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A variant of energy scale deformation is considered for the S = 1=2 antiferromagnetic Heisenberg model on
polyhedra. The deformation is induced by the perturbations to the uniform Hamiltonian, whose coefficients are
determined by the bond coordinates. On the tetrahedral, octahedral, and cubic clusters, the perturbative terms do not
affect the ground state of the uniform Hamiltonian when they are sufficiently small. On the other hand, for the
icosahedral and dodecahedral clusters, it is numerically confirmed that the ground state of the uniform Hamiltonian is
almost insensitive to the perturbations unless they lead to a discontinuous change in the ground state. The obtained
results suggest the existence of a generalization of sine-square deformation in higher dimensions.

1. Introduction

Uniformity in quantum states is one of the fundamental
properties in condensed matter physics. On a regular lattice,
the ground state of a quantum model is expected to be uniform
when the Hamiltonian is translationally invariant unless
spatial modulations are spontaneously stabilized. Occasion-
ally, the ground state is uniform even when the Hamiltonian is
not translationally invariant. For example, when the excitation
gap is sufficiently large, the effect of slowly varying
perturbations on the uniform ground state is negligible.

A class of non-uniform Hamiltonians, whose ground states
are nearly uniform, is known in one dimension. Suppose that
we have a one-dimensional lattice Hamiltonian

Ĥ ¼
X
‘

ĥ‘;‘þ1; ð1Þ

where ĥ‘;‘þ1 represents the nearest-neighbor interaction,
whose magnitude does not depend on the site index ‘. In
the case of the translationally invariant quantum Heisenberg
spin chain, ĥ‘;‘þ1 is written as the exchange interaction
J Ŝ‘ � Ŝ‘þ1, where Ŝ‘ denotes the spin operator at site ‘, and
J is the interaction parameter. In what follows, we assume
that the ground state is uniform, and the excitation gap is zero
in the thermodynamic limit. Introducing a deformation
function f‘, which varies slowly with respect to ‘, we can
modify the energy scale of each bond and define the non-
uniform Hamiltonian

Ĥf ¼
X
‘

f‘ ĥ‘;‘þ1: ð2Þ

When the function is exponential, i.e., f‘ ¼ e‘=�,1) the
ground-state of Ĥf is uniform in the bulk part of the system.2)

Under this exponential deformation, the correlation length
becomes finite, and increases with the deformation parameter
� > 0. A similar uniformity of the ground state has been
observed for the hyperbolic deformation function f‘ ¼
coshð‘=�Þ.3–5)

The specific form of deformation that we focus on in this
article is the sine-square deformation (SSD).6–8) Consider the
N-site system whose Hamiltonian is written as

ĤSSD ¼
XN
‘¼1

2 sin
‘�

N

� �2
ĥ‘;‘þ1; ð3Þ

where we have used the labeling rule that identifies
‘ ¼ N þ 1 with 1. The prefactor of ĥN;1 is zero, and therefore
there is no coupling between the ends ‘ ¼ 1 and N. Thus, the
system can be considered as the finite-size system of length N
with open and smooth boundary conditions,9,10) where the
interaction strength decreases toward the both ends of the
system. It was accidentally found that the ground state is
uniform under the SSD when the free fermionic lattice model
is considered.6,7) In the correlated systems, the uniformity
under the SSD was numerically confirmed for the Kondo
lattice model,11) the S ¼ 1=2 Heisenberg spin chain,8) and the
Hubbard model.12) Theoretical proof of complete uniformity
is given for the free fermionic lattice model.13,14) It has been
known that the continuum limit of the SSD has a natural
interpretation in terms of conformal field theory (CFT).15–41)

Generalizations of the SSD to two dimensions were
considered on finite lattices with torus,42) disk,43–45) and tube
geometries.44,46)

