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Abstract
Random access codes (RACs) are an intriguing class of communication tasks
that reveal an operational and quantitative difference between classical and
quantum information processing. We formulate a natural generalization of
RACs and call them random access tests (RATs), defined for any finite col-
lection of measurements in an arbitrary finite dimensional general probabilistic
theory. These tests can be used to examine collective properties of collections
of measurements. We show that the violation of a classical bound in a RAT is
a signature of either measurement incompatibility or super information stora-
bility. The polygon theories are exhaustively analysed and a critical difference
between even and odd polygon theories is revealed.

Keywords: random access code, quantum measurement, incompatibility, ,
joint measurement, general probabilistic theory

(Some figures may appear in colour only in the online journal)

1. Introduction

The central theoretical aim of quantum information processing is to understand how quantum
physics can be exploited in computing and communication. For example, in the celebrated
superdense coding protocol quantum entanglement is used to communicate a certain number of
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bits of information by transmitting smaller number of qubits and sharing beforehand entangled
qubits [1]. In general, quantum protocols are superior to classical protocols in some informa-
tion processing tasks, but not in all (such as in nonlocal computation [2] and some quantum
guessing games [3]). Every task showing a quantum advantage also reveals something about
quantum theory itself, although the quantum resources behind the advantage may not always
be so straightforward to identify.

Random access codes (RACs) are simple communication protocols where a number of bits
are encoded into a smaller number of bits and it is later randomly decided which bit should
be decoded. This kind of tasks become interesting when compared to their quantum versions,
known as quantum random access codes (QRACs), where a number of bits are encoded into a
smaller number of qubits, or more generally, a quantum system with smaller dimension than
the dimension of the classical encoding space [4, 5]. It is known that in many cases a quantum
system is better than a classical system of the same operational dimension (i.e. with the same
maximal number of perfectly distinguishable states), and QRACs have been investigated from
various different angles and generalized into different directions, see e.g. [6–9]. It has been
e.g. shown that QRAC provides a robust self-testing of mutually unbiased bases, which are
the unique quantum measurements giving the optimal performance in a particular QRAC [10].
Further, it has been shown that to get any quantum advantage at all, one must use incompati-
ble pair of measurements [11]. In that way, QRAC can be used as a semi-device independent
certification of quantum incompatibility.

In the current investigation we adopt the approach started in [11] and generalize RACs
to random access tests (RATs) where the number of measurement outcomes and operational
dimension of the communication medium are independent from each other (in RACs it is
assumed that these are the same). We formulate RATs in the framework of general probabilistic
theories (GPTs), hence enabling us to compare the performances in different theories.

We connect the performance of a collection of measurements in a RAT to the decoding
power of their specific approximate joint measurement, which we call the harmonic approx-
imate joint measurement. This observation links the optimal performance of the RAT to the
information storability of the full theory, a concept introduced in [12]. Remarkably, it is found
that the measurement incompatibility is not a necessary condition for a performance over the
classical bound (as it is in quantum theory), but also a phenomenon called super information
storability can enable it. By super information storability we mean that the information stora-
bility is larger than the operational dimension of the theory; it’s existence was recognized and
studied in [12].

We make a detailed investigation of the performance of RATs in polygon theories. The
optimal performances reveal a difference between even and odd polygon theories and, perhaps
more surprisingly, also a finer division into different classes in both polygons. Our investigation
indicates that the optimal performance in information processing tasks is a route to a deeper
understanding of GPTs and their nonclassical features, thereby also to a better understanding
of quantum theory.

The present investigation is organized as follows. In section 2 we recall the needed def-
initions and machinery of GPTs. Section 3 focuses on the concepts of decoding power of a
measurement and information storability of a whole theory. In section 4 we define a specific
kind of approximate joint measurement for any collection of measurements, which turns out
to be a useful tool. In section 5 we are finally ready to define RATs and show how they link
to the earlier concepts. Section 6 connects the definite success of special RATs to maximal
incompatibility. In section 7 we present a detailed study of RATs in polygon state spaces and
demonstrate how the maximal success probabilities separate different theories.
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2. General probabilistic theories

GPTs constitutes a generalized framework for quantum and classical theories based on oper-
ational principles. In addition to quantum and classical theories, GPTs include countless toy
theories where various operational features and tasks can be tested and considered in. This
enables us to compare different theories to each other based on how these different features
behave in different theories. In particular, by looking at the known nonclassical features of
quantum theory (such as incompatibility [13, 14], steering [15, 16] and nonlocality [17, 18])
in this more general operational framework helps us understand what makes quantum theory
special among all other possible theories. Furthermore, by looking at these features in the full
scope of GPTs gives us insight on these features themselves which deepens our understanding
about them and helps us make connections between different features.

GPTs are build around operational concepts such as preparations, transformations and
measurements which are used to describe a physical experiment. The preparation proce-
dure involves preparing a (physical) system in a state that contains the information about
the system’s properties. The set of possible states is described by a state space S which is
taken to be a compact convex subset of a finite-dimensional vector space V . Whereas com-
pactness and finite-dimensionality are technical assumptions which are often made to simplify
the mathematical treatment of the theory, convexity follows from the possibility to have prob-
abilistic mixtures of different preparation devices: if we prepare the system in a state s1 ∈ S
with probability p ∈ [0, 1] or state s2 ∈ S with probability 1 − p ∈ [0, 1] in different rounds of
the experiment, then the prepared state is statistically described by the mixture ps1 + (1 − p)s2

and must thus be a valid state in S. The extreme points of S are called pure and the set of pure
states is described by Sext. If a state is not pure then it is called mixed.

In the popular ordered vector space formalism (see e.g. [19, 20] for more details) the state
space S is embedded as a compact convex base of a closed, generating proper cone V+ in a
finite-dimensional ordered vector space V . This means that V+ is convex, it spans V , it satis-
fies V+ ∩ −V+ = {0} and that every element x ∈ V+\{0} has a unique base decomposition
x = αs, where α > 0 and s ∈ S. In this case the state space can be expressed as

S = {x ∈ V|x � 0, u(x) = 1},

where the partial order � in V is the partial order induced by the proper cone V+ defined in
the usual way as x � y if and only if x − y ∈ V+, and u is a order unit in the dual space V∗, or
equivalently, a strictly positive functional on V .

The measurement events are described by effects which are taken to be affine functionals
from S to the interval [0, 1]; for an effect e : S → [0, 1] we interpret e(s) as the probability that
the measurement event corresponding to e is detected when the system is in a state s ∈ S. The
affinity of the effects follows from the statistical correspondence between states and effects
according to which the effects respect the convex structure of the states so that

e(ps1 + (1 − p)s2) = pe(s1) + (1 − p)e(s2)

for all p ∈ [0, 1] and s1, s2 ∈ S.
The set of effects on a state space S is called the effect space of S and it is denoted by E(S).

Two distinguished effects are the zero effect o and the unit effect u for which o(s) = 0 and
u(s) = 1 for all s ∈ S. The effect space is clearly convex, and again the extreme elements of
E(S) are called pure and others are mixed. The set of pure effects on a state space S is denoted
by Eext(S).
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In the ordered vector space formalism we extent the effects to linear functionals and in this
case we can depict the effect space as

E(S) = V∗
+ ∩ (u − V∗

+) = {e ∈ V∗|o � e � u},

where the partial order on the dual space V∗ is induced by the dual coneV∗
+ = { f ∈ V∗| f (x) �

0 ∀ x ∈ V+}.
An important class of effects is the set of indecomposable effects. Following [21] we say that

a nonzero effect e ∈ E(S) is indecomposable if the decomposition e = e1 + e2 for some two
nonzero effects e1, e2 ∈ E(S) implies that e = c1e1 = c2e2 for some c1, c2 > 0. It was shown
in [21] that every effect can be expressed as a finite sum of indecomposable effect and that
every indecomposable effect can be expressed as a positive multiple of a pure indecomposable
effect. Geometrically indecomposable effects are exactly those that lie on the extreme rays of
the dual cone V∗

+. We denote the set of indecomposable effects on S by Eind(S) and the set of
pure indecomposable effects by Eext

ind (S).
A measurement on a state space S with a finite number of outcomes is a mapping M : x �→

Mx from a finite outcome set Ω to the set of effects E(S) such that
∑

x∈Ω Mx(s) = 1 for all
s ∈ S, or equivalently,

∑
x∈Ω Mx = u. We interpret Mx(s) as the probability that an outcome x

is obtained when the system in a state s ∈ S is measured with the measurement M. We denote
the set of all measurements on S by M(S).

The set of measurements with a fixed outcome set is convex, and we denote the set of
all extreme measurements with any outcome set by Mext(S). We say that an measurement is
indecomposable if each of it’s nonzero effect is indecomposable. We denote the set of indecom-
posable measurements on S by Mind(S) and the set of indecomposable extreme measurements
by Mext

ind(S). A measurement T with an outcome set Ω is said to be trivial if it does not give any
information about the measured state, i.e., it is of the form Tx = pxu for all x ∈ Ω for some
probability distribution p := (px)x∈Ω on Ω.

There are two basic ways of forming new measurements: mixing and post-processing. First,
as pointed out above, the set of measurements with a fixed set of outcomes is convex and
thus we can make convex mixtures of measurements: if M(1), . . . , M(n) are measurements with
an outcome set Ω and (pi)n

i=1 is a probability distribution, then
∑n

i=1 piM
(i) is a measurement

with effects
∑n

i=1 piM
(i)
x for all x ∈ Ω. Clearly, those measurements that cannot be written as

a nontrivial mixture are the extreme measurements.
Second, we say that a measurement N with an outcome set Λ is a post-processing of a

measurement M with an outcome set Ω if there exists a stochastic matrix ν := (νxy)x∈Ω,y∈Λ,
i.e., νxy � 0 for all x ∈ Ω, y ∈ Λ and

∑
y∈Λ νxy = 1 for all x ∈ Ω, such that

Ny =
∑
x∈Ω

νxyMx

for all y ∈ Λ. In this case we denote N = ν ◦ M. The post-processing relation defines a preorder
on the set of measurements as follows: N 	 M if and only if N = ν ◦ M for some stochastic
matrix ν. The set of maximal elements in M(S) with respect to the post-processing preorder
is known to be exactly the set of indecomposable measurements Mind(S) [22, 23].

