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Abstract
Quantum theory sets a bound on the minimum time required to transform from an initial state to a target state. The bound is 
known as quantum speed limit time. Quantum speed limit time can be used to determine the rate of quantum evolution for 
closed and open quantum systems. In the real world, we are dealing with open quantum systems. So, the study of quantum 
speed limit time for open quantum systems has particular importance. In this work, we consider the topological qubit real-
ized by two Majorana modes. We consider the case in which the topological qubit is influenced by the fermionic and bosonic 
environment. Fermionic and bosonic environments are assumed to have Ohmic-like spectral density. The quantum speed 
limit time is investigated for the various environments with different Ohmic parameters. It is observed that for the super-
Ohmic environment with increasing Ohmic parameter the quantum speed limit time gradually reaches a constant value and 
so the speed of evolution reaches a uniform value. It is also observed that the quantum speed limit time reaches zero value 
by increasing initial time parameter for small value of Ohmic parameter while it reaches constant value for larger Ohmic 
parameter. The effects of the external magnetic field on the quantum speed limit time are also studied. It is observed that 
with increasing magnitude of the magnetic field, the quantum speed limit time decreases.

Keywords Quantum speed limit · Topological qubit · Environment

1 Introduction

The minimum time required for the transformation of 
a quantum system from an initial state to a target state is 
known as quantum speed limit (QSL) time. It can be said 
that the QSL time stems from the time–energy uncertainty 
principle. The maximum speed of quantum evolution can 
be obtained using QSL time. The QSL time is used in many 

topics of quantum information theory such as quantum com-
munication [1], investigation of exact bounds in quantum 
metrology [2], computational bounds of physical systems 
[3], and quantum optimal control algorithms [4].

For closed quantum systems whose evolution is 
described using unitary operations, the QSL time is 
obtained using distance measures such as Bures angle and 
relative purity [5–12]. Among the most important QSL time 
bound for closed systems, one can mention two bounds, 
one is Mandelstam–Tamm (MT) bound [11] and the other 
is Margolus–Levitin (ML) bound [12]. Given that isolat-
ing a quantum system from its surroundings is difficult and 
almost impossible, and any real quantum system interacts 
inevitably with its surroundings, the study of open quantum 
systems is one of the fascinating topics in quantum informa-
tion theory [13–15]. Therefore, due to the importance of 
open quantum systems and their role in quantum informa-
tion theory, the study of QSL time for these systems has 
been considered in many recent works [16–41]. In general, 
Mandelstam–Tamm bound and Margolus–Levitin bound 
are used to describe QSL time in closed and open quantum 
systems. The generalizations of these two bounds for open 
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quantum systems are given in Refs. [7, 8]. In Ref. [24], 
Deffner et al. present a comprehensive and unified bound 
for non-Markovian dynamics that includes both MT and 
ML bounds. In Ref. [28], Zhang et al. provide the QSL 
time bound for arbitrary initial states. They have shown 
that the QSL time depends on the quantum coherence of 
the initial state. Based on the definition they provide, QSL 
time is the minimum time required for the evolution of an 
open quantum system from an initial state at time � to target 
state at time � + �D , where �D is driving time. In this work, 
we will consider the QSL time bound which has introduced 
by Zhang et al. [28].

