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Spin relaxation, Josephson effect, and Yu-Shiba-Rusinov states in superconducting bilayer graphene
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Bilayer graphene has two nonequivalent sublattices and, therefore, the same adatom impurity can manifest in
spectrally distinct ways—sharp versus broad resonances near the charge neutrality—depending on the sublattice
it adsorbs at. Employing Green’s function analytical methods and the numerical KWANT package, we investigate
the spectral and transport interplay between the resonances and superconducting coherence induced in bilayer
graphene by proximity to an s-wave superconductor. Analyzing doping and temperature dependencies of
quasiparticle spin-relaxation rates, energies of Yu-Shiba-Rusinov states, Andreev spectra, and the supercurrent
characteristics of Josephson junctions, we find unique superconducting signatures discriminating between
resonant and off-resonant regimes. Our findings are in certain aspects going beyond the superconducting bilayer
graphene and hold for generic s-wave superconductors functionalized by the resonant magnetic impurities.
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I. INTRODUCTION

Microscopic understanding of spin relaxation is a nec-
essary prerequisite for a proper engineering and function-
alization of spintronics devices [1]. Promising candidates
for such applications are graphene-based systems [2–4]
as they offer charge carriers with high mobility, tunable
spin-orbit coupling (SOC), and even magnetic-exchange in-
teraction [5]. By graphene-based systems we mean graphene
and bilayer graphene (BLG) proximitized by layered van
der Waals materials, such as transition metal dichalcogenides
(TMDC) [6–10] or magnetic insulators [11–16] that of-
fer new possibilities [17] for exploring (magneto-)transport
and (opto-)spintronics phenomena. The new functionality
in this regard—triggered by the discovery of the super-
conductivity in twisted BLG [18,19] and by promising
perspectives in superconducting spintronics [20–23]—is the
proximity of graphene and BLG with other low-dimensional
superconducting materials. Indeed, the proximity-induced su-
perconductivity has been experimentally demonstrated in
lateral graphene-based Josephson junctions [24–27], alkaline-
intercalated graphite [28–30], and also vertical stacks with the
interfacial geometries [31,32].

Here we focus on Bernal stacked BLG in proximity to
an s-wave superconductor whose quasiparticle spin properties
can be altered by impurities depending on the sublattice they
hybridize with. Particularly, we look at light adatoms—like
hydrogen, fluorine, or copper—and the local magnetic ex-
change or local SOC interactions that are induced by them.
Quite generally [33–35], spin relaxation in the s-wave super-
conductors manifests differently depending on whether the
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spin-flip scattering is due to SOC (even with regard to time
reversal) or magnetic exchange (odd with regard to time rever-
sal). Superconducting coherence enforces composition of the
quasiparticle scattering amplitudes in a way that they subtract
in the first and sum in the second case what, correspondingly,
decreases [36–38] or increases [39,40] superconducting spin
relaxation as compared to the normal phase. The enhanced
superconducting spin relaxation in the presence of magnetic
impurities is known as the Hebel-Slichter-effect [39,41,42],
and the temperature dependence of the ratio of the super-
conducting rate versus its normal-phase counterpart as the
Hebel-Slichter peak. The absence of the latter serves’ often
as a probe of unconventional pairing, however, as scruti-
nized in Ref. [43], this can be a red herring. Another reason
for the breakdown of the Hebel-Slichter effect are reso-
nances caused by a multiple scattering off the underlying
Yu-Shiba-Rusinov (YSR) states [44–49]—as was shown in
detail for the superconducting single-layer graphene [35].
What happens in BLG and how different sublattice de-
grees of freedom enter the game is a subject of the present
study.

The main goals of our paper are spin, sublattice, and
spectral properties of superconducting BLG in the presence
of light adatoms that act as magnetic or spin-orbit-coupling
resonant scatterers [50–52]. Particularly, (1) we compare tem-
perature and doping dependencies of spin relaxation rates
depending on which sublattice an adatom is hybridizing with,
(2) analyze the subgap spectral properties in terms of the
induced YSR states, and (3) explore critical currents and
Andreev bound states (ABS) in the BLG-based superconduct-
ing Josephson junctions. Though, some of our findings are
general—e.g., the disappearance of the Hebel-Slichter peak
when tuning the chemical potential into resonances—and go
beyond BLG specifics.
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The paper is organized as follows; in Sec. II we shortly
introduce the model Hamiltonian describing BLG and impu-
rities. The necessary analytical equipment—Green’s function,
T matrix, and generalities about the YSR spectra—are pre-
sented in Sec. III. Results and other outcomes from the
numerical simulations are extensively summarized and qual-
itatively discussed in Sec. IV. More technical and KWANT

implementation aspects are left for the Supplemental Mate-
rial [53] (see, also, Refs. [35,54–78] therein).

II. MODEL HAMILTONIAN

We consider superconducting Bernal stacked BLG func-
tionalized with light adatoms that hybridize with carbon pz

orbitals in the top layer. Such a system is described by the
Hamiltonian

H = HBLG + Hada, (1)

where HBLG describes superconducting BLG host, and the
Anderson-type Hamiltonian Hada takes into account local in-
teractions promoted by the adatom. To describe BLG we use
the minimal tight-binding Hamiltonian:

HBLG =
∑

m,n,X,σ

(−γ0δ〈mn〉 − μδmn)c†
X,m,σ cX,n,σ

+ γ1

∑
m,σ

(c†
B1,m,σ cA2,m,σ + c†

A2,m,σ cB1,m,σ )

+ �
∑
m,X

(c†
X,m,↑c†

X,m,↓ + cX,m,↓cX,m,↑), (2)

where cX,m,σ and c†
X,m,σ are the annihilation and creation

operators for an electron with spin σ , located at lattice
site m. In order to keep track of the sublattice and layer
degrees of freedom, we use along m an additional label
X = {A1, B1, A2, B2}, reserving letter A (B) for the A (B)
sublattice and number 1(2) for the bottom (top) layer, respec-
tively; see Fig. 1.