Example 1 (quantum theory). Let H be a d-dimensional Hilbert space. We denote by
L(H) the algebra of linear operators on H and by Ls(H) the real vector space of self-adjoint
operators on H. The state space of a d-dimensional quantum theory is defined as

S(H) = {� ∈ Ls(H) | � � O, tr [�] = 1},

4



J. Phys. A: Math. Theor. 55 (2022) 174003 T Heinosaari and L Leppäjärvi

where O is the zero-operator and the partial order is induced by the cone of positive semi-
definite matrices according to which a self-adjoint matrix A is positive semi-definite, A � O,
if and only if 〈ϕ |Aϕ 〉 � 0 for all ϕ ∈ H. The pure states are exactly the rank-1 projections
on H.

The set of effects E(S(H)) can be shown (see e.g. [24]) to be isomorphic to the set E(H) of
self-adjoint operators bounded between O and 1, where 1 is the identity operator on H, i.e.,

E(S(H)) � E(H) := {E ∈ Ls(H)|O � E � 1}.

The pure effects then correspond to the projections on H and the indecomposable effects to
the rank-1 effect operators.

Measurements with finite number of outcomes on H are described by positive operator-
valued measures (POVMs), i.e., maps of the form M : x �→ M(x) from a finite outcome set Ω
to the set of effect operators E(H) such that

∑
x∈Ω M(x) = 1. The indecomposable POVMs are

those whose all nonzero effects are rank-1 operators.

3. Decoding power and information storability

3.1. Base norms and order unit norms

Let us start by introducing some more structure on GPTs that is needed in order to define
decoding power and information storability (for more details on GPTs see e.g. [19, 20]). Let
S be a state space on an ordered vector space V . On the vector spaces V and V∗ we can define
two natural norms that are induced by the cones V+ and V∗

+ respectively. We will introduce
them next.

In the ordered vector space V we have that S is a compact base of the closed, generating
proper cone V+ so that in particular every element x ∈ V can be expressed as x = αy − βz for
some α, β � 0 and y, z ∈ S. The base norm ‖·‖V on V is then defined as

‖x‖V = inf{α+ β| x = αy − βz,α, β � 0, y, z ∈ S}

for all x ∈ V . It follows that if x ∈ V+, then ‖x‖V = u(x). In particular we have that S = {x ∈
V+ | ‖x‖V = 1}.

In the dual space V∗ we have the order unit u ∈ V∗
+, i.e., for every f ∈ V∗ there exists λ > 0

such that f � λu, so that we can define the order unit norm ‖·‖V∗ on V∗ as

‖ f ‖V∗ = inf{λ � 0| − λu � f � λu}

for all f ∈ V∗. It follows that E(S) = { f ∈ V∗
+ | ‖ f ‖V∗ � 1}. Furthermore, it can be shown

that the base and the order unit norm are dual to each other, i.e.,

‖x‖V = sup
‖ f‖V∗�1

| f (x)|, ‖ f ‖V∗ = sup
‖x‖V�1

| f (x)|.

In particular, we can express the order unit norm on V∗ as the supremum norm over S so that

‖ f ‖V∗ = sup
s∈S

| f (s)| (1)

for all f ∈ V∗. Since S is compact, the supremum is always attained.
As we will mostly consider the properties of effects and measurements, we will be only

using the norm ‖·‖V∗ . For this reason, in order to simplify our notation, from now on we will

5
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write ‖·‖ instead of ‖·‖V∗ . We note that in particular for effects and other elements in V∗
+ the

absolute values in equation (1) can be removed, and thus we have that

‖e‖ = max
s∈S

e(s)

for all e ∈ V∗
+.

Example 2 (quantum theory). In the case of quantum theory S(H) we note that for an
effect e ∈ E(S(H)) the norm ‖e‖ corresponds to the operator norm ‖E‖ of the correspond-
ing effect operator E ∈ E(H), which in the finite dimensional quantum theory equals with the
maximal eigenvalue of E.

3.2. Decoding power of a measurement

For a measurement M ∈ M(S) with an outcome set Ω, we denote

λmax(M) :=
∑
x∈Ω

‖Mx‖ .

An operational interpretation of λmax(M) is that two parties, a sender and a receiver, communi-
cate by transferring physical systems where messages 1, . . . , n are encoded in states s1, . . . , sn.
The receiver is bound to use M to decode the messages, but the sender can freely choose the
states. For each outcome x of M, the sender hence chooses a state sx such that the correct infer-
ence is as likely as possible, i.e., Mx(sx) is maximal. Assuming that the initial messages occur
with uniform probability, the number λmax(M)/n is the maximal probability for the receiver to
infer the correct messages by using M. Based on this operational motivation, we call λmax(M)
the decoding power of M.

In the following we show that λmax has certain monotonicity properties that makes it a
reasonable quantification of the quality of measurements. In particular, we see that the decoding
power function behaves in mixing and post-processing in the following way.

Proposition 1. For any measurement M with an outcome set Ω and post-processing ν =
(νxy)x∈Ω,y∈Λ, we have that

λmax(ν ◦ M) � λmax(M).

Proof. With a direct calculation by using the triangular inequality and the absolute homo-
geneity of ‖·‖ as well as the stochasticity of ν we see that

λmax(ν ◦ M) =
∑
y∈Λ

‖(ν ◦ M)y‖ =
∑
y∈Λ

∥∥∥∥∥
∑
x∈Ω

νxyMx

∥∥∥∥∥
�

∑
y∈Λ

∑
x∈Ω

νxy ‖Mx‖ =
∑
x∈Ω

⎛
⎝∑

y∈Λ
νxy

⎞
⎠ ‖Mx‖

=
∑
x∈Ω

‖Mx‖ = λmax(M).

�

6



J. Phys. A: Math. Theor. 55 (2022) 174003 T Heinosaari and L Leppäjärvi

Proposition 2. For any collection of measurements M(1), . . . , M(n) with an outcome set Ω
and probability distribution p := (pi)n

i=1 we have that

λmax

(
n∑

i=1

piM
(i)

)
�

n∑
i=1

piλmax(M(i)) � max
i∈{1,...,n}

λmax(M(i)).

Proof. With a direct calculation by using the triangular inequality and the absolute homo-
geneity of ‖·‖ as well as the normalization of p we see that

λmax

(
n∑

i=1

piM
(i)

)
=

∑
x∈Ω

∥∥∥∥∥
n∑

i=1

piM
(i)
x

∥∥∥∥∥ �
∑
x∈Ω

n∑
i=1

pi

∥∥M(i)
x

∥∥

=

n∑
i=1

pi

(∑
x∈Ω

∥∥M(i)
x

∥∥) =

n∑
i=1

piλmax(M(i))

� max
i∈{1,...,n}

λmax(M(i)).

�
In the context of resource theories of measurements, the decoding power of a measurement

is related to the robustness of measurements, defined as the minimal amount of noise needed
to make a measurement trivial, studied in quantum theory e.g. in [25, 26] and in GPTs in [27].

3.3. Information storability

The previously defined decoding power is a quality of a single measurement. As we saw earlier,
it is the maximal probability for a receiver to infer correct messages when the states used in
encoding are optimized. We can also think of a scenario where the measurement is optimized
over all possible measurements in the given theory. This quantity is known as the information
storability [12] and for a theory with a state space S we denote it as

λmax(M(S)) := sup
M∈M(S)

λmax(M). (2)

In the same way we can define the information storability for any subset T of measurements.
This is particularly relevant when we study restrictions on measurements [28]. For a subset
T ⊆ M(S) we denote the information storability of T as

λmax(T ) := sup
M∈T

λmax(M).

In the cases where there is no risk of confusion we will use the simpler notation λmax(S) for
λmax(M(S)).

Example 3 (quantum theory). In a finite d-dimensional quantum theory for a POVM M
we have

λmax(M) =
∑

x

‖M(x)‖ �
∑

x

tr [M(x)] = tr

[∑
x

M(x)

]
= tr [1] = d

and we also see that this upper bound is reached whenever every operator M(x) is rank-1.

7
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Based on example 3 one could presume that the information storability is always the same as
the operational dimension of the theory, as is the case for quantum theory. The latter dimension
is defined as the maximal number of perfectly distinguishable states. The operational dimen-
sion of a theory clearly is a lower bound for the information storability. However, the infor-
mation storability can be larger than the operational dimension and we call this phenomenon
super information storability. This is the case e.g. in odd polygon theories (see section 7).

From propositions 1 and 2 it follows that the supremum in equation (2) is attained for
extreme measurements that are maximal in the post-processing preorder. Thus, in a state space
S we have that

λmax(S) = sup
M∈M(S)

λmax(M) = sup
M∈Mext

ind(S)

λmax(M). (3)

We note that the set of extreme indecomposable measurements Mext
ind(S) is exactly the set of

extreme simulation irreducible measurements in [23].
For state spaces with a particular structure we can show a simple way of calculating the

information storability of the theory. In particular, we will use this result for polygon state
spaces in section 7.

Proposition 3. Suppose that there exists a state s0 ∈ S such that e(s0) = f(s0) = :λ0 for all
e, f ∈ Eext

ind (S). Then λmax(M) = 1/λ0 for all M ∈ Mind(S) and therefore λmax(S) = 1/λ0.

Proof. Let M ∈ Mind(S) with an outcome set Ω. Since each effect Mx is indecomposable, by
[21] we have that Mx = αxmx for some αx > 0 and mx ∈ Eext

ind (S) for all x ∈ Ω. Furthermore,
by [21], for all mx there exists a pure state sx ∈ Sext such that mx(sx) = 1 so that ‖Mx‖ = αx

and λmax(M) =
∑

x∈Ω αx .
From the normalization

∑
x∈Ω Mx = u and the assumption that e(s0) = λ0 for all e ∈ Eext

ind (S)
it follows that

1
λ0

=
1
λ0

u(s0) =
1
λ0

∑
x∈Ω

αxmx(s0) =
∑
x∈Ω

αx = λmax(M).