The deformation function in Eq. (3) can be written as

f‘ ¼ 2 sin
‘�

N

� �2
¼ 1 � cos

2‘�

N
: ð4Þ

Accordingly, we can decompose ĤSSD into a sum of the
uniform part

Ĥ0 ¼
XN
‘¼1

ĥ‘;‘þ1 ð5Þ

and the modulated part

ĤM ¼ �
XN
‘¼1

cos
2‘�

N
ĥ‘;‘þ1: ð6Þ

A simple geometrical interpretation is possible for the angle
�‘ ¼ 2‘�=N in Eq. (6), as shown in Fig. 1(a). When the
lattice sites are located equidistantly on the circle, �‘
corresponds to the angle between the midpoint of the bond
ðN; 1Þ and that of the bond ð‘; ‘ þ 1Þ measured from the
center of the circle. In the case of the free-fermion hopping
model on the lattice, it is straightforward to show that the
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ground state j 0i of the uniform part Ĥ0 is an eigenstate of
the modulated part ĤM with eigenvalue zero. It has been
analytically shown that the generalized Hamiltonian

Ĥð�Þ ¼ Ĥ0 þ � ĤM ð7Þ
shares the same ground state j 0i within the range
j�j � 1.13,42)

From the construction of ĤM in Eq. (6), which is related to
the N-sided regular polygon in Fig. 1(a), it is possible to state
that ĤM corresponds to the most slowly varying sinusoidally
modulated function on the finite lattice. This geometric
observation suggests a new type of two-dimensional general-
ization of the SSD. Let us imagine discrete lattices drawn on
a sphere. The possible candidates are finite lattices in the
shape of regular polyhedra, which are tetrahedron (N ¼ 4),
octahedron (N ¼ 6), cube (N ¼ 8), icosahedron (N ¼ 12),
and dodecahedron (N ¼ 20). Ground-state properties of the
S ¼ 1=2 antiferromagnetic Heisenberg model on these
lattices have been known for the uniform case ĤðNÞ

0 .47–54)

Recall that the most slowly varying function on the unit
sphere is the spherical harmonic function Y0

1 / cos �, where
θ represents the angle from a fixed axis, and cos � represents
the coordinate component along the axis. Figure 1(b) shows
the angle θ for a bond that connects lattice points on the
sphere. We thus introduce the modulated part ĤðNÞ

M that is
the sum of the non-uniform nearest-neighbor interactions
whose coefficients are specified by a linear function of
coordinates of each bond. In this article, we examine the
effect of Ĥ ðNÞ

M by means of obtaining the ground state of the
combined Hamiltonian ĤðNÞ ¼ ĤðNÞ

0 þ c ĤðNÞ
M . For N ¼ 4, 6,

and 8, it is confirmed that the ground state of ĤðNÞ
0 is also

the eigenstate of Ĥ ðNÞ
M with eigenvalue zero, and thus

the ground state of ĤðNÞ is independent of c when jcj is
relatively small. For N ¼ 12 and 20, the ground state of
ĤðNÞ

M depends on c, but the observed c-dependences are very
weak.

The structure of this article is as follows. In the next
section, we consider the tetrahedral cluster, which can be
treated analytically. In Sect. 3, the octahedral and cubic
clusters are examined. In Sect. 4, the icosahedral and
dodecahedral clusters are examined. In these cases, the
modulation changes the ground state, but the effect is very
weak. Conclusions are summarized in the last section. We
discuss possible generalizations of the SSD in higher
dimensions.

2. Energy Scale Deformation on the Tetrahedral
Cluster

Consider the S ¼ 1=2 antiferromagnetic Heisenberg model
on finite lattices in the shape of regular polyhedra.
Throughout this article, we assume only the nearest-neighbor
interactions. We set the interaction parameter J to unity, and
thus the interaction between the neighboring sites i and j is
simply expressed as ĥi;j ¼ Ŝi � Ŝj.

To become familiar with polyhedral geometries, we start
with the tetrahedral cluster shown in Fig. 2, which is drawn
inside the cube. The coordinates of the ‘-th site ‘ : ðx; y; zÞ
are fixed to

1 : ð�1;�1; 1Þ; 2 : ð1; 1; 1Þ;
3 : ð1;�1;�1Þ; 4 : ð�1; 1;�1Þ; ð8Þ

where we set the origin at the center of the cube. The uniform
Hamiltonian on the cluster is represented as