The parameters in Eq. (2) have the standard meaning;
γ0 = 2.6 eV describes the intralayer nearest neighbor hop-
ping (mimicked by the symbol δ〈mn〉) along the carbon-carbon
bond possessing length acc = 0.142 nm, γ1 = 0.34 eV is an
interlayer hopping [75] between the top and bottom carbons
separated by a distance c = 0.335 nm, μ denotes the chemical
potential of the system (with zero taken at charge neutral-
ity point of the nonsuperconducting BLG), and, finally, �

is the global superconducting s-wave pairing induced by a
proximity of BLG with a superconductor. In order to capture
temperature effects, we assume that � follows the conven-
tional BCS dependence well interpolated by the standard
formula:

�(T ) = �0 tanh [1.74
√

Tc/T − 1] �(Tc − T ). (3)

For concreteness, we choose �0 = 1 meV, giving us the
critical temperature Tc = �0/(1.76kB) = 6.953 K [79]. This
slightly elevated value of �0 is a compromise between
realistic superconducting proximity in layered carbon sys-
tems [80–82] and a numerical capability to handle transport
and spectral calculations [83]. The system is illustrated
in Fig. 1, along with its normal and superconducting

FIG. 1. (a) Schematic illustration of the Bernal-stacked BLG
with relevant intra- and interlayer orbital hoppings. Carbons A1
and B2 which are not coupled via the interlayer coupling γ1 are
conventionally called the low-energy or nondimer sites, and their
counterparts B1 and A2 coupled by γ1 as the high-energy or dimer
sites; we adopt that terminology in what follows. (b) Band structure
of BLG around the K point. (c) Quasiparticle band structure of the
superconducting BLG at chemical potential EF shown in panel (b);
for visibility we employed an exaggerated value of � = 50 meV.

quasiparticle band structures. Two remarks are in order: First,
the general BLG Hamiltonian in McClure-Slonczewski-Weiss
parametrization [73–76] involves also additional interlayer
orbital hoppings γ3 and γ4; see Fig. 1. We neglect them in
what follows, although we checked that they do not bring
new qualitative features—for a quantitative comparison of the
simple and full models, see the Supplemental Material [53].
Second, intrinsic SOC of BLG [75] is two orders of magnitude
smaller than a typical local SOC induced by adatoms (see
Refs. [84–87] and the Appendix); therefore we also neglect
in HBLG all the intrinsic SOC contributions of the BLG host.

The adatom Hamiltonian Hada comprises orbital and spin
interactions [88,89], i.e.,

Hada = Vo + Vs. (4)

Assuming the adatom hosts a single electronic orbital gov-
erned by the annihilation and creation operators d and d†, the
Hamiltonian Vo explicitly reads [84–87]

Vo =
∑

σ

[(ε − μ)d†
σ dσ + ω(d†

σ c	σ + c†
	σ dσ )]

+ �d (d†
↑d†

↓ + d↓d↑), (5)

where c	 and c†
	 act on the functionalized—dimer or

nondimer—carbon site in the top layer. The Anderson-like
Hamiltonian Vo is parameterized by the adatom onsite energy
ε, the adatom-carbon hybridization ω, and the adatom-located
superconducting pairing �d . Its magnitude is not so crucial
for the results presented below and therefore, for the sake of
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simplicity, we set �d to the corresponding BLG value �; see
Eq. (3).

For the spin interaction Vs we consider two separate cases:
(1) magnetic exchange of the adatom d states with a nonitin-
erant, spin 1

2 , magnetic moment S that effectively develops on
the adatom (through the Hubbard interaction; for details see
Ref. [90]) in terms of remaining degrees of freedom dynami-
cally decoupled from d levels, i.e.,

V (1)
s = − J s · S, (6)

and (2) local SOC Hamiltonian V (2)
s , whose explicit but

lengthy expression is provided in the Appendix. In the ex-
pression for V (1)

s , the μth component of the itinerant spin
operator s reads sμ = d†

a (σμ)ab db , where σμ is μth spin Pauli
matrix, and a and b run over ↑ and ↓ spin projections of d
states. Spin degrees of freedom of the nonitinerant spin, ⇑
and ⇓, are introduced such that S operator is given as a vector
of the Pauli matrices acting on these spins. Evaluating the
final spin-relaxation rates we trace out S degrees of freedom;
calculation with all details is presented in Ref. [91].

III. GENERAL CONSIDERATIONS: GREEN’S
FUNCTIONS AND YSR ENERGIES

A. Green’s functions

The starting point for the analytical considerations is the
(retarded) Green’s resolvent

G(z) = (z − H )−1, (7)

where H denotes the full Hamiltonian of the system, e.g.,
Eq. (1), and z = E + iη the complex energy (with a positive
infinitesimal imaginary part) measured with respect to the
Fermi level μ. In what follows, we show how to obtain su-
perconducting G(z) in terms of the normal-phase (and hence
simpler) Green’s function elements and how to calculate
the corresponding spin-relaxation rates and YSR spectra. To
be concrete, we stick to the case of BLG with adatoms, but the
procedure is in fact general, assuming one can split the given
Hamiltonian H into an unperturbed part (provisionally called
HBLG) and a spatially local but not necessarily a pointlike
perturbation (in our case Hada).

