 0Þg charge stability regions. The electro-
static energy at these triple point is given by

E0;0ðnð1ÞG;iÞ ¼ E0;1ðnð1ÞG;iÞ ¼ E1;0ðnð1ÞG;iÞ: ðA5Þ
Similarly, the charging energy at the adjacent triple point
corresponding to the intersect of the fð1; 1Þ; ð0; 1Þ; ð1; 0Þg
charge stability regions is given by

E1;1ðnð2ÞG;iÞ ¼ E0;1ðnð2ÞG;iÞ ¼ E1;0ðnð2ÞG;iÞ: ðA6Þ

The voltage differences between these two triple points are
denoted by ΔVL

m and ΔVR
m (lengths of solid black lines in

Fig. 7). Plugging these voltage differences into Eq. (A3) as
ΔVL ¼ ΔVL

m and ΔVR ¼ ΔVR
m, we calculate the difference

FIG. 6. Parameter comparison between the 11 configurations analyzed in the main text. (a) DQD capacitances CΣ;1, CΣ;2, and Cm.
(b) Dipole strength η. (c) κext and κint, extracted by fitting the reflectance of the bare SQUID array to a Lorentzian with the DQD deep in
Coulomb blockade. (d) Interdot tunneling rates Δ=h obtained from the JC model [see dashed lines in Figs. 3(a)–3(c)]. In (c), the data are
ordered according to the resonator frequency. In the remaining panels, the x axis is the configuration index.

FIG. 7. An example of a DQD charge stability diagram. It
shows the phase response of the resonator reflectance while
changing the voltage of gates RSG and LSG [see Fig. 1(e)]. The
six voltage differences indicated allow one to extract the QDs
capacitances and the dipole strength η.
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of the effective electron numbers induced by the gates

ΔnðmÞ
G;1 and ΔnðmÞ

G;2 between the two triple points. In order to
calculate the three parameters Cm, CΣ;1, and CΣ;2, addi-
tionally to Eqs. (A5) and (A6), we consider the following
relation which allows one to calibrate the energy scale in
the DQD stability diagram:

ϵ ¼ E1;0 − E0;1 ðA7Þ

at a specific set of gate voltages. We measure ϵ by two-tone
spectroscopy of the charge qubit at one specific gate

voltage configuration and label the difference in the voltage
on the left (right) gate between this configuration and the
zero-detuning configuration by ΔVL

ϵ (ΔVR
ϵ ). By plugging

these voltage differences into Eq. (A3) as VL ¼ ΔVL
ϵ and

VR ¼ ΔVR
ϵ , we again convert the voltage differences

into differences in the effective number of electrons

induced by the gates which we call ΔnðϵÞG;1 and ΔnðϵÞG;2.
Here, the superscript (ϵ) highlights the correspondence to
one specific set of ϵ, ΔVL

ϵ , and ΔVR
ϵ .

Combining Eqs. (A2), (A5), (A6), and (A7), we find the
charging energies as

0
B@

EC;1

EC;2

EC;m

1
CA ¼

0
BBB@

ΔnðmÞ
G;1 0 ðΔnðmÞ

G;2 − 1Þ=2
0 ΔnðmÞ

G;2 ðΔnðmÞ
G;1 − 1Þ=2

−2ΔnðϵÞG;1 2ΔnðδÞG;2 ΔnðϵÞG;1 − ΔnðϵÞG;2

1
CCCA

−1

·

0
B@

0

0

ϵ

1
CA: ðA8Þ

From the charging energies, the capacitances CΣ;1, CΣ;2, and Cm can be deduced from Eq. (A4). Finally, using Eq. (5)
from the main text, we find the dipole strength as the main result of this appendix:

η ¼ 1 − 2Cm=ðCΣ;1 þ CΣ;2Þ
1þ 2Cm=ðCΣ;1 þ CΣ;2Þ

; ðA9Þ

where the capacitance parameters are given as

Cm ¼ e2ðΔVL
ϵΔVR

m þ ΔVL
mΔVR

ϵ Þ
ϵðΔVL;1ΔVR;2 − ΔVL;2ΔVR;1Þ

; ðA10Þ

CΣ;1 ¼
e2ðΔVL

ϵΔVR
m þ ΔVL

mΔVR
ϵ ÞðΔVL;1ΔVR;2 − ΔVL

mΔVR;2 − ΔVL;2ΔVR
m − ΔVL;2ΔVR;1Þ

ϵðΔVL
mΔVR;1 þ ΔVL;1ΔVR

mÞðΔVL;1ΔVR;2 − ΔVL;2ΔVR;1Þ
; ðA11Þ

CΣ;2 ¼
e2ðΔVL

ϵΔVR
m þ ΔVL

mΔVR
ϵ ÞðΔVL;1ΔVR;2 − ΔVL

mΔVR;1 − ΔVL;1ΔVR
m − ΔVL;2ΔVR;1Þ

ϵðΔVL
mΔVR;2 þ ΔVL;2ΔVR

mÞðΔVL;1ΔVR;2 − ΔVL;2ΔVR;1Þ
: ðA12Þ

Note that when calculating Cm=CΣ;i the term
ðΔVL

ϵΔVR
m þ ΔVL

mΔVR
ϵ Þ=ϵ cancels. Hence, Cm=CΣ;i and

η can be determined directly from the charge stability
diagram without considering the energy calibration step.
In the simplified case of identical dots, CΣ;1¼CΣ;2¼CΣ,

with a symmetric coupling to their respective gates,
CLSG;1 ¼ CRSG;2, and neglecting cross-gate capacitances,
CRSG;1 ¼ CLSG;2 ¼ 0, the expressions further simplify to

