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Abstract
Quantummeasurement not only can destroy coherence but also can create it. Here, we
estimate the maximum amount of coherence, one can create under a complete non-
selective measurement process. For our analysis, we consider projective as well as
POVM measurements. Based on our observations, we characterize the measurement
processes into two categories, namely, the measurements with the ability to induce
coherence and the ones without this ability. Our findings also suggest that the more
POVM elements present in a measurement that acts on the quantum system, the less
will be its coherence creating ability. We also introduce the notion of raw coherence
in the POVMs that helps to create quantum coherence. Finally, we find a trade-off
relation between the coherence creation, entanglement generation between system
and apparatus, and the mixedness of the system in a general measurement setup.
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1 Introduction

The ‘superposition principle’ demarcates the quantum world from its classical coun-
terpart. Quantum coherence is a resource that arises due to the superposition principle
[1]. Recently, a rigorous analysis of quantum coherence as a resource has been done
in [2]. This promulgates the well-known non-classical resource, the coherence, in the
forefront of quantum information science [3–8]. As quantum coherence depends on
the basis in consideration, it can be created and destroyed by unitary operations. For
example, a simple rotation on a Bloch sphere may create a unit amount of coherence
from an incoherent state. This gives the hint that there exists a class of quantum oper-
ations that create or destroy quantum coherence—this power of quantum operations
is, respectively, known as cohering and decohering power [9–16].

It is understandable that quantum coherence in the quantum states gets destroyed
when we perform projective measurement on an incoherent basis [17]. A selective
projectivemeasurement on a coherent basis can always create coherence.However, this
might not be the case whenwe are not selecting any outcome. This becomesmore non-
trivial whenwe consider positive operator valuemeasurement (POVMs). For example,
consider the action of a POVMwith elements {Mi = |+〉〈ψi |, M0 = I−∑

i Mi }. For
this POVM,∀i , the instrument ignores the input state and outputs amaximally coherent
state; however, if we do not select any outcome, we get a different state. Therefore, we
address the question: how much coherence one can create using general non-selective
measurements.

In this work, we investigate the cohering capability of general quantum operations
allowed on qubits. This provides us a hint that the coherence, unlike other intricate
quantum resources, eg., entanglement, may not be as vulnerable as was presumed
earlier. Before going into the main discussion of the results, we list the key find-
ings: (i) Non-selective measurement can induce coherence in the incoherent states.
For arbitrary incoherent qubits states, we show that a POVM operation can induce
coherence up to |r3|/2, which can reach a maximum of 1/2, (ii) For every qubit state,
it is not possible to induce coherence with a POVM; however, we can still prevent
the loss of coherence, (iii) The more elements in the POVM (i.e., the measurement
is becoming fuzzier), the less will be its coherence creation ability. The numerical
result suggests that the induced coherence by n-outcome POVM is proportional to
e−bn , where b ≈ 0.37, (iv) We coin a term called ‘raw quantumness (Craw)’ for the
elements of measurement. It is the sum of the norm of off-diagonal elements present in
the POVM elements. We find that if all the POVM elements have Craw = 0, its coher-
ence creation ability is zero, (v)We characterize measurements in two categories—the
coherence non-generating measurements and the coherence generating one and find
their properties. Further, we also prove a trade-off relation between the coherence cre-
ation, entanglement between system and apparatus, and the mixedness of the system

The paper is organized as follows. In the prelude, a brief description about the
resource theory of coherence is presented. In Sect. 2, we address the question: how
to create quantum coherence under complete measurement. While, more specifically
the role of general measurement processes on quantum coherence is presented in
Sect. 3. Some numerical and theoretical discussion and the validation of the proposed
Hypothesis are discussed with figures. In Sect. 5, we link two well-known resources,
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namely, coherence and entanglement via generalized measurement scheme. Finally,
we conclude in the Sect. 6 with some future avenue of research.

Prelude—Any legitimate resource theory has two basic elements—free states and
free operations. For the resource theory of coherence, they are incoherent states and
incoherent operations, respectively. As this particular resource theory is basis depen-
dent, we need to fix a basis. Let us consider the computational basis, {|i〉; i ∈ Z

+} in
Hilbert spaceH, with |Z+| = dim(H), where Z+ is set of non-negative integers. The
diagonal density matrices in this basis are incoherent states and expressed as

δ =
∑

i∈Z+
δi i |i〉〈i |. (1)

The set of incoherent states is represented by I. The operations which keeps all inco-
herent states incoherent are called incoherent operations.