It has been observed that topological quantum computing 
is a promising design for the realization of quantum comput-
ers with stable qubits [42]. According to recent studies, there 
exist different and new types of topologically ordered states 
that are physically achievable, such as topological insula-
tors and superconductors [43–45]. For these systems, some 
of the excitations are topologically protected, provided that 
some symmetries, such as time inversion, are maintained. In 
other words, the local perturbations that maintain these sym-
metries cannot disentangle the topological excitations. The 
most interesting of these topological excitations are Majo-
rana modes localized on topological defects, which follow 
the non-Abelian anyonic statistics [46–48]. The Kitaev 1D 
spineless p-wave superconductor chain model is the most 
common model for realizing such Majorana modes. Each on-
site fermion can be decomposed into two Majorana modes. 
By properly adjusting the model, Majorana modes can be 
dangling at the end of the chain without pairing with other 
nearby Majorana modes to form common fermions. So, 
these two separate Majorana modes can create a topologi-
cal qubit. There exist two meanings to the word topological 
here: One meaning is that it is composed of Majorana modes 
that are topological excitations, another implication is that 
the topological qubit itself is non-local, meaning that the 
two Majorana states are very separate and therefore cannot 
be combined into a common fermion. From quantum infor-
mation insight, the topological qubit is EPR-like, because 
it encodes quantum state non-locally. Both characteristics 
explain its resistance to local disturbances. Given that topo-
logical excitations are robust against local perturbations, the 
question that may arise is whether topological qubits are 
also robust against decoherence when they are considered 
as an open quantum system coupling to the non-topological 
environment. The open system setup is more logical and 
realistic when performing quantum computations. Since 
quantum information is carried by physical excitations, sta-
bility against decoherence indicates stability against local 
perturbations, but the opposite is not true. Even if local exci-
tations are stable to local perturbations, however, the quan-
tum information carried by the topological qubit may still 
penetrate the environment. However, since the topological 

qubit is non-local, its interaction with the environment is 
quite different from that of conventional fermions, and quan-
tum decoherence behaviors are expected to be unusual. This 
motivates us, in this work, to examine QSL time for decoher-
ence of topological qubits.

In this paper, the QSL time for the dynamics of a topo-
logical qubit realized by two Majorana modes coupled to a 
fermionic and bosonic Ohmic-like reservoir is discussed in 
detail.

2  Decoherence of Topological Qubits

A topological qubit composed of two Majorana modes of 
the one-dimensional Kitaev chain that are spatially sepa-
rated. These Majorana modes are located at the two ends of a 
quantum wire and are denoted by �1 and �2 , and the following 
relations are established for them [49]

where a, b ∈ {1, 2} . The Majorana modes are influenced 
by their surroundings in an incoherent way, which causes 
the decoherence of the topological qubit. The Hamiltonian 
describing the intended general system is defined as follows

where ĤS represents the Hamiltonian of topological qubit 
system, ĤE describes the Hamiltonian of the environment, 
and ĤI is the interaction Hamiltonian describes the influence 
of the environment on topological qubit which reads

where G1(2) describes the real coupling constant and Q̂1(2) is 
the composite operator consists of the electron creation oper-
ator a† and annihilation operator a . According to hermeticity 
condition of interaction Hamiltonian, i.e., Ĥ†

I
= HI we have

When the system is affected by a fermionic environment, 
the Majorana modes are located at two ends of a quantum 
wire which is placed over an s-wave superconductor. Majo-
rana modes are affected by a magnetic field B whose direc-
tion is along the quantum wire. Each of the Majorana modes 
is paired with a metallic nanowire through a tunnel junction 
with tunneling strength Bi that is adjusted by an external 
gate voltage. The schematic of this type of interaction is 
drawn in Fig. 1.

When the system is affected by a bosonic environment, 
the Majorana modes are placed at two ends of a quan-
tum ring with a space between them. In this case, some 

(1)�†
a
= �a,

{
�a, �b

}
= 2�ab,

(2)Ĥ = ĤS + ĤE + ĤI ,

(3)ĤI = G1𝛾1Q̂1 + G2𝛾2Q̂2,

(4)Q̂
†

a
= −Q̂a.
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environmental bosonic operators interact with the two 
Majorana modes locally. The frequency dependence in the 
bosonic environment is provided by a magnetic flux Φ pass-
ing through the quantum ring. The schematic of this type 
of interaction is drawn in Fig. 2. In this work, we consider 
Ohmic-like environmental spectral density J(�) ∝ �s , for 
both fermionic and bosonic environments. When s < 1 , s = 1 
and s > 1 , we have sub-Ohmic, Ohmic, and super-Ohmic 
environment, respectively.