Cm

CΣ
¼ ΔVm

ΔVg − ΔVm
; ðA13Þ

η ¼ 1 −
2ΔVm

ΔVg
; ðA14Þ

where ΔVm=
ffiffiffi
2

p ≡ ΔVL
m ¼ ΔVR

m and ΔVg=
ffiffiffi
2

p ≡ ΔVL;1 ¼
ΔVR;2.
The error bars assigned to the extracted capacitances

and to η are determined by attributing, in the above
procedure, an uncertainty to the positions of the four triple
points in the stability diagram (see Fig. 7). The errors are
then propagated to the final results in Eqs. (A9)–(A12)
using Gaussian error propagation.
In the following, Table I reports a summary of the

extracted DQD capacitances, coupling, and DQD coher-
ence parameters for the eleven DQD configurations pre-
sented in Fig. 4 in Sec. II of the main text. Instead, in
Table II, we report the DQD gate voltages for the eleven
configurations investigated in Sec. II of the main text.
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APPENDIX B: CONSIDERATIONS ABOUT
THE DEFINITION OF THE DIPOLE

STRENGTH η IN EQ. (8)

Here, we report some further considerations about the
definition of the dipole strength for a DQD, introduced in
Eq. (8). First of all, η is dimensionless and independent on
scales, such as the dot size or material constants. Second,
since CΣ ≥ Cm ≥ 0, its value ranges between zero and one.
Third, we notice that zero mutual capacitance Cm=CΣ → 0
gives no suppression, η → 1, and maximal mutual coupling
Cm=CΣ → 1 gives perfect suppression, η → 0. Here, it is
useful to point out two possible limiting scenarios of
increasing the interdot coupling to Cm=CΣ → 1. Among
other options, one can take this limit with either CΣ or Cout
fixed. In the former, the numerator in Eq. (8) is decreasing,
reflecting the sum rule in Eq. (6). The numerator is constant
in the latter, and its only role is to render the dipole strength
dimensionless and normalized to one. Finally, and what we
deemmost important, the definition of η as given in Eq. (8) is
practical: The quantities defining η can be directly read off
the standard charging diagramof thedouble dot, as illustrated
in Figs. 2 and 7.
For illustration, we make the analogy with the typical

microscopic model used to describe the origin of the
coupling of the DQD electrical dipole moment e × d to
the electrical field E generated by the resonator. In this case,
we can write the coupling term as

ℏg ¼ η × ℏg0 ≡ η × e × d × E; ðB1Þ
where we identify the bare dipole energy of the DQD and
resonator asℏg0¼edE¼2e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏωr=2CrÞ
p ½CG;1−CG;2=Cout�,

defined through bare quantities e, d, and E. Thus, Eq. (B1)
expresses the coupling strength as the dipole energy arising
from displacement of an electron by distance d in the electric
field E, modified by the dipole strength η ∈ h0; 1i. Such a
definition anticipates the three different possiblemicroscopic
origins of the dipole strength for the dipolar interaction: The
dot background (core) electrons can partially screen the

electric field acting on the hopping (valence) electron (η × E);
screening effects can reduce the effective hopping charge
(η × e); electrostatic tuning of the system may result in a
configurationwith reduced effective interdot distance (η × d).
Experimentally, we cannot distinguish these scenarios. We
refer to them collectively as renormalization of the dipolar
coupling energy. Equation (10) defines the dipole coupling g
using more accessible parameters.

APPENDIX C: DETUNING SENSITIVITY TO
CHARGE AND VOLTAGE FLUCTUATIONS

This appendix shows how the DQD detuning energy
responds to a change in the electrostatic environment in
correspondence with voltage or charge fluctuations of a
nearby impurity. Our goal is to shed light on Eq. (5),
especially in the case where the two dots have nonequal
capacitance contributions. The first line in Eq. (5) can be
cast into

δϵ ¼ eδVG
CG½dΣCΣ þ dGðCΣ − CmÞ�

C2
Σð1 − d2Σ=4Þ − C2

m
: ðC1Þ

We introduce CG ¼ ðCG;1 þ CG;2Þ=2 and CΣ ¼ ðCΣ;1 þ
CΣ;2Þ=2 for the average capacitances and dG ¼ ðCG;1 −
CG;2Þ=CG and dΣ ¼ ðCΣ;1 − CΣ;2Þ=CΣ for fractional
differences. The formula further simplifies upon introduc-
ing “polarizations” of the dot capacitances to the gate and to
the outside of the DQD: Cout;d ¼ CΣ;d − Cm. Namely, we
define the polarizations

PG ¼ CG;1 − CG;2

CG;1 þ CG;2
; Pout ¼

Cout;1 − Cout;2

Cout;2 þ Cout;2
: ðC2Þ

They relate to the fractional differences by PG ¼ dG=2 and
Pout ¼ dΣCΣ=2ðCΣ − CmÞ, and they take values between
−1 and 1. PG ≈ 1 corresponds to the magnitude of the left
dot capacitance to the gate VG being much larger than that
of the right dot and analogously for Pout. Since we aim at
the leading-order result, we neglect the d2Σ=4 term in the
denominator of Eq. (C1), being higher order in the differ-
ence of the two total capacitances. With that, and using the
polarizations, the detuning change is

δϵ ¼ eδVG
CG;1 þ CG;2

CΣ þ Cm
ðPG þ PoutÞ; ðC3Þ

which is a generalization of the second line in Eq. (5): The
difference of the two dots gives rise to an additional
polarization, Pout. Using Eq. (C3) instead of Eq. (C1),
the expression in Eq. (7) reads

δϵ ¼ eVG
CG;1 þ CG;2

Cout
ðPG þ PoutÞη; ðC4Þ

where Cout ¼ CΣ − Cm and the last term is the dipole
strength as given in Eq. (8). In other words, our definition
of η remains the same even if the dots are not equal.

