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CrossMark
Abstract
The necessary and sufficient criteria for violating the Mermin and Svetlichny
inequalities by arbitrary three-qubit states are presented. Several attempts have
been made, earlier, to find such criteria, however, those extant criteria are
neither tight for most of the instances, nor fully general. We generalize the
existing criteria for Mermin and Svetlichny inequalities which are valid for the
local projective measurement observables as well as for the arbitrary ones. We
obtain the maximal achievable bounds of the Mermin and Svetlichny operators
with unbiased measurement observables for arbitrary three-qubit states and
with arbitrary observables for three-qubit states having maximally mixed mar-
ginals. We find that for certain ranges of measurement strengths, it is possible
to violate Mermin and Svetlichny inequalities only by biased measurement
observables. The necessary and sufficient criteria of violating any one of the
six possible Mermin and Svetlichny inequalities are also derived.

Keywords: bell nonlocality, mermin inequality, svetlichny inequality,
POVMs

1. Introduction

Bell inequalities play a pivotal role in demarcating the correlations entertained by two or more
distant quantum particles than admissible by their classical counterpart [1]. The most celeb-
rated Bell inequality is the Bell-CHSH inequality for two-qubit states [2]. Its straightforward
generalization to three qubits is popularly known as Mermin [3] and Svetlichny [4] inequal-
ities. At their inception, these inequalities are considered for sharp dichotomic measurement
observables, i.e. observables with two sharp effects corresponding to two distinct outcomes,
say £1 (known as projective measurement observables).

" Author to whom any correspondence should be addressed.
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However, sometimes, an observer might not be able to measure projective observables,
due to the apparatus limitations such as detector noise or interactions with the environment.
Also, non-projective measurements are not only theoretically intriguing but has many poten-
tial applications in quantum information processing protocols, e.g. most importantly, non-
orthogonal state discrimination and its crucial role in randomness extraction plus quantum
cryptography [5]. To deal with such situations, Hall and Cheng have provided the necessary
and sufficient conditions to violate the Bell-CHSH inequalities for non-projective measure-
ments on arbitrary two qubits [6], by improving the Horodecki bound (of sharp observables)
[7]. The generalization of the bound is also useful for the task of ‘resource recycling’ where
bonafide parties use the noisy detector to implement the task [8, 9]. Here, by resource, we
mean any quantum correlations which can be shared by two or more parties, e.g. quantum
entanglement, nonlocality, steering, etc [10, 11]. The framework provided by Hall and Cheng
in [6], has inspired us to do the similar analysis for three qubit Bell inequalities.

Finding analytical solutions for the maximum value of the bipartite as well as the multi-
partite Bell operators for arbitrary quantum states is of great importance, specifically, it helps
to capture the deviation of quantum correlations from the classical ones [7, 12, 13]. This will
also entail a necessary and sufficient criterion for violating the respective Bell inequalities [7].
Moreover, the degree of violating Bell inequalities in a given setup is a key ingredient for many
tasks, such as bounding key rates of secure cryptographic protocols [14] and the certification
of random number generators [15], to name a few. Therefore, the search of finding such an
upper bound is still going on. The quantum upper bound for Mermin and Svetlichny inequalit-
ies were proposed earlier, respectively in [16—18], however, in both the cases the observables
under consideration were sharp. Moreover, those proposed bounds were not always tight for
most of the situations.

In this work, we consider the Mermin and Svetlichny operators for non-projective quantum
observables and find their maximal value for arbitrary three qubit states. Our analysis gives
more insights into the tightness of these bounds by generalizing the previous bounds. In par-
ticular, we find a new generalization of the upper bound of Svetlichny inequality for projective
measurement which is tight for wider classes of three qubit states. Our results are particularly
useful in the cases where there are apparatus limitations such as detector noise. Also, these
bounds are useful for the task where the preservation of entanglement is paramount, such as
recycling resources [8, 9, 19-21], randomness generations [22] and state discriminations [23].

In the following section, we describe the three qubit Bell inequalities in a nutshell for dicho-
tomic quantum observables. Also, we introduce the framework of general measurement (i.e.
non-projective) observables with a concept like ‘bias’ and ‘strengths’ [6]. In section 3, we find
the necessary and sufficient condition(s) of violating Mermin inequalities by finding the upper
bound of Mermin operators for general measurement observables for arbitrary three qubit
states. We did a similar analysis for Svetlichny operators in section 4. Finally, we conclude in
section 5.

2. Bell inequalities for three qubits

The general three qubit state papc in L£(Ha, Hp, Hc) can be expressed as

3
1
ng Z AMU’YJH@U,,@OZY, (D

v, y=0

where A, = Tr[(0, ® 0, ® 0)p]. The coefficient Agoo = 1 is the normalization condition;
I={Awo;i=1,2,3}, m ={Agjo;j=1,2,3}, n = {Aoor;k = 1,2,3} are the bloch vectors for
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three parties respectively; © = [Ajo], ® = [Aine], © = [Agi] are the two party correlation
matrices and 7' = [A] is the tripartite correlation matrix.

Any general qubit observable X with two outcomes w = +1 can be described by two effects
{X,,X_} with Xy >0and X, +X_ = 1. For projective effects, X2 = X, and without loss
of generality, one can show that X = x - o, where x = {x;,x,x3 } is three-dimensional real unit
vector and o = (01,0,,03) as a vector of Pauli spin matrices. Now, the tripartite correlation
can be established for projective observables X,Y,Z as XYZ= (x-0)®(y-0)® (z- o). By
taking linear combinations of these correlations one can define the following identities for
observables X, X', Y,Y' . Z, Z'

E=XYZ' +XY'Z+X'YZ-X'Y'Z', 2
E'=X"YZ+X'YZ +XY'Z — XYZ.
The expectation value of operator, £ for state p is given by (£) = Tr[€ p]. We define the expect-

ation value of Mermin and Svetlichny operators respectively as M = |(£)| and S = [(€ — £},
where the values depend both on the state and observable parameters. The inequalities,

M=[(E)]<2,  ad  S:=|(E-&)<4, )

are known in literature as Mermin inequality [3], and Svetlichny inequality [4] respectively.
The violation of these inequalities admits tripartite Bell-nonlocality, whereas it is genuine non-
locality for the later one [24]. The attempts to find optimal values of Mermin and Svetlichny
operators have been done earlier in [16—18], but only for sharp observables. To recall, we state
these results below:

Lemma 1. Grasselli et al [17] The maximum quantum value of Mermin operator on three
qubit states for projective observables X, X', Y, Y', Z and Z, is given by

M <M(T) = 2/$(T) + (),

where s1(T),s2(T) are the two largest singular values of correlation matrix T (i.e. square roots
of the eigenvalues of T' T).

Note that the upper bound in lemma 1 is tight only if the correlation matrix 7 of the considered
state meets certain conditions, i.e. for the specific choices of global vectors, it should satisfy

yez' +y ©2=2/(1)/[5(1) + (s,

and y®z—y' ®@z' =24/s3(T)/[s}(T) + s3(T)]s2, 4)

where ([y,y'],[z,z’]) and (s1,s2) denotes the local measurement vectors of two distant parties,
and the normalized nine-dimensional eigenvectors of matrix 7" T respectively [17]. The above
results of Mermin inequality can further be generalized for non-projective ones, which is one
of the objective of this work.

Next, we recall the result for Svetlichny inequality:

Lemma 2. Ming et al [18] The maximum quantum value of Svetlichny operator on three qubit
states for projective observables X, X', Y, Y, Zand Z', is given by

S < S(T) := dsmax (T),
where sma (T) is the largest singular value of correlation matrix T.

Here, it is evident that the bound in lemma 2 is achievable for three qubit states if two condi-
tions, i.e. (a) largest singular value of 7, s, (7) has degeneracy two, and (b) the conditions

3
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in equation (4) for s (T) = 52(T) = smax(T), are satisfied simultaneously. This is only possible
for some GHZ-class of states with projective measurement [18]. However, these results of
Svetlichny inequality with projective measurements can be improved further, and can also be
generalized for non-projective ones.

A general qubit observable X can be be decomposed as [6]

X=Bl+Ro x, )

where B is the bias of the observable; and R > 0 is strength (sharpness) parameter; which
satisfy the constraint

R+|B| <1, (6)

where |a| := \/a -a. An unbiased observable with B = 0 has maximum sharpness R = 1 cor-
responds to projective one, while with minimum strength R = 0 corresponds to trivial observ-
able X = B1, equivalent to tossing a coin with outcome probabilities %(1 + B).