Before interaction, the Majorana modes form a topologi-
cal qubit with states �0⟩ and �1⟩ , which are related as follows

Given that �a ’s must satisfy Eq. (1), they can be selected as

where �i ’s are Pauli matrices.
Here, it is assumed that the state of the whole system 

S + E is product, i.e., 𝜌S(0)⊗ 𝜌E and �S(0) =
∑1

i,j=0
�ij�i⟩⟨j� 

is the initial state of the topological qubit. For the case where 
the topological qubit is affected by a fermionic environment, 
the state of the topological qubit at time t is obtained as

and for the case where the topological qubit is influenced by 
a bosonic environment, the state of the topological qubit at 
time t is obtained as

(5)
1

2

�
�1 − i�2

��0⟩ = �1⟩, 1

2

�
�1 + i�2

��1⟩ = �0⟩.

(6)�1 = �1, �2 = �2, i�1�2 = �3,

(7)

�F
S
(t) =

1

2

(
1 +

(
2�00 − 1

)
�2(t) 2�01�(t)

2�10�(t) 1 +
(
2�11 − 1

)
�2(t)

)
,

where

In relation Eq. (9), the decay parameter Is(t) is given by

where Γ0 describes the cutoff frequency of the environment, 
Γ(z) is the Gamma function, and iFj is the generalized hyperge-
ometric function. �F and �B are time-independent coefficients 
of fermionic and bosonic environments, respectively, and are

and

where Nsc represents the number of degrees of freedom of 
the dual conformal field theory, � is the UV cutoff of the 
length, Δ = (s + 4)∕2 shows the conformal dimension and 
N stands for the set of natural numbers.

3  Quantum Speed Limit Time

Quantum mechanics sets a bound on the evolution speed of a 
quantum process for a close or open quantum system. In gen-
eral, the minimum time required to transform from an initial 
state to a target state is known as QSL time. Mandelstam and 
Tamm have introduced the QSL time bound known as (MT) 
bound for a close quantum system as [11]

where ΔE =

�
⟨Ĥ2⟩ − ⟨Ĥ⟩2 is the variance of energy of ini-

tial state and Ĥ is the time-independent Hamiltonian describ-
ing the evolution of the closed quantum system. Another 
bound for closed quantum systems has been introduced by 
Margolus and Levitin [12]. It is known as (ML) bound, 
which is defined as follows

(8)�B
S
(t) =

(
�00 �01�(t)

�10�(t) �11

)
,

(9)�(t) = e−2B
2|�F,B|Is(t).

(10)Is(t) =

⎧
⎪⎨⎪⎩

2Γs−1
0

Γ
�

s−1

2

��
1 − 1F1

�
s−1

2
;
1

2
;
−Γ2

0
t2

4

��
s ≠ 1

Γ2

0
t2

2 2F2

�
{1, 1};

�
3

2
, 2

�
;
−Γ2

0
t2

4

�
s = 1,

(11)�F =
−4�

Γ
(

s+1

0

)(Γ0

)−(s+1)

(12)𝛽B =

⎧
⎪⎨⎪⎩

−
N2
ss
Γ(3−Δ)𝜖2(Δ−4)

4𝜋2Γ(Δ−2)22Δ−5
sin𝜋Δ 2 < Δ ∉ �

−
N2
sc
e2(Δ−4)

4𝜋(Δ−3)!222Δ−5
2 ≤ Δ ∈ �,

(13)� ≥ �QSL =
�ℏ

2ΔE
,

(14)� ≥ �QSL =
�ℏ

2E
,

s-wave superconductor

Metalic nanowire Metalic nanowirenanowire1 2

BB1 B2

Fig. 1  Schematic representation of topological qubit realized by two 
Majorana modes �

1
 and �

2
 , interacting with a fermionic environment

1 2

Fig. 2  Schematic representation of topological qubit realized by two 
Majorana modes �

1
 and �

2
 , interacting with a bosonic environment
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where E = ⟨Ĥ⟩ . By combining the two ML and MT bounds 
for the close quantum system, one can obtain a unified bound 
for QSL time as follows

In the real world, the interaction of a system with its 
environment is inevitable, so in practice, the study of open 
quantum systems is of particular importance. The evolu-
tion of an open quantum system is described using a time-
dependent master equation as

where �t is the state of the open quantum system at time t and 
Lt is the positive generator [15]. The main goal here is to find 
the minimum time required to evolve from an initial state �� to a 
target state ��+�D for an open quantum system, where � is initial 
time and �D is driving time. This minimal time is called QSL 
time. To quantify the bound of QSL time one should use an 
appropriate distance measure. In Refs. [23, 28], the authors use 
relative purity to quantify the bound for QSL time. A notable 
feature of the bound defined by them is that their bound can also 
be used for mixed initial states. The relative purity between the 
initial state �� and the target state ��+�D is defined as follows

