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Ising ferromagnets and antiferromagnets in an imaginary magnetic field
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We study classical Ising spin- 1
2 models on a two-dimensional (2D) square lattice with ferromagnetic or

antiferromagnetic nearest-neighbor interactions, under the effect of a pure imaginary magnetic field. The
complex Boltzmann weights of spin configurations cannot be interpreted as a probability distribution, which
prevents application of standard statistical algorithms. In this work, the mapping of the Ising spin models
under consideration onto symmetric vertex models leads to real (positive or negative) Boltzmann weights. This
enables us to apply accurate numerical methods based on the renormalization of the density matrix, namely,
the corner transfer matrix renormalization group and the higher-order tensor renormalization group. For the 2D
antiferromagnet, varying the imaginary magnetic field, we calculate with high accuracy the curve of critical
points related to the symmetry breaking of magnetizations on the interwoven sublattices. The critical exponent
β and the anomaly number c are shown to be constant along the critical line, equal to their values β = 1

8 and
c = 1

2 for the 2D Ising model in a zero magnetic field. The 2D ferromagnets behave in analogy with their 1D
counterparts defined on a chain of sites, namely, there exists a transient temperature which splits the temperature
range into its high-temperature and low-temperature parts. The free energy and the magnetization are well
defined in the high-temperature region. In the low-temperature region, the free energy exhibits singularities
at the Yang-Lee zeros of the partition function and the magnetization is also ill-defined: It varies chaotically with
the size of the system. The transient temperature is determined as a function of the imaginary magnetic field by
using the fact that from the high-temperature side both the first derivative of the free energy with respect to the
temperature and the magnetization diverge at this temperature.

DOI: 10.1103/PhysRevE.105.054112

I. INTRODUCTION

Simulations of many systems in high-energy physics (QCD
at finite baryon density) and condensed matter (Hubbard
model, antiferromagnetic quantum spin chains, etc.) suffer
from a severe sign problem. For such systems, the complex
Boltzmann weights of microscopic configurations cannot be
interpreted as a probability distribution which prevents appli-
cation of standard statistical algorithms.

A prototype of systems with a severe sign problem
in equilibrium statistical mechanics is the Ising model of
classical spins 1

2 on a lattice with nearest-neighbor ferromag-
netic or antiferromagnetic interactions, under the effect of
a pure imaginary magnetic field. Similar generalizations in
quantum mechanics are related to non-Hermitian deforma-
tions of the transverse Ising quantum chains, e.g., via the
inclusion of an imaginary longitudinal field [1–3]. The Ising
model in an imaginary field was investigated mainly in its
antiferromagnetic version, on two-dimensional (2D) square
or honeycomb lattices. The first studies were oriented to the
location of Yang-Lee zeros of the partition function in the
complex magnetic field plane and Fisher zeros in the complex
temperature plane [4–7]. Similarly to the case of the real
magnetic field [8–10], dividing the lattice into two interwoven
sublattices A and B, the antiferromagnet exhibits two possible
phases: the disordered paramagnetic phase at high tempera-
tures with equivalent sublattice magnetizations mA = mB and

the symmetry-broken antiferromagnetic phase at low temper-
atures with mA �= mB. As the imaginary magnetic field varies,
the two phases are separated by a curve of critical points.
This curve was specified with good accuracy by computing
the first eight cumulants of the high-temperature expansion
of the free energy in Ref. [11]. A mean-field analysis of the
Ising antiferromagnet in an imaginary magnetic field on a
D-dimensional hypercubic lattice was carried out in [12].

The Ising antiferromagnet in an imaginary magnetic field is
exactly solvable in one dimension (see, e.g., [12,13]), where
second-order phase transitions are absent. As concerns two
dimensions, the exact solution of the antiferromagnetic Ising
model is known for the zero field [14] and for the (dimension-
less) field iπ/2 [15].

The exact and numerical results obtained so far are re-
stricted mainly to the antiferromagnetic regime in one and
two dimensions. The ferromagnetic version of the model is
not properly defined since it does not correspond to a unitary
theory for any value of the ferromagnetic coupling [15,16].
Consequently, the free energy and the magnetization per site
of the ferromagnet are not defined in the low-temperature
region below a certain transient temperature [16]. In both one
and two dimensions there exists a first-order phase transition
from the thermodynamically well-behaved high-temperature
region to the ill-defined low-temperature region at the tran-
sient temperature. As is shown in this paper, the transient
temperature can be detected from the high-temperature side as
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either the divergence of the first derivative of the free energy
with respect to the coupling constant or the divergence of the
magnetization.

The aim of the present paper is twofold. First, for an
arbitrary D-dimensional lattice, we construct a mapping of
the antiferromagnetic and ferromagnetic Ising models in an
imaginary field onto a symmetric vertex model whose local
vertex (Boltzmann) weights are real (positive or negative)
numbers. Second, the vertex representation of the original
spin model permits us to apply standard statistical methods,
in particular accurate numerical techniques based on the idea
of renormalization group applied to the density matrix. For
2D antiferromagnets, varying the imaginary magnetic field,
we calculate with high accuracy the curve of critical points
and show the uniformity of the critical exponent β and the
anomaly number c along this curve. As concerns 2D fer-
romagnets, the transient temperature below which the free
energy and the magnetization are not defined is determined
as a function of the imaginary magnetic field by using two
different approaches.