The last claim follows from this and equation (3). �

4. Harmonic approximate joint measurements

A joint measurement of measurements M(1), . . . , M(k) with outcome sets Ω1, . . . ,Ωk is a mea-
surement J with the product outcome set Ω1 × · · · × Ωk and satisfying the marginal properties

∑
x2∈Ω2

. . .
∑

xk∈Ωk

Jx1,...,xk = M(1)
x1

∀ x1 ∈ Ω1,

...∑
x1∈Ω1

. . .
∑

xk−1∈Ωk−1

Jx1,...,xk = M(k)
xk

∀ xk ∈ Ωk.

Measurements M(1), . . . , M(k) are called compatible if they have a joint measurement and
otherwise they are incompatible.

8
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In classical theories, i.e., in theories whose state spaces are simplices, all measurements are
compatible whereas in every nonclassical GPTs there are pairs of measurements that are incom-
patible [29, 30]. However, even a set of incompatible measurements can be made compatible
if we allow for some amount of error. Most commonly this error is quantified by the amount of
noise needed to be added to a set of incompatible set of measurements in order to make them
compatible [13]. Formally, for each (λ1, . . . ,λk) ∈ [0, 1]k and every choice of trivial measure-
ments T(1), . . . , T(k) the measurements λ1M(1) + (1 − λ1)T(1), . . . ,λkM

(k) + (1 − λk)T(k) are
considered to be noisy versions of the measurements M(1), . . . , M(k), where the amount of noise
added to each observable M(i) is characterized by the parameter 1 − λi. In this case we call a
joint measurement J̃ of any noisy versions of the measurements M(1), . . . , M(k) an approximate
joint measurement of M(1), . . . , M(k).

Following [31] we can form a class of approximate joint measurements for M(1), . . . , M(k)

by fixing convex weights λ1, . . . ,λk (so that λ1 + · · ·+ λk = 1) and probability distributions
p(1), . . . , p(k) on the sets Ω2 × · · · × Ωk, . . . ,Ω1 × · · · × Ωk−1 respectively and by setting

J̃x1,...,xk = λ1 p(1)
x2,...,xk

M(1)
x1

+ · · ·+ λk p(k)
x1,...,xk−1

M(k)
xk

(4)

for all (x1, . . . , xk) ∈ Ω1 × · · · × Ωk. The marginals of J̃ are∑
x2∈Ω2

. . .
∑

xk∈Ωk

J̃x1,...,xk= λ1M(1)
x1

+ (1 − λ1)T(1)
x1

∀ x1 ∈ Ω1,

...∑
x1∈Ω1

. . .
∑

xk−1∈Ωk−1

J̃x1,...,xk = λkM
(k)
xk

+ (1 − λk)T(k)
xk

∀ xk ∈ Ωk,

where T(1), . . . , T(k) are trivial measurements.
In the previous construction we are free to choose the convex weights and the probability

distributions. It turns out that a particular choice is useful for our following developments.
We choose all probability distributions p(1), . . . , p(k) to be uniform distributions and the convex
weights are chosen to be

λi =
h(m1, . . . , mk)

k mi
,

where h(m1, . . . , mk) is the harmonic mean of the numbers m1, . . . , mk and mi is the number of
outcomes of M(i). We denote this specific measurement as H(1,...,k) and call it harmonic approx-
imate joint measurement of M(1), . . . , M(k). Inserting the specific choices into equation (4) we
observe that the harmonic approximate joint measurement can be written in the form

H(1,...,k)
x1,...,xk

=
1

κ(m1, . . . , mk)
(M(1)

x1
+ · · ·+ M(k)

xk
), (5)

for all (x1, . . . , xk) ∈ Ω1 × · · · × Ωk with

κ(m1, . . . , mk) :=
∏

i

mi

∑
i

1
mi

.

We remark that any approximate joint measurement of the form of equation (4) can be
obtained from M(1), . . . , M(k) by a suitable mixing and post-processing, hence can be simulated

9
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by using those measurements only [23]. In this sense, they are all trivial approximate joint mea-
surements and among these trivial approximate joint measurements our specific choice H(1,...,k)

stands out by having a particularly symmetric form. Although trivial approximate joint mea-
surements can be formed for any collection of measurements, we will show that the harmonic
approximate joint measurement H(1,...,k) is related to the incompatibility of M(1), . . . , M(k) in an
intriguing way. The link is explained in the following sections.

5. Random access tests

5.1. Classical and quantum random access codes

As a motivation for the later developments, we recall that in the (n, d)-RAC, Alice is given n
input dits 	x = (x1, . . . , xn) ∈ {0, . . . , d − 1}n based on which she prepares one dit and sends
it to Bob. Bob is then given a number j ∈ {1, . . . , n} and the task of Bob is to guess the cor-
responding dit x j of Alice. The temporal order is here important: Alice does not know j and
therefore cannot simply send x j to Bob. It is clear that, assuming all inputs are sampled uni-
formly, Bob will make errors. The performance depends on the strategy that Alice and Bob
agree to follow. The choices of the inputs given to Alice and Bob are sampled with uniform
probability and the average success probability quantifies the quality of their strategy. Gener-
ally, we denote by P̄(n,d)

c the best average success probability that Alice and Bob can achieve
with a coordinated strategy.

For instance, Alice and Bob can agree that Alice always sends the value of the first dit. If Bob
has to announce the value of the first dit, he makes no errors. This happens with the probability
1/n. On the other hand, with the probability (n − 1)/n Bob has to announce the value of some
other dit in which case the information received from Alice does not help Bob and he has to
make a random choice, thereby guessing the right value with the probability 1/d. Therefore,
with this strategy the average success probability is (d + n − 1)/(nd). It can be shown that in
the case when n = 2 this is also the optimal strategy so that P̄(2,d)

c = 1/2(1 + 1/d) [32, 33].
In (n, d)-QRAC, Alice is given n input dits 	x = (x1, . . . , xn) ∈ {0, . . . , d − 1}n based on

which she prepares a d-dimensional quantum system into a state �	x ∈ S(Hd) and sends it to
Bob. Bob is then given a number j ∈ {1, . . . , n} and the task of Bob is to guess the correspond-
ing dit x j of Alice by performing a measurement on the state sent by Alice. If Bob performs a
measurement described by a d-outcome POVM M( j), the average success probability of QRAC
when the inputs are assumed to be uniformly distributed is given by

1
ndn

∑
	x

tr
[
�	x(M(1)(x1) + · · ·+ M(n)(xn))

]
.

The best average success probability P̄(n,d)
q of a (n, d)-QRAC is then obtained by optimizing

over the states and the measurements so that

P̄(n,d)
q = sup

M(1),...,M(n)∈M(Hd )

1
ndn

∑
	x

∥∥M(1)(x1) + · · ·+ M(n)(xn)
∥∥ ,

where the norm is the operator norm on L(Hd). In the case that n = 2 it is known that P̄(2,d)
q =

1/2(1 + 1/
√

d) > P̄(2,d)
c and that this bound can only be attained with rank-1 projective and

mutually unbiased POVMs [10].

10
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5.2. Random access tests in GPTs

In the following we formulate a class of tests that are similar to QRACs but are free from certain
assumptions. First, the information carrier in these tests need not be classical nor quantum but
can be described by any GPT, and second, instead of restricting the number of measurement
outcomes to match the (operational) dimension of the theory, we look at tests where the number
of outcomes can be arbitrary. Furthermore, we look at these tests from the point of view of
testing properties of collections of measurements in a given GPT.

The tests are defined as follows: letS be a state space and let M(1), . . . , M(k) be measurements
on S with outcome sets Ω1, . . . ,Ωk with m1, . . . , mk outcomes respectively. As in the QRAC
setting, Alice prepares a state s	x ∈ S, where 	x = (x1, . . . , xk) ∈ Ω1 × · · · × Ωk. The task is
the same as before: Bob is told an index j ∈ {1, . . . , k} and he should guess the label x j by
performing a measurement M( j) on the state s	x . When the queries are uniformly distributed the
average success probability of this RAT is then

1
km1 . . .mk

∑
	x

(
M(1)

x1
+ · · ·+ M(k)

xk

)
(s	x).

When Bob is required to use the fixed measurements M(1), . . . , M(k) and one optimizes over the
states, the maximum average success probability becomes

P̄(M(1), . . . , M(k)) :=
1

km1 . . .mk

∑
	x

∥∥M(1)
x1

+ · · ·+ M(k)
xk

∥∥ , (6)

where the norm is now the order unit norm in the dual space V∗ of the ordered vector space V
in which the state space S is embedded. The number P̄(M(1), . . . , M(k)) is therefore the maximal
success probability of the test for Alice and Bob if they are bound to use the measurements
M(1), . . . , M(k) but free to choose the states.

A direct calculation reveals the following formula.

Proposition 4.

P̄(M(1), . . . , M(k)) =
1

h(m1, . . . , mk)
λmax(H(1,...,k)). (7)

This observation shows that the two operationally accessible quantities P̄(M(1), . . . , M(k))
and λmax(H(1,...,k)) are connected in a simple way. However, let us emphasize that in real
experiments one would find lower bounds for these quantities as they are defined via optimal
states.

From equation (6) (or equivalently from equation (7)) one gets the following upper bound

P̄(M(1), . . . , M(k)) � 1
k

k∑
i=1

λmax(M(i))
mi

.

Thus, the maximum average success probability of a RAT is upper bounded by the weighted
average of the decoding powers of the measurements used in the test. Clearly λmax(M(i)) � mi

for all i ∈ {1, . . . , k}, where the equality holds only when M(i) perfectly distinguishes mi (not
necessarily different) states which is the only case when the bound is trivial. However, we
note that in order to calculate this bound one has to be familiar with the description of the
measurements M(1), . . . , M(k).

11
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On the other hand, if we do not know the exact specification of the measurements but only
know that M(1), . . . , M(k) belong to a set T ⊆ M(S) that is closed under post-processing and
mixing, implying that H(1,...,k) belongs to T , then equation (7) gives an upper bound

P̄(M(1), . . . , M(k)) � 1
h(m1, . . . , mk)

λmax(T ). (8)

The minimal subset T ⊆ M(S) that includes the measurements M(1), . . . , M(k) and that is
closed with respect to mixing and post-processing is the simulation closure of the set {M(i)}k

i=1
(see [23]), i.e., a set formed of all possible mixtures and/or post-processings of the mea-
surements M(1), . . . , M(k). From propositions 1 and 2 we see that in this case λmax(T ) =
maxi λmax(M(i)).