TABLE II. The DQD gate voltages for the 11 configurations
investigated in Sec. III in the main text.

Index VCG (mV) VT (mV) VLSG (mV) VRSG (mV)

1 −823.00 −623.00 −881.32 −946.48
2 −823.00 −623.00 −883.236 −937.35
3 −823.00 −727.00 −884.445 −789.79
4 −823.00 −818.00 −691.47 −751.60
5 −847.00 −847.00 −671.525 −641.20
6 −882.00 −882.00 −602.14 −648.68
7 −936.00 −936.00 −795.71 −593.76
8 −982.00 −982.00 −576.544 −613.92
9 −1040.00 −1040.00 −473.037 −562.02
10 −1050.00 −1050.00 −496.28 −574.92
11 −1030.00 −1030.00 −525.56 −494.35
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We now derive the detuning change with respect to a
charge impurity fluctuation. Concerning the electrostatic
description, a charge impurity is an object similar to a dot:
Its primary variable is the charge, and the voltage is a
derived variable. Postponing the derivation and discussion
of a model containing charge impurities to a separate
publication, we state here only the result; the analog of
Eq. (C1) with changing impurity i charge by δQi is

δϵ ¼ e
δQi

CΣ;i

Ci;1 þ Ci;2

CΣ þ Cm
ðPi þ PoutÞ; ðC5Þ

where Ci;d is the capacitance between the impurity i and
the dot d, the polarization of these capacitances is Pi ¼
ðCi;1 − Ci;2Þ=ðCi;1 þ Ci;2Þ, and CΣ;i is the impurity self-
capacitance. We conclude that there is a complete analogy
between Eqs. (C3) and (C5) upon interpreting δQi=CΣ;i as
the equivalent voltage fluctuation.

APPENDIX D: HOW DO FIGURES OF MERIT
SCALE WITH THE DIPOLE STRENGTH

Here, we discuss how the most important circuit-QED
figures of merit scale with the dipole strength η. The scaling
depends on whether the noise spectrum is singular
(diverges at zero frequency) or regular and whether it
couples to the qubit energy linearly or quadratically. Using
the results of Ref. [28] and Eqs. (1), (7), and (8), we obtain
Tables III and IV. In the former, one can see that in any
scenario both decoherence and relaxation increase with
increasing η. We find two possible power laws, linear and

quadratic. The decoherence rate is linear in η if the noise is
singular, such as a 1=f noise, and couples to the qubit
linearly, provided that the qubit is not at a sweet spot. We
observe linear scaling of the decoherence in our experi-
ments. In all other considered scenarios, the decoherence
should be quadratic in η and the relaxation rate should
always be quadratic in η. Aiming at maximal coherence
calls for minimizing η, which is the motivation for the first
set of experiments described in Sec. III. Turning to
Table III, the first line gives a qubit-resonator coupling
proportional to η. Maximizing the coupling, as in aiming at
the ultrastrong-coupling regime, requires one to maximize
η. Experimentally, this is realized in the experiments
outlined in Sec. IV.
We now comment on two additional figures of merit, the

quality factor and cooperativity. They contain the coher-
ence time, which we take as the inverse of the decoherence
rate given in Table III. We assume that the scaling of the
decoherence and the relaxation is the same (quadratic) or
that the relaxation can be made negligible if they differ.
Under this assumption, the quality factor might benefit
from decreasing η, while the cooperativity from increasing
it. Whether the benefit is realized depends on the character
of the noise.
In conclusion, Table IV uncovers a surprisingly large

number of scenarios: The chosen figure of merit, the noise
character, whether the qubit can be robustly kept at a sweet
spot, and whether the relaxation is dominating the
decoherence all play a nontrivial role. Their combination
decides whether maximization or minimization of η is to be
strived for.

TABLE III. Qualitative dependence of the qubit decay rates on the qubit properties, including the dipole strength
η. The “coupling” denotes the power with which the noise variable δV changes the qubit energy; for example,
quadratic means δℏωq ∝ δV2. “Singular” means that the noise diverges at zero frequency, for example, for 1=f
noise. For quadratic coupling, the low-frequency and high-frequency parts of the noise spectrum are defined with
respect to the inverse evolution time. “Resonant” stands for noise relevant only at the qubit frequency. “Decay type”
denotes the functional form of the decay envelope, such as the one in Eq. (11) which happens to be Gaussian. Qubit
“configuration” comprises the detuning and tunneling, and “sensitivity” denotes the derivative of the detuning with
respect to the fluctuating voltage ∂Vϵ≡ ∂ϵ=∂VG, which can be obtained from Eq. (5). Finally, “suppression” denotes
the scaling of Eq. (8). An example how to read this table: For a system dominated by a regular noise coupled linearly
to the qubit, the qubit coherence decay is exponential, with a pure dephasing rate Γφ ∝ Δ2=ðϵ2 þ Δ2Þð∂νϵÞ2η2.