First, defining the Green’s resolvent of the unperturbed
superconducting system,

G(z) = (z − HBLG)−1, (8)

we can express G(z) in terms of G(z) by means of the Dyson
equation, i.e.,

G(z) = G(z) + G(z) Hada G(z) (9)

= G(z) + G(z)Tada(z) G(z) (10)

= (1 − G(z) Hada)−1 G(z). (11)

The advantage of the latest expression manifests in the local
atomic (tight-binding) basis at which Hada becomes a matrix
with few nonzero rows and columns, and hence its inversion
is not a tremendous task. In the second equation, Eq. (10), we
have defined the T matrix

Tada(z) = Hada (1 − G(z) Hada)−1. (12)

The T matrix is useful from several points of view. First,
inspecting its energy poles within the superconducting gap
gives the YSR bound state spectra [92]. Second, knowing
the T matrix one can directly access the spin-relaxation rate
1/τs at a given chemical potential μ, temperature T , and
the adatom concentration (per number of carbons) ηada, by
evaluating the following expression [34,35]:

1

τs
=

∫∫
BZ dk dq |〈k,↑|T |q,↓〉|2δ(Ek − Eq)

(− ∂g
∂Ek

)
h̄π

Aucηada

∫
BZ dk

(− ∂g
∂Ek

) . (13)

Therein, the integrations are taken over the first Brillouin zone
(BZ) of BLG; g(E , T ) = [eE/(kBT ) + 1]−1 is the Fermi-Dirac
distribution whose derivative gives thermal smearing, Auc is
the area of the BLG unit cell, and Ek and |k, σ 〉 are, cor-
respondingly, the quasiparticle eigenenergies and eigenstates
(normalized to the BLG unit cell) of HBLG.

To know the T matrix, Eq. (12), we need the unperturbed
Green’s resolvent G(z) of the superconducting host. The next
step is the evaluation of G(z) in terms of g(z)—the retarded
Green’s resolvent of BLG in the normal phase. To this end
we express HBLG, Eq. (2), in the Bogoliubov–de Gennes form
(in a basis at which the superconducting pairing becomes a
diagonal matrix)

HBdG =
(

hBLG �

�∗ −h∗
BLG

)
, (14)

where hBLG = h∗
BLG = HBLG(� = 0) comprises the nonsuper-

conducting part of Eq. (2), i.e., an ordinary BLG Hamiltonian
held at chemical potential μ. Because of the spatial homo-
geneity of the s-wave pairing � (constant diagonal matrix),
the direct inversion of z − HBdG gives

G(z) =
(

g+(Z ) + z
Z g−(Z ) −�

Z g−(Z )

−�∗
Z g−(Z ) −g+(Z ) + z

Z g−(Z )

)
, (15)

where

Z =
√

z2 − |�|2, (16)

g±(Z ) = 1
2 (Z − hBLG)−1 ± 1

2 (−Z − hBLG)−1. (17)

The proper branch of the complex square root should be
chosen in such a way that Im Z > 0. So we see that the whole
Green’s function calculation effectively boils down to an or-
dinary retarded Green’s resolvent of the nonsuperconducting
BLG Hamiltonian hBLG, i.e., to g(±Z ) = (±Z − hBLG)−1.

The above equation, Eq. (15), is an operator identity in the
Bogoliubov–de Gennes form expressed in a basis in which
the pairing component � becomes a diagonal matrix. For the
later purposes, we would need the matrix elements of g(z)
in the local atomic (Wannier) basis, particularly, one matrix
element involving the pz orbital |�	〉 located on carbon site C	

that hosts the adatom impurity. Such on-site Green’s function
element—also known as the locator Green’s function—reads

gC	
(z) = 〈�	|g(z)|�	〉 =

∫
dε

�	(ε + μ)

z − ε
, (18)

where �	 is the normal-phase DOS of the unperturbed sys-
tem projected on the atomic site C	 and the integration runs
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over the corresponding quasiparticle bandwidth. The pro-
jected DOS, �	(z) = ∑

k δ(z − εk )|〈�	|k〉|2, can be routinely
computed from the known eigenvalues, εk, and eigenvectors,
|k〉, of hBLG.

Up to now the discussion was general without any explicit
reference to superconducting or normal-phase BLG Hamilto-
nians HBLG and hBLG = HBLG(� = 0); see Eq. (2). In what
follows, we express gC	

(z) for BLG assuming normal-phase
Hamiltonian hBLG with only γ0 and γ1 hoppings. In this case,
the integral in Eq. (18) can be computed analytically; see
Ref. [57]. The resulting gC	

(z) for the dimer and nondimer
C	 sites are as follows:

gd
C	

(z) = z[F (z2 + γ1z) + F (z2 − γ1z)], (19)

gnd
C	

(z) = gd
C	

(z) + γ1[F (z2 + γ1z) − F (z2 − γ1z)], (20)

where

F (ζ ) = Auc

4πν2
0

[
I
(√

ζ/ν0
) + I

(−√
ζ/ν0

)]
, (21)

I (p) = 1

2
ln

∣∣∣∣ Re2(p) + Im2(p)

[� − Re(p)]2 + Im2(p)

∣∣∣∣
− i arctan

Re(p)

Im(p)
− i arctan

� − Re(p)

Im(p)
. (22)

In the above expressions, Auc = 3
√

3a2
cc/2 is the area of

the BLG unit cell, ν0 = 3accγ0/2 and the momentum cutoff

� = 2
√√

3π/(3acc). Moreover, to keep track on dimensions
of different arguments entering functions F and I , we use
rather distinct letters, z, ζ , and p, which have, correspond-
ingly, units of energy, energy square, and momentum.

B. Yu-Shiba-Rusinov states and resonances—a toy model
and its predictions

In this section, we show under quite general assumptions
that resonances caused by magnetic impurities in the non-
superconducting systems can trigger—after turning into the
superconducting phase—a formation of YRS states with en-
ergies deep inside the superconducting gap. This phenomenon
is quite generic and holds for homogeneous s-wave super-
conductors with low concentrations of resonant magnetic
impurities—assuming the resonance lifetime in the normal
phase is larger than the corresponding Larmor precession
time, what is the case in single and bilayer graphene.