We note that in the case when λmax(T ) = m1 = · · · = mk = d, where d is the operational
dimension of the theory (such as in the case of (k, d)-QRAC where T = M(Hd)) the right-
hand side of equation (8) is 1 and therefore it does not give a nontrivial bound. However, in
different settings the bound can be nontrivial.

Example 4 (effectively n-tomic measurements). Let T consist of all measurements
on S which can be simulated with measurements with n or less outcomes, i.e., every
measurement in T is obtained as a mixture and/or post-processing of some set of n-
outcome measurements. Measurements of this type are called effectively n-tomic and have
been considered e.g. in [28, 34–36]. It was shown in [28] that λmax(T ) � n so that
equation (8) gives P̄(M(1), . . . , M(k)) � n/h(m1, . . . , mk). For example, if n = k = 2, then we
obtain P̄(M(1), M(2)) � (m1 + m2)/(m1m2) which is nontrivial for measurements M(1), M(2) ∈ T
with m1, m2 > 2.

One can show that P̄(M(1), . . . , M(k)) is a convex function of all of its arguments. To see this,
let M(1), . . . , M(k) be measurements and w.l.o.g. let M(1) =

∑l
i=1 piN

(i) for some measurements
N(1), . . . , N(l) and some probability distribution (pi)l

i=1. We see that

P̄(M(1), . . . , M(k)) =
1

km1 . . .mk

∑
	x

∥∥M(1)
x1

+ · · ·+ M(k)
xk

∥∥

=
1

km1 . . .mk

∑
	x

∥∥∥∥∥
l∑

i=1

piN
(i)
x1
+ M(2)

x2
+ · · ·+ M(k)

xk

∥∥∥∥∥
=

1
km1 . . .mk

∑
	x

∥∥∥∥∥
l∑

i=1

pi

(
N(i)

x1
+ M(2)

x2
+ · · ·+ M(k)

xk

)∥∥∥∥∥
� 1

km1 . . .mk

∑
	x

l∑
i=1

pi

∥∥N(i)
x1
+ M(2)

x2
+ · · ·+ M(k)

xk

∥∥

=
l∑

i=1

piP̄(N(i), M(2), . . . , M(k)).

Furthermore, one sees that

12
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P̄

(∑
i

piN
(i), M(2), . . . , M(k)

)
�

l∑
i=1

piP̄(N(i), M(2), . . . , M(k))

�
l∑

i=1

pi max
j

P̄(N( j), M(2), . . . , M(k))

= max
j

P̄(N( j), M(2), . . . , M(k)).

Thus, the success probability within the whole theory is maximized for extreme measurements.

5.3. Upper bound for compatible pairs of measurements

As was stated before, for the classical (2, d)-RAC it is known that the optimal success proba-
bility is P̄(2,d)

c = 1
2

(
1 + 1

d

)
. Generalizing the result from [11], let us consider RATs with two

measurements with d outcomes on a state space S, where the operational dimension of the
theory is d. In such a GPT, there exists d pure states {s1, . . . , sd} ∈ Sext and a d-outcome mea-
surement M such that Mi(s j) = δi j for all i, j ∈ {1, . . . , d}. We note that then ‖Mi‖ = 1 for all
i ∈ {1, . . . , d} so that in particular we must have that ‖Mi + Mi‖ = 2 and ‖Mi + M j‖ = 1 for
all i �= j (since

∑
i Mi = u). Hence, we see that

P̄(M, M) =
1

2d2

d∑
i, j=1

‖Mi + M j‖ =
1
d2

d∑
i=1

‖Mi‖+
1

2d2

d∑
i, j=1
i �= j

‖Mi + M j‖

=
1

2d2
(2d + d(d − 1)) =

1
2

(
1 +

1
d

)
,

so that the optimal success probability for the classical (2, d)-RAC can be always achieved in
a theory with operational dimension d.

We see that the classical bound can be always achieved with the foolish strategy of choosing
the same measurement for the RAT. For quantum theory it was shown in [11] that this bound
cannot be surpassed even if we allow for two different measurements that are compatible.
However, in general we can actually show a bound for compatible measurements that in some
cases differs from the classical one.

The following result is a generalization of proposition 3 in [11].

Proposition 5. Let M(1) and M(2) be two compatible measurements with m1 and m2 out-
comes, respectively. If M(1) and M(2) have a joint measurement belonging to T ⊆ M(S), then

P̄(M(1), M(2)) � 1
2

(
1 +

λmax(T )
m1m2

)
. (9)

If λmax(T ) = m1 = m2 = d, where d is the operational dimension of the theory, then the right-
hand side is the classical bound for (2,d)-RAC.

Proof. Let J ∈ T be a joint measurement of M(1) and M(2). We have

13
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h(m1, m2) · P̄(M(1), M(2)) = λmax(H(1,2)) =
∑
x,y

∥∥∥∥ 1
κ(m1, m2)

(M(1)
x + M(2)

y )

∥∥∥∥
=

1
κ(m1, m2)

∑
x,y

∥∥∥∥∥
∑

a

Jx,a +
∑

b

Jb,y

∥∥∥∥∥

=
1

κ(m1, m2)

∑
x,y

∥∥∥∥∥∥∥Jx,y +
∑

a
a �=y

Jx,a +
∑

b

Jb,y

∥∥∥∥∥∥∥
� 1

κ(m1, m2)

∑
x,y

‖Jx,y‖+
1

κ(m1, m2)

∑
x,y

∥∥∥∥∥∥∥
∑

a
a �=y

Jx,a +
∑

b

Jb,y

∥∥∥∥∥∥∥
=

1
κ(m1, m2)

λmax(J) +
1

κ(m1, m2)

∑
x,y

∥∥∥∥∥∥∥
∑

a
a �=y

Jx,a +
∑

b

Jb,y

∥∥∥∥∥∥∥ .
For the second summand, we observe that

0 �
∑

a
a �=y

Jx,a +
∑

b

Jb,y �
∑
a,b

Ja,b = u.

We hence get

h(m1, m2) · P̄(M(1), M(2)) � 1
κ(m1, m2)

(λmax(T ) + m1m2) .

Inserting the expressions of h(m1, m2) and κ(m1, m2) we arrive to equation (9). �

From the latter part of proposition 5 it is clear that in the case of (2, d)−QRAC the bound
given by equation (9) for T = M(S) matches the optimal success probability of the classical
(2, d)−RAC both for quantum and classical state spaces. In addition, in [12] it was shown that
λmax(S) = d = 2 for all state spaces S that are point-symmetric (or centrally symmetric) so
that also in this case the bound given by equation (9) matches the optimal success probability
of the classical (2, 2)−RAC for two dichotomic measurements.

The bound given in equation (9) can be used to detect incompatibility for pairs of measure-
ments. To detect the incompatibility of any pair of measurements on a state space S we choose
T = M(S) so that in terms of the harmonic approximate joint measurement we can express
the previous result as follows:

Corollary 1. Let M(1) and M(2) be measurements on a state space S with m1 and m2

outcomes, respectively. If

λmax(H(1,2)) >
λmax(S) + m1m2

m1 + m2
, (10)

then M(1) and M(2) are incompatible.

We remark that the previous incompatibility test becomes useless for large m1 and
m2. Namely, λmax(H(1,2)) � λmax(S) so that a necessary requirement that the inequality in
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equation (10) can hold for some M(1) and M(2) is that

λmax(S) >
m1m2

m1 + m2 − 1
. (11)

In the usual QRAC scenario, i.e., when m1 = m2 = d, where d is the operational dimension of
the theory, from the fact thatλmax(S) � d it follows that equation (11) holds for all theories with
d > 1. Furthermore, if m1 = m2 = λmax(S) > 1, then equation (11) also holds. Some different
types of examples as well as examples where the RAT does not detect incompatibility of some
pairs of measurements in the quantum case have been presented in [11].

6. Maximal incompatibility of dichotomic measurements

There are various ways to quantify the level of incompatibility of two measurements [37]. As
introduced in [13], the degree of incompatibility d(M(1), M(2)) of two measurements M(1) and
M(2) is defined as the maximal value λ ∈ [0, 1] such that the noisy versionsλM(1) + (1 − λ)T(1)

and λM(2) + (1 − λ)T(2) of M(1) and M(2) are compatible for some choices of trivial measure-
ments T(1) and T(2). This quantity has a universal lower bound d(M(1), M(2)) � 1

2 , and two mea-
surements M(1) and M(2) are called maximally incompatible if d(M(1), M(2)) = 1

2 . For instance,
the canonical position and momentum measurements in quantum theory are maximally incom-
patible [38]. In the following we concentrate on maximal incompatibilty of two dichotomic
measurements. In finite dimensional quantum theory it is known that no such pairs exist [13].

We say that a dichotomic measurement M with outcomes + and − discriminates two sets
of states S+, S− ⊂ S if M+(s+) = 1 for all s+ ∈ S+ and M+(s−) = 0 for all s− ∈ S−. This
concept allows now to formulate the following result.

Proposition 6. Let M(1) and M(2) be two dichotomic measurements. Then P̄(M(1), M(2)) = 1
if and only if there are four states s1, s2, s3, s4 ∈ S such that M(1) discriminates {s1, s2} and
{s3, s4} and M(2) discriminates {s1, s4} and {s2, s3}.

Proof. Let M(1) and M(2) be dichotomic measurements with effects M(1)
+ , M(1)

− and M(2)
+ , M(2)

−
respectively. Since M(1)

+ + M(1)
− = u, M(2)

+ + M(2)
− = u and u(s) = 1 for all s ∈ S, we can express

the success probability P̄(M(1), M(2)) as follows:

P̄(M(1), M(2)) =
1
8

[∥∥∥M(1)
+ + M(2)

+

∥∥∥+
∥∥∥M(1)

+ + M(2)
−

∥∥∥
+
∥∥∥M(1)

− + M(2)
+

∥∥∥+
∥∥M(1)

− + M(2)
−
∥∥]

=
1
8

[
sup
s1∈S

(M(1)
+ + M(2)

+ )(s1) + sup
s2∈S

(u + M(1)
+ − M(2)

+ )(s2)

+ sup
s3∈S

(u − M(1)
+ + M(2)

+ )(s3) + sup
s4∈S

(2u − M(1)
+ − M(2)

+ )(s4)

]

=
1
8

[
4 + sup

s1∈S
(M(1)

+ + M(2)
+ )(s1) + sup

s2∈S
(M(1)

+ − M(2)
+ )(s2)

+ sup
s3∈S

(−M(1)
+ + M(2)

+ )(s3) + sup
s4∈S

(−M(1)
+ − M(2)

+ )(s4)

]
.