The expectation value of XYZ is thus given by

(XYZ) = TH[(X® Y2 Z)p]
3 3
= BxByBz + BYBZRXinAi7O,O + BXBZRYZyjAOJ,O

i=1 j=1

3 3
+ BXBYRZZZkAO,O,k +Bz7RxRy Z xiyilijo

k=1 ij=1

3 3

+ByRxRz > xizeliox+ BxRyRz »  vizhojx

i k=1 k=1

3

+RxRyRz Z xiyizilNij ks

ijk=1

= BxByBz + BszRxlTx —+ BszRymTy + BxByRzn TZ
+ B;RxRyx " Oy + ByRxRzx | dz+ ByRyRzy 'z
+ RxRyRzx " T(y ®7), (7
for X = Byl + Rxo -x, Y= Byl + Ryo -y and Z= B;1 + R0 - z. Using these generalize

tripartite correlations, we will evaluate the admissible quantum upper bounds of Mermin and
Svetlichny inequalities.

3. Generalizing the mermin bound

We evaluate the quantum upper bound of Mermin inequality using general observables defined
in equation (5). Let us consider the unbiased observables with B = 0, then the expectation value
of Mermin operator (equation (2)) becomes

E)p =Rxx " T[(Ry @Rzz") + (Ryy’ @ Rzz)]
=+ RX/XITT[(Ryy X Rzz) — (Ryryl X RZIZ/)] . (8)

The quantum upper bound of the Mermin operator has been evaluated for unbiased observables
and compactly stated in the following theorem.

4
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Theorem 1. The tight upper bound of Mermin inequality on three qubit states for unbiased
observables X,X',Y,Y',Z,Z', with strengths Rx,Rx', Ry, Ry, Rz, Rz and correlation mat-
rix T is given by
2
ML Mp: = Zs,-(T)s,-(V)7
i=1
1 1
= 5 [s1(D) + 52D (V) + 5 [51(T) = s2(D-(V), ©
where V is a 3 X 9 matrix defined in appendix A. And s\(T),s2(T) and s,(V),s2(V) are the
two largest singular values of T and V respectively, and I+ (V) := s;(V) £ 5,(V) > 0, may be
calculated using

Ii WVy=Ih+2 [I;Z(Y cos B, cosby + I;Y(Z cosfycosh; + I’,ﬁz cos 6, cosb;

1
+ Ry Ry sinfy x {1$Zsin2 0y + IDysin® 0, + I (1 — cos 26, cosZGZ)} } ,

(10)

where Iy = Ry (RYR;, + R, R3) + Ry (RyRZ + Ry R3.), Iy = RiRi RiR; (R — Ri.),
Ig =RIR: (R} +R]‘-‘,), I = RyRy'RzRz/, cosby =x-x', cosOy=y-y’, cos, =z-z" and
{i,j,k} € [X,Y,2).

We prove the theorem 1 in appendix A. It can be noticed from theorem 1 that the Mermin
inequality can be violated by measuring unbiased observables (with given strengths and relat-
ive angles), if and only if M > 2. Further, theorem 1 generalizes the special case represented
in lemma 1, valid for all three qubit states. Note that the upper bound in the theorem is invariant
under local unitary transformations on every party as these transformations leave measurement
strength, relative angles, and singular values invariant (similar reasoning to [6]). Recently, a
tight upper bound of Mermin inequality was found for sharp observables in [17] (see lemma 1).
The link between lemma 1 and theorem 1 is evident by following simplified analysis. Using
Cauchy-Schwarz inequality and the identity Tr[VT V] = 21.2:1 s7(V) in equation (9), we get
2
MESTRVIVY sH(T) < MA(T).

i=1
The above inequality is achieved, as Tr[V" V] < max{A2?, B?,C?,D?*} < 4, where A, B,C, and D
are defined in appendix A. Therefore, the bound in lemma 1 is the upper bound of the Mermin
operator for unbiased observables.

A more general bound can be obtained from theorem 1 in the following.

Corollary 1. The tight upper bound of Mermin inequality on three qubit states for unbiased
observables X,X',Y,Y',Z,Z’, with strengths Ry = Rx/, Ry = Ry, Rz = Rz and correlation
matrix T is given by

M <2RxRyRz7\/s3(T) + s3(T). (11)

The above bound is achieved for any relative angle satisfying

sinfy/1 —cos?6,cos?f, = %Sl(Ti)szz(T) (12)
s1(T) +s3(T)

5
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The proof of above corollary is given in appendix A. If the largest singular value of T has
degeneracy two (at least), and say, it is Smax(7), then equation (11) becomes

M <2V 2500 (T RxRyR. (13)

The above bound saturates for orthogonal relative angles, 6, = 0, = 0, = 7, which can be seen
by putting s1(7) = 52(T) = smax (T) in equation (12). For Rx = Ry = Rz = 1, equations (11)
and (13) reduces to the expression of the maximum expectation value of Mermin operator
for non-degenerate and degenerate singular values of 7, for projective qubit observables,
respectively [16, 17].

Now, choosing orthogonal relative angles between observables, i.e. 0, = 0, = 0, = 7, we
get the following corollary.

Corollary 2. A sufficient condition to violate the Mermin inequality on three qubit states for
unbiased observables X,X',Y,Y',Z,Z', with strengths Rx,Rx', Ry, Ry, Rz, Rz and correl-
ation matrix T is given by

MG =Ry (RERS, + RE, RY)s1(T) + R (RERG + RE R, )sa(T) > 2.
(14)

Note that equation (14) is also a necessary criterion if the strengths of measurements are equal
on every side and s (T) = s,(T), the optimal relative angles are orthogonal for this case (fol-
lowing discussion of corollary 1).

It is evident that the bound in theorem 1 is not invariant under the exchange of measure-
ments, i.e. X with X’, Y with ¥’ etc. The Mermin operator itself is not invariant under such
transformations, rather gives rise to six different Mermin operators. As relative angles are
invariant under such transformations, and sin#; > 0 (i = x,y,z), the necessary and sufficient
criteria to violate any one of the six Mermin inequalities is the following:

Corollary 3. One of the six possible Mermin inequalities on three qubit states for unbiased
observables X,X',Y,Y',Z,Z’', with strengths Rx,Rx', Ry, Ry, Rz, Rz and correlation mat-
rix T is violated if only if

~ 1 ~ 1 ~

My = 351 (T) +2(T)]L4 (V) + 5 1 (T) = 21T (V) > 2, (15)

where I(V) > 0 is defined as

(V) = Iy +2 | |y|| cos 0. cos by | + |Ixz| | cos B, cos b, | + | Bz || cos By cos b,

1
+ RxRy sin@x{l,gzsin2 6y +IzoySin2 0, +If(1 — | cos26y cos291|)} 2} .

Comparing equations (9) and (15) we find that Moy = M,, for equal strengths on each sides.
Therefore, M > 2, is the necessary and sufficient condition for this case, or in other words,
one of the six possible Mermin inequalities violate if and only if the one considered in
equation (3) violates.

3.1. Generalized criterion for T-state

In this subsection, we will consider a class of mixed three qubit states whose local states are
maximally mixed, i.e. I =m =n = 0 and additionally the bipartite correlation tensors, © =
® = Q) = 0. Putting all these in equation (1), yields

6
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1
pT=§[]l®]l®]l+0'T®T(a®a)]. (16)

These states are therefore fully characterized by their correlation matrix 7, and are commonly
known in literature as T-states [7]. Specifically, they include GHZ-class of states (see [16]). For
this class of states, we find the upper bound of Mermin operator for most general observables,
whether they are biased or unbiased observables.

Using equation (2), the form of Mermin operator for 7-states can be written as

M = [(E)uw + K],

where K := Bx(ByBz: + By:Bz) + Bx/(ByBz — By:Bz+). Noticing the similarity between M
of unbiased measurement on arbitrary states and arbitrary measurements on 7-states, we have
the following theorem analogous to theorem 1.