Dependence on qubit

Decay process Coupling Noise Decay type Configuration Sensitivity Suppression

Pure dephasing Linear Singular Gaussian ϵffiffiffiffiffiffiffiffiffiffi
ϵ2þΔ2

p ∂Vϵ η

Linear Regular Exponential Δ2

ϵ2þΔ2
ð∂VϵÞ2 η2

Quadratic Low-freq. Algebraic Δ2

ðϵ2þΔ2Þ3=2 ð∂VϵÞ2 η2

Quadratic High-freq. Exponential Δ2

ðϵ2þΔ2Þ3=2 ð∂VϵÞ2 η2

Relaxation Linear Resonant Exponential Δ2

ϵ2þΔ2
ð∂VϵÞ2 η2
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APPENDIX E: SQUID AND JUNCTION ARRAY
HIGH-IMPEDANCE RESONATORS

High-impedance resonators represent a valuable tool to
increase the vacuum voltage fluctuations to maximize the
coupling strength with the two-level electrical dipole
moment. They allow one to reach the strong-coupling
regime for electrons confined in semiconductor DQDs [10].
For superconducting artificial atoms electrically coupled to
the microwave radiation, it has been recently demonstrated
that high-impedance resonators enable reaching a much

higher coupling strength, which brings the system in the
ultrastrong and deep strong-coupling regimes [25,26].
The SQUID and JJ array resonators, represented in

Fig. 8, are 1D Josephson-junction metamaterials with a
multimode spectrum [36]. The choice of design parame-
ters ensures that the array exhibits its fundamental mode
within the measurement bandwidth and well separated in
frequency from its second mode [36]. In Figs. 8(a) and 8(b)
[8(c) and 8(e)], we report a micrograph of [a circuit model
for] the SQUID and JJ array resonators, respectively. The
base unit of the SQUID [JJ] array resonator is enclosed by
the dashed red [blue] line in Figs. 8(a), 8(c), and 8(d) [8(b),
8(e), and 8(f)]. The fabrication process of the SQUID array,
based on the shadow evaporation technique, generates the
two small Josephson junctions in parallel (the SQUID
junctions, in red) that are in series with an extra larger
junction (in blue), of approximately 11 times larger foot-
print, as we can see in Fig. 8(a).
We realize SQUID junctions with inductance LS ∼

1.25 nH and capacitance CS ∼ 80 fF, while the large
junctions have L⋆

J ∼ 0.11 nH and C⋆
J ∼ 880 fF. Each sec-

tion of the SQUID array contributes on average a stray
capacitance to ground of C0 ∼ Cgnd=N ¼ CJ

0 þ CS
0 (see

Table V), where CJ
0 ∼ 6CS

0 is the average capacitance to
ground of the series junction. Therefore, the part of the base
unit containing the extra junction dominates the stray

(c) (d)

(e) (f )

(a) (b)

FIG. 8. Comparison between a SQUID and a junction array resonator. (a) False-colored SEM micrograph of a section of a SQUID
array. The dashed red line encloses the unit cell of the SQUID array. (b) False-colored SEM micrograph of a section of a Josephson-
junction array. The dashed green line encloses the unit cell of the array, with a single 0.5 × 0.9 μm2 Josephson junction. (c) Schematic
circuit for a λ=4 SQUID array resonator. CD ¼ Cc þ CRPG þ Cg represents the capacitive coupling between the resonator array and the
microwave feedline, the DQD device, and the rest of the DQD gates. The other end of the array is grounded. (d) Circuit schematic of the
unit cell of the SQUID array. LS and L⋆

J represent the inductance of each SQUID junction (red) and of the extra Josephson junction
(blue) connected in series, while CS (red) and C⋆

J (blue) represent their junction capacitance. C0 and C⋆
0 are their respective capacitances

to the ground. (e) Schematic circuit for a λ=4 JJ array. (f) Circuit schematic of the JJ array’s unit cell. LJ represents the Josephson
inductance, while CJ and C0 are the junction capacitance and the stray capacitance to ground, respectively.

TABLE IV. Scaling of several figures of merit with the dipole
strength. As follows from Eq. (10), we use g ∝ η for the
interaction strength and the results from Table III for the pure
dephasing rate Γφ. Here, we work in the hypothesis that the
decoherence is dominated by dephasing process (Γ2 ∼ Γϕ), which
is a reasonable assumption for DQD charge qubits.

Dominant noise

Figure of merit Formula Linear-singular Other

Coupling to cavity g η1

Coherence time T�
2 ¼ 1=Γφ η−1 η−2

Quality factor Q ¼ g=Γφ η0 η−1

Cooperativity g2=Γφκ η1 η0
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capacitance to the ground per section but adds a negligible
contribution to the total array inductance. This limits the
impedance of the resonator array’s fundamental mode.
We model the arrays as distributed λ=4 resonators, being

shunted to ground on one end [see Figs. 1(c) and 1(d)]. The
capacitances between the array resonator and the right QD,
the microwave feedline, and the rest of the DQD depletion
gates are estimated to be CRPG ∼ 0.07 fF, Cc ∼ 3 fF, and
Cg ∼ 1.5 fF, respectively.
As shown in Fig. 8(f) and reported in Table V, we model

each unit cell of the JJ array with a parallel circuit of an
inductance LJ ∼ 1.5 nH and a capacitance CJ ∼ 40 fF, con-
nected in series with a capacitanceCJJ

0 to ground. ForN ¼ 70

junctions in series, we obtain a total array resonator length
of about 70 μm, with an estimated total array inductance of
Ltot ∼ 102 nH and a total stray capacitance to ground of
Cgnd ∼ 4.9 fF. This allows us to estimate a JJ array resonator
impedance ZrJJ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ltot=ðCgndþCcþCgþCRPGÞ

p
∼3.8 kΩ,

which is almost 4 times higher than the SQUID array
impedance and allows one to increase the coupling
strength with the DQD electric-dipole moment of a factorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ZJJ
r =Z

Sq
r

q
∼ 2.

