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Abstract
The isotropicHeisenberg two-spin-1/2model in theXXXconfiguration under an exter-
nal transverse nonuniform magnetic field is considered at thermal equilibrium. In the
context of the Heitler–London approach, the variation of the spin–spin exchange cou-
pling strength in terms of the position is adopted. The effects of the inter-spin relative
coupling distance r and nonuniform magnetic field on the thermal evolution of quan-
tum correlations are studied in detail. By tuning the coupling distance r , temperature T
and nonuniform magnetic field B, quantum correlations can be scaled in the bipartite
system. Astonishingly, we find the long sustainable behavior of geometric quantum
discord in comparison with entanglement over the coupling distance r . Moreover, we
show the existence of separable quantum states with nonzero quantum correlations in
terms of trace discord. Besides, the quantum correlations shared between the consid-
ered bipartite system parts are only the entanglement type for a fixed temperature and
suitable strong nonuniform magnetic field values. An entangled-unentangled phase
transition at T = 0.1 with threshold relative distance r f can be detected by the entan-
glement behavior in terms of B and r . A kind of correspondence between thermal
entanglement and thermal non-classical correlations for a strong value of B can be
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observed. It is our hope that this research may open a new path to consider the role of
Heitler–London approach in non-classical correlations preservation.

Keywords Thermal quantum correlations · Trace distance discord · Heitler–London
approach

1 Introduction

Quantum correlations have been intensively studied in recent decades as a fundamental
resource in quantum information theory such as quantum teleportation [1], quantum
computation [2], quantum communication [3], and so forth [4, 5]. Quantum corre-
lations reveal non-classical aspects of quantum mechanics, which has no classical
counterpart. One kind of well-known quantum correlations is quantum entanglement.
Until a few years ago, it was believed that quantum entanglement alone can explain all
quantum correlations in a typical system. In this direction, many proper quantifiers,
namely concurrence [6, 7], negativity [8, 9], global entanglement [10], Scott measure
[11, 12] and many others [13–18], have been introduced to characterize the entangle-
ment concept in the bipartite as well as multipartite quantum systems. However, some
studies have shown that entanglement cannot grasp all quantum correlations of a sys-
temwell [19, 20]. Indeed, Ollivier and Zurek showed that the quantum discord (QD) is
another promising quantifier which goes beyond entanglement [19]. Strictly speaking,
QD reveals the quantumness of correlations even in the separable mixed states [19,
20]. But despite this advantage, an analytical evaluation of this information-theoretic
measure remains, generally, very difficult. Alternatively, various metrics based cor-
relations measures such as geometric QD [21], global geometric QD [22], super QD
[23], trace distance discord (TDD) [24, 25], and quantum consonance (QC) [26, 27]
were proposed.

In recent years, the solid-state systems formed a milestone for several studies in
realm of the quantum information theory [28–34]. In the perspective of the Heisen-
berg model [35], the dynamics of quantum correlations in a three-qubit with phase
decoherence was studied [36]. Moreover, the dynamics of nonlocal correlations in an
anisotropic two-qubit Heisenberg XYZ model under the effect of the phase damping
was examined [37]. In the intrinsic decoherence framework, the temporal evolution of
quantum correlations in a two-qubit Heisenberg spin chain model with the interaction
of anti-symmetric and symmetric contributions of spin–orbit coupling [30, 31] has
been also recently studied [38]. Meanwhile, the Heisenberg spin models have been
used to characterize the thermal features of the bipartite entropic uncertainty [31, 39].
But excepting some few studies [40, 41], a varieties of Heisenberg spin chains, in var-
ious configurations like XXX, XXZ, and XYZ, have been studied without assuming
the coupling strength as a function of position. However, in view to expand the effect
of coupling distance on quantum correlations, we present in the current paper a study
of pairwise Heisenberg quantum correlations in the context of the Heitler–London
(HL) approach.