Theorem 2. The tight upper bound of Mermin inequality on T-states for arbitrary observables
X, X', Y,Y' Z,Z', with strengths Rx,Rx', Ry, Ry, Rz, Rz and correlation matrix T is given
by

M < Mp = Mo+ Kipax, 17

where My is same as of equation (9) and Ky, is defined as
Kmax L= (Z—RX — RX/)(2 —Ry—Ryl)(z — RZ — Rzl) — rx<ryzz+fyrz>
—gx(ryrz+£ygz> —2rXrYrZ, (18)

where r; =1 —max{R;,R; }, {; =1 —min{R;,R;-}, and i = {X,Y,Z}.

The theorem 2 is proved in appendix B. The Mermin inequality will be violated for T-state if
M7 > 2. Note that the optimization of the bound M7 has been subjected to the inequality in
equation (6).

Theorem 2 achieves a larger value for 7-state than for general states with unbiased observ-
ables when K.x > 0. However, for K,.x =0, M7= M, which indicates that unbiased
observables are optimal for this case. Further, from the equation (18), we find Ky.x < 2 and
specifically, for zero strength measurements, i.e. Kiax = 2, the values of My = 0 and My =2,
implicating no violation for Mermin inequality. Then, it is interesting to ask whether there
exist cases for which Mermin inequality is violated by biased observables but not by unbiased
observables. In the following discussion, we answer it affirmatively.

Looking at the similarity between the upper bound of Mermin operator for unbiased meas-
urement on arbitrary states and arbitrary measurements on 7-states, we immediately have the
following corollary.

Corollary 4. The tight upper bound of Mermin inequality on T-states, for arbitrary observ-
ables X,X',Y,Y',Z,Z’', with strengths Ry = Rx', Ry = Ry:, Rz = Rz and correlation mat-
rix T is given by

M L2RxRyRz7\/sH(T) + s3(T) +2(1 — Rx)(1 — Ry) (1 — Ry), (19)
where the bound is achieved for any relative angle satisfying equation (12).

Using the result of theorem 2 instead of the theorem 1, in equation (11) of corollary 1, we get
the required result, which is the sum of the right-hand side of equation (11) and Kj,,x. Similar
to the case of unbiased observables, the equation (19) of arbitrary observables measured on
T-states saturates when relative angles are orthogonal, i.e. when s1(T) = s5(7).

7
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The above corollary helps us in answering the question that we raised earlier. Let us con-
sider an example where each observable are of the same strength R, placing in equations (11)
and (19), we get the maximum achievable violation of the Mermin inequality for unbiased
observables, and for biased observables of equal strength respectively,

Munbiased = 2R3P7 and Mbiased - 2R3P + 2(1 - R)37 (20)

where P = /s7(T) + s5(T). Comparing the above two equations, we find that if the Mer-
min inequality is violated by unbiased observables for a given value of R < 1, then it can be
violated by a larger amount for the case of biased observables with the same strength. Fur-
ther, there are cases where the Mermin inequality can only be violated by biased observables.
Equation (20) implies that a violation, i.e. M > 2, requires

1 —3+V3V/4P -1
P 2P—1)
Thus, we find that for any strength satisfying Runpiased = R > Rpiased (Which is always possible

if P > 1,ie. if M(T) > 2), the Mermin inequality can be violated only by biased observables.
Let us summarize above results in the following corollary.

R > Runbiased := R > Ropiased 1= 21

Corollary 5. The maximum violation of Mermin inequality for observables of fixed strengths
Rx,Rx' Ry, Ry, Rz, Rz, can be larger when observables are considered biased, compared
to unbiased. Moreover, there are cases where the Mermin inequality can only be violated by
biased observables.

The analogue of corollary 2 for T-state, i.e. a sufficient condition to violate the Mermin
inequality via general measurements of given strength, on a T-state can be written as

Mg+ Kipax > 2,
where /\/loL is defined in equation (14), while the analogue of corollary 3 is stated below.

Corollary 6. One of the six possible Mermin inequalities for arbitrary observables
X, X" Y,Y',Z,Z', with strengths Rx,Rx',Ry,Ry',Rz, Rz on T-states is violated if only if

My = Mo+ Knax > 2, (22)
where My is defined in equation (15).

Comparing equations (17) and (22), we get M7 = My, for Rx = R}, Ry = Ryand Rz = R}.
Therefore, My > 2, is the necessary and sufficient condition for corollary 6.

3.2. Optimal angles for fixed strengths

The tight upper bound of the Mermin operator obtained in theorems 1 and 2 are functions of
measurement strengths and relative angles between measurement observables on each side.
This dependency can be studied more in detail. Note that in the experiment, it is easier to
control the measurement directions (e.g. by rotation of a polarizer) than the strength of meas-
urement (which might come from the limitations of the device or its interaction with the envir-
onment). Therefore, we are interested to determine the optimal angles that maximize the value
of the Mermin operator for a fixed set of measurement strengths. This task can always be done
numerically, however, analytical results are more instructive, and thus we present some of
them in this subsection.
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Some of the optimal relative angles are found to be degenerate for the case of equal strength
on each side (See corollaries 1 and 4), and thus those values of triple {6,,6,,6.} which satisfy
equation (12), will be optimal. However, the degeneracy can be lifted by choosing unequal
strength on just one side. We present our first result by generalizing corollaries 1 and 4.

Theorem 3. The tight upper bound of Mermin inequality with observables, X,X',Y,Y',Z,7’,
for the cases of unbiased measurement on arbitrary states and arbitrary measurements on T-
states, for strengths Ry > Ry, Ry =Ry and Rz =Rz and correlation matrix T is given
respectively by

M < ZRYIRZ\/R%S%(T) +R)2(’S%(T)’

M < 2RyRz\RESH(T) + Ry s3(T) +2(1 - Re)(1 - Ry) (1~ Rz),  (23)

where the bound is achieved for any relative angle satisfying
2RxRxlS1 (T)SQ(T)
R)Z(Sl (T)2 + R%,Sz(T)

The proof of the above theorem is given in appendix C. The results in theorem 3 can be seen as
a generalization of the results found in [17]. We see that the results of corollaries 1 and 4 can
be retrieved from above theorem by putting Rx = Ry and the optimal angles of equation (24)
is also seen to satisfy the equation (12). But the optimal angles are specified uniquely, i.e. the
degeneracy in angles has been lifted. Interestingly, the above result indicates that if two of the
observers are measuring their observables with equal strengths, then the orthogonal measure-
ment direction is the optimal choice for the third one.

Also, the optimal relative angles can be determined if the largest singular values of correl-
ation matrix T are equal, i.e. §1(T) = $2(T) = smax(T), then Mg = $pmax ()14 (V). Finding the
global maxima of I, (V) for arbitrary relative angles seems intractable, however, fixing one
of the relative angles might give us some intuition. Fixing 6, = 7, we obtained the following
result.

sinfysinf, = 5» and 0, =1/2. (24)

Proposition 1. The tight upper bound of Mermin inequality for observables X,X',Y,Y',Z,Z’
and with two degenerate largest singular values, i.e. s\(T) = s2(T) = smax(T) of correlation
matrix T, is given by

M Smax(T) V Io+ ZFO, and M < smax(T) V Io+2I0 + Kmax; (25)

for the cases of unbiased measurements on arbitrary states and arbitrary measurements on
T-states respectively, where Iy and Knax are defined respectively in equations (10) and (18),
and

Ty := RyRa | RRY (RS + R%) + RIRE (R} + Ri).
Further, the bounds are achieved for the relative angles satisfying
RzRz (Ry+R3)
RyRy (RZ—R2)’

The above proposition is proved in appendix C. Noticing the symmetry between 6, and ¢, in
I (V), we find that one can obtain exactly same optimization (equation (25)) by fixing 6, = 5
instead of 6. Moreover, we report that fixing 6, = 5 will also yield the same optimization
(equation (25)) (see appendix C for details). Therefore, the results in equation (25) seem closer
to global maxima. Note that it reaches the maximum, 24/25max When each observable is of unit

strength (R = 1).

cos Qy = Slgl’l(RX — RX’), and 92 = Z

tanfd, =
2
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4. Generalizing Svetlichny bound

Similar to the case of the Mermin operator, we are now ready to study the Svetlichny operator
for the case of unbiased observables for 5 = 0. The expectation value of Svetlichny operator
is given by

(E—ENp=Rxx ' T[Ry ® (Rzz+Rzz') + Ryy' @ (Rzz — Rziz')]
+ Ry x'"T[Ry ® (Rzz —Rzz') — Ryy' @ (Rzz + Rziz')].
(26)

Theorem 4. The tight upper bound of Svetlichny inequality on three qubit state for unbiased
observables X,X',Y,Y',Z,Z’', with strengths Rx,Rx', Ry, Ry', Rz, Rz and correlation mat-
rix T is given by

2
S<S: = Zs,-(T)s,-(W),
i=1

= S0+ 2D W)+ 5[50 (T) = 52T (W), @)

where Wis a3 x 9 matrix defined in appendix D. And s, (W), s2(W) are the two largest singular
values of W respectively, and J1 (W) := s1(W) £ 5,(W) = 0, may be calculated using

JL(W)=Jy+2 [J’;Zcos O + Jyzc0s 0, + J5ycos 0, — 2Ry Ry
X (21 1 cos b, cosfycos B, F sinfy {IQZ sin® 0, + 12y sin® 6,

+E(1 —cosZHycos291)}%)}, (28)

where Jo = (R +R3)(Ry+ Ry )Rz +RZ.), Ty = RiRir(R} —R})(Ri — Ry?), and
(11,13) are defined in equation (10).