APPENDIX F: MASTER EQUATION—
DISSIPATIVE DYNAMICS OF DQD

AND RESONATOR

Here, we give a short introduction to the theoretical
modeling of the experimental data. The model includes the
DQD, the resonator, and the microwave drive through a
transition line. For simplicity, we use the convention ℏ ¼ 1
in this section. The dissipative dynamics of the system are
described by the master equation

_ρ ¼ −i½H; ρ� þ
X
k

Lkρ; ðF1Þ

whereH is the Hamiltonian of the system and Lkρ describe
different dissipative channels introduced in the following.

1. Hamiltonian

The DQD is well described by the Hamiltonian

HDQD ¼ 1

2
ϵσz þ

1

2
Δσx ¼

1

2
ℏωqσ̃z; ðF2Þ

with the Pauli matrices σ in the DQD position basis and σ̃ in
its eigenbasis and where ϵ is the detuning and Δ is the
tunnel splitting between the two dots. The DQD level
splitting is ℏωq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 þ Δ2

p
. The resonator is described by

Hres ¼ ℏωra†a; ðF3Þ

with its resonance frequencyωr and the bosonic annihilation
operator a. The coupling between DQD and resonator
corresponds to the quantum dot dipole moment and the
electric field of the harmonic oscillator mode, so we write

HDQD−res ¼ ℏg0σzðaþ a†Þ
¼ ℏg0ðcosφσ̃z þ sinφσ̃xÞðaþ a†Þ; ðF4Þ

with the DQDmixing angle tanφ ¼ ðϵ=ΔÞ. The total system
Hamiltonian is then

H ¼ HDQD þHres þHDQD−res: ðF5Þ

2. Dissipative processes

The quantum dot and resonator are unavoidably coupled
to the environment, leading to energy loss and dephasing.
For the resonator, incoherent photon loss can be described
in the master equation through a dissipative term

Lresρ ¼ κintD½a�ρ; ðF6Þ

with the internal photon loss rate κint. In practice, the
resonator decay consists of an internal component κint,
resulting from coupling to the intrinsic environment, and an
external coupling rate κext, resulting from coupling to
external modes, such as the transmission lines used for
driving. Here, the external coupling is taken into account
through the SLH cascading of an external driving field,
described in the next section, so that we include only the
intrinsic losses κint. For the DQD, we assume a transversal
decay channel, leading to energy relaxation at rate Γ1, as
well as a pure dephasing process due to fluctuations in the
level splitting, leading to dephasing at rate Γ2 ¼ 1

2
Γ1 þ Γφ.

The contributions to the master equation due to the
dissipative dynamics of the DQD are then given by

LDQDρ ¼ Γ1D½σ̃−�ρþ
1

2
ΓφD½σ̃z�ρ: ðF7Þ

TABLE V. Comparison between SQUID and JJ array resonators.

SQUID array Junction array

Zr (kΩ) 1.1 3.8
ωr=2π (GHz) 6.2 (tunable) 5.665
κint=2π (MHz) Fig. 6(c) 23.0
κext=2π (MHz) Fig. 6(c) 4.0
N 34 72
ωp=2π (GHz) 16.6 16.1
Length (μm) 200 70
K00 (kHz) 5 60
Ltot (nH) 31 102
Cgnd (fF) 19 5
Cc (fF) 2.5 1.5
Cg (fF) 1.5 1.5
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3. SLH model—Driven, dissipative dynamics
of DQD and resonator

We use the SLH cascaded quantum systems approach to
model scattering of microwave photons in the transmission
line off the λ=4 resonator [40,46,47]. We cascade in a drive
field for the resonator, which adds an effective drive term to
the Hamiltonian as

Hdrive ¼
1

2i
ffiffiffiffiffiffiffi
κext

p ðαa† − α�aÞ; ðF8Þ

where we assume a single-sided, λ=4-type cavity driven
with a coherent state of amplitude α. Here, we additionally
transform the system into the rotating frame at the drive
frequency ωd of the coherent field input α. The cascading
also adds another dissipative part to the master equation,
which describes the decay of the resonator modes into the
transmission line, which is assumed to have a constant
spectrum. This term can be written as

LSLHρ ¼ D½L̂�ρ ðF9Þ
with the decay operator

L̂ ¼ ffiffiffiffiffiffiffi
κext

p
aþ α1: ðF10Þ

Using this formalism, we can now calculate the amplitude β
and photon flux n of the field scattered off the resonator as

β ¼ TrfL̂ρg; n ¼ TrfL̂†L̂ρg; ðF11Þ
where ρ is the solution of the total master equation [Eq. (F1)],
now also including the drive and decay term from the
cascading procedure [Eqs. (F8) and (F9)]. As equilibration
of the field in the transmission lines happens typically very
fast, we can assume that scattering in experiments happens in
the steady state of the system, so that we need only to
calculate the steady-state density matrix ρ̄ for all cases.