The paper is organized as follows. In Sec. II we recapitulate
briefly the 1D exactly solvable case and discuss anomalies in
the ferromagnetic version of the Ising model in an imaginary
field. Section III deals with the mapping of the partition func-
tion of the Ising model in an imaginary field onto the one of a
symmetric vertex model on the same lattice structure which
exhibits real (positive or negative) local Boltzmann vertex
weights. The mapping is constructed for both antiferromag-
netic and ferromagnetic cases. Applied numerical methods are
described briefly in Sec. IV; some technicalities are deferred
to the Appendix. Numerical results for the critical properties
of the 2D Ising antiferromagnets are presented in Sec. V. Nu-
merical results for the 2D Ising ferromagnets are summarized
in Sec. VI. The emphasis is put on phenomena close to the
first-order transition temperature from the high-temperature to
the low-temperature regimes. Section VII provides a summary
of the obtained results as well as concluding remarks.

II. RECAPITULATION OF THE 1D CASE

The 1D chain of N Ising spins {s j = ±1}N
j=1 with nearest-

neighbor couplings J in a magnetic field h is defined by the
Hamiltonian

H = −J
N∑

j=1

s js j+1 − h
N∑

j=1

s j, (1)

with the cyclic boundary condition sN+1 ≡ s1. The partition
function is given by

ZN =
∑
{s}

e−βH , (2)

where β = 1/kBT is the inverse temperature and the sum-
mation goes over all 2N spin configurations. Let us define
βJ ≡ F and consider the pure imaginary magnetic field βh ≡
iθ/2. Shifting θ by 2π induces for each vertex the same factor
e±iπ = −1, which has no relevant effect on the partition func-
tion (2). The partition function is also invariant with respect
to the transformation θ → −θ and therefore one can restrict

oneself to θ ∈ [0, π ]. The 2 × 2 transfer matrix

T =
(

eF+iθ/2 e−F

e−F eF−iθ/2

)
(3)

has two eigenvalues of the form

λ±(θ ) = eF cos

(
θ

2

)
±

√
e−2F − e2F sin2

(
θ

2

)
. (4)

The partition function (2) is determined by the eigenvalues of
the transfer matrix as follows:

ZN = λN
+ + λN

−. (5)

The free energy per spin f is defined by

−β fN = 1

N
ln ZN (6)

and the magnetization per spin mN = 〈s j〉, which in one di-
mension does not depend on the site index j = 1, 2, . . ., by

mN = − ∂

∂βh
β fN = 2i

∂

∂θ
β fN . (7)

Note that the magnetization mN , which is bounded by
0 < |m| � 1 for real magnetic fields, can have magnitude
larger than 1 for imaginary magnetic fields.

The spin system is usually studied in the thermodynamic
limit N → ∞. The analysis of the above equations depends on
whether the (dimensionless) coupling constant F is positive
(ferromagnet) or negative (antiferromagnet).

A. 1D antiferromagnet

If F < 0, the argument of the square root in (4) is al-
ways positive, which implies real eigenvalues λ±, λ+ > 0 and
λ− < 0; since λ+ > |λ−| the partition function (5) is real and
positive. In the limit N → ∞, from the two summands in (5)
λN

+ dominates, so the free energy per site f = limN→∞ fN is
given by

−β f = F + ln

[
cos

(
θ

2

)
+

√
e−4F − sin2

(
θ

2

)]
. (8)

The magnetization per site m = limN→∞ mN is given by

−im = sin
(

θ
2

)
√

e−4F − sin2
(

θ
2

) . (9)

There is no second-order phase transition in one dimension.

B. 1D ferromagnet

If F > 0, the argument of the square root in (4) can have
both positive and negative signs. For a fixed value of θ ∈
[0, π ], let us introduce a transition coupling F ∗(θ ),

e−2F ∗ = sin

(
θ

2

)
, (10)

at which the argument of the square root in (4) vanishes.
In the high-temperature region 0 < F < F ∗, the argument

of the square root is positive, which implies that λ+ > |λ−|
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and one can use the previous formulas (8) and (9). Note that
as F approaches F ∗ the magnetization (9) diverges.

In the low-temperature region F > F ∗, the argument of
the square root is negative and consequently the complex
conjugate eigenvalues

λ±(θ ) = eF cos

(
θ

2

)
± i

√
e2F sin2

(
θ

2

)
− e−2F (11)

have in polar coordinates the same modulus and the opposite
phases

λ±(θ ) =
√

e2F − e−2F exp(±iϕ), (12)

where

ϕ(F, θ ) = arccos

[
cos

(
θ
2

)
√

1 − e−4F

]
. (13)

The partition function (5) reads

ZN = 2(e2F − e−2F )N/2 cos(Nϕ). (14)

The Yang-Lee zeros of the partition function thus exist exclu-
sively in the low-temperature region F > F ∗ and correspond
to the following irrational values of ϕ:

ϕ(F, θ ) = 2 j − 1

2N
π, j = 1, 2, . . . , N. (15)

Since ZN = 0, the free energy goes to −∞ at these points,
which become dense in the limit N → ∞. This means that
the free energy is not defined for F > F ∗.