The quantification of resource is an important aspect for its physical implications.
Before going into the measure of coherence, we recall from literature that what are the
basic requirements for such functions to be valid measure of coherence. The following
properties a function should satisfy to be a valid measure of quantum coherence [4]:

(C1) Coherence vanishes for all incoherent state, C(δ) = 0 for all δ ∈ I.
(C2) Coherence should not increase under mixing of states, i.e.,

∑
i piC(ρi ) ≥

C(
∑

i piρi ).
(C3a) Monotonicity under incoherent completely positive and trace preserving (CPTP)

maps, �: C(ρ) ≥ C(�[ρ]).
(C3b) Monotonicity under selective incoherent operations on average C(ρ) ≥

∑
i pnC(ρn), where pn = Tr[KnρK

†
n ], and ρn = 1

pn
KnρK

†
n with {Kn} is

Kraus decomposition of �.

There exist several quantum coherence measures [4]. However, we will focus on
the l1-norm of coherence and the relative entropy of coherence [2]. The l1 norm of
coherence is defined as

Cl1(ρ) =
∑

i �= j

|ρi, j |, (2)

where |X | denotes absolute value of X . This measure captures the off-diagonal ele-
ments of a density matrix and thus, has very important physical implications. For
example, using the l1-norm coherence, a duality relation between coherence and the
path information has been proved [18,19].

The relative entropy of coherence is defined as

Cr (ρ) = S(ρ||ρD) = S(ρD) − S(ρ), (3)

where S(ρ) = −Tr[ρ log2 ρ] is von Neumann entropy and ρD = ∑
i 〈i |ρ|i〉|i〉〈i |

is completely dephasing of ρ. Geometrically, it is saying that how far an arbitrary
state is from its closest incoherent state. This has a beautiful physical implication as
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it quantifies exactly the amount of distillable coherence from a mixed quantum state
[3]. Also, it has a nice thermodynamic meaning [20].

In the initial calculations involving study of increment in coherence under specific
qubit operations, we will use the l1-norm of coherence as the calculations are easily
doable. Later, we will use the relative entropy of coherence as it appears naturally in
certain specific cases.

2 Creation of quantum coherence by ameasurement

Any measurement can mathematically be represented by a set of Positive-Operator-
Valued-Measures (POVM), i.e., {Ei ; ∀i ∈ Z

+}, with Ei ≥ 0 and
∑

i Ei = I

[21,22]. The action of this measurement on a quantum state ρ changes it to
ρM = ∑

i

√
Eiρ

√
Ei in non-selective case, and for selective case, it results a post-

measurement state ρM
i = 1

pi

√
Eiρ

√
Ei with probability pi = Tr[Eiρ] [23–25]. Any

projective measurement is a subset of the above general measurements. A projective
measurement consists of set orthogonal effects, {�i ; i = 0, 1, . . . , d}, where d is the
dimension of the underlying Hilbert space [21].

Let us consider an arbitrary single qubit state, |ψ〉 = α|0〉 + √
1 − |α|2|1〉,

where α ∈ C. Under non-selective projective measurement with projectors, {�0 =
|0〉〈0|,�1 = |1〉〈1|}, we have

ρM =
1∑

i=0

�i |ψ〉〈ψ | �i ,

= |α|2|0〉〈0| + (1 − |α|2)|1〉〈1|. (4)

The l1-norm of coherence of the states before and after measurement in {|0〉, |1〉} basis
can be presented as

Cl1(|ψ〉) = 2|α||
√
1 − α2|,

and Cl1(ρ
M ) = 0. (5)

Therefore, it is clear that due to complete measurement, the initial state undergoes a
dephasing and hence, loses its all coherence. This very phenomenon is known as ‘de-
coherence.’ However, we will show that a complete projective measurement sometime
can create coherence instead of destroying it.

Let us consider the incoherent state δ0 = |0〉〈0| and apply themeasurement operator
defined using the basis {|ψ〉, ˜|ψ〉}, where ˜|ψ〉 = √

1 − |α|2|0〉 − α∗|1〉 and ∗ denotes
complex conjugation. The final state can be presented as

ρM → 〈ψ |δ0|ψ〉|ψ〉〈ψ | + ˜〈ψ |δ0 ˜|ψ〉 ˜|ψ〉 ˜〈ψ |
ρM = |α|2|ψ〉〈ψ | + (1 − |α|2) ˜|ψ〉 ˜〈ψ | (6)
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The l1 norm coherence of the final state in {|0〉, |1〉} basis is given by

Cl1(ρ
M ) = 2|α|

√
1 − |α|2(|2|α|2 − 1)|). (7)

We conclude that non-selectivemeasurement in {|ψ〉, ˜|ψ〉} basis has created coherence
for an incoherent state. The maximum value of Cl1(ρ

M ) reaches to 1
2 for |α| =

(
√
2 ∓ √

2)/2, i.e., |α| ≈ 0.384 and 0.924.