By following the method given in Ref. [28], the ML 
bound of QSL time can be obtained as

where �i and �i are the singular value of Lt(�t) and �� , respec-
tively, and X =

1

�D
∫

�+�D
�

Xdt . By following a similar method, 
the MT bound of QSL time for open quantum system can be 
obtain as

By combining ML and MT bounds, a unified bound can 
be achieved as follows

(15)� ≥ �QSL = max

{
�ℏ

2ΔE
,
�ℏ

2E

}
.

(16)�̇�t = Lt𝜌t,

(17)f
(
� + �D

)
=

tr
(
����+�D

)

tr
(
�2
�

) .

(18)� ≥

��� f
�
� + �D

�
− 1

���tr
�
�2
�

�
∑n

i=1
�i�i

,

(19)� ≥

��� f
�
� + �D

�
− 1

���tr
�
�2
�

�
�∑n

i=1
�2

i

.

(20)
�(QSL) =max

⎧
⎪⎨⎪⎩

1
∑n

i=1
�i�i

,
1

�∑n

i=1
�2

i

⎫⎪⎬⎪⎭
×
��� f
�
� + �D

�
− 1

���tr
�
�2
�

�
.

4  Results

In this section, we find the QSL time for the topological qubit 
when they interact with the bosonic or fermionic environment. 
Let us consider the initially mixed state for topological qubit as

When the topological qubit interacts with the fermionic 
environment its time evolution reads

Now we find the singular values of �� and Lt(�t) . The sin-
gular values of �� are

where v�
x
= �(�)vx , v�y = �(�)vy and v�

z
= �(�)2vz . The singu-

lar values �i of Lt(�t) are given by

From Eqs. (23) and (24) we conclude that �1�1 + �2�2 is 
always less than 

√
�2

1
+ �2

2
 and so the ML bound on QSL time 

is tighter than MT bound for open quantum systems.
For the bosonic environment, we follow the calculations 

as the fermionic environment. We consider the initial state 
as Eq. (21). So, the state of the topological qubit at time t is 
given by

We calculate the singular values of �� and Lt(�t) for the 
bosonic environment. The singular values of �� are

where v�
x
= �(�)vx , v�y = �(�)vy and v�

z
= vz , and the singular 

values �i of Lt(�t) are

In this work, we consider the maximally coherent initial 
state with vx = vy = 1∕

√
2 and vz = 0 . So, the QSL time for 

topological qubit inside both fermionic and bosonic environ-
ments is given by

(21)�0 =
1

2

(
1 + vz vx − ivy
vx + ivy 1 − vz

)
.

(22)�F
S
(t) =

1

2

(
1 + v�

z
v�
x
− iv�

y

v�
x
+ iv�

y
1 − v�

z

)
.

(23)
�1 =

1

2

(
1 −

√
v�2
x
+ v�2

y
+ v�2

z

)
,

�2 =
1

2

(
1 +

√
v�2
x
+ v�2

y
+ v�2

z

)
,

(24)𝜅1 = 𝜅2 =
1

2
|�̇�(t)

√
v2
x
+ v2

y
+ 4𝛼(t)2v2

z
|.

(25)�B
S
(t) =

1

2

(
1 + v�

z
v�
x
− iv�

y

v�
x
+ iv�

y
1 − v�

z

)
.

(26)
�1 =

1

2

(
1 −

√
v�2
x
+ v�2

y
+ v�2

z

)
,

�2 =
1

2

(
1 +

√
v�2
x
+ v�2

y
+ v�2

z

)
.

(27)𝜅1 = 𝜅2 =
1

2
|�̇�(t)

√
v2
x
+ v2

y
|,
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We see the same relation for the fermionic and the bos-
onic environments, but from Eqs. (9), (11) and (12) we find 
different values of �(t) for the bosonic and the fermionic 
environments.