As is shown in this paragraph, it is a mathematical curiosity
that if one fixes the value of ϕ outside the Yang-Lee set (15)
(with ϕ, e.g., a rational number), the expression for the free en-
ergy converges when increasing the number of sites N → ∞.
The term cos(ϕN ) will change its sign with increasing N . The
oscillating sign of the partition function does not represent any
problem in the definition of the free energy per spin (6) since
the principal value of the complex logarithm ln(−1) = iπ ,
when divided by N , goes to 0 in the limit N → ∞. Taking
the absolute value of the partition function in the definition of
the free energy per spin (6), one gets

−β fN = 1

2
ln(e2F − e−2F ) + 1

N
ln |2 cos(Nϕ)|. (16)

Using the formula [17]

2 cos(Nϕ) = 2N
N∏

k=1

sin

(
ϕ + 2k − 1

2N
π

)
, (17)

one obtains that

1

N
ln |2 cos(Nϕ)| = ln 2 + 1

N

N∑
k=1

ln

∣∣∣∣sin

(
ϕ + 2k − 1

2N
π

)∣∣∣∣.
(18)

According to the Euler-Maclaurin formula [18]

b∑
n=a

f (n) ∼
∫ b

a
dx f (x) + 1

2
[ f (a) + f (b)]

+
∞∑

k=1

B2k

(2k)!
[ f (2k−1)(b) − f (2k−1)(a)], (19)

with a and b integers and {B2k} the Bernoulli numbers,
the discrete sum on the right-hand side of (18) is nothing
but a Riemann integral plus large-N corrections. The set of
Yang-Lee zeros (15) becomes dense in the thermodynamic
limit N → ∞. If ϕ belongs to the set of Yang-Lee zeros
(15), the continuation of (18) is not possible as one of the
summands, namely, the one with j + k − 1 = N , diverges.
When ϕ does not belong to the set of Yang-Lee zeros (15)
(e.g., it is a rational number at an infinitesimal distance 1/N
from Yang-Lee zeros in its neighborhood), the problematic
summand in (18) is of order ln[sin(1/N )]/N ∼ −(ln N )/N
and vanishes in the limit N → ∞, so

1

N
ln |2 cos(Nϕ)| = ln 2 +

∫ 1

0
dt ln | sin(ϕ + πt )| + o(1).

(20)

The integral over t exactly cancels the term ln 2 for any value
of ϕ. We then suggest that as soon as ϕ is a rational number,
the thermodynamic N → ∞ limit of the left-hand side of
Eq. (20) exists and equals 0; one can check this suggestion
numerically by fixing ϕ (say, to an integer) and going with
N to extremely large values. The thermodynamic limit of the
free energy then reads

−β f = 1
2 ln(e2F − e−2F ). (21)

Thus, excluding from consideration the set of Yang-Lee zeros
(15), the free energy is a continuous function of F when
passing through the point F = F ∗, as it should be; this can
be seen by inserting cos(θ/2) = √

1 − e−4F ∗ into (8) taking
in the limit F → F ∗− and comparing to (21) taking in the
limit F → F ∗+. As concerns the derivative of the free energy
with respect to the coupling F , it diverges for F → F ∗− and
converges to a finite number when F → F ∗+, which signals a
first-order phase transition at the transient point F ∗. It should
be emphasized that as the set of Yang-Lee zeros (15) is dense
in the limit N → ∞, the above mathematical analysis is of
limited physical interest. The magnetization per site (7)

mN = 2i
∂ϕ

∂θ
tan(ϕN ) (22)

oscillates with increasing N and so it does not exhibit a
well-defined thermodynamic limit in the low-temperature
region F > F ∗.

III. MAPPING ONTO A SYMMETRIC VERTEX MODEL

In this section we consider a spin- 1
2 Ising model on a gen-

eral D-dimensional lattice structure with coordination number
q = 2, 3, . . .. The spin Hamiltonian H is given by

−βH = F
∑
〈 j,k〉

s jsk + i
θ

2

∑
j

s j, (23)

where the first sum goes over all nearest-neighbor pairs of
lattice sites and the second sum over all lattice sites. The
partition function is defined by (2).

In Ising systems, microscopic spins s = ±1 are associated
with lattice sites and the nearest-neighbor spins interact along
edges connecting the nearest-neighbor vertices. In two-state
vertex models, microscopic states σ = ±1 are attached to
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the edges of the lattice. For a given global configuration of
edge states, every vertex sees a local configuration of edge
states with the corresponding Boltzmann vertex weight. The
partition function of the vertex system is defined by

Z =
∑
{σ }

∏
(weights), (24)

where the sum goes over all configurations of edge states and
the product is over all vertex weights in the lattice. A special
case of two-state vertex systems is a symmetric vertex model
whose local vertex weights depend only on the number of
incident edges in, say, the (−) state; in other words, for a
vertex, any permutation of edge states in space leaves the local
vertex weight invariant.

Every system of Ising spins on a lattice can be mapped onto
a symmetric two-state vertex model formulated on the same
lattice structure by using mapping methods [10,19] based on a
gauge transformation [20], which represents a generalization
of the duality transformation and the weak-graph expansion
[21]. The mapping depends on whether the spin coupling F is
ferromagnetic or antiferromagnetic.