We prove the theorem in appendix D. Above theorem indicates that the Svetlichny inequality
can be violated by measuring unbiased observables with given strengths and relative angles, if
and only if Sy > 4. Theorem 4 is the generalization of the special case given in lemma 2, valid
for all three qubit states. Note that the upper bound, like Mermin bound, is also invariant under
local unitary transformations on every side, since such transformations leave measurement
strengths, relative angles, and singular values invariant. For equal strength on each side yields
the following bound.

Corollary 7. The tight upper bound of Svetlichny inequality on three qubit states for unbiased
observables X, X', Y,Y',Z,Z’, with strengths Ry = Rx/, Ry = Ry, Rz = Rz and correlation
matrix T is given by

S < ZﬂRnyRz\/ S%(T) + S%(T)a (29)
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The above bound is achieved for any relative angle satisfying

HT) —s3(T
cost,cost, = éETiJrz%ET; and 9x—7r,
1 2
251(T)so(T
or, sinf, = 2s1( )Szz( ) , and cosf,cosf,=0. 30)
st(T) +55(T) ’

The proof of corollary is given in appendix D. The new bound obtained in corollary 7 is a
substantial generalization of the lemma 2 for unbiased observables. For two degenerate largest
singular values of T, say syax(7), equation (29) becomes

S S 4SmaX(T)RnyRz. (31)

us

The above bound saturates, for orthogonal relative angles, §; = 7, which can been seen by
putting s1(7) = 52(T) = smax(T) in equation (30). For Ry = Ry = Rz = 1, corollary 7 reduces
to the following upper bound of Svetlichny inequality with sharp observables,

S <S(T) :=2v24/$3(T) + s3(T). (32)

Equation (32) is a generalization of a special case represented in lemma 2, for sharp observ-
ables. When s (T) = 52(T) = Smax(T), we retrieve the lemma 2 [18].

It follows from theorem 4 that the sufficient condition to violate Svetlichny inequality for
fixed values of relative angles only depends on the measurement strengths. Specifically, by
choosing orthogonal relative angles, 0, = 6, = 0, = 7, we get the following criteria.

Corollary 8. A sufficient condition to violate the Svetlichny inequality on three qubit states for
unbiased observables X,X',Y,Y',Z,Z', with strengths Rx,Rx', Ry, Ry, Rz, Rz and correl-
ation matrix T is given by

1 1
o= 5 Uy +i-)n (1) + 50y —j-)sa(T) > 4, (33)

I—

where ju. = {Jo + 4RxRyr\ (RYR, + R} RE) (RYRS + R} RS, |

Equation (33) is also a necessary condition for the case of equal strengths on each side and
51(T) = 5,(T), the optimal relative angles are orthogonal for this case (follow discussion of
corollary 7).

Following similar reasoning like Mermin inequality, the Svetlichny operator is also not
invariant under the exchange of measurement operators on each side, i.e. X - X', Y — Y’
etc, rather, it transforms between six different versions of Svetlichny operators. Therefore,
theorem 4 is not also invariant under such transformations. As the relative angles are invariant
under such transformations, and sin#; > 0, the necessary and sufficient condition to violate
any one of six Svetlichny inequalities is stated in the following corollary.

Corollary 9. One of the six possible Svetlichny inequalities on three qubit states for unbiased
observables X,X',Y,Y',Z,Z', with strengths Rx,Rx', Ry, Ry', Rz, Rz and correlation mat-
rix T is violated if only if

1 ~ 1 ~

Fo = E[sl(T) + 52(D))J (W) + E[sl(T) —52(T))I_(W) > 4, (34)

1
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with ji(W) > 0 defined via

JL(W)=Jy+2 [|J§Z |cos O] + [Jxz||cos By | + [J5y||cos .| — 2RxRx
X (2[1 |cos By cosb,cosb,| F sino9,c{lgzsin2 0, + I2ysin® 6,
1
+B(1— |c0529yc05201|)}2>}.

Comparing equations (27) and (34), we find that S =8, for equal strengths on each side.
Therefore, Sy > 2, is the necessary and sufficient condition for this case, or in other words,
one of the six possible Svetlichny inequalities violate if and only if the one considered in
equation (3) violates.

4.1. Generalized criterion for T-state

Now, we obtain the upper bound of Svetlichny operator for T-states which is valid for arbitrary
observables, whether biased or unbiased. The form of Svetlichny operator for 7-states is given
by

S=[E—ENw+L,

where L .= (BxBY — BX/ Byl)(BZ + BZ') + (Bxgyl + BX/ By) (BZ — BZ’)- Noticing the simil-
arity between S of unbiased measurement on arbitrary states and arbitrary measurements on
T-states, we have the following theorem, equivalent to theorem 4.

Theorem 5. The tight upper bound of Svetlichny inequality on T-states for arbitrary observ-
ables X,X',Y,Y',Z,Z', with strengths Ry, Rx', Ry, Ry, Rz, Rz and correlation matrix T is
given by

S<Sri= SO ~+ Limax, (35)
where Sy is same as of equation (27) and L,y is defined as

Liyax : = [(1 —Rx)(l —RY/) + (1 —RXI)(I —Ry)] |2—R2—RZ/|
+[(1=Rx)(1 =Ry) = (1 = Rx/)(1 = Ry")] Rz — Rz|. (36)

The proof of theorem 5 is given in appendix E. The Svetlichny inequality will be violated for
given strengths and relative angles on T-states, if and only if Sr > 4. Note that we achieve
the expression of L,x by optimizing the Svetlichny expression subjected to the constraint in
equation (6).

As Ly, = 0, it can be concluded from theorems 4 and 5 that the Svetlichny operator can
achieve a larger value for T-states compared to unbiased observables for all three qubit states.
However, for Ly.x = 0, i.e. all strengths equal to unity, Sy = Sp, implying that the unbiased
observables are optimal in this case. Further, from equation (36), we find Ly,,x < 4 and specific-
ally, for zero strength measurements, i.e. Ly,x = 4, the values of Sy = 0 and Sy = 4, implicat-
ing no violation for Svetlichny inequality. Again, this fact raises a similar question: does there
exist instances where Svetlichny inequality will be violated by biased observables but not by
unbiased ones? We answer it affirmatively in the following discussions.

Noticing the similarity between theorems 4 and 5, one can derive the following corollary.

12
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Corollary 10. The tight upper bound of Svetlichny inequality on T-states, for arbitrary observ-
ables X,X',Y,Y',Z,Z’', with strengths Ry = Rx', Ry = Ry:, Rz = Rz and correlation mat-
rix T is given by

S <2V2RxRyRz\[s3(T) + S2(T) +4(1 — Ry)(1 — Ry) (1 — Ry). 37)

The above bound is achieved for any relative angle satisfying equation (30).