Ĥ ð4Þ
0 ¼ Ŝ2 � Ŝ3 þ Ŝ1 � Ŝ4 þ Ŝ2 � Ŝ4 þ Ŝ1 � Ŝ3

þ Ŝ1 � Ŝ2 þ Ŝ3 � Ŝ4

¼ 1

2
ðŜ1 þ Ŝ2 þ Ŝ3 þ Ŝ4Þ2 � 3

2
: ð9Þ

We have explicitly shown the number of sites N ¼ 4 in the
notation Ĥ ð4Þ

0 . This is an example of the Majumdar–Ghosh
lattice.55) Equation (9) clearly shows that the model Ĥð4Þ

0 has
two degenerate ground states with total spin 0, each of which
can be written as a product of singlet pairs. The other
eigenstates of Ĥð4Þ

0 have a nonzero total spin.
In order to introduce spatial modulations to the inter-

actions, we focus on the coordinate of the midpoint of each
bond. For example, they are ð0; 0; 1Þ and ð0; 0;�1Þ,
respectively, for the bonds ð1; 2Þ and ð3; 4Þ. If we use the
Z-component of the midpoint coordinate as the prefactor to
the corresponding pairwise interaction, we obtain the
following modulated part:

Ĥ ð4Þ
Z ¼ Ŝ1 � Ŝ2 � Ŝ3 � Ŝ4: ð10Þ

It can be easily verified that Ĥð4Þ
Z commutes with Ĥð4Þ

0 .
Therefore, the combined Hamiltonian

Ĥð4Þð�Þ ¼ Ĥð4Þ
0 þ � Ĥð4Þ

Z

¼ Ŝ2 � Ŝ3 þ Ŝ1 � Ŝ4 þ Ŝ2 � Ŝ4 þ Ŝ1 � Ŝ3

þ ð1 þ �ÞŜ1 � Ŝ2 þ ð1 � �ÞŜ3 � Ŝ4 ð11Þ
shares the same ground state within the range j�j < 1, and the
ground-state crossover occurs at � ¼ �1.

1 2

l

NN-1

l +1

θl

(a) (b)

θ

Fig. 1. (a) Angle �‘ contained in ĤM in Eq. (6). (b) Angle θ for a bond
that connects lattice points on the sphere.
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2

3
4

X

Y

Z

Fig. 2. Positions of sites on the tetrahedral cluster.
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In the same manner as the Z-component, we can use the X-
and the Y-components to obtain different types of modulated
parts

Ĥð4Þ
X ¼ Ŝ2 � Ŝ3 � Ŝ1 � Ŝ4; ð12Þ

Ĥð4Þ
Y ¼ Ŝ2 � Ŝ4 � Ŝ1 � Ŝ3: ð13Þ

A simple analysis shows that the ground state of the
combined Hamiltonian

Ĥð4Þð�; �; �Þ ¼ Ĥð4Þ
0 þ � Ĥð4Þ

X þ � Ĥð4Þ
Y þ � Ĥ ð4Þ

Z ð14Þ
is independent of the coefficients α, β, and γ within the
range56)

�2 þ �2 þ �2 � 3 and �2 þ �2 þ �2 þ 2��� � 1: ð15Þ
Typical values of the parameters at the boundary of the
above region are ð�; �; �Þ ¼ ð 1ffiffi

2
p ; 1ffiffi

2
p ; 0Þ, ð1

2
; 1
2
; 1
2
Þ, and

ð�1;�1;�1Þ.
The analysis of the tetrahedral cluster has shown that the

perturbative terms Ĥ ð4Þ
X , Ĥð4Þ

Y , and Ĥ ð4Þ
Z do not alter the ground

state of Ĥ ð4Þ
0 if their magnitudes are sufficiently small. In the

following sections, we will observe similar results for the
ground states of larger polyhedral clusters.