A. Ising antiferromagnet

In the case of an antiferromagnetic coupling F < 0 it holds
that F = −|F |. The Ising model on a lattice with the coordi-
nation number q can be represented as a vertex system when
one decorates each edge by a new two-coordinated vertex
and attaches to line fragments two-state variables σ = ±1.
To reproduce the partition function of the Ising model, one
attaches to the new decoration vertices the 2 × 2 interaction
matrix

V ≡
(

V+,+ V+,−
V−,+ V−,−

)
=

(
eF e−F

e−F eF

)
(25)

and to the vertices of the original lattice with a local configu-
ration of adjacent edges {σ1, σ2, . . . , σq} the vertex weights

v(σ1, σ2, . . . , σq ) = eiθ/2δ(σ1,+)δ(σ2,+) · · · δ(σq,+)

+e−iθ/2δ(σ1,−)δ(σ2,−) · · · δ(σq,−).

(26)

In this way, two admissible configurations around a vertex on
the original lattice, all adjacent edges in the same either (+)
or (−) state, are identified with the (+) or (−) state of the
spin on that vertex. For a given edge composed of two line
fragments in states σ ′ and σ ′′, the contribution to the partition
function can be schematically expressed as∑

σ ′,σ ′′
v(. . . , σ ′, . . .)Vσ ′,σ ′′v(. . . , σ ′′, . . .). (27)

The interaction matrix (25) can be written as the product of a
matrix W and its transpose WT in many ways. Let us apply
the factorization

V = WWT, W =
(√

cosh F i
√

sinh |F |√
cosh F −i

√
sinh |F |

)
. (28)

The next step is to use the relation Vσ ′,σ ′′ = ∑
σ Wσ ′,σWσ ′′,σ in

(27) to eliminate the decoration vertices by attaching W to the
left end point and WT to the right end point of each edge. In

this way one obtains the pure two-state vertex model on the
original lattice structure defined by the vertex weights

w(σ1, σ2, . . . , σq) =
∑

σ ′
1,σ

′
2,...,σ

′
q=±

v(σ ′
1, σ

′
2, . . . , σ

′
q )

×Wσ ′
1,σ1Wσ ′

2,σ2 · · ·Wσ ′
q,σq . (29)

Explicitly,

w(σ1, σ2, . . . , σq ) = eiθ/2W+,σ1W+,σ2 · · ·W+,σq

+ e−iθ/2W−,σ1W−,σ2 · · ·W−,σq . (30)

These vertex weights are invariant with respect to any per-
mutation of edge states and therefore they correspond to a
symmetric vertex model. It stands to reason that the partition
function of the original Ising model is identical by construc-
tion to the one of the symmetric vertex model on the same
lattice structure.

For the resulting symmetric vertex model let wn (n =
0, 1, . . . , q) be the vertex weight of edge configurations with
n adjacent edges in state (−) and the remaining q − n adjacent
edges in state (+). Then, according to (30), one has

wn = eiθ/2W n
+,−W q−n

+,+ + e−iθ/2W n
−,−W q−n

−,+ . (31)

According to the form of the W matrix (28), the elements
W++ = W−+ = √

cosh F and W+− = −W−− = i
√

sinh F , so

wn = (cosh F )(q−n)/2(sinh |F |)n/2in[eiθ/2 + (−1)ne−iθ/2].

(32)

For an even number n of adjacent edges in state (−), it holds
that in = (−1)n/2, (−1)n = 1, and the consequent sum of the
exponentials in the square brackets results in 2 cos( θ

2 ), i.e.,

wn = 2(−1)n/2(cosh F )(q−n)/2(sinh |F |)n/2 cos

(
θ

2

)
. (33)

For odd n, it holds that in = (−1)(n+1)/2/i, (−1)n = −1, and
the consequent difference of the exponentials in the square
brackets, divided by i, results in 2 sin( θ

2 ), i.e.,

wn = 2(−1)(n+1)/2(cosh F )(q−n)/2(sinh |F |)n/2 sin

(
θ

2

)
.

(34)

We conclude that in the vertex picture all local Boltzmann
weights are real, positive or negative, as needed.

B. Ising ferromagnet

To construct the mapping for the ferromagnetic Ising
model, one has to divide the lattice into two interwoven sublat-
tices A and B and to change signs of spin variables s j → −s j

at vertices of, say, the B sublattice. This transformation has no
effect on the partition function, which is the sum over all spin
configurations. On the other hand, the spin Hamiltonian (23)
is changed to

−βH = −F
∑
〈 j,k〉

s jsk + i
θ

2

∑
j∈A

s j − i
θ

2

∑
j∈B

s j, (35)

i.e., the ferromagnetic coupling F > 0 is changed to the an-
tiferromagnetic one −F < 0 and the sign of the imaginary
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magnetic field alternates with sublattices A and B. Having
the antiferromagnetic coupling, one can proceed as in the
preceding section. After the mapping, the vertex weights of
the symmetric vertex model depend on whether the vertex is
on sublattice A or B. If the vertex lies on sublattice A, the
vertex weights are given by

w(A)
n = 2(−1)n/2(cosh F )(q−n)/2(sinh F )n/2 cos

(
θ

2

)
(36)

for even n and

w(A)
n = 2(−1)(n+1)/2(cosh F )(q−n)/2(sinh F )n/2 sin

(
θ

2

)
(37)

for odd n. If the vertex lies on sublattice B, the vertex weights
are given by

w(B)
n = 2(−1)n/2(cosh F )(q−n)/2(sinh F )n/2 cos

(
θ

2

)
(38)

for even n and

w(B)
n = 2(−1)(n−1)/2(cosh F )(q−n)/2(sinh F )n/2 sin

(
θ

2

)
(39)

for odd n.