Using the result of theorem 5 instead of that theorem 4, in equation (29) of corollary 7, we get
the required result, which is sum of the right hand side of equation (29) and Ly,ax. Similar to the
case of unbiased observables, the equation (37) of arbitrary observables measured on 7-states
saturates when relative angles are orthogonal, 0, = 0, = 0, = 7, i.e. when 5, (T) = s5(T).
The above corollary helps us in answering the question that we raised earlier. Let us con-
sider an example where each observable are of the same strength R, placing in equations (29)
and (37), we get the maximum achievable violation of the Svetlichny inequality for unbiased

observables, and for biased observables of equal strength respectively,
Sumviased = 2V2RP, and Spiasea = 2V2RP +4(1 ~ R)*. (38)

where P = +/s7(T) + 55(T). Comparing the above two equations, we find that if the Svetlichny
inequality is violated by unbiased observables for a given value of R < 1, then, it can be
violated by a larger amount for the case of biased observables with the same strength. Further,
there are cases where the Svetlichny inequality can only be violated by biased observables.
Equation (38) implies that a violation S > 4 requires

3[ V2 R R  =3+V3V2V2P -1
P7 biased -— \/Q('P—\/E) .

Thus, for Rynbiased = R > Rpiased (Which is always possible if P > /2, i.e.if (T) > 4), we see
that there exist cases where the Svetlichny inequality can only be violated by biased observ-
ables. Let us summarize above result in a corollary 11.

R > Runbiased := (39)

Corollary 11. The maximum violation of Svetlichny inequality for observables of fixed
strengths Rx,Rx:, Ry, Ry', Rz, Rz, can be larger when observables are biased as compared
to unbiased. Moreover, there are cases where the Svetlichny inequality can only be violated
by biased observables.

The analogue of corollary 8 for T-state, i.e. a sufficient condition to violate the Svetlichny
inequality via general measurements of given strength, on 7-states can be written as

Sit 4 Linax > 4,
where 80l is defined in equation (33), while the analogue of corollary 9 is stated below.

Corollary 12. One of the six possible Svetlichny inequalities for arbitrary observables
X, X', Y,Y' Z,Z', with strengths Rx,Rx:, Ry, Ry, Rz, Rz on T-states is violated if only if

Ir =S+ Linax > 4, (40)

where Fy is defined in equation (34).

Comparing equations (35) and (40), we get . = Sy, for Ry = R Ry=Ryand Rz =R,.
Therefore, Sy > 4, is the necessary and sufficient condition for above corollary.

13
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4.2. Optimal angles for fixed strengths

The tight upper bound of the Svetlichny operator, established in theorems 4 and 5, are func-
tions of both the measurement strengths and the relative angles of local measurements. We
are aware that the dependence on angles can be easily controlled in experiments, but not the
strengths. Hence, we intend to determine the optimal angles that maximizes the value of Svet-
lichny operator when the strengths of local measurements are fixed. Though it can be achieved
numerically, the analytical analysis are more instructive. We present some of the results in the
following.

Some of the optimal relative angles are found to be degenerate for the case of equal strength
on each side (See corollaries 7 and 10), and thus, those values of triple {6,,6), 6.} which satisfy
equation (30), will be optimal. However, the degeneracy can be lifted by choosing unequal
strength on just one side. We present our first result which generalizes the corollaries 7 and
10.

Theorem 6. The tight upper bound of Svetlichny inequality for observables, X,X',Y,Y',Z,Z’,
for the cases of unbiased measurement on arbitrary state and arbitrary measurements on T-
states, for strengths Ry > Ry, Ry =Ry and Rz = Rz and correlation matrix T is given
respectively by

S<S§, anngSg-I-Z(z—Rx—Rx/)(l—Ry)(l—Rz), (41)

where values of S§ are given for different choices of angles

2RyRz|[Ros (T) + Rysa(T)) 6,=0.=%, 6,= %,

S; =4 2RyRzy/R}+R3, [s%(T) +s%(T)] : sinfysinf, = %, 0:=7%,
. . IR -—Ry |

2V2RyRzsmax (T)/ R} + R, sinfysind, = AR, 0, =0,

where smax (T) is the largest singular value with degeneracy two.

The proof of above theorem is given in appendix F. These results lift the degeneracies in
relative angles from corollaries 7 and 10, i.e. angles are specified uniquely for Ry > Ry-.
Interestingly, theorem 6 indicates that if two of the parties are measuring their observables
with equal strengths, then orthogonal as well as parallel measurement directions are optimal
for the third one, provided it satisfies the constraints on 6, and 6. It also substantially improve
the previous results surmised in lemma 2. Note that one retrieves the corollaries for Ry = Ry .

The optimal angles which will optimize the Svetlichny operator can also be determined
when 1 (T) = 52(T) = Smax(T). Then, Sy = Smax(T)J 4+ (W). Finding global maxima of J, (W)
for arbitrary angles seems challenging. However, fixing one of the angles might serve our
purpose. We obtain the following result after fixing sinf, = 0.

Proposition 2. The tight upper bounds of Svetlichny inequality for observables
X, X',Y,Y',Z,Z' and with two degenerate largest singular values, i.e. s1(T) = s2(T) = Smax(T)
of correlation matrix T, is given by

S < Smax(T) V Jo+2I'y, S< Smax(T) V Jo 4 2T"1 + Liax, (42)

for the cases of unbiased measurements on arbitrary states and arbitrary measurements on
T-states respectively with cos 6, = sign([Ry — Ry/][Rz — Rz]), where

Ty = 1] + k2l + 3y + 4RxRy RyRy RZR 7,

14
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with (JO,JZ) and L« are defined respectively in equations (28) and (36). Further, the bounds
are achieved for the relative angles satisfying

CoS Qy = sign ([RX — Rx/} [RZ — RZ’]) , COS 91 = Sigl’l ([RX — RX/] [RY — Ry/]) s

The proof of the above proposition is given in appendix F. We find that smax (T)v/Jo + 2T
reaches its maximum value 4s,.x(7) for the measurements with unit strengths. Proposition 2
can be generalized further for arbitrary 6,, which we have left for future exploration.

5. Conclusions and future directions

We have studied the Mermin and Svetlichny inequalities with dichotomic non-projective meas-
urement observables for general three qubit states. Our analysis is also relevant for the prac-
tical scenarios where analysis of Bell inequalities with non-projective measurement are either
preferable or inevitable. We find the quantum upper bound of Mermin as well as Svetlichny
operators for unbiased observables on arbitrary three qubit states, and for arbitrary meas-
urements on 7-states. Also, we find the necessary and sufficient conditions to violate these
inequalities by arbitrary three qubit states for measurements with fixed strengths and relative
angles for all local parties. Also, we determine the optimal angles to violate these inequalities
for fixed as well as arbitrary measurement strengths. Our results significantly generalize the
previous extant bounds [16—18] in the following aspects:

e Theorem 1 substantially generalizes the upper bound of Mermin operator with unbiased
observables for three qubit states, previously obtained in [16, 17].

e Theorem 2 represents a new set of bounds for Mermin operators for arbitrary measurement
observables for T-states.

e Theorem 4 improves hugely the earlier bounds of Svetlichny operator found in [18]. In fact,
the extant bound was tight only in the cases where the largest singular value of correlation
matrix 7 has degeneracy two.

e Theorem 5 states a new set of bound of Svetlichny inequality valid for arbitrary measure-
ments on 7-states.

e We also obtained the necessary and sufficient criteria to violate the Mermin and Svetlichny
inequality as well as their other five variants.

Then, we consider some special cases of theorems 1 and 4 and find the optimal relative
angles which will lead us to the maximal value of Mermin and Svetlichny operators for arbit-
rary three qubit states. We believe that these bounds might help us to find the one-sided mono-
gamy relations, similar to Bell-CHSH inequalities found in [8, 25]. These results can be useful
to the concept of recycling Bell nonlocality for multipartite settings [26, 27], which we will
pursue in our future work. Our analysis can readily be applied to the other multipartite Bell
inequalities, like, MABK inequalities [3, 28, 29] and other facet inequalities [30, 31]. It would
be of great interest to find a full generalization of our work for the case of arbitrary meas-
urements and arbitrary three qubit states. Several experiments have been performed earlier
to test the violation of the Mermin and Svetlinchy inequalities [32-34]. We expect a similar
experimental work on our results in the future.

15
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Appendix A. Proof of theorem 1 and corollary 1

The proof of theorem 1 is as follows.

Proof. For two-valued qubit observables X,X’,Y,Y’ Z,Z’, represented by equation (5), we

define the unit vectors

x+x x—x'
X1 = |x+x’|’ X2 = |x—x’|’ X3 =X X X2,
_y+y oy _
= vty o= y—y| Y3 =Y1 XY
7= 2tz z _7z—z’ 3=2] X2
1 PR 2 —z] 3 =21 X22.