It is clear from Eqs. (9) and (11) and the definition of the
Green’s resolvent that the eigenenergies of the full Hamil-
tonian H can be read off from the singularities of G(z) =
(z − H )−1 sending η = Im z to zero. We take as a reference
some unperturbed superconducting system, e.g., BLG. Let
us look at eigenstates of H = HBLG + H ′

ada that can develop
inside the superconducting gap of the unperturbed host due to
a coupling with a local perturbation centered on a particular
atomic site C	:

H ′
ada =

∑
σ

(U + σJ )c†
	σ c	σ . (23)

The above Hamiltonian represents a perturbation of the
Lifshitz-type [93] that is parameterized by the on-site energy

U and the magnetic interactions J (the term involving chemi-
cal potential μ is in the unperturbed Hamiltonian). This does
not cause a fundamental limitation since in certain regimes the
Anderson impurity model given by the adatom Hamiltonian

Hada = Vo + V (1)
s , (24)

see Eqs. (5) and (6), or even the more general Hubbard im-
purity model, can be down-folded [90] into the form given by
Eq. (23). In what follows, we assume that the orbital energy
scale dominates over the magnetic one, i.e., U 2 � J2.

It is clear from Eq. (11) that the in-gap states can be
extracted from singularities [92] of (1 − G(z) H ′

ada)−1, and
therefore one needs to inspect energies |E | < |�| at which
the “secular determinant” of the operator 1 − G(z) H ′

ada turns
to zero, i.e.,

det [1 − (E − HBLG)−1 H ′
ada] = 0. (25)

Since H ′
ada is located on the atomic site C	 we just need the

corresponding locator of G(E ) = (E − HBLG)−1, i.e.,

GC	
(E ) = 〈�	|G(E )|�	〉. (26)

Correspondingly, 〈�	|G(E )|�	〉 is a 2 × 2 matrix in the re-
duced particle-hole Nambu space [94]. Substituting for G(E )
in Eq. (26) the corresponding expression from Eq. (15), we
can rewrite GC	

(E ) in terms of the locators of g±(E ), see
Eq. (17), and even further in terms of the locators of the
normal-phase resolvents (±Z (E ) − hBLG)−1, where for the in-
gap states ±Z (E ) = ±i

√
|�|2 − E2. The locator that is finally

needed to be calculated turns to be the following integral,

gC	
(±Z (E )) =

∫
dx

�	(x)

μ ± i
√

|�|2 − E2 − x
≡ γ (±E );

(27)

see also Eq. (18).
Similarly, the perturbation H ′

ada turns to be a 2 × 2 matrix
in the particle-hole space with the following Bogoliubov–de
Gennes form:

H ′
BdG =

(
U + J 0

0 −U + J

)
. (28)

Hence the secular determinant of the operator 1 − G(z) H ′
ada,

Eq. (25), reduces in the local atomic basis just to a determinant
of an ordinary 2 × 2 matrix. So finally, the in-gap energies
|E | < |�| of the perturbed problem satisfy the following
(integro-algebraic) secular equation:

Re{[1 − (U + J ) γ (E )][1 − (U − J ) γ (−E )]}
= J

E

i
√

|�|2 − E2
[γ (E ) − γ (−E )]. (29)

Further, using a fact that γ (−E ) = γ (E ), the left-hand side
of the above equation can be expressed as a sum of two
terms: {1 − (U + J ) Re[γ (E )]}{1 − (U − J ) Re[γ (E )]} and
(U 2 − J2){Im[γ (E )]}2. We will show in a sequel that at res-
onances the first of them turns to zero and, correspondingly,
the secular equation, Eq. (29), simplifies even more:

(U 2 − J2) Im[γ (E )] = 2
EJ√

|�|2 − E2
. (30)
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Let us recall that the normal-phase resonant energies μ±
of the unperturbed host under an action of H ′

ada are de-
fined [93,95–98] by the following equations:

lim
η→0

∫
dx

(μ± − x)

(μ± − x)2 + η2
�	(x) = 1

U ± J
. (31)

In practice, one relaxes infinitesimality of η and uses
some fixed value smaller than the corresponding resonance
width [96]

�c± = π |U 2 − J2| �	(μ±), (32)

which is inversely proportional to the lifetime of the resonance
(τlife = h̄/�c). This constraint on the magnitude of η implies
that the resonance energies μ± are given with an uncertainty
of �c±. Assume we have a superconducting system at the
chemical potential μ close to μ+ or μ− (within a range
of �c±) that possesses a superconducting gap �, such that
�c± � |�| >

√
|�|2 − E2. Taking the real part of Eq. (27),

we can write

Re[γ (E )] =
∫

dx (μ± − x) �	(x)

(μ± − x)2 + (|�|2 − E2)
� 1

U ± J
. (33)

This guarantees that the term {1 − (U + J )Re[γ (E )]}{1 −
(U − J )Re[γ (E )]} � 0. Similarly, for the imaginary part of
Eq. (27) we get

Im[γ (E )] = −
∫

dx
√

|�|2 − E2 �	(x)

(μ± − x)2 + (|�|2 − E2)
� −π�	(μ±),

(34)

where the last equality holds for the unperturbed system with
a relatively wide bandwidth and properly varying density of
states �	 on the scale larger than �c±. Within these assump-
tions, the expression for the secular determinant, Eq. (30),
finally reads [99]

|E |√
|�|2 − E2

� �c±
2|J| = 1

2

h̄/|J|
h̄/�c±

= 1

2

τLarmor

τlife
. (35)

The above formula gives the energies of YSR states for a
superconducting system whose Fermi level μ is tuned to the
vicinity of the normal-phase resonance, i.e., μ � μ± within
a range of �c±. Knowing the resonance width �c± and the
strength of magnetic exchange J , or equivalently, the lifetime
τlife of the normal-phase resonance and the Larmor precession
time, τLarmor = h̄/|J|, due to magnetic exchange J one can
easily get the corresponding YSR energies:

EYSR = ± |�|√
1 + 4J2/�2

c

= ± |�|√
1 + 4τ 2

life/τ
2
Larmor

. (36)

Scrutinizing Eqs. (35) and (36) further, we see that when-
ever the Larmor precession time is substantially smaller than
the resonance lifetime the corresponding YSR energies would
be very close to the center of the superconducting gap, i.e.,
|E | � 0. Moreover, having two atomic sites—say dimer and
nondimer in the case of BLG—out of which the first gives
rise to a narrower resonance than the second, then for the
same magnetic J the corresponding YSR energies would be
deeper inside the gap for the first site than for the second. Our
findings are pointing along similar lines as those of the recent

study [100] that investigated formation and coupling of the
YSR states to a substrate when tuning the Fermi level into the
Van Hove singularity.