15



J. Phys. A: Math. Theor. 55 (2022) 174003 T Heinosaari and L Leppäjärvi

Since M(1)
+ and M(2)

+ are effects, we clearly have that

sup
s1∈S

(M(1)
+ + M(2)

+ )(s1) ∈ [0, 2], sup
s2∈S

(M(1)
+ − M(2)

+ )(s2) ∈ [−1, 1],

sup
s3∈S

(−M(1)
+ + M(2)

+ )(s3) ∈ [−1, 1], sup
s4∈S

(−M(1)
+ − M(2)

+ )(s4) ∈ [−2, 0].

Now it is clear that P̄(M(1), M(2)) = 1 if and only if there are four states s1, s2, s3, s4 such that

(M(1)
+ + M(2)

+ )(s1) = 2, (M(1)
+ − M(2)

+ )(s2) = 1,

(−M(1)
+ + M(2)

+ )(s4) = 1, (−M(1)
+ − M(2)

+ )(s3) = 0,

which holds if and only if

M(1)
+ (s1) = M(1)

+ (s2) = 1, M(1)
+ (s3) = M(1)

+ (s4) = 0, (12)

M(2)
+ (s1) = M(2)

+ (s4) = 1, M(2)
+ (s2) = M(2)

+ (s3) = 0. (13)

�

In [39] it was shown that two dichotomic measurements M(1) and M(2) are maximally
incompatible if and only if equations (12) and (13) hold for states s1, s2, s3, s4 ∈ S such that
1
2 (s1 + s3) = 1

2 (s2 + s4). Equivalently, two dichotomic measurements M(1) and M(2) are maxi-
mally incompatible if and only if there is an affine subspace K ⊂ aff (S) such that F = K ∩ S
is a parallelogram and M(1) and M(2) discriminate the opposite edges of F . By a parallelogram
we mean a two-dimensional convex body that is a convex hull of its four vertices s1, s2, s3, s4

such that 1
2 (s1 + s3) = 1

2 (s2 + s4). In this case measurements M(1) and M(2) discriminate the
opposite edges of the parallelogram if M(1) discriminates {s1, s2} and {s3, s4} and M(2) dis-
criminates {s1, s4} and {s2, s3}. Thus, from proposition 6 and the aforementioned result from
[39] we see that two maximally incompatible dichotomic measurements M(1) and M(2) satisfy
P̄(M(1), M(2)) = 1. In particular, we can conclude the following:

Corollary 2. If P̄(M(1), M(2)) < 1 for two dichotomic measurements M(1) and M(2), then they
are not maximally incompatible.

On the other hand, in the case that the states in proposition 6 can be chosen to be affinely
dependent, we can show also the inverse of the previous statement. To see this, let us consider
the case of proposition 6 where the states {s1, s2, s3, s4} are affinely dependent. First, let us note
that from the discrimination of the sets {s1, s2} and {s3, s4} together with the discrimination
of the sets {s1, s4} and {s2, s3} it follows that all the states are indeed different and must lie on
the boundary of S so that in particular dim(aff

(
{s1, s2, s3, s4}

)
) � 2. Now, since {s1, s2, s3, s4}

are affinely dependent, we must have that dim(aff
(
{s1, s2, s3, s4}

)
) = 2. In this case, in order

for the discrimination of states to be possible, we must also have that

aff
(
{s1, s2, s3, s4}

)
= aff

(
{s1, s2, s3}

)
= aff

(
{s1, s2, s4}

)
= aff

(
{s1, s3, s4}

)
= aff

(
{s2, s3, s4}

)
,

which in particular means that the states s2, s3, s4 must form an affine basis of
aff

(
{s1, s2, s3, s4}

)
. Hence, we must have that s1 = α2s2 + α3s3 + α4s4 for some α2,α3,α4 ∈

R such that α2 + α3 + α4 = 1. From equations (12) and (13) it follows that α2 = 1, α3 = −1
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and α4 = 1 so that 1
2 (s1 + s3) = 1

2 (s2 + s4). By the result of [39], we then must have that M(1)

and M(2) are maximally incompatible. We then arrive at the following result.

Proposition 7. Two dichotomic measurements M(1) and M(2) are maximally incompatible if
and only if P̄(M(1), M(2)) = 1, where the optimal states can be chosen to be affinely dependent.

In the first nonclassical polygon state space, the square state space S4, it is known that the
measurements M(1) and M(2) defined by setting M(1)

+ = e1 and M(2)
+ = e2 (see section 7 for more

details) are maximally incompatible [13]. Indeed, one can check that then M(1) discriminates
{s1, s2} and {s3, s4} and M(2) discriminates {s1, s4} and {s2, s3}, where the states s1, . . . , s4

are the affinely dependent pure states of the square state space. In similar fashion, one can
construct maximally incompatible dichotomic measurements on theories whose state spaces
are hypercubes of any dimension.

On the other hand, in the following example we demonstrate that the affine dependence of
the optimal states is indeed necessary for measurements M(1) and M(2) with P̄(M(1), M(2)) = 1
to be maximally incompatible.

Example 5 (tetrahedron). Let S = conv
(
{s1, s2, s3, s4}

)
, where s1, s2, s2, s3 are the ver-

tices of a regular tetrahedron. Since tetrahedron is a simplex, S is a classical state space with
d = 4 distinguishable pure states. Let M be the (unique) measurement that distinguishes the
states s1, s2, s3, s4, i.e., Mi(s j) = δi j for all i, j ∈ {1, 2, 3, 4}.We can define two dichotomic mea-
surements M(1) and M(2) by setting M(1)

+ = M1 + M2 and M(2)
+ = M1 + M4, and see that they

satisfy proposition 6 only with the affinely independent pure states s1, s2, s3, s4. However, as S
is a classical state space, all measurements on S are compatible so in particular M(1) and M(2)

are not maximally incompatible.

7. Random access tests in polygon state spaces

Next we will focus on exploring the RATs in the class of toy theories whose state spaces are
shaped like regular polygons. They provide a simple class of theories where many interesting
properties of quantum theory (see e.g. [18]) can be exhaustively and analytically explored. In
particular, we will prove that in (some of) these polygons the super information storability
property holds. Based on that observation we explicitly construct compatible measurements
for which the optimal average success probability of the RATs which use those measurements
violates the classical bound of the corresponding classical RAC, and in fact saturate the bound
given by proposition 5.

7.1. Polygon theories

Following [18] we define a regular n-sided polygon (or n-gon) state space Sn embedded in R
3

as the convex hull of its n extreme points

s j =

⎛
⎜⎜⎜⎜⎝

rn cos

(
2 jπ

n

)

rn sin

(
2 jπ

n

)
1

⎞
⎟⎟⎟⎟⎠ , j = 1, . . . , n,

where we have defined rn =
√

sec
(
π
n

)
. For n = 2 the state space is a line segment which is the

state space of the bit, i.e., the two-dimensional classical system, and for n = 3 the state space is
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Figure 1. Some of the first few even and odd polygon state spaces and their effect spaces.
As the number of vertices increases, in both even and odd cases, the state and effect
spaces start to resemble a disc and a circular bicone, respectively, which are the state
and effect space of the real qubit system (which we discuss in detail later).

a triangle which is the state space of the trit, i.e., the three-dimensional classical system, while
for all n � 4 we get nonclassical state spaces with the first one being the square state space.

Clearly, we now have the zero effect o = (0, 0, 0)T and the unit effect u = (0, 0, 1)T. Depend-
ing on the parity of n, the effect space can have different structures (see [23, 40] for details).
Let us denote s0 = (0, 0, 1)T. For even n the effect space E(Sn) has n nontrivial extreme points,

ek =
1
2

⎛
⎜⎜⎜⎜⎝

rn cos

(
(2k − 1)π

n

)

rn sin

(
(2k − 1)π

n

)
1

⎞
⎟⎟⎟⎟⎠ , k = 1, . . . , n,

so that E(Sn) = conv
(
{o, u, e1, . . . , en}

)
. All the nontrivial extreme effects lie on a single plane

determined by those points e such that e(s0) = 1/2.
In the case of odd n, the effect space has 2n nontrivial extreme effects,

gk =
1

1 + r2
n

⎛
⎜⎜⎜⎜⎝

rn cos

(
2kπ

n

)

rn sin

(
2kπ

n

)
1

⎞
⎟⎟⎟⎟⎠ , fk = u − gk,

for k = 1, . . . , n. Now E(Sn) = conv
(
{o, u, g1, . . . , gn, f1, . . . , fn}

)
and the nontrivial effects

are scattered on two different planes determined by all those points g and f such that g(s0) =
1

1+r2
n

and f (s0) = r2
n

1+r2
n
. The first few polygons and their effect spaces are depicted in figure 1.

Since e ∈ Eext
ind (Sn) if and only if e = ek for some k ∈ {1, . . . , n} when n is even, and e = gk

for some k ∈ {1, . . . , n} when n is odd, and because ek(s0) = 1
2 and gk(s0) = 1/(1 + r2

n) for all
k ∈ {1, . . . , n}, we can use propositions 1 and 3 to make the following corollary:

Corollary 3. λmax(Sn) = 2 when n is even and λmax(Sn) = 1 + sec
(
π
n

)
> 2 when n is odd.

We note that for the nonclassical polygon state spaces Sn with n � 4, in both even and
odd cases, the maximal number of distinguishable pure states is two, i.e., d = 2 in both cases.
On the other hand, clearly for the classical cases n = 2 and n = 3 we have d = 2 and d = 3,
respectively. Thus, from the above corollary we conclude that

all nonclassical odd polygon state spaces have super information storability.
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Also, we note that the suitable classical reference for polygons is the bit (n = d = 2)
whereas the trit (n = d = 3) does not share many of the features of the other polygons so
that we often exclude the case n = 3 when we consider the properties of the polygons as a
whole. Therefore, in order to follow the (Q)RAC-like scenario, we will next focus on the
simplest RATs on the nonclassical polygon state spaces Sn with n � 4, i.e., RATs with two
measurements which both have d = 2 outcomes.