IV. NUMERICAL METHODS

We apply two distinct numerical methods to the Ising
models, which originate in the density-matrix renormalization
[22–24]. Namely, we use the corner transfer matrix renor-
malization group (CTMRG) [25–27] and the higher-order
tensor renormalization group (HOTRG) [28] methods for that
purpose.

(i) The CTMRG method comes from Baxter’s corner trans-
fer matrix approach, originally proposed for square-lattice
Ising spins [29]. The CTMRG is used in this work to evaluate
the von Neumann entropy

S = −Tr(ρ ln ρ). (40)

Here ρ represents a reduced density matrix, which is used for
the construction of the renormalization transformations. At
θ = 0, the Ising critical point is F = Fc = 1

2 ln(1 + √
2) [14],

in which the von Neumann entropy S logarithmically diverges
with respect to number of the spins N [30,31],

S ∼ c

12
ln N, F = Fc. (41)

The parameter c is an anomaly number (also known as the
central charge) determining the universality class of the statis-
tical system. For the 2D Ising model at zero magnetic field, the
anomaly number c = 1

2 . We first evaluate the N dependence of
an effective anomaly number at criticality Fc,

ceff (N ) = 12
∂S

∂ ln N
. (42)

Finally, the asymptotic value of ceff (N ) yields

c = lim
N→∞

ceff (N ). (43)
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βf
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 θ = 3

FIG. 1. The (dimensionless) free energy per spin β f of the
2D antiferromagnetic Ising model versus the coupling F � 0 for
four values of the (dimensionless) imaginary magnetic field βH =
iθ/2: zero field θ = 0 (solid curve), θ = 1 (dashed curve), θ = 2
(dash-dotted curve), and θ = 3 (dotted curve).

(ii) The HOTRG method is applied to the calculation of the
free energy (for both the antiferromagnet and the ferromagnet)
in the standard way. In the symmetry-broken phase (F > Fc)
of the Ising antiferromagnet, the magnetizations per spin mA

and mB, associated with the two sublattices A and B, re-
spectively, differ. Hence, a nonzero magnetization difference
results in

mAB = mA − mB �= 0. (44)

Since it is not straightforward how to evaluate the imaginary
magnetization mAB using the HOTRG method, we propose
an extended impurity tensor TAB in order to distinguish the
symmetry-broken phase from the disordered one. This is so
because there is no concise way of how to observe the Z2

broken symmetry, provided the real (nonimaginary) character
of HOTRG tensors has to be preserved. Further details of
constructing the impurity tensor are briefly described in the
Appendix.

V. NUMERICAL RESULTS FOR THE
2D ANTIFERROMAGNET

Using the vertex representation of the 2D Ising antiferro-
magnet on the square lattice (q = 4) derived in Sec. III A,
the dependence of the (dimensionless) free energy per spin
β f on the coupling F � 0 is pictured in Fig. 1 for the
zero magnetic field θ = 0 (solid curve) and three values of
the imaginary magnetic field θ = 1 (dashed curve), θ = 2
(dash-dotted curve), and θ = 3 (dotted curve); the same
notation will be used in what follows. The spins become un-
coupled in the limit F → 0, so the curves end up at the points
β f = − ln[2 cos(θ/2)]. The free energy is always an increas-
ing function of the coupling F . In the low-temperature region,
for small enough antiferromagnetic coupling F � −0.5, the
curves approach close to each other. An analogous behavior is
observed also in one dimension.
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FIG. 2. Plotted for the antiferromagnet is the value of the critical
coupling Fc as a function of the imaginary magnetic field θ ∈ [0, π ].
The present data (open circles) are compared with those of Ref. [6]
(stars) and Ref. [11] (crosses). The F dependence of the second
derivative of the free energy β f with respect to F is pictured in
the inset for four values 0,1,2,3 of the imaginary magnetic field θ ;
the cusp divergence of the second derivative determines the critical
point Fc(θ ).

The phenomenon which does not occur in one dimension
is seen in the inset of Fig. 2 where the F dependence of
the second derivative of the free energy β f with respect to
F is represented for four values (0,1,2,3) of the imaginary
magnetic field θ . For each θ , there is a critical point Fc at
which the second derivative goes to −∞. The dependence of
critical points Fc on the imaginary magnetic field θ ∈ [0, π ]
is pictured in the main plot of Fig. 2. The present data (open
circles) are compared with numerical data from other works.
The data of Ref. [6] (stars), obtained by calculating complex-
temperature zeros of the partition function for finite lattices
of relatively small sizes, are in good agreement with our data.
The data of Ref. [11] (crosses), obtained by extrapolation of
the high-temperature cumulant expansion of the free energy
into the critical region, deviate much more from our data. This
is caused by the fact that only the first eight cumulants were
taken into account. The numerical estimate of Fc ≈ −0.4410
for the zero magnetic field θ = 0 is in good agreement with
the exact value Fc = −0.440 686 79 . . . obtained by Onsager
[14]. The exact value Fc = 0 for θ = π [15] is also reproduced
by our numerical calculations. Note that a similar curve of
critical points occurs for the 2D Ising antiferromagnet in real
nonzero magnetic fields [9,10].