Then we can write the original measurement vectors as

0, . 0, , 0, .0,
X = cos Exl +sin —x;, X =Cco0s—Xx] — sin —x,,

2 2 2
ay . ey / 9)’ . y
y =cos 7y, +s1n5y27 y =cos—y, —sin—y,,

0. i 0. / 0. . 0:
Z=0C0S—Z1 + SN 2> Z = COS-—Z1 — S —2»
2 27 2 27

where cosf, =x-x', cosy, =y-y’ and cosf, =z -z’ with 0 < 6; < 7 (i =x,y,z). Therefore,

equation (8) can be simplified to

(&) = Vigox{ Ty @z) = Te[vM ],
ik

where the matrix V is defined as

T
v _(vi 07 v, (0)
0 0 0 0)’
) 0, X 0, . 6.
here V. Acos%cos—’cos% Bcos%cosi‘smi
w 1= . : B . 0, .
Csm%cosj‘cos% —Dsm%cosjfsm
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with 0 is null vector, (0) denotes 2 x 4 null matrix and

.0, 2 .6, . 0.

v Dcos%smf"cos% —Ccos%51n451n%
2= -0 O 0. P P M M )

—Bsin 5 sin 3 cos 5 —Asin 2sin = sin =

where A, B, C, and D are given by

A =RxRyRz +RxRy Rz+Rx RyRz — Rx' Ry Rz

B =—"RxRyRz'+ RxRyRz+ RxRyRz+ Rx Ry Rz

C=RxRyRz + RxRy Rz —RxRyRz+ Rx Ry Ry

D=RxRyRz —RxRy Rz+ Rx RyRz+ Rx Ry Rz, (A2)

and M is the 3 x 9 matrix with coefficients
My = x Ty; @z (A.3)

The sub-matrices V| and V; contains the information of local measurement strengths and
relative angles, whereas M contains the global information of three body spin correlations.
Notice that the entries in the 3 x 9 matrix, M depends on the entries of the correlation matrix
T. However, the evaluation of the expression in equation (A.1) does not depend on the way
one chooses the entries of 7, as it will also shuffle the entries of V accordingly. The further
evaluation of equation (A.1) depends on the following lemma by von Neumann. Let us first
state the Lemma. O

Lemma 3. Horn and Johnson [35] let A and B are m X n rectangular matrices, and s1(A) >
52(A) -+ = 5.(A) and 51(B) = 52(B) - -+ = s5,(B) denote the non-increasingly ordered singular
values of A and B, respectively. Then the following relation holds

Tr{ABT]| < Zsi(A)Si(B)7 (A.4)
i=1

where r = min{m,n}.

The above lemma can be used to prove our theorem. First, we notice that one of the singular
values of the matrix V is zero, i.e. s3(V) = 0. Therefore, the equation (A.1) simplifies to the
first equation of theorem 1, i.e.

2
M " si(V)si(T). (A.5)
i=1

Now, we will check whether the bound in equation (A.5) can be achieved.

Proof. Because of the choice of unit vectors, one can see that Y= R>x; and z; = Rsxy, where
R’s are some rotation in 3D. Therefore, one reaches to

M = x[TT(Rz @ R3)(x; @x1),

which immediately shows s;(M) = s;(T) in equation (A.5).
Next, arbitrary orthogonal rotations Oy, O, and Os respectively on {x;}, {y;} and {z;} will
keep V invariant, while M changes to

My =x 0] T(02R, ® O3R3) (x; R xy.).
Further, we find that
Te[VM' "] = Tr[VO[ T(O2R; ® O3R5)].
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LetV=P VdPQT and T= 0, TszT be the singular value decompositions of V and T for some
orthogonal matrices P’s and Q’s, where [V,];; = s;(V) and [T,];; = s;(T). Then,

Tr[VM' "] = Tt[V,P, O] Q1T,Q, (O2R> ® O3R3)Py],
= TI‘[Vde]
=51 (V)S] (T) + SQ(V)SZ(T)7

where we choose
0o =P,0]  and  OR, ®O3R; = QP (A.6)

in the second line and s3(V) = 0 in third line. This completes the proof that the bound will sat-
urate provided that the appropriate local transformations defined in equation (A.6) are applied.
To obtain the alternate expression in theorem 1, we notice that M can be rewritten as

Moy = %[Sl (T) + s2(T)(V) + %[Sl (T) = s2(D)-(V),

where I (V) = 51 (V) £5,(V) = /v £ /v_, with v_. are the eigenvalues of V' V. Using the
identities vy +v_ =Tr[V' V] and v, v_ = det(V' V) = det(V)?, one reaches

1L (V)? = Te[VT V] £2|det(V)|.

Now explicit calculations of terms in the above equation will give us the expression of I (V).
O

Following is the proof of corollary 1.

Proof. To obtain equation (11), we first calculate the eigenvalues v of VTV for Ry = Ry,
Ry = Ry/ and RZ = RZ/,

vi =2RIRIRS <1 + \/1 —sin” 6, (1 — cos? 6, cos> 92)) . (A7)

Applying Cauchy-Schwarz inequality to equation (A.5), we get

1/2

2 172 /9
me(Yim) (sim)

= Vo vy + (),
= ZRXnsz\ / S%(T) + S%(T), (A8)

where v = s?(V),v_ = s3(V) and equality holds if and only if v, /v_ = s3(T)/s3(T). Using
equation (A.7) we get the equality condition

251(T)so(T
sinfyy/1 —cos?6,cos?0, = M (A.9)
’ s1(T) + s3(T)

Hence the results. O
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Appendix B. Proof of theorem 2

Proof. Following equation (6), we see that |B| —1—22. We define, By = aRy,
Bx' = a'Rx/, By =Ry, By: = 3Ry, B =Rz, Bz =~'Ry, for suitable choices of
aa’, B,8',v,7 ==x1,and 6 = B'/5, v =+’ /~. Substituting back in K, we get

K| < .. T |aRx(B7'RyRzr + B'vRy Rz)

+a' Ry (BYRyRz — B’y Ry Ryz/)|

= 6,?/]211 Rx|RyRz + gﬁy/ﬁd +Rx/|RyRz — 6vRy Rz |

— max {ﬁxﬁx, }(ﬁyﬁz, F Ry R2) +min{?@x,fzw}ﬁyﬁz—?@y/ﬁp\

— (Ry+ R )(Ry + Ry )(Rz +Ryr) — min {ﬁxﬁx,}
X [min {ﬁy, Ry } max {7_22,7_221 } + max {ﬁy, Ry } min {7_32,7_32/ H
— max {ﬁx,ﬁx/ } [min {ﬁy,ﬁyl } min {7?2,7?2/ } + max {ﬁy,??y/ }
X max {7@2,7?2: H — 2min {ﬁx,ﬁxx } min {ﬁy,ﬁy/ } min {ﬁz,ﬁzf }

= (2= Ry~ Ry')(2 = Ry = Ry1)(2 = Rz = Ryr) — rx(rvkz + yrz)
—Ux (Vyrz + fyfz) 2rxryrz,= Kmax (B.1)

where r; =1 —max{R;,R;'}, {; =1 —min{R;,R; }, and i = {X,Y,Z}. Here the third line
is obtained by using the fact max{a,c} max{b,d} + min{a,c} min{b,d} > ab + cd in second
line and the fourth line by verifying it for the case Ry <Ry, Ry <Ry and Rz <Ry. 0O

Appendix C. Proof of theorem 3 and proposition 1

The proof of theorem 3 is as follows,

Proof. The Mermin operator for unbiased measurement observables is given by
(EVr =RyRz|Rxx Ty 7' +y @2) + Ryx'  Ty®z -y ®7)|.

As it is always possible to find two orthogonal unit vectors p and p’ such that

0y, 0
y®z'+y’®z:2cos%p, y®z—y’®z’:2sm§p’, (C.1)
where 6, € [0, ] is considered to be principal angle such that cos 6, cos 6, = cos 6,.; 6, and 6,
are the angles between y and y’, and z and z’ respectively.