3. On the Octahedral and Cubic Clusters

The second system we consider is the octahedral cluster
shown in Fig. 3, where the site coordinates are fixed as

1 : ð0; 0; 1Þ; 2 : ð0;�1; 0Þ; 3 : ð1; 0; 0Þ
4 : ð0; 1; 0Þ; 5 : ð�1; 0; 0Þ; 6 : ð0; 0;�1Þ: ð16Þ

In this case, the uniform Hamiltonian is given by

Ĥð6Þ
0 ¼ Ŝ1 � Ŝ2 þ Ŝ1 � Ŝ3 þ Ŝ1 � Ŝ4 þ Ŝ1 � Ŝ5

þ Ŝ2 � Ŝ3 þ Ŝ3 � Ŝ4 þ Ŝ4 � Ŝ5 þ Ŝ5 � Ŝ2

þ Ŝ2 � Ŝ6 þ Ŝ3 � Ŝ6 þ Ŝ4 � Ŝ6 þ Ŝ5 � Ŝ6; ð17Þ
which has a non-degenerate ground state j ð6Þ

0 i. On the
lattice, the Z-components of the midpoints of the bonds are
1=2 for ð1; 2Þ, ð1; 3Þ, ð1; 4Þ, and ð1; 5Þ, and are �1=2 for
ð2; 6Þ, ð3; 6Þ, ð4; 6Þ, and ð5; 6Þ, and are 0 otherwise. To
simplify the notation, we multiply the factor 2 to these Z-
components to define the modulated part

Ĥ ð6Þ
Z ¼ Ŝ1 � Ŝ2 þ Ŝ1 � Ŝ3 þ Ŝ1 � Ŝ4 þ Ŝ1 � Ŝ5

� Ŝ2 � Ŝ6 � Ŝ3 � Ŝ6 � Ŝ4 � Ŝ6 � Ŝ5 � Ŝ6: ð18Þ
Although Ĥð6Þ

Z does not commute with Ĥ ð6Þ
0 , the relation

Ĥ ð6Þ
Z j ð6Þ

0 i ¼ 0 ð19Þ
holds, and thus j ð6Þ

0 i is an eigenstate of Ĥ ð6Þ
Z with eigenvalue

zero. In the same manner as we have introduced Ĥð6Þ
Z , we can

use the X- and Y-components of the coordinates, respectively,
to define

Ĥ ð6Þ
X ¼ Ŝ3 � Ŝ1 þ Ŝ3 � Ŝ2 þ Ŝ3 � Ŝ6 þ Ŝ3 � Ŝ4

� Ŝ1 � Ŝ5 � Ŝ2 � Ŝ5 � Ŝ6 � Ŝ5 � Ŝ4 � Ŝ5 ð20Þ
and

Ĥð6Þ
Y ¼ Ŝ4 � Ŝ1 þ Ŝ4 � Ŝ3 þ Ŝ4 � Ŝ6 þ Ŝ4 � Ŝ5

� Ŝ1 � Ŝ2 � Ŝ3 � Ŝ2 � Ŝ6 � Ŝ2 � Ŝ5 � Ŝ2; ð21Þ
where the relations Ĥð6Þ

X j ð6Þ
0 i ¼ 0 and Ĥð6Þ

Y j ð6Þ
0 i ¼ 0 are

also satisfied.
Analogous to Eq. (14), we introduce the linear combina-

tion

Ĥð6Þð�; �; �Þ ¼ Ĥð6Þ
0 þ � Ĥð6Þ

X þ � Ĥ ð6Þ
Y þ � Ĥð6Þ

Z ; ð22Þ
and regard it as the deformed Hamiltonian. Note that j ð6Þ

0 i
is an eigenvector of Ĥ ð6Þð�; �; �Þ. In order to determine the
parameter region where j ð6Þ

0 i is the ground state of
Ĥð6Þð�; �; �Þ, we numerically diagonalize Ĥð6Þð�; �; �Þ to
obtain its ground state j’ ð6Þð�; �; �Þi, and calculate the fidelity

Fð6Þð�; �; �Þ ¼ jh’ ð6Þð�; �; �Þ j  ð6Þ
0 ij

¼ jh’ð6Þð�; �; �Þ j ’ ð6Þð0; 0; 0Þij: ð23Þ
Throughout this article, we assume that all the states are
normalized. We trace Fð6Þð�; �; �Þ typically along the paths on
which the parameters are given by

ðIÞ � ¼ c; � ¼ 0; � ¼ 0; ð24Þ
ðIIÞ � ¼ cffiffiffi

2
p ; � ¼ cffiffiffi

2
p ; � ¼ 0; ð25Þ

ðIIIÞ � ¼ cffiffiffi
3

p ; � ¼ cffiffiffi
3

p ; � ¼ cffiffiffi
3

p ; ð26Þ

where the factor c denotes the magnitude of deformation.
Figure 4 shows the calculated result. The fidelity Fð6Þ is equal
to unity for small jcj, and jumps to zero at (I) jcj ¼ 1, (II)
jcj ¼ 0:9608, and (III) jcj ¼ 1:0954, where we have used the
parametrization in Eqs. (24)–(26). In cases (II) and (III), a
pairwise interaction with negative coefficient appears in
Ĥð6Þð�; �; �Þ in the neighborhood of the jumping point.