7.2. Maximum success probability for compatible measurements

From corollary 3 we see that for even n, we have that λmax(Sn) = 2 = d so that the bound
given in proposition 5 for two compatible measurements is exactly the classical bound for
(2, 2)−RAC. Thus,

in the case of even polygon theories the classical bound can be achieved with com-
patible measurements but violation of the classical bound can only be achieved with
incompatible measurements, just like in quantum theory.

However, for odd n, we have that λmax(Sn) = 1 + r2
n > 2 = d and we can explicitly con-

struct two compatible dichotomic measurements M(1) and M(2) such that P̄(M(1), M(2)) > 3
4 =

P̄(2,2)
c . Let us consider one of the indecomposable extreme measurements C ∈ Mext

ind(Sn) with
effects

C1 = g1, C2 =
1
2

r2
n g n+1

2
, C3 =

1
2

r2
n g n+3

2
.

By denoting the two outcomes of M(1) and M(2) by + and −, we take

M(1)
+ = C1 = g1, M(1)

− = C2 + C3 =
1
2

r2
n

(
g n+1

2
+ g n+3

2

)
,

M(2)
+ = C1 + C2 = g1 +

1
2

r2
ng n+1

2
, M(2)

− = C3 =
1
2

r2
ng n+3

2
.

Clearly M(1) and M(2) are compatible since they are both post-processings of C and thus by
proposition 5 we have that

P̄(M(1), M(2)) � 1
2

(
1 +

1 + r2
n

4

)
.

By using the states s1, s n+1
2

, s n+3
2

one can confirm that

P̄(M(1), M(2)) =
1
8

(∥∥∥M(1)
+ + M(2)

+

∥∥∥+
∥∥∥M(1)

+ + M(2)
−

∥∥∥
+
∥∥∥M(1)

− + M(2)
+

∥∥∥+
∥∥M(1)

− + M(2)
−
∥∥)

=
1
8

(
‖2C1 + C2‖+ ‖C1 + C3‖+ ‖C1 + 2C2 + C3‖+ ‖C2 + 2C3‖

)
� 1

8

[
(2C1 + C2)(s1) + (C1 + C3)(s1)

+ (C1 + 2C2 + C3)
(

s n+1
2

)
+ (C2 + 2C3)

(
s n+3

2

)]

=
1
2

(
1 +

1 + r2
n

4

)
.
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Figure 2. The maximum success probability P̄n,comp of the RAT with two compatible
dichotomic measurements on even (black dots) and odd (red dots) polygons as a function
of the number of vertices n of the polygon. The constant black line is the optimal success
probability of the classical (2, 2)−RAC.

Therefore, by combining the above inequalities we see that the given states actually maximize
the respective expressions and that

P̄(M(1), M(2)) =
1
2

(
1 +

1 + r2
n

4

)
. (14)

Since λmax (Sn) = 1 + r2
n > 2, we conclude that

P̄(M(1), M(2)) >
3
4
= P̄(2,2)

c .

Hence,

in the case of odd polygon theories the classical bound can be surpassed with suitably
chosen compatible measurements.

We note that the right-hand side of equation (14) approaches the classical bound P̄(2,2)
c = 3/4

as n →∞. The maximum success probability of a RAT for compatible pair of dichotomic
measurements on polygon state spaces is illustrated in figure 2.

7.3. Maximum success probability for incompatible measurements

7.3.1. Rebit state space. The state space of rebit, or real qubit, is defined otherwise similarly
to the qubit but the field of complex numbers is replaced with the field of real numbers. Thus,
the ‘Bloch ball’ of the qubit is replaced the ‘Bloch disc’ so that rebit can be seen as a restriction
of the qubit. Formally, the pure states and the nontrivial extreme effects of rebit are of the form
sθ = (cos θ, sin θ, 1)T and eθ = 1

2 (cos θ, sin θ, 1)T for any θ ∈ [0, 2π) respectively. The zero
and the unit effect are the same as in polygons, i.e., o = (0, 0, 0)T and u = (0, 0, 1)T. In many
ways polygons state spaces can be thought as discretized versions of the rebit state space. The
following analysis of the RAT with two dichotomic measurements on the rebit will be useful
in our later analysis of the polygon theories.

We will explicitly show that the maximum success probability P̄ of the RAT with two
dichotomic measurements on the rebit is the same as in the corresponding (2, 2)−QRAC in
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qubit, i.e., 1/2
(

1 + 1/
√

2
)

. Hence, let us consider a RAT with two dichotomic measurements

M(1) and M(2). We denote e :=M(1)
+ and f :=M(2)

+ and the average success probability can then
be written in the form

P̄(M(1), M(2)) =
1
8

[
sup
t1∈S

(e + f )(t1) + sup
t2∈S

(u − e + f )(t2)

+ sup
t3∈S

(u − e + u − f )(t3) + sup
t4∈S

(e + u − f )(t4)

]
. (15)

As was shown in section 5.2, the average success probability P̄ is maximized for extreme
measurements. On a state space S this means that equation (15) is maximized for some effects
e, f ∈ Eext(S). Furthermore, the sums of effects in equation (15) are maximized for pure states
so that we can also choose the optimal values for t1, t2, t3, t4 to be pure if needed.

Due to the symmetry of the rebit system we can freely choose M(1)
+ = e = e0 =

1
2 (1, 0, 1)T.

Let us denote f = eθ for some θ ∈ [0, 2π) and ti = sϕi for some ϕi ∈ [0, 2π) for all i ∈
{1, 2, 3, 4}. The optimal success probability for a RAT with two dichotomic measurements
on a rebit system then reads

P̄ = sup
θ∈[0,2π)

1
8

[
sup

ϕ1∈[0,2π)
(e0 + eθ)(sϕ1 ) + sup

ϕ2∈[0,2π)
(u − e0 + eθ)(sϕ2 )

+ sup
ϕ3∈[0,2π)

(u − e0 + u − eθ)(sϕ3 ) + sup
ϕ4∈[0,2π)

(e0 + u − eθ)(sϕ4 )

]
.

By expanding the above expression and by using some trigonometric identities we can rewrite
the above equation as

P̄ = sup
θ∈[0,2π)

1
8

[
sup

ϕ1∈[0,2π)

(
1 + cos

(
θ

2

)
cos

(
θ

2
− ϕ1

))

+ sup
ϕ2∈[0,2π)

(
1 − sin

(
θ

2

)
sin

(
θ

2
− ϕ2

))
+ sup

ϕ3∈[0,2π)

(
1 − cos

(
θ

2

)

× cos

(
θ

2
− ϕ3

))
+ sup

ϕ4∈[0,2π)

(
1 + sin

(
θ

2

)
sin

(
θ

2
− ϕ4

))]
.

We can get an upper bound for P̄ by choosing the angles ϕ1,ϕ2,ϕ3,ϕ4 such that each of the
inner supremums is bound above by either 1 + |cos(θ/2)| or 1 + |sin(θ/2)|. After this the outer
supremum can be calculated and we get the following upper bound:

P̄ � sup
θ∈[0,2π)

1
8

[
4 + 2

∣∣∣∣cos

(
θ

2

)∣∣∣∣+ 2

∣∣∣∣sin

(
θ

2

)∣∣∣∣
]
=

1
2

(
1 +

1√
2

)
.

Furthermore, one can check that this bound is obtained with the following parameters: θ =
π/2,ϕ1 = π/4,ϕ2 = 3π/4,ϕ3 = 5π/4 andϕ4 = 7π/4. Thus, the optimal success probability
of the RAT in rebit coincides with the corresponding optimal success probability in qubit. The
optimal effects and states (up to rotational symmetry) are depicted in figure 3. We note that the
optimal extreme effect f aligns itself furthest away from both e and u − e along the semicircle
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Figure 3. The optimal effects e = e0, f = eθ and states t1 = sϕ1 , t2 = sϕ2 , t3 = sϕ3 , t4 =
sϕ4 with θ = π/2, ϕ1 = π/4, ϕ2 = 3π/4, ϕ3 = 5π/4 and ϕ4 = 7π/4 for the maximal
success probability (equation (15)) for the RAT in a rebit system as viewed from the
positive z-axis.

between them (this is because we are optimizing both e + f and u − e + f at the same time)
and the optimal states are uniquely determined by the sums e + f, u − e + f, e + u − f and
u − e + u − f along the same directions in the (x, y)-projection as is seen in figure 3.

7.3.2. Maximum success probability for polygons. Based on the rebit system we can compare
the behaviour of the maximal success probability of RATs on polygons. In many ways polygons
can be thought as discretized versions of the rebit system and depending on the coarseness of
the discretization the studied properties may look a bit different or similar to the properties of
the rebit. This is also the case with the optimal success probability of the RAT.

As was established before, the maximum success probability for two dichotomic mea-
surements on a regular polygon state space Sn, denoted by P̄n, is maximized for some non-
trivial extreme effects e, f ∈ Eext(Sn) and pure states t1, t2, t3, t4 ∈ Sext

n . Because Eext(Sn) =
{o, u, e1, . . . , en} when n is even and Eext(Sn) = {o, u, g1, . . . , gn, f1, . . . , fn} when n is odd, so
that Eext(Sn) (and Sext

n ) is finite in both cases, it is easy to calculate the maximum value for P̄n

in the case of two dichotomic measurements for small values of n. The results are shown in
figure 4 for polygons with up to 30 vertices.

From figure 4 we observe at least three interesting points. First, the maximum success prob-
ability is at least as high as that of the qubit (and the rebit) in every polygon state space, and
in many of them it is higher. Second, as one would expect, in both cases P̄n seems to approach
the maximum success probability of the qubit (and the rebit) as the number of vertices increase
and the polygon starts to approximate the rebit system more closely geometrically. Third, the
behaviour of P̄n is drastically different for even and odd n: for even n the maximum success
probability P̄n seems to oscillate with decreasing amplitude whereas for odd n it seems that
P̄n approaches the qubit limit more monotonically. In the following we will analyse the results
of figure 4 further by taking a closer look on the optimizing effects and states. We provide
formulas for P̄n in every n.
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Figure 4. The maximum success probability P̄n of the RAT with two dichotomic mea-
surements on even (above, green dots) and odd (below, blue dots) polygons as a function
of the number of vertices n of the polygon. The constant gray line is the maximum suc-
cess probability of qubit (and rebit). From the even polygons we have excluded the case
n = 4 when P̄n = 1.