Figure 3 shows the dependence of the magnetization dif-
ference between sublattices A and B, namely, the real quantity
−imAB, on the coupling F for three values of the imaginary
field θ = 1, 2, 3; the spontaneous magnetization for the zero
magnetic field θ = 0 is presented as well. The magnetiza-
tion difference is zero above the critical coupling Fc and
goes to 1 for asymptotically large F → −∞. The plot of
the function −imAB(F ) is nonmonotonic for θ = 3; it ac-
quires a maximum larger than 1. This confirms that also the
spontaneous magnetization difference between two alternat-

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
F

0.0
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0.6

0.8

1.0

1.2

− 
im

A
B

 θ = 0
 θ = 1
 θ = 2
 θ = 3

FIG. 3. Plotted for the antiferromagnet is the difference between
sublattice magnetizations (44) −imAB versus the coupling F , for
imaginary fields θ = 1, 2, 3. The spontaneous magnetization for the
zero magnetic field θ = 0 is drawn for comparison.

ing sublattices can be larger than 1 for imaginary magnetic
fields.

The dependence of m8
AB on small deviations from the criti-

cal coupling Fc(θ ) − F for zero magnetic field θ = 0 and the
imaginary fields θ = 1, 2, 3 is pictured in Fig. 4. The linear
form of the plots indicates that the critical exponent β is
constant along the whole curve of critical points Fc(θ ), equal
to its zero-field Ising value 1

8 . This behavior, which agrees
with the universality hypothesis [29,32], was observed also
for the 2D Ising antiferromagnet in real nonzero magnetic
fields [10].

The plot of the von Neumann entropy S versus the number
of sites N of the square lattice is pictured in the logarithmic
scale in Fig. 5. It is evident that for large N the entropy grows
in accordance with the expected asymptotic formula (41).

0 0.0002 0.0004 0.0006 0.0008 0.001
Fc − F

0.00

0.01

0.02

0.03

0.04

0.05

m
A

B
8

 θ = 0
 θ = 1
 θ = 2
 θ = 3

FIG. 4. Plotted for the antiferromagnet is the linear dependence
of the eighth power of the difference between sublattice magneti-
zations in the ordered phase on small deviations from the critical
coupling Fc(θ ) − F for the zero magnetic field θ = 0 and the values
θ = 1, 2, 3 of the imaginary field. The linear form of the plots in-
dicates the uniformity of the critical index β = 1

8 along the line of
critical points when changing the parameter θ ∈ [0, π ].
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FIG. 5. Plotted for the antiferromagnet is the von Neumann
entropy S versus the number of sites of the square lattice N , in log-
arithmic scale. The inset shows that with increasing N the effective
anomaly number ceff (N ) [Eq. (42)] tends to the Ising value 1

2 for the
zero magnetic field θ = 0 as well as the values θ = 1, 2, 3 of the
imaginary magnetic field.

The inset documents the tendency of the effective anomaly
number ceff (N ) to the Ising value 1

2 with increasing N , for
the zero field θ = 0 as well as for any value θ = 1, 2, 3 of
the imaginary magnetic field. This means that the presence of
the imaginary magnetic field does not change the universality
class of the Ising antiferromagnet and all critical exponents
remain the same as those in the zero field.

VI. NUMERICAL RESULTS FOR THE 2D FERROMAGNET

Using the vertex representation of the 2D Ising ferromag-
net on the square lattice (q = 4) derived in Sec. III B, the
dependence of the (dimensionless) free energy β f on the
ferromagnetic coupling F > 0 is pictured in Fig. 6 for zero
magnetic field θ = 0 and the values θ = 1, 2, 3 of the imagi-
nary field. The antiferromagnetic region of the couplings F ∈
[−0.1, 0] is included to describe in detail the neighborhood
of the point F = 0. While for the zero field the free energy
as a function of F decays monotonically, for the imaginary
magnetic fields β f first grows in the region of small F up to
a maximum point and then decays monotonically up to F →
∞. The curves are close to each other in the low-temperature
region, namely, for large enough couplings F � 0.5. The inset
of Fig. 6 shows the F dependence of the first derivative of
the free energy with respect to F ; the cusp divergence of the
derivative signals a first-order phase transition at the transient
coupling F ∗(θ ).

To explain our numerical data for the free energy in more
detail, we recall that, in analogy with the 1D version of the
model, the free energy is expected to be well defined in the
high-temperature region F < F ∗(θ ). In this region, being suf-
ficiently far away from F ∗(θ ), we calculate the free energy
at equidistant points on the F axis with the step �F = 0.01.
When the free energy starts to vary substantially, i.e., when
one is close to the transient point F ∗(θ ), in order to describe
correctly the neighborhood of F ∗(θ ), the equidistant step is

-0.1 0.0 0.1 0.2 0.3 0.4 0.5
F

-1.0

-0.5

0.0

0.5
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βf
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 θ = 2
 θ = 3
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FIG. 6. Plotted for the ferromagnet is the free energy β f as a
function of the ferromagnetic coupling F > 0 for zero magnetic field
θ = 0 and the values θ = 1, 2, 3 of the imaginary field. The inset
shows the F dependence of the first derivative of the free energy
with respect to F ; the cusp divergence of the derivative signals a first-
order transition at the coupling F ∗(θ ). The free energy is well defined
in the high-temperature region F < F ∗(θ ); the continuous plot of
the free energy in the low-temperature region F > F ∗(θ ) ignores the
divergence of β f at a dense set of Yang-Lee zeros.

changed to the smaller one �F = 0.0001. Passing through
the transient point F ∗(θ ), the free energy changes smoothly
once again and one returns to the previous step �F = 0.01. It
stands to reason that in the low-temperature region F > F ∗(θ )
there exists a problematic dense set of Yang-Lee zeros of the
partition function at which the free energy per site blows up
to infinity. As is evident from Fig. 6, our choice of the rational
equidistant points on the F axis does not involve Yang-Lee
zeros and the numerical plot of the free energy versus F looks
continuous. This mathematical peculiarity of limited physical
interest is in close analogy with the 1D version of the Ising
ferromagnet and we suggest that one has to be precisely at a
Yang-Lee zero to observe the divergence of the free energy.