The third system we consider is the cubic cluster shown in
Fig. 5, where the uniform Hamiltonian is written as

Ĥð8Þ
0 ¼ Ŝ1 � Ŝ2 þ Ŝ2 � Ŝ3 þ Ŝ3 � Ŝ4 þ Ŝ4 � Ŝ1

þ Ŝ1 � Ŝ5 þ Ŝ2 � Ŝ6 þ Ŝ3 � Ŝ7 þ Ŝ4 � Ŝ8

þ Ŝ5 � Ŝ6 þ Ŝ6 � Ŝ7 þ Ŝ7 � Ŝ8 þ Ŝ8 � Ŝ5; ð27Þ

1

2
5

6

3
4

X

Y

Z

Fig. 3. Positions of sites on the octahedral cluster.
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c
c
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F

Fig. 4. Fidelity Fð6Þ in the octahedral cluster.
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which has a non-degenerate ground state j ð8Þ
0 i. In this case,

it would be easy to capture the lattice geometry and obtain
the coordinates of the midpoints of bonds. Similar to
Eqs. (18), (20), and (21), the modulated parts are given by

Ĥð8Þ
X ¼ Ŝ1 � Ŝ2 þ Ŝ2 � Ŝ6 þ Ŝ6 � Ŝ5 þ Ŝ5 � Ŝ1

� Ŝ4 � Ŝ3 � Ŝ3 � Ŝ7 � Ŝ7 � Ŝ8 � Ŝ8 � Ŝ4; ð28Þ
Ĥð8Þ
Y ¼ Ŝ2 � Ŝ3 þ Ŝ3 � Ŝ7 þ Ŝ7 � Ŝ6 þ Ŝ6 � Ŝ2

� Ŝ1 � Ŝ4 � Ŝ4 � Ŝ8 � Ŝ8 � Ŝ5 � Ŝ5 � Ŝ1; ð29Þ
and

Ĥ ð8Þ
Z ¼ Ŝ1 � Ŝ2 þ Ŝ2 � Ŝ3 þ Ŝ3 � Ŝ4 þ Ŝ4 � Ŝ1

� Ŝ5 � Ŝ6 � Ŝ6 � Ŝ7 � Ŝ7 � Ŝ8 � Ŝ8 � Ŝ5: ð30Þ
Although the modulated parts Ĥð8Þ

X , Ĥ ð8Þ
Y , and Ĥð8Þ

Z do not
commute with Ĥ ð8Þ

0 , the relations

Ĥð8Þ
X j ð8Þ

0 i ¼ 0; Ĥð8Þ
Y j ð8Þ

0 i ¼ 0; and Ĥ ð8Þ
Z j ð8Þ

0 i ¼ 0

ð31Þ
are satisfied.

As was done in Eq. (22), we consider the combined
Hamiltonian Ĥð8Þð�; �; �Þ ¼ Ĥ ð8Þ

0 þ � Ĥð8Þ
X þ � Ĥð8Þ

Y þ � Ĥð8Þ
Z .

Note that j ð8Þ
0 i is an eigenvector of Ĥð8Þð�; �; �Þ. In order

to determine the parameter region where j ð8Þ
0 i is the ground

state, we numerically diagonalize Ĥ ð8Þð�; �; �Þ and obtain the
corresponding ground state j’ ð8Þð�; �; �Þi. Figure 6 shows
the fidelity Fð8Þð�; �; �Þ ¼ jh’ ð8Þð�; �; �Þj ð8Þ

0 ij. Under the
parametrization in Eqs. (24)–(26), the fidelity F ð8Þ is equal to
unity when jcj is small, and jumps to zero at (I) jcj ¼ 1:2047,
(II) jcj ¼ 0:9050, and (III) jcj ¼ 0:8660, where the ground
state alternates. In cases (I) and (II), a pairwise interaction
with negative coefficient appears in Ĥ ð8Þð�; �; �Þ in the
neighborhood of the jumping point.