Based on the above considerations, one can already pre-
dict what to expect for the quasiparticles’ spin relaxation.
Quasiparticles occupy energies above the superconducting
gap, while the YSR states carrying magnetic moments are
inside the gap. The larger the energy separation is between
the two groups, the more “invisible” these states become for
each other. Consequently, we expect substantially weakened
quasiparticle spin relaxation at chemical potentials that yield
YSR states deep inside the superconducting gap. The effect
should be more visible when lowering the temperature since
there � grows with a lowered T according to Eq. (3). Of
course, at too low temperatures the spin relaxation quenches
naturally because of the absence of free quasiparticle states
which rather pair and enter the BCS condensate.

IV. RESULTS

We implemented Hamiltonian HBLG + Hada, Eq. (1), for the
hydrogen functionalized superconducting BLG in KWANT, and
calculated its various transport, relaxation and spectral prop-
erties. The very detailed numerical implementation scheme is
provided in the Supplemental Material [53] for readers willing
to adopt it to other materials or further spintronics applica-
tions. We have chosen hydrogen, since it is the most probable
and natural atomic contaminant coming from organic solvents
used in a sample-fabrication process, and also, because it acts
as a resonant magnetic scatterer [57,89]. Of course, method-
ology as developed can be used for any adatom species that
are well described by Hamiltonian Hada.

Discussing the results, we start from spectral and spatial
properties of YSR states, continue with spin relaxation, and
end up with the Andreev spectra and critical currents of the
BLG-based Josephson junctions. Moreover, we assume dilute
adatom concentrations that do not affect the magnitude of the
proximity-induced superconducting gap |�| and do not give it
pronounced local spatial variations on the length scale shorter
than the coherence length. To make a fully self-consistent
approach is beyond the scope of the present paper.

A. Yu-Shiba-Rusinov states

Figure 2(a) compares the YSR spectra for hydrogenated
superconducting BLG versus chemical potential computed
analytically—solutions of Eq. (25) for the adatom Hamilto-
nian Hada, Eq. (24)—and by direct numerical diagonalization.
The obtained spectra by both methods match quantitatively
very well for �0 = 50 meV up to a very tiny offset stemming
from finite-size effects and fixed convergence tolerance of
10−5 in the numerical diagonalization procedure. The main
features of the YSR spectra for the gap of 50 meV are clearly
visible in Fig. 2(a), and are also reproduced for a smaller gap
of 1 meV displayed in Fig. 2(b). The magnetic impurity on
the dimer site exhibits two, well-separated, doping regions—
around μ = −0.1 eV and μ = 0.08 eV—hosting YSR states
with energies deep inside the gap, while the nondimer site
supports the low energy YSR states over a much broader
doping region. As derived in Sec. III B, deep lying YSR states
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FIG. 2. Spectral comparison—superconducting YSR states and normal-phase resonances in BLG: YSRs’ energies in units of � vs chemical
potential μ for superconducting BLG with the pairing gap �0 = 50 meV (a) and �0 = 1 meV (b) computed analytically (dots) and numerically
(lines) for hydrogen magnetic impurity chemisorbed on the dimer (black) and nondimer (blue) site; the results of numerical diagonalization
displayed in panel (a) were carried on a rectangular flake with the width W = 601a and length L = 601a, and hard-wall boundary conditions.
Panel (c) shows perturbed DOS in normal BLG (per carbon atom and spin) vs chemical potential for concentration ηada = 0.7 % of dimer
(black, units on left axis) and nondimer (blue, units on right axis) magnetic impurities. Positions of the resonance peaks in the normal-phase
correspond to the minima of YSR states in panels (a) and (b), in accordance with a prediction in Sec. III B.

should form in resonances, and therefore in Fig. 2(c) we show
the analytical DOS for BLG in the normal-phase perturbed
by 0.7 % of resonant magnetic impurities—resonance peaks
in the DOS match perfectly with “(almost) zero energy” YSR
states.

Seeing the YSRs’ energies and DOS induced by adatoms
at dimer and nondimer sites we can expect certain spectral dif-
ferences in the corresponding spin relaxations. As mentioned
above, the extended quasiparticle states occupy energies over
the superconducting gap, while the localized YSR states are
inside the gap. The larger is their energy separation, the more
“ineffective” is their mutual interaction and hence substan-
tially weakened would be scattering and spin relaxation.

This is quite a general statement irrespective of BLG that
is based on the energy overlap argument. However, in the
case of BLG what would matter on top of this is the spatial
overlap between the localized YSR states and propagating
quasiparticle modes within BLG. Figures 3 and 4 show,
correspondingly, the sublattice resolved YSR probabilities
originating from hydrogen magnetic impurities chemisorbed
at dimer and nondimer carbon sites. The plotted eigenstates’
probabilities correspond to the YSR spectra in Fig. 2 for the
particular chemical potential of μ = −0.1 eV [value at which
one of the dimer resonances in the normal system appears; see
Fig. 2 (c)]. Inspecting Figs. 3 and 4 we see that for the mag-
netic impurity chemisorbed on the dimer (nondimer) carbon
site in the top layer, the corresponding YSR states dominantly
occupy the opposite—nondimer (dimer) top sublattice—of
BLG. The spatial profiles of the YSR probability densities
with their threefold symmetry matches with the results of the
recent study of YSR states in twisted BLG [101].

Moreover, by diagonalizing HBdG, Eq. (14), for μ in
[−γ1,+γ1], one sees that the BLG quasiparticle states are
built primarily on pz orbitals belonging to the low-energy
B2 and A1 carbons, i.e., they propagate mainly through the
nondimer sublattice of BLG; see Fig. 1. Thus, from a pure ge-
ometrical point of view, there is a substantially larger (smaller)
spatial overlap between these low-energy BLG states and

YSR states originating from the dimer (nondimer) impurities,
since the latter spread over the nondimer (dimer) sublattice.
Therefore for μ in [−γ1,+γ1], we expect a stronger spin
relaxation for magnetic impurities at dimer than nondimer
sites.