3 Role of generalizedmeasurement on quantum coherence

Any generalized measurement process can be described as the action of n element
positive-operator valued measurements (POVM), i.e., {Ei ; i = 1, 2, . . . , n}, with∑n

i=1 Ei = I. However, to describe the effect of quantum measurement on the quan-
tum state, initially we will consider the scenarios where a limited number of POVM
elements are present and only later we give numerical results for n element POVM.

3.1 One-parameter POVM operators

Let us consider the following one parameter POVM decomposition of a unsharp mea-
surement

E± = λP± + 1 − λ

2
I, (8)

where λ is the sharpness parameter, 0 ≤ λ ≤ 1, P+ = |ψ〉〈ψ |, P− = ˜|ψ〉 ˜〈ψ | and
E+ + E− = I. Now, the final state, due to the measurement on δ0 = |0〉〈0|, can be
evaluated using Lüder’s rule [25],

δ′
0 =

√
1 − λ2δ0 + (1 −

√
1 − λ2)(P+δ0P+ + P−δ0P−)

=
√
1 − λ2δ0 + (1 −

√
1 − λ2)ρM , (9)

where ρM is defined in Eq. (6). The l1-norm coherence of the state δ′
0 is

Cl1(δ
′
0) = (1 −

√
1 − λ2)Cl1(ρ

M ). (10)

This example shows that one can create a nonzero amount of coherence from an
incoherent state due to POVMmeasurement. It is also clear that the more sharp is the
measurement, the more will be the coherence creation (see Fig. 1).

Now, if we consider the initial state to be themore general state with Bloch vector r,
i.e., ρ = 1

2 (I+r.œ), the evolved state under above POVMmeasurement will transform
to

ρ′ =
√
1 − λ2ρ + (1 −

√
1 − λ2)(P+ρP+ + P−ρP−). (11)
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Fig. 1 (Color online) The coherence gain after the action of one-parameter POVM measurement over
incoherent state. It is showing that the more sharp the measurement is, the more is the coherence gain. The
curve λ = 1 depicts Eq. (7)

So, the coherence of the final state is given by

Cl1(ρ
′) = 2

∣
∣
∣(1 −

√
1 − λ2)ᾱ

[
αᾱ(R∗α − r3ᾱ)

+ |α|2(r3α + Rᾱ)
]

+
√
1 − λ2

2
R
∣
∣
∣, (12)

where R = r1 + ir2 and ᾱ = √
1 − |α|2, and the coherence of the initial state is

given by Cl1(ρ) = |R|. We are interested in whether there exist POVMs for which
Cl1(ρ

′) > Cl1(ρ). Therefore, we maximize Cl1(ρ
′) over the POVM parameters α and

λ, which gives the following

max
α,λ

Cl1(ρ
′) = 1

2

(√
r21 + r22 +

√
r21 + r22 + r23

)

= 1

2

(
Cl1(ρ) +

√
Cl1(ρ)2 + r23

)
. (13)

Therefore, it can be seen that, we can have maxα,λ Cl1(ρ
′) > Cl1(ρ), by choosing a

suitable POVM. Also, it should be noted that this value is obtained for λ = 1, i.e.,
maximally sharp measurements can induce more coherence in arbitrary qubit states.
Whereas at λ = 0, in the case of trivial measurement of I/2, we havemaxα,λ Cl1(ρ

′) =
Cl1(ρ), as expected. For qubit states, in which r3 = 0 there cannot be any increment
in the coherence of the state; however, one can still ensure that there is no loss of
coherence.

Next important point to note is that for a given initial coherence |R|, maxα,λCl1(ρ
′)

will have large value, only when |r3| is large. This happens for qubit states which
have large |r|, i.e., the states that are close to the surface of Bloch sphere, with the
maximum value given by maxα,λCl1(ρ

′) = 1
2

(
Cl1(ρ)+ 1

)
for pure qubit states. It can

thus be concluded that for two qubits with same initial coherence, the coherence gain
will be more in the state which is more pure or has less mixedness.