The maximum value of Mermin operator is given by

M=2RyR; max

0y, Oy,
Rxx ' Tpcos == 4+ Ryx' T Tp' sin ==
xvx/79yz)p7p 2

2

0y, 0y,
ZRyRZ max [RX|Tpcos S+ R4|Tp'| sin == 5 }

0yzp.p’

< 2RyRzmax [Ri\TpF +R§,|Tp/|2] 3 (C.2)
pp’
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The above inequality is achieved using the property acosf + bsinf < (a® + bz)% and the
T ’

second line is obtained by taking x = % and x’ = #, which yield the angle cosf, = 0.
Therefore, we can write
M < 2RyRy\ | RESHT) + R s3(T). (C3)

The bound is saturated by choosing 6y, s.t. it satisfies

tan% _ Rx/|Tp'|  Rxis:(T)

= = . C4
2 Rx|Tp| RxS] (T) ( )

Finally, equation (23) for arbitrary measurement on 7-state can be analogously obtained, from
equation (17), where K, can be calculated using equation (18) for Rx > Ry, Ry = Ry’ and
Rz =Rz . Thus, we get

M < 2RyRy\ | RASHT) + R4 (1) +2(1 — Ry) (1~ Ry)(1 = Ry).  (C.5)
Hence, it is proved. 0
The proof of proposition 1 is as follows,

Proof. Considering s1(7) = 52(T) = smax(T) in theorem 1, we have Mg = smu (1)1 (V),
where

PL(V) = RY(RIRY + Ry RE) + Ry (RYRE + Ry RE/) +2£(61,6,,6:).  (C.6)
with the function given as

£(0x,6y,0;) = a; cosByxcos by + by cos By cosb; + c; cosbycosb;

+dy sinf,[ey sin® 0, + f; sin>0; + g1 (1 — cos20,c0s26,)]7,  (C.7)

where ay = RxRX/ RyRyl (R% — R%/), bl = RxRX/ RzRZI (R%/ — R%/), c1 = RyRY/Rsz/
(RX —Ry), di=RxRy:, e1=RyRL(Ry+RS). fi = (R} +Ry)RFRE, and g =
RIR3 RZR%,. To maximize [ (V) is to maximize &(6,,6y,6.), which seems hard. Con-
sidering 6, = 7, we end up with the following expression

£(0x,0y) = a; cosBycosby +d;sinf[e; sin’ Oy +f1+g1(1 +cos 29},)]% . (C.®)

Partial derivatives of £ with respect to 8, and 6, equal to zero, yields respectively,

a; sinf, cos by = d; cosb,le sin’ Oy +fi + g1 (1 +cos26y)] %, (C.9
d -2 inf,cosé,
sinfy | a; cos by — _ 21[61 g1]sin 6y cos 0 — | =o0. (C.10)
[e1sin” 6, +fi + g1 (1 4 cos26,)]:
From equation (C.10), we have,
d -2 0,
sinfy=0 or cotf, = 1(e1 —2g1)costy (C.11)

al[el Sin2 Gy +f1 +g1(1 +00820y)]% .

Using equation (C.11) in equation (C.9), we have first set of solutions,

divfi +2g1

ai

sindy, =0 and tanf, ==+ (C.12)

20



J. Phys. A: Math. Theor. 55 (2022) 465301 M A Siddiqui and S Sazim

and second set of solutions exists if a2 # d3(e; —2g1), then
costy=0 and cosf,=0. (C.13)

However, we find that a% = d%(el —2g)) is always true for our function £(f;,6,), hence the
second set of solutions does not hold for our case. Maximizing £ using equation (C.12), we
get

div/ 2
cos ), = sign(ay), tan9x=$, & =/ai +di(f; +2¢1).
|
(C.149)
Putting the values of a,d;,fi and g, we get
&1 = RuR\[RERS (R4 + R3,) + RIRE, (RY + Riy). (C.15)

Note here that, because of the symmetry between 6, and ¢, in £, we will have the same optim-
ization (equation (C.15)) if We fix 6, = 7 instead of 0.

Furthermore, fixing 6, = 2, we reach exactly the same optlmlzatlon (equation (C.15)) of
function £ as one of the solutions for the choices of ¢, = 6, = 7. The other three solutions in
this case are always smaller than equation (C.15).

Hence, putting the value of £; in equation (C.6), we get the proposition 1. 0

Appendix D. Proof of theorem 4 and corollary 7

The proof of theorem 4 goes as follows.

Proof. Similar to the proof of theorem 1, we can write equation (26) as

=Y Wigox{ Ty;©z) = Tr[WM '], (D.1)
ijk
where the matrix W is defined as
(wi 0T W, (0)
W= ( 0 0 0 0 )’

9) Oy 0. at Oy i 6.
A4 cos cos‘g2 cos= By cos cosg2 sin =
)

with W = 4 7 F; 0
zX zXx
Cysin3cos > cos= Dy sin=cos 5 sin 5

.6, X .6 . 6.
C_ cosZsin%cos%  —D_cos%sin2 sin%
and W, = 92 p; 02 02 2 02 ,
Mm% qin 2 Y _ Mm% en 2 qn &
A_sin > Sin 5 COS > B_sin > sin > sin >

where Ay ,By,Cy, and D are given by

Ay = (RxRy — Ry Ry )Rz +Rpr) £ (RxRy + Ry Ry) (R — Rzt

Bi = (RxRy: + Ry Ry)(Ry +Rz') + (RRy — R Ry )Ry — Ryt

Ci = (RxRy+ R Ry ) (R 4+ R + (RuRys — Ry Ry) (R — R

Dy = (RxRy' —Rx'Ry)(Rz+Rz') £ (RxRy+ Rx'Ry')(Rz—Rz/),
(D.2)

and M is the 3 x 9 matrix with coefficients
Mgy =% Ty; @ . (D.3)
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The sub-matrices W; and W, contains the information about the strengths and relative angles
of local measurements, whereas M contains the global information of three body spin correl-
ations. Using the lemma 3 in equation (D.1), and, as s3(W) = 0, we get the first equation of
theorem 4, i.e.

2
S si(T)si(W). (D.4)
i=1

The optimal measurement directions can be determined using the relative angles and ortho-
gonal rotation matrices Oy, O, and Os.
To obtain the alternate expression in theorem 4, we notice that Sy can be rewritten as

§0= 5 [51(T) + ()14 (W) - S [51(T) — oD (W),

where J4 (V) = s1(W) £ 5,(W) = \/w; &+ /w_, with w as the eigenvalues of W' W. Using
the identities w, +w_ = Tr[W' W] and wyw_ = det(W' W) = det(W)?, one reaches

J1(W)? = Te[W' W] 4 2|det(W)|.

Now explicit calculations of terms in the above equation will give us the expression of J1. (W).
O

In the following, we prove the corollary 7.
Proof. To obtain equation (29), we first calculate the eigenvalues w4 of WTWfor Ry = Ry,

Ry = Ry/ and RZ = RZ/,

Oy
wy = 8RYRIRE (1 + cos b, cos,) sin® >

0
w_ =8RYRIR (1 — cos by cos ;) cos? Ex (D.5)

Applying Cauchy-Schwarz inequality to equation (D.4), we get

1/2

2 172 /5
s<<zs%<w>) (zs%m) ,
i=1

i=1

= oy [sD) + (D),
= 2V2RxRyRz+/1 — cos b, cos b, cos b, /s3(T) + s3(T), (D.6)

where wy = s3(W),w_ = s3(W) and equality holds if and only if wy /w_ = s3(T)/s3(T).
Using equation (D.5) we get the equality condition

sH(T) — s3(T)tan> & D7)
2X

cosf,cosf, =
T (1) + s3(T) tan? &

We notice that equation (D.6) can be optimized even further. However, there exist many choices
here. First, notice that §, # 7, as equation (D.7) becomes non physical. The choice 6, = 7 and
0, = 0 or, vice versa is also not possible as equation (D.7) is no longer satisfied. Therefore, the
optimal solution is for 6, = 7. Then, we reach to the solution,

S <2V2RxRyRz\/sH(T) + s3(T), (D.8)
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when the following conditions hold,

2 T) — 2 T

SO =50 g g, =T (D.9)
s1(T) +s3(T) 2

Notice also that the same bound (equation (D.8)) can be reached by considering
cost,cos, = 0, which will yield another equivalent condition from equation (D.7),

cost,cosl, =

2s1(T)s2(T
sinf, = M, and cosfycosf, =0.
st(T) +s5(T)
Hence, we prove the result. O