Figure 3 shows the QSL time as a function of the Ohmic 
parameter for both bosonic and fermionic environments. For 
the bosonic environment, the value of QSL time decreases to 
zero for a small value of s and increases again with increas-
ing s. The situation is slightly different for the fermionic 
environment. In this case, the QSL time begins from zero 
for small values of s and increases steadily with increasing 
s. It is important to note that in any case, the QSL time is 
less than the driving time �D . It is obvious that except for the 
interval s < 0.2 and s ∈ [0.2, 1.68] , that the QSL time of the 
fermionic case is more than the bosonic environment, the 
QSL time of the bosonic environment is always more than 
the QSL time of the fermionic case.

The QSL time versus initial time � for different values of 
the Ohmic parameter are shown in Fig. 4 for both fermionic 
and bosonic environments. Figure 4(a) shows the QSL time 
as a function of initial time � for the sub-Ohmic environ-
ment. From Fig. 4(a), one can see that for the sub-Ohmic 
environment the QSL time decreases until it reaches zero 
for both the fermionic and the bosonic case. Moreover, it is 
obvious that the QSL time for the bosonic environment is 
more than the fermionic environment. In Fig. 4(b), the QSL 
time is plotted for the Ohmic bosonic and fermionic envi-
ronments. We see that the QSL time of the fermionic envi-
ronment is more than the QSL time of the bosonic case. In 
Fig. 4(c) and (d), the QSL time is shown for both fermionic 

(28)𝜏QSL =
|𝛼(𝜏)2 − 𝛼(𝜏)𝛼(𝜏 + 𝜏D)|

1

𝜏D
∫

𝜏+𝜏D
𝜏

|�̇�(t)| .

and bosonic super-Ohmic environments. We observe that 
by increasing s the QSL time increases for both fermionic 
and bosonic environments. We can see from Fig. 4(d) that 
for the large values of s, due to the occurrence of coherence 
trapping [50] the QSL time would be gradually trapped to 
a fixed value and leads to a uniform evolution speed for the 
open system.

In Fig. 5, the QSL time is plotted versus the magnetic 
parameter B for both bosonic and fermionic environments. 
As we see, the QSL time decreases with increasing the mag-
netic parameter for sub-Ohmic, Ohmic, and super-Ohmic 
bosonic and fermionic environments.

Fig. 3  (Color online) QSL time versus Ohmic parameter s for differ-
ent bosonic and fermionic environments, B=0.4, �

D
= 1 and � = 1

(a) (b)

(c) (d)

Fig. 4  (Color online) QSL time versus initial time parameter � for dif-
ferent bosonic and fermionic environments when �

D
= 1 (a) s=0.1, 

(b) s=1, (c) s=1.5 and (d) s=2.5

(a) (b)

(c) (d)

Fig. 5  (Color online) QSL time versus magnetic field parameter B for 
different bosonic and fermionic environments when �

D
= 1 (a) s=0.1, 

(b) s=1, (c) s=1.5 and (d) s=2.5
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5  Conclusion

In this work, we have studied the QSL time for topological 
qubit when interacts with fermionic and bosonic environ-
ments. This model was considered because the topologi-
cal qubits are physically achievable. We consider the situ-
ation in which the fermionic and bosonic environment has 
the Ohmic-like spectral density. In this work, the effects of 
environmental parameter such as Ohmic parameter and the 
magnitude of magnetic field on quantum speed limit time 
has been studied. About the effect of Ohmic parameter on 
quantum speed limit time, it was shown that for both fermi-
onic and bosonic environment the quantum speed limit time 
reaches constant value for larger value of Ohmic param-
eter. Also, it was shown that the quantum speed limit time 
decreases by increasing the magnitude of magnetic field 
for both bosonic and fermionic environments with different 
Ohmic parameters. It was also shown that the quantum speed 
limit time reaches zero value for larger value of initial time 
parameter � for both sub-Ohmic and Ohmic fermionic and 
bosonic environment. In other words, the topological qubit 
open quantum system experience a speeded-up dynamics. 
For super-Ohmic bosonic and fermionic environment, the 
quantum speed limit time reaches constant value by increas-
ing initial time parameter �.
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