Moreover, for an incoherent state ρ, i.e., with |R| = 0, it can be seen that
max{λ,α} Cl1(ρ

′) = |r3|/2. Hence, the maximum quantum coherence that we can
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Fig. 2 (Color online) The plot of ‘max{λ,α} Cl1 (ρ
′±) vs Cl1 (ρ±)’ for one-parameter POVM. It shows

many cases where the maximum final coherence is greater than the initial coherence. The red line
depicts max{λ,α} Cl1 (ρ

′±) = Cl1 (ρ±), and the orange line which gives the upper bound depicts

max{λ,α} Cl1 (ρ
′±) = Cl1 (ρ±)+1

2 . (The sample size is 15, 000.)

create in an incoherent state is 1/2 which happens only for a pure incoherent state, i.e.,
with |r3| = 1. These observations can be also seen in Fig. 2, where we numerically
plot the max{λ,α} Cl1(ρ

′) vs Cl1(ρ). The lower red line y = x consists of states for
which there is no increment in coherence, whereas the orange line y = x+1

2 denotes
the pure states for which maximum coherence gain happens.

3.2 General two outcome POVM operators

A more general form of POVM can be considered below

E± = a±I ± a.œ, (14)

where a is Bloch vector and a+ + a− = 1, 0 ≤ a± ≤ 1, |a| ≤ min[a+, a−] ≤ 1
2 .

Let us consider the evolution of the incoherent state δ0 under the above POVM
measurement. The evolved state will be δ′

0 = √
E+δ0

√
E+ + √

E−δ0
√
E−, i.e.,

δ′
0 = 1

2 (I ± s.œ), where, s is the evolved Bloch vector with elements,

si = γ0ai (i = 1, 2) and s3 = 1

|a|2 {a23 + (1 − a23)β}, (15)

where γ0 = a3
|a|2 [1 − β], β = η+ + η−, and η± =

√
a2± − |a|2. The coherence of the

evolved state is

Cl1(δ
′
0) = |a3|

|a|2 (|1 − β|)
√
a21 + a22 . (16)
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Again, this example tells us that starting from zero coherence one can obtain a nonzero
coherent state. It can be shown that

Cl1(δ
′
0) ≤

|a3|
√
a21 + a22

|a|2
(
1 −

√

1 − √
1 − 2|a|

)
≤ 0.5.

On maximizing over a± and ai ’s, the maximum coherence one can create using this
strategy from δ0 is 1/2.

To complete our analysis, we consider the evolution of an arbitrary density matrix
under generalized two-outcome POVM. An arbitrary density matrix ρ± will evolve to

ρ′± = 1
2 (I ± s.œ), where, s is the evolved Bloch vector with elements,

si± = θ±ai ± βri , (17)

with θ± = a.r
|a|2 [±1 ∓ β]. Then, the Bloch vector has been translated along with a

rotation, i.e., s± = θ±a ± βr. Now, the l1-norm coherence of the state ρ′± is

Cl1(ρ
′±) = |θ±(a1 + ia2) ± βR| . (18)

Note that the coherence of the initial state isCl1(ρ±) = |R|. Again,we are interested
to see if there exists two outcome POVMs for which Cl1(ρ

′±) > Cl1(ρ). As before,
we can maximize over all the POVM parameters. For all the incoherent states, i.e.,
quantum states with |R| = 0 we get, max{a,a±} Cl1(ρ

′±) = |r3|/2 ∈ [0, 1/2]. It
can also be seen that, we can always have Cl1(ρ

′±) = Cl1(ρ) for a+ = 1/2 and
ai = 0 which is the trivial measurement with I/2. We could not get the expression for
max{a,a±} Cl1(ρ

′±) analytically, so we have plotted it against the initial state coherence
Cl1(ρ±). In this case also, we get same plot as in Fig. 2, i.e., a set of points bounded
between lines, y = x and y = x+1

2 . Therefore, the one parameter POVM and the
general two outcome POVM have similar ability to generate coherence. However, in
this case, we do not know yet for which states there cannot be any coherence gain and
for which states the coherence gain will be maximum.

3.3 Randomly generated POVM operators with n outcomes

To generalize our study,we consider here the effect of n-outcomePOVMon incoherent
state δ0 in a two-dimensionalHilbert space.Anyn-outcomequbit POVMcanbewritten
as

Ei = ai (I + si .œ), (19)

with ai ≥ 0,
∑n

i=1 ai = 1 and
∑

i ai si = 0. However, we abstain ourselves from
analytical results because of large number of parameters. We will use numerical simu-
lations here to depict our findings. One can numerically generate n-outcome POVMs
using QETLAB [27] or other method [28]. However, we will use QETLAB for our
analysis.