B. Spin relaxation

In s-wave superconductors, the quasiparticle spin re-
laxation by nonresonant magnetic impurities follows the
conventional Hebel-Slichter picture [39,41,42]. That is, when
entering from the normal into the superconducting phase, the
spin relaxation rate initially increases due to the supercon-
ducting coherence; lowering temperature further it starts to
saturate, and by approaching a milli-Kelvin regime the spin
relaxation quenches completely due to the lack of quasiparti-
cle excitations.

Figures 5(a) and 5(b) show temperature and doping depen-
dencies of spin relaxation in hydrogenated superconducting
BLG with the pairing gap �0 = 1 meV. Obviously, we see
that the spin relaxation due to resonant magnetic impurities
does not follow the Hebel-Slichter picture over the whole
ranges of doping. Passing into the superconducting phase the
spin relaxation in BLG drops down substantially with lowered
T at doping regions around the resonances—particularly, in
the dimer case for μ ∈ [−0.2, 0.2] eV and in the nondimer one
for μ ∈ [−0.4, 0.4] eV—and enhances at doping levels away
from them. The reason for the drop was first elucidated in
Ref. [35], and counts the formation of YSR states lying deep
inside the superconducting gap. The latter energetically de-
couple from the quasiparticle ranges, as explained in Sec. III B
and documented in Fig. 2. Consequently, the reduced energy
overlap between the two groups of states—which gets more
pronounced when lowering T and raising �(T ) in accor-
dance with Eq. (3)—implies the lowered spin relaxation. In
the regions far away from the resonances, the YSR states
are close to the gap edges, and the spin relaxation follows
the conventional Hebel-Slichter scenario. For the moderate
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FIG. 3. Sublattice resolved probabilities of YSR states in top (a) and bottom (d) layers originating from a magnetic adatom (hydrogen)
chemisorbed at a dimer carbon in the top layer at chemical potential μ = −0.1 eV; for the corresponding energy spectrum see Fig. 2. Side
panels show sublattice-resolved probabilities in the corresponding layers for two representative directions, armchair [(b), (e)] and zigzag [(c),
(f)]. The numerical calculations—exact diagonalization—employed �0 = 50 meV, W = 601a, and L = 601a.

temperatures (above 1 K), the crossover from the reso-
nant to Hebel-Slichter picture in BLG appears around |μ| �
0.2 eV in the dimer case and |μ| � 0.4 eV in the nondimer
one.

Impurity spectral features—positions of the resonance
peaks and their widths, see Fig. 2(c)—affect doping depen-
dencies of the spin-relaxation rates already in the normal

phase [89]. The spin-relaxation rate for the spectrally nar-
row dimer impurity shows two pronounced shoulders in 1/τs,
see Fig. 5(a), while the spectrally wide nondimer resonance
washes out the subpeak structure and producing a single wide
hump in Fig. 5(b); of course, this depends on the mutual
strengths of the exchange V (1)

s and orbital interaction Vo.
For the extended discussion, see Ref. [89]. In reality, the

FIG. 4. Sublattice resolved probabilities of YSR states in top (a) and bottom (d) layers originating from a magnetic adatom (hydrogen)
chemisorbed at a nondimer carbon in the top layer at chemical potential μ = −0.1 eV; for the corresponding energy spectrum, see Fig. 2. Side
panels show sublattice-resolved probabilities in the corresponding layers for two representative directions, armchair [(b), (e)] and zigzag [(c),
(f)]. The numerical calculations—exact diagonalization—employed �0 = 50 meV, W = 601a, and L = 601a.
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FIG. 5. Quasiparticle spin-relaxation rates in superconducting BLG with �0 = 1 meV for different temperatures T (different colors) as
functions of chemical potential μ; the gray shaded backgrounds mark the doping regions at which the system behaves resonantly. Panels
(a) and (b) display, correspondingly, spin-relaxation rates for hydrogen magnetic impurity chemisorbed on dimer and nondimer site employing
the rate formula given by Eq. (S2). Calculation was performed for BLG Hamiltonian with all γ hoppings involved, the spatial dimensions of
the scattering region were fixed to W = 131 a and L = 4 a, and the phase averaging counted 20 equally spaced values of ktransW in the interval
[0; 2π ). The impurity concentration for this configuration corresponds to ηada = 0.0413 %.

spin-relaxation rate would be broadened due to other effects,
like electron-hole puddles, variations of orbital parameters
with doping and temperature, spatial separation of impurities,
etc., so the final rate gets effectively smeared out and its
internal shoulder-like structure is not necessarily observed
directly [102–105]. In the case of dimer impurity, we see
that around |μ| � γ1 = 0.3 eV the spin-relaxation rate slightly
jumps up. This is because around this energy the electronic
states from high-energy carbons A2 and B1, see Fig. 1, enter
the transport and the number of scattering channels raises. It
is worth to compare the magnitudes of spin relaxation rates
in Figs. 5(a) and 5(b) for impurities at dimer and nondimer
sites when passing from the normal phase at Tc = 6.953 K to
the superconducting phase at the milli-Kelvin range around
T = 0.1 K. We see that the dimer impurity relaxes quasi-
particles’ spins faster than the nondimer one at very low
T superconducting phase, but this turns approaching Tc and
going into the normal phase. Again, this is the consequence of
the wave function overlaps between the extended low-energy
quasiparticle BLG modes and the localized YSR states as
displayed in Figs. 3 and 4.

In the Appendix, we also show results for the spin-
relaxation rates in the case of SOC active hydrogen im-
purities. As expected, the rates exhibit a strong decrease
over the whole doping range when lowering the temper-
ature for both impurity configurations. These findings are
consistent with the calculations in single-layer graphene
[35].