On the tetrahedral (N ¼ 4), octahedral (N ¼ 6), and cubic
(N ¼ 8) clusters, we have confirmed that the ground state
of the uniform part ĤðNÞ

0 is also a zero-energy eigenstate of
the modulated parts Ĥ ðNÞ

X , Ĥ ðNÞ
Y , and ĤðNÞ

Z . This is the reason
why the fidelity FðNÞ is unity in these systems, when the
magnitude of modulation jcj is relatively small.

4. On the Icosahedral and Dodecahedral Clusters

Let us move on to the icosahedral cluster shown in Fig. 7.
To save space, we will not write down the explicit form of
the uniform part Ĥð12Þ

0 , which is nothing but the sum of
Heisenberg interactions Ŝi � Ŝj between neighboring sites. As
we have considered in the previous sections, the modulated
part is defined through the coordinates of the midpoints of the
bonds. The golden ratio

� ¼ 1 þ ffiffiffi
5

p

2
ð32Þ

plays an important role in writing the coordinates simply.
From the Z-component of the midpoint of each bond, we
obtain the modulated part

Hð12Þ
Z ¼ S1 � S2

þ �

2
ðS1 � S3 þ S2 � S3 þ S2 � S4 þ S1 � S4Þ

þ 1

2
ðS1 � S5 þ S1 � S8 þ S2 � S6 þ S2 � S7Þ

þ 1

2�
ðS3 � S5 þ S3 � S6 þ S4 � S7 þ S4 � S8Þ

� 1

2�
ðS9 � S5 þ S9 � S6 þ S10 � S7 þ S10 � S8Þ

� 1

2
ðS11 � S5 þ S11 � S8 þ S12 � S6 þ S12 � S7Þ

� �

2
ðS11 � S9 þ S12 � S9 þ S12 � S10 þ S11 � S10Þ

� S11 � S12: ð33Þ
In the same manner, we can write down Ĥð12Þ

X and Ĥð12Þ
Y ,

respectively, using the X- and Y-components. Note that Ĥð12Þ
X

and Ĥð12Þ
Y can be written just by replacing the lattice indices

in Eq. (33) appropriately. In this case, the ground state of
Ĥð12Þ is not an eigenstate of Ĥð12Þ

X , Ĥð12Þ
Y , nor Ĥð12Þ

Z .
As we have done in the previous section, we consider the

combined Hamiltonian Ĥ ð12Þ ¼ Ĥð12Þ
0 þ � Ĥð12Þ

X þ � Ĥ ð12Þ
Y þ

� Ĥ ð12Þ
Z , and obtain the ground state j’ ð12Þð�; �; �Þi by means

of numerical diagonalization. Figure 8 shows the fidelity
Fð12Þð�; �; �Þ ¼ jh’ ð12Þð�; �; �Þ j ’ ð12Þð0; 0; 0Þij. Under the
parametrization in Eqs. (24)–(26), F ð12Þ is close to unity

1
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Z

Fig. 5. Positions of sites on the cubic cluster. c
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Fig. 6. Fidelity F ð8Þ in the cubic cluster.
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Fig. 7. Positions of sites on the icosahedral cluster.
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when jcj is small, and slightly decreases with jcj. The values
of c and Fð12Þ at the border where the fidelity changes
discontinuously are (I) jcj ¼ 1:1613 and Fð12Þ ¼ 0:9997, (II)
jcj ¼ 1:1697 and F ð12Þ ¼ 0:9997, and (III) jcj ¼ 1:2072 and
Fð12Þ ¼ 0:9996. In all the cases, some of the pairwise
interactions in Ĥ ð12Þð�; �; �Þ have a negative coefficient in the
neighborhood of the border.