123



Creation of quantum coherence with general measurement… Page 9 of 17 48

Fig. 3 Maximum coherence gain after application of n-outcome randomly generated POVMmeasurement
on incoherent state δ0. To achieve the numerical maximum, we have created 2.2 × 105 of random POVM
using QETLAB for each n. The plot shows that the maximum gain of coherence is decaying exponentially
as we increase n

We generate a sufficient amount of POVM sets (2.2×105) for each n values to find
the (almost)-maximum coherence state generated in the simulations. Then, we plot the
maximumachievable coherence (Cn

max) vs n in Fig. 3.We restrict ourselves for n ≤ 20.
Fig. 3 shows that themaximum coherence generated from the incoherent state using n-
outcome random POVM is decreasing exponentially with n, i.e., Cn

max ∝ e−bn where
b ≈ 0.37. This behavior shows that themore the number of elements in the POVMsets,
the less will be its coherence creation ability. Thismeans themeasurement is becoming
more fuzzy. However, it is still unknown why this exponential behavior occurs. The
above numerical observation suggests that the contribution to the induced coherence
from the individual POVM elements decreases as n increases, which motivates us to
give the following conjecture.

Conjecture The quantum coherence induced by an n-outcome POVM measurement
decreases with increasing n.

3.4 Observations

The analytical results and numerical simulations indicate that a measurement process
may not always destroy coherence in the target state. It may create coherence also.
This creation of coherence is the effect of nonzero off-diagonal terms present in the
measurement elements, which we neoterize as ‘raw quantumness’ in a measurement.
1 To show how this happens, first we consider POVMs with vanishing off-diagonal

1 There exist a lot of literatures which deals with the resource theory of operations, namely, Refs. [34–37].
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elements in Eq. (14), i.e., with a1 = a2 = 0. For such a POVM, the final Coherence
created in an arbitrary qubit state [see Eq. (18)] is

Cl1(ρ
′±) = β |R| =

√
r21 + r22 (

√
a2+ − a23 +

√
a2− − a23)

≤
√
r21 + r22

√
1 − 4a23 ≤

√
r21 + r22 .

Hence, such a measurement cannot induce any coherence in an arbitrary qubit state.
Similarly, we also consider an n-outcome POVM measurement from Eq. (19), with
no off-diagonal terms, i.e., with si1 = si2 = 0 ∀ E ′

i s. We consider its action on an
arbitrary state ρ = 1

2 (I + r.œ), so that the final coherence is given by

Cn
l1(ρ

′) =
√
r21 + r22

n∑

i

√
a2i − s2i3

≤
√
r21 + r22

n∑

i

ai =
√
r21 + r22 .

Motivated by these results, we can give the following definition

Definition Any qubit measurement with only diagonal POVM elements is free mea-
surements, i.e., Ei = ∑

k e
i
kk |k〉〈k| with

∑
k e

i
kk ≤ 1.

The qubit measurements with at least one non-diagonal POVM are not a free
measurement and have potential to induce coherence in the target state. These mea-
surements possess raw quantumness. The raw quantumness can be quantified as the
‘sumof absolute value of off-diagonal terms’ in themeasurements elements.We notice

that the POVM elements in Eq. (14) have ‘raw quantumness’ Craw = 2
√
a21 + a22 .

Similarly, the raw quantumness in the POVM elements in Eq. (19) is given as

Craw = 2ai
√
s2i1 + s2i2. Interestingly, it can be seen from Eq. (16) that the coher-

ence induced in an incoherent state δ0 due to generalized POVM is proportional to
Craw. We also notice in Eq. (18) that the coherence of final state is a function of the
Craw. These leads us to the following observations.

For an arbitrary POVMmeasurement acting on qubits, the following statements are
true

1. If the initial state is incoherent, the induced coherence by a general two outcome
POVM measurement in the final state is bounded as 0 ≤ Cl1(ρ

′) ≤ 0.5.
2. For initial incoherent state, if Craw = 0, the post measurement state will have no

coherence.
3. An initial incoherent and coherent state may acquire extra amount of coherence

only if the measurement elements have nonzero raw quantumness.