C. Critical current of the BLG-based Josephson junction

Figure 6 illustrates the critical currents of the BLG-based
Josephson junctions as functions of chemical potential for
different lengths and different hydrogen positions. We study
junctions functionalized with the dimer and nondimer reso-
nant magnetic impurities (data displayed by black or blue), as
well as a junction without them (data in gray); for a junction
schematic, see the inset in Fig. 6. In the latter benchmark

case, we just plot the critical current for L = 20a, as the
length dependence is not affecting the magnitude of Ic too
strongly. Comparing the scaling of the critical current Ic with
the chemical potential μ for the dimer and nondimer impurity
cases, we see that Ic drops its value at those doping levels
where the BLG system in the normal phase hits its resonances;
for comparison see DOS in Fig. 2(c). The effect is more
pronounced for the narrow resonance in the dimer case, but
also the nondimer impurity displays a wide plateau in Ic that
is spreading over its resonance width.

We see that Ic for the nondimer case is lower than Ic for the
dimer one, implying the system is more perturbed by the res-

FIG. 6. Critical currents of the BLG-based Josephson junctions
(see inset for schematics) with and without resonant magnetic impu-
rities calculated by Eq. (S4). Data for different lengths are displayed
by different styles—the full lines corresponds to length L = 10a,
the dashed lines to L = 20a and the dashed-dotted lines to L = 60a.
Different colors code different impurity contents—the clean junction
result is displayed by gray, and data for a junction with a single
hydrogen in its center at dimer (nondimer) site by black (blue). The
width of the junctions is fixed to W = 40a, and the pairing gap �0 in
the BLG-based superconducting leads equals 1 meV.
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FIG. 7. ABS spectra of BLG-based Josephson junction functionalized by resonant magnetic impurities. Panels (a) and (b) show corre-
spondingly the ABS spectra for a hydrogen impurity at dimer and nondimer site at chemical potential μ = −100 meV (resonance), while
panels (c) and (d) correspond to the same configuration at doping level μ = −200 meV (off-resonance for the dimer impurity). Bound state
energies are obtained by sampling maximas of d (E ), Eq. (S3), for energies E inside the superconducting gap. The size of the normal spacer
has width W = 40a and length L = 10a and contains a single impurity positioned in the center. Bands shown in red correspond to ABS that
result from the interplay of the magnetic exchange and the superconducting pairing and share certain spectral similarities with the YSR states.

onant scattering off magnetic impurities chemisorbed on the
nondimer sites. For the same reason, the spin relaxation rate
1/τs for the nondimer position in the normal phase (T = Tc)
is larger than the corresponding quantity for the dimer one;
see Figs. 5. The explanation of why this happens was given in
Ref. [89]: An impurity chemisorbed at the nondimer (dimer)
site gives rise to a resonant impurity state in the normal
phase that is located on the dimer (nondimer) sublattice—
similarly as for the YSR states; see Figs. 3 and 4. However,
there is one substantial difference compared with the localized
YSR states. The resonant levels are virtually bound, meaning
their spatial probability falls off with a distance polynomi-
ally [106,107]. Since the top dimer sublattice of BLG couples
via γ1 hopping with the bottom layer, the effect of resonant
state living on the dimer top sublattice would be felt also on
the bottom layer. While the both layers are affected by the
resonance, the scattering is more damaging—this is the reason
for the larger 1/τs and smaller Ic in the normal phase for the
impurity located on the nondimer site. In contrast, the reso-
nant state due to the dimer impurity, which is located on the
nondimer top sublattice of BLG, would only weakly protrude
into the bottom layer—nondimer carbons do not hybridize via
γ1—and hence an electron propagating in BLG is effectively
less scattered off the dimer impurities since the bottom layer
gives it a green light to move freely.

So we believe that the Josephson current spectroscopy can
serve as another sensible probe for discriminating between
different resonant impurities reflecting their spectral and res-
onant features.

D. Andreev bound state spectrum of BLG-based
Josephson junction

Figure 7 shows the Andreev in-gap spectra for the BLG-
based Josephson junction functionalized by dimer-nondimer
hydrogen impurities as functions of the phase difference φ.
We consider the same geometry and system sizes (width
W = 40a and length L = 10a) as were used for the calculation
of the critical currents in Fig. 6. Moreover, we calculate the
ABS spectra for the two representative chemical potentials,
μ = −100 meV and μ = −200 meV, that set different reso-
nant regimes.

Figures 7(a) and 7(b) display the corresponding ABS
energies for μ = −100 meV at which both chemisorption
positions host resonances in the normal phase. The first re-
markable feature in the spectra for both impurity positions
is the presence of the ABS bands (shown in red) that are
detached from the continuum spectrum and spread around the
center of the gap. This is very similar to the YSR spectra
shown in Fig. 2, where at the same doping level μ develops
the YSR bound states whose energies are located close to the
center of the gap. Because of this spectral similarity, one can
consider the red ABS as Josephson-junction descendants of
the corresponding YSR states, despite, strictly speaking, the
YSR states being defined for impurities embedded directly in-
side a superconductor and not inside the normal spacer of the
Josephson junction. Comparing closely the dimer [Fig. 7(a)]
and nondimer [Fig. 7(b)] parts, we see also the black dot-
ted ABS with the typical Andreev φ dispersions determined
mainly by the junction length L and the S/N-interface
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TABLE I. Hamiltonian parameters.