The last example we consider is the dodecahedral cluster
shown in Fig. 9. The uniform part Ĥ ð20Þ

0 is the sum of
neighboring Heisenberg interactions. The modulated part
Hð20Þ
Z is given by

Hð20Þ
Z ¼ S1 � S2

þ �

2
ðS1 � S3 þ S2 � S4 þ S2 � S5 þ S1 � S6Þ

þ 1

2
ðS3 � S7 þ S7 � S4 þ S5 � S8 þ S8 � S6Þ

þ 1

2�
ðS3 � S9 þ S4 � S10 þ S5 � S11 þ S6 � S12Þ

� 1

2�
ðS9 � S15 þ S10 � S16 þ S11 � S17 þ S12 � S18Þ

� 1

2
ðS15 � S13 þ S13 � S16 þ S17 � S14 þ S14 � S18Þ

� �

2
ðS15 � S19 þ S16 � S20 þ S17 � S20 þ S18 � S19Þ

� S19 � S20; ð34Þ
where Ĥ ð20Þ

X and Ĥð20Þ
Y can be written in the same manner.

Also in this case, the ground state of Ĥð20Þ is not an eigenstate
of Ĥ ð20Þ

X , Ĥ ð20Þ
Y , nor Ĥð20Þ

Z .
We consider the combined Hamiltonian Ĥ ð20Þ

0 þ � Ĥ ð20Þ
X þ

� Ĥð20Þ
Y þ � Ĥð20Þ

Z , and obtain the ground state j’ ð20Þð�; �; �Þi

by means of the numerical Lanczos diagonalization.
Figure 10 shows the fidelity Fð20Þð�; �; �Þ ¼ jh’ ð20Þð�; �; �Þ j
’ð20Þð0; 0; 0Þij. Under the parametrization in Eqs. (24)–(26),
Fð20Þ is close to unity when jcj is small, and slightly
decreases with jcj. The values of c and Fð20Þ at the border
where the fidelity changes discontinuously are (I) jcj ¼
1:0628 and F ð20Þ ¼ 0:9843, (II) jcj ¼ 0:9843 and Fð20Þ ¼
0:9853, and (III) jcj ¼ 1:07047 and Fð20Þ ¼ 0:9857. In
case (I), one of the pairwise interactions in Ĥð20Þð�; �; �Þ has
a negative coefficient near the border.

5. Conclusion and Discussion

We have examined the effect of energy scale deformation
applied to the antiferromagnetic Heisenberg model on the
polyhedral clusters. The deformation is introduced by the
perturbative Hamiltonian, which is defined through the
coordinate of the midpoint of each bond. In the tetrahedral,
octahedral, and cubic clusters, the ground states are not
modified at all by the energy scale deformation, up to a
certain amount of deformation magnitude. In the icosahedral
and dodecahedral clusters, the ground state is slightly
modified, but the effect of perturbation is very weak.

In our trial of the energy scale deformation, we used
linear functions of the midpoint coordinate of each bond as
the prefactor of the modulated part. There would be a
better construction of the modulated part also in the
icosahedral and dodecahedral clusters, where the uniform
Hamiltonian and the modulated part share a common
eigenstate. Since the parameter space of the prefactors is
finite, one way to clarify this issue is to perform a
parameter search numerically. We expect that the symme-
tries of the polyhedra restrict the number of independent
parameters, thereby making the analysis simpler. Another
possible approach is to find out the most slowly varying
function on the polyhedral lattice by means of the
diagonalization of the one-particle hopping Hamiltonian
on the lattice. Note that the generation of an orthonormal
set by diagonalization can be generalized to finite lattices
with planar geometry, such as square lattices with
rectangular or disk geometry,43–45) with appropriate boun-
dary conditions. The nearly uniform and the most slowly
varying functions, respectively, may correspond to Ĥ0 and
the modulated part ĤM.

The deformation effect can also be examined on the
Archimedean solids, the quasi-regular polyhedra with a larger
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Fig. 8. Fidelity F ð12Þ in the icosahedral cluster.
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number of sites50,54,57–64) such as the C60 “buckyball”.47,65,66)

An interesting question to ask is whether the deformation
effect decreases with the number of sites N towards the
continuous limit on the sphere. In four dimensions, there are
several regular polytope (or poly-cell) models, and the effect
of energy scale deformation can be considered on these
systems. For the largest case, the 600-cell (N ¼ 600), one
must employ the tensor network method to obtain the ground
state.
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