The above observations tell us that if the measurement under consideration is ‘quan-
tum’ enough, then the decoherence due to measurement can be avoided. This will
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provide advantages in many quantum information processing tasks where measure-
ment is a key element. Next, we provide an important Lemma for a measurement to
have ability to create coherence.

Lemma 1 The existence of raw quantumness in the POVM elements is a necessary but
not sufficient condition to create coherence in qubits.

Necessary condition we have already proven. To show that it is not sufficient, we
present a counter example for which even if Craw > 0, an incoherent state remains
incoherent under the measurement. Consider the following 3-outcome POVM mea-
surement,

Ei = ai (I + ri .œ), (20)

where a1 = t
3 , a2 = a3 = 1

2 (1 − t
3 ), r1 = {1, 0, 0}T , r2 = {−b,

√
1 − b2, 0}T , and

r3 = {−b,−√
1 − b2, 0}T , where b = t

3−t and t ∈ (0, 1) [26]. This POVM cannot
create coherence in an incoherent state.

3.4.1 Coherence creation under application of successive POVM operators

We know that, one can create nonzero coherence from an incoherent state if we apply
general measurement. This observation prompts us to investigate howmuch coherence
one can create from an incoherent state if one allows to perform the measurement
consecutively many times (‘steps’). For our analysis, we consider a qubit incoherent
state δ0 and two-outcome POVM. We create random 2-outcome POVM (≈ 2.2 ×
105) to obtain the target state with maximum coherence for each step. Our numerical
simulation is plotted in Fig. 4. Fig. 4 shows that the maximum coherence one can
reach from the qubit incoherent state δ0 is 0.76525 unit.

4 Two categories of measurements based on coherence resource
theory

We may consider measurement, M , as channel, i.e., for set of POVMs {Ei ,∀i ∈ I+}
and the state ρ ∈ Cd ,

M (ρ) =
∑

i

√
Eiρ

√
Ei , (21)

where the form of the Kraus operators as Ki = Ui
√
Ei withUi being arbitrary unitary.

Note that the choice Ei = K †
i Ki is not unique. The above channel is unital asM (I) =

I. Based on above findings, we will categorize the non-selective measurements in two
categories—measurements which do not create coherence and which do. The formal
definition for such nomenclature is given below:

Definition Ameasurementwhich does not create coherence is defined byM (I) ⊂ I,
where I is the set of all incoherent states.
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Fig. 4 Maximum coherence gain after application of 2-outcome randomly generated POVM measurement
on incoherent state δ0 in consecutive ‘steps’. To achieve the numerical maximum, we have created 2.2×105

of random POVM using QETLAB for each ‘steps’. The plot shows that the maximum gain of coherence
due to the consecutive application of POVM saturates at 0.76525

Therefore, the measurements which violate M (I) ⊂ I will create coherence in
the state. Some properties of ‘coherence non-generating measurement (CNM)’ can
readily be listed below

1. IC ⊂ CNM ⊂ CNC, where IC is the set of incoherent operations [4] and CNC are
the set of coherence-non-generating channels [16].

2. If two measurements M1 and M2 are CNM, then the composition M1 ◦ M2 as
well as tensor product M1 ⊗ M2 are CNM.

3. The l1-norm of coherence for qubits, and the relative entropy of coherence for
arbitrary dimension never increases under CNM.

Proof From Ref. [16], we know that IC ⊂ CNC. Now, we know that any unital chan-
nels can be transformed into a measurement channels by choosing some appropriate
unitaries [29,30]. This fact easily led us to conclude that CNM ⊂ CNC. Now, as there
may exist some CNMs which are not incoherent as its ‘modified Kraus elements’ are
not individually incoherent (see Eq. 20). Hence, the relation IC ⊂ CNM ⊂ CNC.

The composition of two measurement channels can be defined asM1 ◦M2(ρ) =
∑

j

√
E1

j

(∑
i

√
E2
i ρ

√
E2
i

)√
E1

j . Then, one can readily prove that the composition of

two CNMs is also a CNM. The tensor product of two measurements is defined in the
bipartite systems, ρAB , i.e., M1 ⊗ M2(ρAB). As any bipartite incoherent state can
be written as product of two incoherent state in their fixed local basis, one readily
prove that tensor product of two CNMs is a CNM.