Hydrogen Dimer [eV] Nondimer [eV]

ε 0.25 0.35
ω 6.5 5.5
J −0.4 −0.4
λA

I −0.21 × 10−3 −0.21 × 10−3

λB
I 0 0

λR 0.33 × 10−3 0.33 × 10−3

λA
PIA 0 0

λB
PIA 0.77 × 10−3 0.77 × 10−3

transparency [108,109]. We assume a transparent junction
realized, for example, on a flake of BLG that is proximitized
by two superconductors with different phases which are sep-
arated by a nonproximitized normal region. Contrasting the
slopes of red and black ABS branches for both chemisorption
positions, we see that in the nondimer case the slopes of the
red and black bands are mostly opposite, implying a suppres-
sion of the critical current since I (φ) ∝ ∑

ABS ∂EABS(φ)/∂φ.
Next, let us change the chemical potential to the lower

value of μ = −200 meV, such that the dimer site is already
out of the resonance, while the nondimer one is still “in a
mild shadow” of it; see the DOS features in Fig. 2(c). The cor-
responding ABS spectra are displayed in Figs. 7(c) and 7(d).
In contrast to the previous cases, the ABS “resembling” the
YSR states are absent (more precisely overlying with other
branches) for the dimer case, but are still optically visible
for the nondimer one—again displayed in red, although now
spreading energetically more away the center of the gap.
The remaining bound state energies—displayed by black—
resemble the standard ABS dispersions. So off resonances the
magnetic impurities in the normal spacer act on the formation
of the ABS as nonmagnetic scatterers. In the Supplemental
Material [53], we also provide a comparison to a different
calculation approach with switched off magnetic moments in
order to cross-check the employed numerics.

V. CONCLUSIONS

In summary, we have shown that the superconducting BLG
in the presence of resonant magnetic impurities experiences
interesting spin phenomena that are manifested in (1) an un-
usual doping and temperature dependency of spin-relaxation
rates, (2) subgap spectra hosting deep-lying YSR states,
(3) magnitudes of critical currents, and (4) Andreev bound
states in the BLG-based Josephson junctions. BLG has two
nonequivalent sublattices; hence, the same magnetic adatom
hybridizing with BLG can show differing superconducting
behavior. Our secondary aim was to trace these features in
detail and understand their origins from the point of view of
resonant scattering in the normal BLG phase.

Coming to the spin relaxation, we have convincingly
demonstrated by implementing an S-matrix approach that
it can depart from the conventional Hebel-Slichter sce-
nario when taking into account the multiple scattering
processes. Meaning, the quasiparticle spin-relaxation rates
can substantially decrease once the system is turned into
the superconducting phase. Furthermore, the detailed nu-

FIG. 8. Temperature dependence of the quasiparticle spin-
relaxation rates vs doping for superconducting BLG in the presence
of a spin-orbit active hydrogen impurity at dimer and nondimer
sites. Results are obtained from KWANT simulations with the help of
Eq. (S2). The system size was fixed to W = 131a and L = 4a, giving
ηada = 0.0413 %. The phase averaging was performed for 20 equally
spaced values of ktrans in the interval [0; 2π ].

merical implementation scheme we have developed using
the existing KWANT functionalities—see the Supplemental
Material [53]—represents per se an important message. It
allows us to simulate spin relaxation, as well as other spec-
tral characteristics including the YSR and Andreev bound
states.

Beyond the BLG, we have demonstrated under general
conditions that at doping levels that are tuned to the normal-
state resonances, the corresponding YSR states separate from
the quasiparticle coherence peaks and immerse deep in the
center of the gap, or even cross there. Such zero-energy
YSR states have a profound impact on the topological nature
of the underlying superconducting ground state with prac-
tical applications for the YSR [49,110–112] and Josephson
spectroscopy [113], as well on the Shiba-band engineering,
particularly in connection with topological quantum-phase
transitions and parity changing of the condensate wave func-
tion [109,114–116]. We derived a formula, Eq. (36), for
the YSR energies assuming the system is doped in resonance.
Knowing the resonant width of the modified DOS and the
strength of the exchange coupling, one can predict with the
help of Eq. (36) the YSR energies, or vice versa, knowing
the width from normal-phase transport measurements and the
YSR energies from the STM one can estimate a magnitude of
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the exchange strength between itinerant electrons and local-
ized magnetic moments.

We are not aware of any experiments probing spin relax-
ation in superconducting graphene or BLG, but we believe
that our results can trigger some, or can shed some light
on the similar superspintronics phenomena explored in other
low-dimensional superconductors.
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APPENDIX: MODEL PARAMETERS, LOCAL SOC
HAMILTONIAN, AND THE CORRESPONDING

SPIN RELAXATION

An external impurity hybridizing with BLG modifies a part
of the orbital degrees of freedom, Hamiltonian Vo, and the
local SOC environment. To investigate the impact of the local
SOC on the quasiparticle spin relaxation, we use the following
tight-binding Hamiltonian:

V (2)
s = iλA

I

3
√

3

∑
m∈Cnnn

∑
σ

c†
0σ (ŝz )σσ cmσ + H.c. + iλB

I

3
√

3

∑
m,n∈Cnn

m �=n

∑
σ

c†
mσ νmn(ŝz )σσ cnσ

+ 2iλR

3

∑
m∈Cnn

∑
σ �=σ ′

c†
0σ (ŝ × d0m)z,σσ ′cmσ ′ + H.c. + 2iλA

PIA

3

∑
m∈Cnnn

∑
σ �=σ ′

c†
0σ (d0m × ŝ)z,σσ ′cmσ ′ + H.c.

+ 2iλB
PIA

3

∑
m,n∈Cnn

m �=n

∑
σ �=σ ′

c†
mσ (dmn × ŝ)z,σσ ′cnσ ′ ;

for details see Ref. [88].
The parameters entering Hamiltonians Vo, V (1)

s , and V (2)
s

that are used in this study correspond to hydrogen impurity;
the values are obtained from fitting DFT calculations [84,89]
and are summarized in Table I. Figure 8 shows quasiparti-
cle spin-relaxation rates versus doping for a spin-orbit active
hydrogen impurity, again for several representative tempera-
tures going from the critical Tc down to zero. The relaxation
rate shows clear differences for the dimer, Fig. 8(a), and the

nondimer, Fig. 8(b) positions. While the dimer case displays a
strong enhancement of the rate around μ = 0, the rate is heav-
ily suppressed in the nondimer case for μ = 0.34 eV. These
features remain insensitive to the variation of temperature
and transcend also into the superconducting-phase. Passing
from the normal to superconducting regime, we observe a
global reduction of the spin-relaxation rate by an order of
magnitude. This observations match with the results obtained
for superconducting single layer graphene [35].
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