4. Visibility of vacuum Rabi splitting

In order to find analytical expressions for the scattered
field in the special case where DQD and resonator are tuned
to resonance, we take the analogy to the case of a two-level
system embedded in a waveguide; cf. the supplemental
material in Ref. [48]. For exact resonance between
DQD and resonator, ωr ¼ ωq ¼ ω0, the eigenstates of
the coupled system are j�i ¼ 1ffiffi

2
p ðj0; ei � j1; giÞ. We are

focusing on driving the transition between the total system
ground state j0; gi and one of the coupled eigenstates j�i,
analogous to the two-level system case. We diagonalize the
total Hamiltonian of the resonator plus the DQD and
consider the relevant operators in the diagonal basis, when
reduced to a subset of states, i.e., the total system ground
state j0; gi and either of the two maximally mixed eigen-
states j�i. For each of these transitions, we write the
input-output relations in the SLH formalism analogously to

the case of a driven two-level system to find the reflectance
of the λ=4-type resonator in resonance with the DQD. For
small drive amplitudes α far from saturation, we find to
lowest order in α

r� ¼ β=α ¼ 1 −
2κext

½κext þ κint þ 2Γ2 þ 4iðω0 − ωd � 1
2
g0Þ�

;

ðF12Þ
where ωd is the frequency of the drive field and g0 is the
coupling strength between resonator and DQD. As we
assume perfect resonance between DQD and resonator, the
two expressions differ only in the position of the resonance.
For resonant driving of either transition, i.e., when
ωd ¼ ω0 � 1

2
g0, r� reduces to

r�;res ¼ 1 − jS11j ¼ 1 −
2κext

ðκext þ κint þ Γ1 þ 2ΓφÞ
¼ 1 −

κext
2Γ2;�

: ðF13Þ

Thus, the depth of the reflectionpeak on resonance is given by
the ratio of the external coupling of the resonator to twice the
total linewidth of the DQD-resonator hybridized states,
Γ2;� ¼ 1

4
ðκext þ κint þ Γ1 þ 2ΓφÞ, analogous to the case of

scattering off a two-level system [48]. A plot of the visibility
of the Rabi modes, extracted according to Eq. (F13), is
reported as a function of η in Fig. 4(f) in themain text and as a
functionof the renormalized coupling strength ḡ⊥ in Fig. 9(b).

5. Fits

Peaks from experiments are fitted to the Hamiltonian level
structure, i.e., the position of levels in Eq. (F5). When fitting
the full transmission curve as a function of the frequency, the
SLH model is used, where for simplicity we set γ1 ¼ 0, as
only the total DQD linewidth is relevant for these fits.

APPENDIX G: SYSTEM COOPERATIVITY

A high-fidelity technology must exchange information
with preserved coherence, i.e., demonstrate the so-called
strong-coupling regime. This criterion, which must be met
for any useful quantum application, is characterized by a
coupling between two subsystems that is stronger than the
mean of the losses in both of them. As such, it is useful to
introduce the cooperativityC ¼ ḡ2⊥=½Γ2ðκext þ κintÞ� to char-
acterize the strength of a light-matter interaction in our hybrid
system and to compare to what was already achieved for
similar devices deployed in previous experiments [35]. The
strong-coupling regime corresponds to a cooperativitywhich
is greater than unity. Thus, the coupling is strong in the sense
that at resonance nearly every photon entering the cavity is
coherently transferred into the matter system.
In Fig. 9(a), we report the system cooperativity extracted

for the 11 studied DQD configurations as a function of the
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dipole strength η. We notice how, despite increasing η
increases the DQD decoherence rate Γ2 (see Fig. 4), the
cooperativity overall increases with η. This is in line with
what is illustrated in the main part of the paper, where we
report that ḡ⊥;Γ2 ∝ η, and therefore C ∝ η. Making use of
the described tuning strategy for the DQD electric-dipole
strength, we push the limits for the cooperativity achieved
for the semiconductor QD-resonator hybrid device above
100, representing the current record of cooperativity for a
QD-resonator hybrid system. Furthermore, by adequately
filtering the DQD gate lines, it is shown that it is possible
to keep a resonator linewidth < 1 MHz [49,50], which, if
implemented in our device, could allow achieving a
cooperativity of up to C ∼ 1500.

APPENDIX H: RENORMALIZATION OF THE
COUPLING STRENGTHS [EQ. (12)]

In the following, we describe the strategy used to
renormalize the coupling strengths extracted from the

11 studied DQD configurations in Sec. III [see Eq. (12)].
Renormalization of the coupling strengths is necessary for
comparison, because the hybridized spectra for the inves-
tigated DQD configurations are taken at not exactly the
same resonator frequency and DQD tunneling amplitude
(see Table I). The first term in Eq. (12), Δ=ℏωr, originates
from the mixing angle renormalization of the DQD dipole
strength [6] [see Eq. (1)]. In Fig. 10(a), we report a study
of the coupling strength between a DQD and a resonator
as a function of the resonator frequency. The data
originate from a similar device with a nominally identical
DQD coupled to a SQUID array resonator. The data are
acquired by spectroscopically measuring avoided cross-
ings between the resonator and the DQD charge qubit
while keeping the DQD at its sweet spot (ϵ ¼ 0). The
resonance frequency of the DQD charge qubit is changed
systematically by changing its interdot tunneling ampli-
tude Δ via the voltages applied to the depletion gates, and
the frequency tunability of the SQUID array allows one

(a) (b)

FIG. 9. Extracted figures of merit of light-matter hybridization. (a) System cooperativity C ¼ ḡ2⊥=½Γ2ðκext þ κintÞ�. (b) Visibility of the
vacuum Rabi modes at resonance ð1 − jS11jÞ ¼ 2κext=ðκext þ κint þ 2Γ2Þ versus the DQD-SQUID array coupling strength ḡ⊥.