As for any qubit state, ρ, Cl1(ρ) = Ctr(ρ) [31], we find that

Cl1(CNM (ρ)) = ||CNM (ρ) − CNM (ρ)D||tr,
≤ ||CNM (ρ) − CNM (ρD)||tr,
≤ ||ρ − ρD||tr = Cl1(ρ),
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where the first inequality is because CNM (ρD) may not be the closest incoherent
state to CNM (ρ) and the second inequality is from the contractive nature of trace
distance under CPTPmap. However, for higher dimensional system this property may
not hold.

From the monotonicity property of relative entropy under CPTP map, one can find
that

Cr (ρ) = S(ρ||ρD) ≥ S(CNM (ρ)||CNM (ρD))

≥ min
δ∈I

S(CNM (ρ)||δ) = Cr (CNM (ρ)).

Note that in the above proof, we use the fact that the stateCNM (ρD) is still incoherent
but may not be the optimal one. ��
This classification ofmeasurementmight give us new insight to the quantumcoherence
theory. The following important remarks can be made

1. In coherence distillation, CNM does not give extra advantage as it is CNM⊂CNC
[16].

2. As for qubits coherence of formation C f (ρ) is monotonic function of Cl1(ρ) [16],
therefore ∀CNM , C f (CNM (ρ)) ≤ C f (ρ). However, for multiqubit states as
well as for higher dimensional states this may not hold.

3. There exists some CNMs which are not always IC.

To illustrate the above remarks, we consider the following CNM measurements:

Example The action of the tensor product of the identity measurement and the POVM
measurement with elements

E1 =
[

1
2 − 1

2
√
2

− 1
2
√
2

1
2

]

and E2 =
[

1
2

1
2
√
2

1
2
√
2

1
2

]

(which are both CNM), on the maximally entangled qubit state |ψ+〉 = 1√
2
(|00〉 +

|11〉), lead to the state ρ f = 1
2 (|e1〉〈e1| + |e2〉〈e2|), where |e1〉 = 1

4 (h+|00〉 +
h−(|01〉 + |10〉) + h+|11〉) and |e2〉 = 1

4 (h+|00〉 − h−(|01〉 + |10〉) + h+|11〉) with
h± =

√
2 − √

2 ±
√
2 − √

2. We know that C f (|ψ+〉) = 1. Now to calculate the
coherence of formation of ρ f , we notice that ρ f lives in the subspace spanned by
vectors |e1〉 and |e2〉. Therefore, pure state decomposition of ρ f = ∑

i piρi , where
ρi = |ψi 〉〈ψi | with |ψi 〉 = cos θ |e1〉 + sin θeiφ |e2〉, θ ∈ [0, π

2 ] and φ ∈ [0, 2π ].
Hence, one can readily calculate and find that∀ρi , S(ρD

i ) = −ε+ log ε+−ε− log ε− =
1 + H2(ε+) > 1 holds, where ε± = 1

4 (2 ± √
2)| cos θ ± eiφ sin θ |2. Therefore, the

C f (ρ f ) = min{pi ,|ψi 〉}
∑

i pi S(ρD
i ) ≥ min{|ψi 〉} S(ρD

i ) > 1. This proves that the
coherence of formation may increase under CNMs.

Above example and the example in Eq. (20) show that although the measurement
is CNM, it is not IC as individual POVM elements may induce coherence in the state.
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5 Coherence creation under POVMmeasurement and entanglement

Recently, it was shown that for bipartite quantum systems, if one performs von Neu-
mann measurement on one half of the system by bringing an apparatus, then the
induced distillable entanglement2 between system and apparatus bipartition is exactly
equal to the one-way work deficit 3 present in the initial bipartite system [32,33]. This
interesting piece of result relates quantum correlations beyond entanglement with the
distillable entanglement.

Here, in this work, we will connect two important resources, namely, the entan-
glement and the quantum coherence through POVM measurements. Let us consider
a bipartite product state, ρ1 = ρA ⊗ ρS , where A denotes the state for ancilla and S
for system. Now, from Neumark’s dilation theorem, we know that the POVM {Ei } on
the system is equivalent to unitary evolution and the projective measurement on the
ancilla, i.e.,

ρ1 �→ ρM
2 =

∑

i

(�i ⊗ I)ρAS(�i ⊗ I), (22)

where ρAS = U (ρA ⊗ρS)U † withU being global unitary and the projective measure-
ment is being done with apparatus M . It was shown in [32], that using this method
we can create distillable entanglement between the apparatus and the state ρAS given
as EM|AS(ρM

2 ) = S(
∑

i �i ⊗ IρAS�i ⊗ I) − S(ρAS). Creation of entanglement is
possible only if ρAS has nonzero discord in it [32]. However, we are interested in the
following quantity,

EM|AS
min (ρM

2 ) = min
�i

S

(
∑

i

�i ⊗ IρAS�i ⊗ I

)

− S(ρAS), (23)

which is the entanglement obtained by minimizing over the projective measurements.
The minimum entanglement created by this method is also known as the one way
information deficit : EM|AS

min (ρM
2 ) = −→� (ρAS) [39,41].