7.3.3. Optimality results for the maximum success probability in the even polygons. We will
now look more closely on explaining figure 4 for even polygons. We will prove that the max-
imum success probability P̄n for two dichotomic measurements on even polygon state space
Sn depends on n as follows:

P̄n =
1
2

(
1 +

sec
(
π
n

)
√

2

)
n = 4m for odd m ∈ N (16)

P̄n =
1
2

(
1 +

1√
2

)
n = 4m for even m ∈ N (17)

P̄n =
1
4

[
2 + r2

n cos
(mπ

n

)
+ sin

(mπ

n

)]
n = 4m + 2 for odd m ∈ N (18)

P̄n =
1
4

[
2 + cos

(mπ

n

)
+ r2

n sin
(mπ

n

)]
n = 4m + 2 for even m ∈ N.

(19)
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(In the last two expressions rn =
√

sec
(
π
n

)
as before.) Thus, we will see that in the cases

when n = 4m + 2, where m is odd or even, or n = 4m, where m is even, the maximum success
probability is strictly larger than that of the qubit and the rebit, whereas for n = 4m, where m
is even, it is exactly the same as in qubit. In all cases the limit n →∞ matches the qubit value.

We start by deriving an upper for the maximum success probability P̄n similarly to how we
did in the case of rebit. Let us consider the RAT for two dichotomic measurements as stated
in equation (15). The polygons are symmetrical in the sense that we can fix the first extreme
effect e to be any of the nontrivial extreme effects and for even polygons we choose e = e1.
Furthermore, we have that f = ek for some k ∈ {1, . . . , n} and ti = s ji for some ji ∈ {1, . . . , n}
for all i ∈ {1, 2, 3, 4}. With this notation we can write P̄n for even polygons as

P̄n = sup
k∈{1,...,n}

1
8

[
sup

j1∈{1,...,n}
(e1 + ek)(s j1) + sup

j2∈{1,...,n}
(u − e1 + ek)(s j2)

+ sup
j3∈{1,...,n}

(u − e1 + u − ek)(s j3 ) + sup
j4∈{1,...,n}

(e1 + u − ek)(s j4 )

]
.

(20)

First we note that we can restrict k ∈ {1, . . . , n/2} since otherwise we can just take f =
u − ek = ek+n/2 instead of f = ek. By expanding the previous expression and by using some
trigonometric identities we can rewrite the previous equation as

P̄n = sup
k∈{1,...,n/2}

1
8

[
sup

j1∈{1,...,n}

(
1 + r2

n cos

(
(k − 1)π

n

)
cos

(
(k − 2 j1)π

n

))

+ sup
j2∈{1,...,n}

(
1 − r2

n sin

(
(k − 1)π

n

)
sin

(
(k − 2 j2)π

n

))

+ sup
j3∈{1,...,n}

(
1 − r2

n cos

(
(k − 1)π

n

)
cos

(
(k − 2 j3)π

n

))

+ sup
j4∈{1,...,n}

(
1 + r2

n sin

(
(k − 1)π

n

)
sin

(
(k − 2 j4)π

n

))]
.

Analogously to the rebit, we can upper bound the inner supremums by the terms 1 +
r2

n| cos((k − 1)π/n)| and 1 + r2
n| sin((k − 1)π/n)| from which we can omit the absolute values

since cos((k − 1)π/n) � 0 and sin((k − 1)π/n) � 0 for all k ∈ {1, . . . , n/2}. For the remain-
ing (outer) supremum we can use the upper bound cos((k − 1)π/n) + sin((k − 1)π/n) �

√
2

so that in the end we get the following upper bound for P̄n for all even polygons:

P̄n � sup
k∈{1,...,n/2}

1
8

[
4 + 2r2

n cos

(
(k − 1)π

n

)
+ 2r2

n sin

(
(k − 1)π

n

)]

� 1
2

(
1 +

r2
n√
2

)
=

1
2

(
1 +

sec
(
π
n

)
√

2

)
. (21)

One can confirm that the above bound is attained when we take k = 1 + n/4, j1 = k/2,
j2 = k/2 + n/4, j3 = k/2 + n/2 and j4 = k/2 + 3n/4. However, since k, j1, j2, j3, j4 must be
integers, this upper bound can be attained only in the case when n = 4m for some m ∈ N (so
that k is an integer) and m is odd (so that k = 1 + m is even and j1, j2, j3, j4 are integers). Thus,
in this case we have that f = em+1, t1 = s m+1

2
, t2 = s 3m+1

2
, t3 = s 5m+1

2
and t4 = s 7m+1

2
.
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Table 1. The optimal effects and states for the RAT with two dichotomic measurements
on even polygon state spaces Sn, where n = 4m for some m ∈ N. When m is even, the
optimizing effect f is not unique and thus also the optimizing states are different for
different choices of f and furthermore they may not be unique even for a fixed choice
of f.

From the previous result it becomes immediate that we must consider different cases also
within the even polygons. Let us next consider the case when n = 4m but m is even. As we saw
above, we cannot saturate the previous bound for P̄n in this case because in this case the opti-
mizing values for ji’s are not integers. However, the expressions for the inner supremums which
we are upper bounding, namely cos((k − 2j1)π/n), −sin((k − 2j2)π/n), sin((k − 2j3)π/n) and
−cos((k − 2j4)π/n), are discrete and of simple form so that we know that even if we can-
not attain the optimal value 1 for these expressions with the optimal parameters, the actual
supremums are attained with parameters close to the ones presented above.

Let us consider separately two different cases when n = 4m and m is even. First, let us
consider the case that k is even so that the optimal values for ji’s are integers and the first
inequality in equation (21) is saturated, i.e., the inner supremums have the same optimal
values as above. Again, in this case they are either of the form 1 + r2

n cos((k − 1)π/n) or
1 + r2

n sin((k − 1)π/n) and they are attained with j1 = k/2, j2 = k/2 + m, j3 = k/2 + 2m and
j4 = k/2 + 3m. However, the second inequality is saturated, i.e., the outer supremum attains
the previous optimal value, only when k = m + 1 which would make k odd since m is even.
Therefore we cannot attain the previous bound in this case. Instead, for the outer supremum
we must maximize cos((k − 1)π/n) + sin((k − 1)π/n) for all even values of k ∈ {1, . . . , n/2}.
From the form of this expression we see that the supremum must be attained with the closest
even integer value to m + 1, i.e., either with k = m or k = m + 2. We can verify that then for
both of these values of k we have that cos((k − 1)π/n) + sin((k − 1)π/n) =

√
2/r2

n and hence
P̄n(e, f ) = 1/2(1 + 1/

√
2) with the optimizing states t1 = s m

2
, t2 = s 3m

2
, t3 = s 5m

2
and t4 = s 7m

2
for the optimizing effect f = em, and t1 = s m

2 +1, t2 = s 3m
2 +1, t3 = s 5m

2 +1 and t4 = s 7m
2 +1 for the

optimizing effect f = em+2.
Second, let us assume that k is odd so that the first inequality in equation (21) is not saturated,

i.e., that the previously presented optimal values for ji’s are not integers. In this case the actual
optimizing values for the inner supremums must then be the closest integers to the values
considered before. Thus, the inner supremums must be attained with the following values:
j±1 = (k ± 1)/2, j±2 = (k ± 1)/2 + m, j±3 = (k ± 1)/2 + 2m and j±4 = (k ± 1)/2 + 3m. It is
straightforward to verify that in both cases, i.e., when one uses either j+i’s or j−i’s, the inner
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Table 2. The optimal effects and states for the RAT with two dichotomic measurements
on even polygon state spaces Sn, where n = 4m + 2 for some m ∈ N. For both even
and odd m the optimizing effect f is not unique and thus also the optimizing states are
different for different choices of f and furthermore they may not be unique even for a
fixed choice of f.

supremums take the values 1 + cos((k − 1)π/n) or 1 + sin((k − 1)π/n) depending on which
expression we are evaluating. Now the outer supermum can attain the same optimal value
as before with the parameter value k = m + 1 (which is odd because m is even). Finally we
obtain that also in this case P̄n(e, f ) = 1/2(1 + 1/

√
2) with the effect f = em+1 and optimizing

states t1 = s m
2

or t1 = s m
2 +1, t2 = s 3m

2
or t2 = s 3m

2 +1, t3 = s 5m
2

or t3 = s 5m
2 +1 and t4 = s 7m

2
or

t4 = s 7m
2 +1.

To conclude, we have shown that the maximum success probability for an even polygon
with n = 4m for some m ∈ N are given by equations (16) and (17). All the optimal effects and
states are explicitly expressed in table 1.

Let us then consider the case when n �= 4m for any m ∈ N so that we must actually then
have that n = 4m + 2 for some m ∈ N. In this case we can again distinguish two different cases:
when m is odd and when m is even. To see the reason for this, let us consider the expression
for P̄n when n = 4m + 2. In this case we see that the maximum possible value for the inner
supremums can be attained if j1 = k/2, j2 = k/2 + m + 1/2, j3 = k/2 + 2m and j4 = k/2 +
3m + 3/2. However, we see that these are not integers neither for odd or even k.

If we assume that k is even, then the closest integers with which we can attain the supremum
are j′1 = k/2, j′±2 = (k ± 1)/2 + m + 1/2, j′3 = k/2 + 2m and j′±4 = (k ± 1)/2 + 3m + 3/2.
For these parameters we get that

P̄n = sup
k∈{1,...,n/2}

1
8

[
4 + 2r2

n cos

(
(k − 1)π

n

)
+ 2 sin

(
(k − 1)π

n

)]
.

It can be shown that in this case the optimizing value for k can be restricted to be either m + 1
or m + 2. Since we are assuming that k is even, this leads to two different considerations: when
m is even and when m is odd. For odd m we have that the optimal value is k = m + 1 and in
this case equation (18) holds. Similarly for even m we have that the optimal value is k = m + 2
and in this case equation (19) holds.