(a) (b)

FIG. 10. (a) (Left axis) g=2π extracted by measuring a Rabi mode splitting for the DQD qubit in resonance at ϵ ¼ 0 with the SQUID
array fundamental mode, for different resonator frequency. (Right axis) system cooperativity g2=ðκΓ2Þ at different resonator frequency.
During these measurements, the DQD system is kept at the sweet spot ϵ ¼ 0. (b) Comparison of the extracted coupling strengths
corrected only for the mixing angle g0 ¼ gΔ=ωr with normalized ḡ⊥ ∝ g0½5 GHz=ðωr=2πÞ� and ḡ0⊥ ∝ g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½5 GHz=ðωr=2πÞ�
p

.
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to bring the resonator into resonance with the charge

qubit.
The extracted evolution of the coupling rate g as a func-

tion of the resonator frequency ωr ∼ ωq can be modeled
accurately by a simple linear dependence [see the blue
dotted line in Fig. 10(a)]. Instead, considering that Zr ¼
1=ðωrCrÞ, from Eq. (10), g ∝

ffiffiffiffiffi
Zr

p
ωr ∝

ffiffiffiffiffi
ωr

p
is expected

assuming a simple lumped-element equivalent model of the
resonator under the condition that the tuning process of
the interdot tunneling rate appreciably modifies neither the
DQD electrical dipole moment nor its capacitive coupling
to the resonator gate (DQD lever arm). The linear scaling of
g against ωr suggests that other mechanisms take place in
either the resonator impedance or the DQD electric-dipole
moment during the tuning procedures of the interdot
tunneling and SQUID array resonance. The change in
tunnel rate or DQD shape could present a considerable
influence on the magnitude of the electrical dipole moment
of the DQD and, thereby, on the coupling strength.
A complete understanding of these mechanisms requires
further investigations.
Figure 10(b) shows a comparison of the extracted

coupling strengths corrected for the mixing angle g0 ¼
gΔ=ℏωr and with the normalized ḡ⊥ ∝ g0ð5 GHz=ωrÞ
and ḡ0⊥ ∝ g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 GHz=ωr

p
. We notice that, in our dataset,

the correction originating from the normalization choice
does not exceed 10% of the bare extracted coupling
rates.

APPENDIX I: ADDITIONAL DATA

Here, we report some additional measurements and
datasets which the reader can find useful to better interpret
the measurements reported in the main text.
Figure 11(a) reports a study of a DQD configuration,

distinct from the one reported in Fig. 5 in the main text.
This new configuration is obtained by in situ tuning the
DQD dipole strength to η ∼ 0.5. The red (blue) line in
Fig. 11(b) represents a fit to the data obtained using the
Rabi (JC) model from which we extract gR=2π ¼ 350�
3 MHz (gJC=2π ¼ 351� 2 MHz). A fit of a master equa-
tion model [solid orange line in Fig. 11(c)] to the Rabi
mode spectrum, obtained by changing the probe frequency
along the DQD detuning value indicated by the black
arrows in Fig. 11(b), yields a splitting of g=2π ∼ 373.4�
0.3 MHz, with a DQD charge decoherence of Γ2=2π ∼
56.3� 0.2 MHz. For this DQD electrostatic configuration,
the system is in the strong-coupling regime (g > κ=2þ Γ2)
but comes with gR;JC=ωr ∼ 0.062, which, despite being
very high for a DQD-resonator hybrid device, does not
promote the system in the USC regime. The Figs. 12(a),
12(b), and 12(c) show the SQUID-array resonator reflec-
tance amplitude jS11j versus DQD detuning ϵ=h corre-
sponding to Figs. 3(a), 3(b), and 3(c) but without the
overlaid fitting curves. Similarly, the Figs. 13(a) and 13(b)
show the junction array resonator reflectance amplitude
jS11j versus DQD detuning ϵ=h corresponding to Figs. 5(b)
and 11(b) without the overlaid fitting curves.

FIG. 11. Investigation of a configuration approaching the ultrastrong-coupling regime for a DQD with η ∼ 0.50� 0.14 coupled to a JJ
array. (a) Charge stability diagram of the DQD measured by monitoring the change in resonator reflectance amplitude jS11j for the
extracted dipole strength η ∼ 0.50� 0.14. (b) Resonator amplitude response jS11j taken by varying the DQD detuning ϵ along the gray
line indicated in (a) by applying properly chosen voltages to the two side gates. The red (blue) lines are independent fits to the Rabi (JC)
model (see Appendix F). (c) Line cut representing jS11jðωp=2πÞ taken along the black arrows in (b). The orange line represents a fit to a
JC master equation model. The resonator losses are κint=2π ¼ 19.5 MHz and κext=2π ¼ 4.3� 0.1 MHz.
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expected ḡ0⊥ ∝ ffiffiffiffiffi

ωr
p

dependence.
[35] A. Cottet, M. C. Dartiailh, M. M. Desjardins, T. Cubaynes,

L. C. Contamin, M. Delbecq, J. J. Viennot, L. E. Bruhat,
B. Douçot, and T. Kontos, Cavity QED with Hybrid
Nanocircuits: From Atomic-like Physics to Condensed
Matter Phenomena, J. Phys. Condens. Matter 29, 433002
(2017).

[36] N. A. Masluk, I. M. Pop, A. Kamal, Z. K. Minev, and M. H.
Devoret, Microwave Characterization of Josephson Junc-
tion Arrays: Implementing a Low Loss Superinductance,
Phys. Rev. Lett. 109, 137002 (2012).

[37] Figure 11 in Appendix Extra data reports the same analysis
performed on a second DQD configuration characterized by
η ∼ 0.5. There, we obtain comparable results from fits to the
Rabi and JC models.