The dependences of the first-order transition coupling F ∗
on the imaginary magnetic field θ in one and two dimensions
are pictured in Fig. 7. The analytic 1D result (10) is shown
by the dashed curve. It is seen that as θ → 0 the coupling
F ∗ → ∞ which is in agreement with the fact that for the Ising
ferromagnet in zero magnetic field there is neither a first-order
phase transition nor divergence of the magnetization. The
numerical 2D data for the dependence F ∗(θ ) are represented
in Fig. 7 by open circles. For each θ , the value of the 2D F ∗(θ )
is always smaller than the one in one dimension. The limit-
ing θ → 0+ value of F (θ ) is a finite number. The 2D Ising
ferromagnet at the strictly zero magnetic field θ = 0 exhibits
no first-order phase transition and consequently F ∗(0) does
not exist.

The divergence of the magnetization −im when the cou-
pling constant F approaches the transition coupling F ∗(θ )
(vertical dotted lines) from below (i.e., from the high-
temperature region) is represented in Fig. 8. The dashed curve
corresponds to the imaginary magnetic field θ = 1 and the
dash-dotted curve to θ = 2. Data for the imaginary magnetic
field θ = 3 are omitted since F ∗(3) is very close to zero,
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FIG. 7. Plotted for the ferromagnet is the transition coupling F ∗

as a function of the imaginary magnetic field θ . The analytic 1D
result (10) is shown by the dashed curve and the numerical 2D data
are represented by open circles.

which causes numerical instabilities in the calculation of the
magnetization plot. The values of F ∗(θ ) obtained in this way
coincide, with high accuracy, with the previous ones obtained
from the divergence of the first derivative of the free energy
(see Fig. 7). The high-temperature expansion of the magneti-
zation for the Ising model on the square lattice in a magnetic
field in powers of the nearest-neighbor coupling is written in
Eq. (1.8.7) of Ref. [29]. Inserting there the imaginary field,
one obtains

−im = tan

(
θ

2

)
+ 4 tan

(
θ
2

)
cos2

(
θ
2

) F

+ 4 tan
(

θ
2

)
cos2

(
θ
2

) [
3 + 7

sin2
(

θ
2

)
cos2

(
θ
2

)]
F 2 + O(F 3). (45)

The dependences of −im on F yielded by this asymptotic
relation are depicted for the imaginary fields θ = 1, 2 in Fig. 8
by the solid lines for comparison. When F > F ∗(θ ), the ther-
modynamic limit of the magnetization changes chaotically
with the system size (not shown in the figure) and so it is
ill-defined like in one dimension.

VII. CONCLUSION

The Ising model in a pure imaginary magnetic field
exhibits a severe sign problem. The Boltzmann weight
of a configuration of spins on the lattice is a complex
number which prevents from application of standard methods
in equilibrium statistical mechanics. We avoid this problem by
mapping the considered Ising model on the square lattice onto
the symmetric vertex model (with the permutation symmetry
of local vertex weights) formulated on the same lattice struc-
ture in Sec. III. The mapping depends on whether the Ising
nearest-neighbor couplings are antiferromagnetic (Sec. III A)
or ferromagnetic (Sec. III B). The local vertex weights of
the symmetric vertex model are real (positive or negative)
numbers. This fact permits us to apply the accurate numerical
CTMRG and HOTRG methods based on the renormalization

0 0.02 0.04 0.06 0.08 0.10 0.12
F

0

2

4

6

8

10

12

−i
m

 θ = 1
 θ = 2

FIG. 8. Plotted for the ferromagnet is the divergence of the mag-
netization −im for the 2D Ising ferromagnet in an imaginary field
as the coupling constant F approaches the transition coupling F ∗(θ )
(vertical dotted lines) from below; the imaginary magnetic field θ =
1 (dashed curve) and θ = 2 (dash-dotted curve). The dependences
of −im versus F yielded by the asymptotic F → 0 formula (45) are
depicted by the solid lines.

of the density matrix. Another potential application of the
mapping onto the symmetric vertex model with real vertex
weights is to search for the Yang-Lee zeros of the Ising par-
tition function on finite lattices, e.g., with periodic boundary
conditions.

The numerical results for the 2D antiferromagnet in an
imaginary magnetic field were presented in Sec. V. The curve
of critical points separating the ordered antiferromagnetic and
the disordered paramagnetic phases of the model in Fig. 2
was estimated with numerical precision of order 0.2%, which
substantially surpasses the accuracy of other methods [6,11].
Data for the magnetization difference between two interwoven
sublattices as a function of the coupling F were pictured in
Fig. 3. It could be seen that for the sufficiently high imaginary
field θ = 3 the spontaneous difference between the sublattice
magnetizations turns out to be larger than one in an interval
of the couplings F . As concerns the critical properties, there
is numerical evidence that the critical exponent β (Fig. 4) and
the anomaly number c (Fig. 5) do not depend on the strength
of the imaginary magnetic field and are equal to the zero-field
Ising values β = 1

8 and c = 1
2 .