On the other hand, if we assume that k is odd, then the optimizing values for ji’s are j′′±1 =
(k ± 1)/2, j′′2 = k/2 + m + 1/2, j′′±3 = (k ± 1)/2 + 2m and j′′4 = k/2 + 3m + 3/2. For these
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parameters we get that

P̄n = sup
k∈{1,...,n/2}

1
8

[
4 + 2 cos

(
(k − 1)π

n

)
+ 2r2

n sin

(
(k − 1)π

n

)]
.

Also in this case the optimizing value for k can be shown to be either m + 1 or m + 2. Again
we have different cases for even and odd m. For odd m we have that the optimal value is
k = m + 2 and then one can confirm that we get equation (18). Similarly for even m we have
that the optimal value is k = m + 1 and then one can confirm that we get equation (19).

To conclude, the maximum success probabilities in the case n = 4m + 2 are given by
equation (18) when m is odd and by equation (19) when m is even. One can show that both
of these expressions are strictly between the qubit (and the rebit) value 1/2(1 + 1/

√
2) and

the upper bound given in equation (21) for all finite m ∈ N. In the limit m →∞ the maximum
success probability approaches the qubit value. All the optimal effects and states are explicitly
expressed in table 2.

7.3.4. Comparing rebit to the even polygon state spaces. As was established in the previous
section, instead of having a single oscillatory upper bound that would explain the behaviour of
the maximum success probability depicted in figure 4 we must in fact divide the even polygons
in four distinct cases: (i) n = 4m and m is odd, (ii) n = 4m and m is even, (iii) n = 4m + 2 and
m is odd, and (iv) n = 4m + 2 and m is even for some m ∈ N.

Regarding the geometry of the optimal effects and the states, as was explained previously,
we can freely choose e = e1. According to our analysis, similarly to the rebit case, the second
extreme effect f is aligned so that it is ‘furthest’ away from both e and u − e along the circum-
sphere of the polygon, i.e., taking values f = ek where k ∈ {m, m + 1, m + 2} depending on the
polygon. Finally, again just as in the rebit, the optimizing states t1, t2, t3, t4 are (not necessarily
uniquely) determined by the sums e + f, u − e + f, e + u − f and u − e + u − f as close to the
same directions of these sums in the two-dimensional (x, y)-projections as possible.

We illustrate the previous properties along with pointing out the differences of the four
aforementioned cases by depicting some of the optimal effects and states in the first four even
polygons in figure 5. We see the first two cases when n = 4m with m = 1 and m = 2 depicted
on the left, whereas the first two cases when n = 4m + 2 with m = 1 and m = 2 depicted on
the right. Furthermore, the top figures are examples of the cases when m is odd and the bottom
ones are examples of the cases when m is even. The depicted states and effects are chosen from
tables 1 and 2 in such a that we take f = em+1 for all of the different cases and if there are more
than one optimizing state for these optimizing effects, then we take the equal convex mixture
of such states for the reasons explained below.

From the figure we see that in the cases when n = 4m the alignment of the optimal effects
e and f can be chosen to be just as in the rebit state space. However, the alignment of the
optimal states differ for odd and even m: if m is odd, then the optimal states t1, t2, t3, t4 are
unique pure states and aligned in the same direction in the (x, y)-projection as the sums of
the optimal effects ( just as in the rebit), but in the case that m is even, the optimal states are
not unique and they can be chosen from the corresponding two-dimensional faces of the state
space. In particular, for illustration purposes, for even m we chose the optimal states to be of
the form ti = 1/2(s ji + s ji+1) for some ji ∈ {1, . . . , n} for all i ∈ {1, 2, 3, 4} so that they align
in the same direction as the sums of the optimal effects e and f in the two-dimensional (x, y)-
projection just as in the case of odd m and the rebit. However, in the case that n = 4m + 2
already for m = 1 and m = 2 the situation differs from that of the rebit and the qubit since the
effect f cannot be chosen to be orthogonal to e in the (x, y)-projection in the z = 1/2−plane as
before. For this reason also the optimal states are determined differently: after fixing the effects
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Figure 5. Some of the maximizing effects and states for the first four even polygons.
The sums of the maximizing effects and their maximizing states are represented by the
same colors as in figure 3. For comparison, the optimal effects and states in rebit are
denoted in gray.

Table 3. The optimal effects and states for the RAT with two dichotomic measurements
on odd polygon state spaces. For both cases n = 4m + 1 and n = 4m + 3 the optimizing
states are different for odd and even m and they may not be unique.

e = e1 and f = em+1, for odd m we have that t1 and t3 are uniquely determined and t2 and t4 are
not (and we choose them along the same direction with the sums of the respective optimizing
effects), whereas for even m it is the opposite.
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Figure 6. Some of the maximizing effects and states for the first four odd polygons. The
sums of the maximizing effects and their maximizing states are represented by the same
colors as in figure 3. For comparison, the optimal effects and states in rebit are denoted
in gray.

7.3.5. Odd polygons. In odd polygons theories the maximum success probability P̄n for two
dichotomic measurements depends on n as follows:

P̄n =
1
4

[
2 + cos

(mπ

n

)
+ r2

2n sin
(mπ

n

)]
n = 4m + 1 for m ∈ N (22)

P̄n =
1
4

[
2 + cos

(
(m + 1)π

n

)
+ r2

2n sin

(
(m + 1)π

n

)]
n = 4m + 3 for m ∈ N, (23)

where r2n =
√

sec
(

π
2n

)
.

The proof of these results is similar to our previous proof in case of the even polygon the-
ories. In equation (15) we can fix the first extreme effect e to be any of the nontrivial extreme
effects and for odd polygons we choose e = g1. Furthermore, we have that we can choose
f = gk for some k ∈ {1, . . . , n} and ti = s ji for some ji ∈ {1, . . . , n} for all i ∈ {1, 2, 3, 4}. We
can write P̄n for odd polygons as

P̄n = sup
k∈{1,...,n}

1
8

[
sup

j1∈{1,...,n}
(g1 + gk)(s j1 ) + sup

j2∈{1,...,n}
(u − g1 + gk)(s j2 )

+ sup
j3∈{1,...,n}

(u − g1 + u − gk)(s j3) + sup
j4∈{1,...,n}

(g1 + u − gk)(s j4 )

]
.
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By expanding the previous expression and by using some trigonometric identities we can
rewrite the previous equation as

P̄n = sup
k∈{1,...,n}

1
8

[
sup

j1∈{1,...,n}

1
1 + r2

n

(
2 + 2r2

n cos

(
(k − 1)π

n

)
cos

(
(k + 1 − 2 j1)π

n

))

+ sup
j2∈{1,...,n}

1
1 + r2

n

(
1 + r2

n − 2r2
n sin

(
(k − 1)π

n

)
sin

(
(k + 1 − 2 j2)π

n

))

+ sup
j3∈{1,...,n}

1
1 + r2

n

(
2r2

n − 2r2
n cos

(
(k − 1)π

n

)
cos

(
(k + 1 − 2 j3)π

n

))

+ sup
j4∈{1,...,n}

1
1 + r2

n

(
1 + r2

n + 2r2
n sin

(
(k − 1)π

n

)
sin

(
(k + 1 − 2 j4)π

n

))]
.

Similarly to as we did in the even polygons we can confirm that the algebraic maximum,
and thus and upper bound for the actual maximum success probability, can be attained with
parameters k = 1 + n/4, j1 = (k + 1)/2, j2 = (k + 1)/2 + n/4, j3 = (k + 1)/2 + n/2 and j4 =
(k + 1)/2 + 3n/4 in which case we have that

P̄n � 1
2

(
1 +

√
2r2

n

1 + r2
n

)
=

1
2

(
1 +

√
2

1 + cos
(
π
n

)
)
.

We note that for any finite n this bound is always larger than the maximum success probability
in qubit and in the limit n →∞ the bound coincides with the qubit value. However, unlike in
the even polygon case, we cannot attain this upper bound in any odd polygon since k = 1 + n/4
will never be an integer for odd n. But since the optimized expressions are of the similar form
as for even polygons we again know that the actual supremum values will be attained for
parameter values close to those that attain the algebraic maximum. All the optimizing effects
and states are presented in table 3. We depict some of these optimal effects and states in figure 6
in similar fashion as we did in figure 5 for even polygons.

8. Conclusions

We introduced a generalization of the well-known QRAC information processing tasks, namely
the RATs, in the framework of GPTs. In particular, we formulated the RATs to study the prop-
erties of the measurements that are used to decode the information in the test. We showed
that the figure of merit of these tasks, the average success probability, is linked to the decoding
power of the harmonic approximate joint measurement of the used measurements. We saw that
in this way the harmonic approximate joint measurement, which can be defined for any set of
measurements, can be used to give upper bounds for the maximum average success probability
of the RAT of the given measurements.

In quantum theory it was previously known that one has to use incompatible measurements
in order to obtain a quantum advantage in QRACs over the classical case. We generalized this
result to show that in order to obtain an advantage in RATs compared to the classical case
either the measurements have to be incompatible or the theory itself must possess a property
which we call super information storability meaning that the information storability is strictly
larger than the operational dimension of the theory. In the case of quantum and point-symmetric
state spaces super information storability does not hold so that in these cases the violation of
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the classical bound implies incompatibility of the measurements. In general, our result can
be used as a semi-device independent certification of incompatibility in GPTs. We showed
that maximal incompatibility of two dichotomic measurements, i.e., maximal robustness under
noise in the form of mixing, links to their performance in the RAT. More precisely, we proved
that two dichotomic measurements are maximally incompatible if and only if they can be used
to accomplish the RAT with certainty by using a set of affinely dependent states.

As examples of state spaces other than quantum and classical we considered the regular
polygon theories in which we exhaustively examined the RATs with two dichotomic measure-
ments (as their operational dimension is also two). The even polygons are point-symmetric so
that in this case they do not have super information storability but for odd polygons we gave
an explicit construction of compatible measurements that violate the classical bound, hence
detecting the super information storability property of these theories. Furthermore, we solved
the optimal success probabilities of these RATs in all polygons and saw that for incompati-
ble measurements it is possible to violate the quantum bound as well, both in even and odd
polygons.
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