[38] P. Scarlino, D. J. van Woerkom, U. C. Mendes, J. V. Koski,
A. J. Landig, C. K. Andersen, S. Gasparinetti, C. Reichl, W.
Wegscheider, K. Ensslin, T. Ihn, A. Blais, and A. Wallraff,
Coherent Microwave-Photon-Mediated Coupling between
a Semiconductor and a Superconducting Qubit, Nat.
Commun. 10, 3011 (2019).

[39] J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl,
W. Wegscheider, T. M. Ihn, K. Ensslin, and A. Wallraff,
Single-Electron Double Quantum Dot Dipole-Coupled to a
Single Photonic Mode, Phys. Rev. B 88, 125312 (2013).

[40] D. J. van Woerkom, P. Scarlino, J. H. Ungerer, C. Muller,
J. V. Koski, A. J. Landig, C. Reichl, W. Wegscheider, T. Ihn,
K. Ensslin, and A. Wallraff, Microwave Photon-Mediated
Interactions between Semiconductor Qubits, Phys. Rev. X
8, 041018 (2018).

[41] D. J. Ibberson, T. Lundberg, J. A. Haigh, L. Hutin, B.
Bertrand, S. Barraud, C.-M. Lee, N. A. Stelmashenko,
G. A. Oakes, L. Cochrane, J. W. A. Robinson, M. Vinet,
M. F. Gonzalez-Zalba, and L. A. Ibberson, Large Dispersive

Interaction between a CMOS Double Quantum Dot and
Microwave Photons, PRX Quantum 2, 020315 (2021).

[42] D. de Jong, J. van Veen, L. Binci, A. Singh, P. Krogstrup,
L. P. Kouwenhoven, W. Pfaff, and J. D. Watson, Rapid
Detection of Coherent Tunneling in an In-As Nanowire
Quantum Dot through Dispersive Gate Sensing, Phys. Rev.
Applied 11, 044061 (2019).

[43] M. Lodari, N. Hendrickx, W. Lawrie, T.-k. Hsiao, L.
Vandersypen, A. Sammak, M. Veldhorst, and G.
Scappucci, Low Percolation Density and Charge Noise
with Holes in Germanium, Mater. Quantum. Technol. 1,
011002 (2021).

[44] F. N. Froning, L. C. Camenzind, O. A. van der Molen, A. Li,
E. P. Bakkers, D. M. Zumbühl, and F. R. Braakman, Ultra-
fast Hole Spin Qubit with Gate-Tunable Spin-Orbit Switch
Functionality, Nat. Nanotechnol. 16, 308 (2021).

[45] E. Kawakami, P. Scarlino, D. R. Ward, F. R. Braakman,
D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith,
M. A. Eriksson, and L. M. K. Vandersypen, Electrical Con-
trol of a Long-Lived Spin Qubit in a Si/SiGe Quantum Dot,
Nat. Nanotechnol. 9, 666 (2014).

[46] J. Combes, J. Kerckhoff, and M. Sarovar, The SLH
Framework for Modeling Quantum Input-Output Networks,
Adv. Phys. X 2, 784 (2017).

[47] C. Müller, J. Combes, A. R. Hamann, A. Fedorov, and T. M.
Stace, Nonreciprocal Atomic Scattering: A Saturable,
Quantum Yagi-Uda Antenna, Phys. Rev. A 96, 053817
(2017).

[48] A. Rosario Hamann, C. Müller, M. Jerger, M. Zanner, J.
Combes, M. Pletyukhov, M. Weides, T. M. Stace, and A.
Fedorov, Nonreciprocity Realized with Quantum Nonlinear-
ity, Phys. Rev. Lett. 121, 123601 (2018).

[49] P. Harvey-Collard, G. Zheng, J. Dijkema, N. Samkharadze,
A. Sammak, G. Scappucci, and L. M. K. Vandersypen, On-
Chip Microwave Filters for High-Impedance Resonators
with Gate-Defined Quantum Dots, Phys. Rev. Applied 14,
034025 (2020).

[50] X. Mi, J. V. Cady, D. M. Zajac, J. Stehlik, L. F. Edge, and
J. R. Petta, Circuit Quantum Electrodynamics Architecture
for Gate-Defined Quantum Dots in Silicon, Appl. Phys.
Lett. 110, 043502 (2017).

IN SITU TUNING OF THE ELECTRIC-DIPOLE … PHYS. REV. X 12, 031004 (2022)

031004-23

https://doi.org/10.1088/1361-648X/aa7b4d
https://doi.org/10.1088/1361-648X/aa7b4d
https://doi.org/10.1103/PhysRevLett.109.137002
https://doi.org/10.1038/s41467-019-10798-6
https://doi.org/10.1038/s41467-019-10798-6
https://doi.org/10.1103/PhysRevB.88.125312
https://doi.org/10.1103/PhysRevX.8.041018
https://doi.org/10.1103/PhysRevX.8.041018
https://doi.org/10.1103/PRXQuantum.2.020315
https://doi.org/10.1103/PhysRevApplied.11.044061
https://doi.org/10.1103/PhysRevApplied.11.044061
https://doi.org/10.1088/2633-4356/abcd82
https://doi.org/10.1088/2633-4356/abcd82
https://doi.org/10.1038/s41565-020-00828-6
https://doi.org/10.1038/nnano.2014.153
https://doi.org/10.1080/23746149.2017.1343097
https://doi.org/10.1103/PhysRevA.96.053817
https://doi.org/10.1103/PhysRevA.96.053817
https://doi.org/10.1103/PhysRevLett.121.123601
https://doi.org/10.1103/PhysRevApplied.14.034025
https://doi.org/10.1103/PhysRevApplied.14.034025
https://doi.org/10.1063/1.4974536
https://doi.org/10.1063/1.4974536