The phase properties of the 2D ferromagnetic Ising model
in an imaginary magnetic field, studied in Sec. VI, are qual-
itatively similar to those of its 1D version (Sec. II B). In
particular, there is a first-order transition coupling F ∗(θ ) at
which both the first derivative of the free energy with re-
spect to the coupling and the magnetization diverge when
approaching F ∗(θ ) from the high-temperature side, F →
F ∗−. The free energy and the magnetization per site are well
defined in the high-temperature region F < F ∗(θ ). In the
low-temperature region F > F ∗(θ ), the free energy blows up
at couplings which correspond to the Yang-Lee zeros of the
partition function. As is evident from Fig. 6, our choice of
equidistant rational points on the F axis does not involve
Yang-Lee zeros and the numerical plot of the free energy
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versus F looks smooth. This mathematical curiosity of lim-
ited physical interest was explained on the exactly solvable
1D ferromagnet in Sec. II B based on plausible arguments.
The magnetization depends chaotically on the system size for
F > F ∗(θ ) and therefore it is ill-defined for both one and
two dimensions. The only fundamental difference between
one and two dimensions comes from Fig. 7: While the zero-
field θ → 0 limit of F ∗(θ ) goes continuously to the expected
value ∞ in one dimension, it approaches a finite value in two
dimensions and does not exist at the strictly zero field θ = 0.
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APPENDIX

Let the standard impurity tensor Tm be given by the prod-
uct of the vertex weights [see (30)]. The standard impurity
tensor is used to evaluate the magnetization according to m =
Tr(Tm). For a spatially homogeneous system on the square
lattice with the coordination number q = 4, the standard im-
purity tensor reads

Tm(σ1, σ2, σ3, σ4) =
∑

σ ′
1,σ

′
2,σ

′
3,σ

′
4=±

vm(σ ′
1, σ

′
2, σ

′
3, σ

′
4)

×Wσ ′
1,σ1Wσ ′

2,σ2Wσ ′
3,σ3Wσ ′

4,σ4 , (A1)

with the vertex tensor vm being

vm(σ1, σ2, σ3, σ4) = eiθ/2
4∏

j=1

δ(σ j,+) − e−iθ/2
4∏

j=1

δ(σ j,−).

(A2)

For the inhomogeneous system, however, the sublattices
magnetizations mA and mB are not identical in the symmetry-
broken state anymore. Then the impurity tensor has to be
redefined to describe the nonzero difference of the magnetiza-

tion mAB = mA − mB = max(TAB). We therefore consider the
maximal absolute value of the extended impurity tensor TAB

(rather than its trace). The construction of TAB was carried out
by means of additional four extended impurity tensors T A

1 , T A
2 ,

T B
1 , and T B

2 such that

TAB = T A
1 + T A

2 − T B
1 − T B

2 . (A3)

These extended impurity tensors have doubled ranks, because
the degrees of freedom on the edges of the tensors are squared,
while the coordination number remains unchanged (q = 4).
The four tensors satisfy the relations

T A
1 ({σ1σ̄1}, {σ2σ̄2}, {σ3σ̄3}, {σ4σ̄4})

=
∏

σ ′
1,σ

′
2,σ

′
3,σ

′
4

Tm(σ̄1, σ2, σ
′
1, σ

′
4)w(σ ′

1, σ̄2, σ̄3, σ
′
2)

×w(σ ′
3, σ

′
2, σ3, σ̄4)w(σ1, σ

′
4, σ

′
3, σ4), (A4)

T A
2 ({σ1σ̄1}, {σ2σ̄2}, {σ3σ̄3}, {σ4σ̄4})

=
∏

σ ′
1,σ

′
2,σ

′
3,σ

′
4

w(σ̄1, σ2, σ
′
1, σ

′
4)w(σ ′

1, σ̄2, σ̄3, σ
′
2)

×w(σ ′
3, σ

′
2, σ3, σ̄4)Tm(σ1, σ

′
4, σ

′
3, σ4), (A5)

T B
1 ({σ1σ̄1}, {σ2σ̄2}, {σ3σ̄3}, {σ4σ̄4})

=
∏

σ ′
1,σ

′
2,σ

′
3,σ

′
4

w(σ̄1, σ2, σ
′
1, σ

′
4)Tm(σ ′

1, σ̄2, σ̄3, σ
′
2)

×w(σ ′
3, σ

′
2, σ3, σ̄4)w(σ1, σ

′
4, σ

′
3, σ4), (A6)

T B
2 ({σ1σ̄1}, {σ2σ̄2}, {σ3σ̄3}, {σ4σ̄4})

=
∏

σ ′
1,σ

′
2,σ

′
3,σ

′
4

w(σ̄1, σ2, σ
′
1, σ

′
4)w(σ ′

1, σ̄2, σ̄3, σ
′
2)

× Tm(σ ′
3, σ

′
2, σ3, σ̄4)w(σ1, σ

′
4, σ

′
3, σ4). (A7)

Within the HOTRG method, the impurity tensors itera-
tively expand into the doubled ranks and renormalize back to
their original ranks. They represent linear combinations of all
possible positions of the magnetic tensor (with the appropriate
sign) divided by number of the combinations taken.
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