Appendix E. Proof of theorem 5

Proof. Following equation (6), we see that |BJ <R:=1- R. We define, By = aRx,
Bx: =a'Ry/, By=8Ry, By: =8"Ry:, B =Rz, Bz =~'Rz:, for suitable choices of
aa’,B,B8',v,7 ==*1and v =~'/~. Substituting back in L, we get

IL| < " laRx [ﬁﬁy (W?erv'ﬁz') +B' Ry (77_32 - 7’7%)}
vy =%£1
+a'Ry [5711/(77_32 - 7/732’) —B' Ry (77_32+7/7_22')}|
= max (mﬁy . ﬁmy,) |Rz+ Ry | + (ﬁxﬁw ¥ ﬁmy) Rz — vRy/|
- max{(ﬁxﬁy- ﬁx,ﬁy,), (ﬁxfzy, +7éx,7éy) } Rz +Ry/|
+min{ (szﬁy— ﬁx/ﬁyl), (ﬁxfzy, +7‘zx,7‘zy) } IRz —Ry/|
= (7_3)(7_31/’ +7QX’7QY) \7_32+7_Qz/| + (7@){7_31/* ﬁX’ﬁY’) |7iz - ﬁz/|
- [(1 —RX) (1 —Ry/) + (1 —RX/) (1 —Ry)] 2—Ry—Ry|
n [(1 —Rx) (1 —Ry) - (1 —RX/) (1 —Ry/)] Ry — Rz

= Liax (E.1)

Here the third line is obtained by using the fact max{a,c}max{b,d} +
min{a,c}min{b,d} > ab + cd in second line and the fourth line by verifying it for the case
Rx < Rx/,Ry < Ry.

O

Appendix F. Proof of theorem 6 and proposition 2

The proof of theorem 6 is as follows,

Proof. The unbiased Svetlichny operator for Ry = Ry and Rz = Rz is given by
(€~ &Y = RyRz [(RXxT + Ry Ty ®z—y ©7)
+ (Rxx" —Ryx' Ty o7 +y ®1z)].
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As it is always possible to find two orthogonal unit vectors ¢ and ¢’ such that

.0, 0,
y®z—y’®z':251n§q, y®z’+y’®z:2cos§q’, (F.1)

where 6,. € [0, 7] is considered to be principal angle such that cosf,cos, = cosf,.; 0, and
0, are the angles between y and y’, and z and z’ respectively. Let us consider new vectors,
g, = (sin %q + cos %q’ ). Notice that the vectors ¢, becomes orthogonal unit vectors when

0y, = m/2. Hence, the maximum value of Svetlichny operator is given by

S =2RyRz max ‘RxxTTq_,_ +Rxlx'TTq_‘
xx’ g

< 2RyRymax [RX|Tq+| Ry |Tq— @
<2RyRz | Rysi (T) + Rrsa(T)|, (F2)

where we chose x = | | andx’ = ‘Tq i which yield the angle cosé, = 0.

Now considering the value of Liax for Ry = Ry and Rz = Rz in equation (36), we have
result for 7T-state.

Another way one can proceed considering the following equation withx 1 = Ryx + Ry/x’,

0y, 0.,
S=2RyR; max [cos %xiTq +sin ;‘xITq’

’ ’
xx',q.q" 0y

<2RyRz max [|x |c0s |Tq\+\x+\s1n “|Tq’ q (F.3)
q.4",0y2,0x

where |x1 | = \/ R%+ R% £2RxRx: cosby. As by, € [0,7], all the terms in the above inequal-
ity are positive, then without loss of generality, considering cosf, = 0.

S =2RyRz\/R%: +R2, max [c0s|Tq|+s1n ‘\Tq’ q
4.9",0y.
< 2RyRz\/ R% + R%, max [\Tq|2 + |Tq’|2] :
7.9’
— 2RyRz\/RE + R, [s%(T) +s§(T)} : (F4)

where the bound is achieved by choosing % = ‘;Z‘ and &i' = I%I] 7 and
0, T
tan% = ETET§7 and cosf, =0. (E.5)

Similarly, one can choose cosf, =1 in equation (F.3), we get |x4| = |Rx+Rx/| and x4
becomes parallel to x (equivalently to x’). Therefore, in this case, we achieve optimality if
the maximal singular value sy, (7) has degeneracy 2, then we have following bound,

S= ZRyRZ mag |:|RX Rxl|COS |Tq|—|— |RX+RX/\sm y&|Tq |:|

2.9" .0
\sin&
2

= 2V2RyRzsmax (T)\/ RE + R%, (F.6)
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where the angles are

¢ by _ [Rx+Rx|

= ————, and 6, =0. E7
2 " Ry =Ry E7

Hence, the proof. Note however that the optimization above has not been done for arbitrary
0. O
The proof of proposition 2 is as follows,

Proof. Considering s,(7) = 52(T) = smax(T) in theorem 4, we have Sy = smax(T)J+ (W),
where

FL(W) = (R +Rx)(Ry + Ry ) (R + R + 2 (0s,0,,0-), (F.8)
with the form of function being

C(0x,0y,8;) = ar cos O, + by cos b, + ¢, cos 0, — d» cos B, cos By cos 0,

1
2

4+ e sind, [fz sin’ 0, + & sin” 0, + h(1 — cos 26, cos26,)

where a) = RxRx/ (R% - R%;/)(R% - R%/), b2 = RyRyl (R}Z( - Rg(/)(R% - R%/), Cy) =
RzRz (R)z( — R%)(R%/ — Rzy/), dr, =4RxRx RyRy Rz7Rz/, ex=2RxRx:, fr=
RIR% (R +R%)), 82 = RERL (R} + RY.) and hy = REIR3, RER2,. Using the same argu-
ment as above, we can choose sind, = 0, which will fix cosd, = sign(a,), then we end up
with the following simplified function,

x(0y,6;) :=((6y,6.) — |az| = by cosby + ¢, cos b, — d; cos Oy cos b, (F.9)

where dj = d; cos 6. Maximizing ¢ function, will give us maximum J. (W).
Partial derivatives of x with respect to 6, and 8, equal to zero, yields

sinfy(by — dycosf,) =0 and sinf,(c; — dycosfy) =0 (F.10)
which implies that the first set of solutions are

sindy,=0 and sind,=0. (F11)
Maximizing x under the constraints of equation (F.11), we get

cos By, = sign(b»), cosf, =sign(cy), X1 = |b2| + |ea| +|dy],  (F.12)

On the other hand, equation (F.10) yield three sets of solutions which produces only one
maxima, i.e.

b
sind, =0, and cosf, =

d—%; or, cosfy= %, and sinf, =0;
2 2
b b
or, cosf, = %, and cosf, = d—%; with y, = 2—?2 . (F.13)
2 2 2

Note that the solutions mentioned in above equation is valid only when it satisfies the following
constraint

_ [boca] | (E.14)

1> |cosfycosb, o
2
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To check for global maxima, lets calculate the following identity,

2.2
B by
12

d;

> (|ba| + [e2])? +2(|b2| + |c2])|d5]

b2 2
+d’f(1 - ;,fﬁ) >0,
2

2
Xt =Xz = (|ba2] + le2| + |d3])

22

as we find ( 1-— l;z,cf) > 0 from equation (F.14), which if satisfied, then whenever the first
2

maxima exist, it is the global maxima.

Substituting values of b;,c,, and dﬁ, in equation (F.14) we get

1> (Rx =R IRy = Ry (R = R)
- 16RER%, RyRy RzRz: '

(F.15)

Equation (F.15) can only be satisfied if we consider all the strengths to be nonzero. There-
fore the best optimization can only be obtained using the first set of solutions, or in other
words, x helps to find the maximum violation of Svetlinchy inequality. This is also logical
as it is never possible to violate Svetlichny inequality using (one of) the measurements with
zero strength [36]. Substituting values of a,,b,,c; and d,, in equation (F.12), and using
equation (F.9) we get

(1 = RxRy |R3 — R3||RZ — R2/| + 4RxRy RyRy RzRy
+ (RYRY/ IRZ—R%|+R,Ry|RE— R, |) IR2 —R2,|.

Hence, putting the above expression in equation (F.8), we get the proposition 2.
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