By definition, we have S(ρM
2 ) − S(ρAS) ≥ EM|AS

min (ρM
2 ). Using the fact that

S(ρAS) = S(ρA)+ S(ρS) and S(ρM
2 ) ≤ S(ρM

S )+ S(ρM
A ), where ρM

S = TrA[ρM
2 ], we

reach to

EM|AS
min (ρM

2 ) ≤ S(ρD
A ) + S(ρM

S ) − S(ρA) − S(ρS)

= CR(ρA) + S(ρM
S ) − S(ρS). (24)

Since the projective measurement is done on the apparatus state ρA, ρM
A = ρD

A in the
basis of projection. Now, if we concentrate on the quantity, S(ρM

S ) − S(ρS), we find

2 It quantifies the # of Bell states one can extract from N number of mixed entangled states. For further
study, we refer readers to [38].
3 The work deficit is the information, or work, that cannot be extracted from a bipartite quantum state
when the parties are in distant locations, as compared to the case when the same are together. For more
information on work deficit, we direct the enthusiastic reader to Refs. [39–41].
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that it can be written as

S(ρM
S ) − S(ρS) = S(ρMD

S ) − S(ρS) − CR(ρM
S ),

where CR(ρM
S ) is the coherence of ρS after POVM is performed on the system S,

i.e., CR(ρM
S ) = CR(ρPOVM

S ), where ρMD
S is diagonal version of ρM

S . Therefore, we
finally find that

EM|AS
min (ρM

2 ) + CR(ρPOVM
S ) + S(ρS) ≤ CR(ρA) + S(ρMD

S ),

EM|AS
min (ρM

2 ) + CR(ρPOVM
S ) + S(ρS) ≤ log NM, (25)

where N and M are the dimension of the system S and apparatus A, respectively,
and S(ρS) denotes mixedness of the system ρS . The inequality in Eq. (25) relates two
important resources, namely, the minimum entanglement and the coherence through
the POVMmeasurement. It implies that the coherence created will be less if the initial
system is highly mixed and/or the minimum entanglement that can be created is large.
This inequality is similar to the complementarity relation between Coherence and
entanglement for an arbitrary bipartite state [42].

6 Conclusion

The emergent quantum technologies exploit the resource available in two main
ingredients—quantum states and the allowed quantum operations [34,35]. Therefore,
it is important to study the properties of quantum operations, mainly, its resource
creating ability. While many operations can create coherence in the physical system,
specifically, how much coherence can be created by a non-selective general measure-
ment process was not explored in detail earlier. We have studied this phenomenon for
both projective and generalized POVM operations on qubits. We find the maximum
amount coherence that can be induced in an incoherent qubit state. This maximum
coherence is 1/2 for a pure incoherent state. It is also demonstrated that it is not always
possible to increase the coherence of a qubit state although it is still possible to prevent
loss of coherence.

Interestingly, we find that the more elements present in the POVM sets for a mea-
surement, the less is its coherence creation ability. Specifically, our result indicates
that the maximum coherence generated from an incoherent state, using n outcome
random POVM decreases exponentially with n. Since more POVM elements mean,
in the dilated Hilbert space, we have a high-dimensional ancillary system. This shows
that when a quantum system interacts with a larger system, the ability to create coher-
ence decreases exponentially. Furthermore, to explain the ability of coherence creation
by the non-selective general measurement process, we introduce the notion of ‘raw’
quantumness in POVM elements. We show that ‘raw quantumness’ in the POVM
elements is a necessary but not sufficient condition in order to induce coherence in a
qubit state.
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Lastly, we have also demonstrated the creation of coherence in a bipartite state
and show that it is dependent on the mixedness of the subsystem and the entangle-
ment developed between apparatus and the bipartite system.We believe these findings
through new lights on the role of measurement in the creation of quantum coherence.

As a future line of work, it would be interesting to obtain the analytical results for
two outcome and n-outcome POVMs. Also important is to obtain, how the coherence
creation capability decreases with increasing n. Last but not the least, it will be useful
to extend this work on higher dimensional states.
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