Historically, the first quantum-mechanical description of the chemical bonding is
generally credited to W. Heitler and F. London [42], who proposed it just a year
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Fig. 1 Valence bond treatment of H2 molecule. In the scheme, r1A(B) and r2A(B) denote the distance from
the first (second) electron labeled as 1(2) to the nuclei labeled as A(B), while r12 is the distance between
the electrons 1 and 2. Also, R is the distance between the nuclei A and B

after the presentation of Schrödinger equation [43, 44]. The HL approximation [42]
is typically conceived to explain the interaction between a pair of spins, resulting
from Coulomb forces between two electrons of the two adjoining atoms [45]. It is
an example of the valence bond (VB) method [46], which was introduced to describe
the bonding of a hydrogen molecule H2. It is worth mentioning that the VB method
views molecules as composed of atomic cores (nuclei plus inner shell electrons) and
bonding valence electrons (Fig. 1 scheme is devoted to the procedure of H2 molecule).
Heitler and London began with the atomic orbitals toward setting up an approximate
solution. They found that the suitable linear combinations of the hydrogen 1s wave
functions centered at two atomsA andB are given by the symmetric A1B2+B1A2 and
anti-symmetric A1B2 − B1A2 wave functions (Fig. 1). It is assumed that the atomic
orbitals A and B are suitably normalized, and therefore, the normalized functions are

obtained as ψ± = (A1B2 ± B1A2)/

√
2

(
1 ± S2

)
where the amount S = ∫

A1B1dv1

is the overlap integral [47].
The concept of exchange coupling of the cluster spins of nonsinglet atoms was

proposed in the molecular binding theory of HL and the Heisenberg theory of ferro-
magnetic [42, 48]. In literature, some few works have been done on HL approach with
exchange coupling [45–51]. On the other hand, so far no work has been published on
quantum information that uses HL exchange coupling. So given the obvious impor-
tance of this issue, we consider a two-qubit Heisenberg XXXmodel with HL exchange
coupling approach subjected to an external transverse nonuniformmagnetic field. The
purpose of the present work is to probe the behavior of quantum correlations captured
by concurrence, TDD, and QC for our realistic Hamiltonian model at thermal equi-
librium. Hence, the layout of the work is structured as follows. In Sect. 2, we briefly
present the two-qubit Heisenberg XXX spin system with HL exchange coupling for
the quantum system. In Sect. 3, the thermal evolution of mentioned quantifiers in the
background of our model has been examined in detail, under the influence of the tem-
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Fig. 2 HL coupling strength J (r) with respect to inter-spins relative distance r

perature, the external magnetic field, and the exchange coupling. In Sect. 4, we give
the main results with detailed analysis. Finally, some concluding remarks are given in
Sect. 5.

2 Hamiltonianmodel

This section is devoted to describe a systemof twonearest neighboringHeisenberg spin
model subjected to an external transverse magnetic field. The model of Hamiltonian
is given by [52]

H = 1

2

[ (
Jxσ

x
1 σ x

2 + Jyσ
y
1 σ

y
2 + Jzσ

z
1σ z

2

) + B
(
σ z
1 − σ z

2

) ]
, (1)

where σ
j
i=1,2 with j ∈ {x, y, z} are the 2D-Pauli spin matrices, while B is the nonuni-

form magnetic field directed along the z-axis. To proceed further, we concentrate in
our study on the case of the isotropic XXX configuration of Heisenberg antiferromag-
netic spin chain characterized by Jx = Jy = Jz = J > 0. Besides, we assume that
the exchange spin constant J is identical to HL coupling, namely J (r), given as [47]

J ≡ J (r) =
(
56

45
− 4γ

15
− 4

15
ln r

)
r3e−2r + O

(
r2e−2r

)
, (2)

where γ = 0.5772 is Euler’s constant and r refers to the inter-spins relative dis-
tance defined as the ratio of the distance between spins R and Bohr radius a0 =
�
2/mee

2 (r = R/a0). Figure 2 displays the plot of the function J (r) in terms of the
inter-spins relative distance r .
So, the modified Hamiltonian for XXX configuration with HL coupling in the two-
qubit standard computational basis B ≡ {|00〉, |01〉, |10〉, |11〉} can be written under
the following matrix form
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H =

⎛
⎜⎜⎜⎝

J (r)
2 0 0 0
0 − J (r)

2 + B J (r) 0
0 J (r) − J (r)

2 − B 0
0 0 0 J (r)

2

⎞
⎟⎟⎟⎠ . (3)

The diagonalization of H leads to the following eigenspectrum and the associated
eigenvectors

E1,4 = J (r)

2
, |ψ1〉 = |00〉, |ψ4〉 = |11〉, (4a)

E2 = − J (r)

2
+ η, |ψ2〉 = 1√

1 + ξ2
(|10〉 + ξ |01〉) , (4b)

E3 = − J (r)

2
− η, |ψ3〉 = 1√

1 + ξ2
(|01〉 − ξ |10〉) , (4c)

where η := √
J 2(r) + B2 and ξ := (B + η) /J (r). The kets |0〉 and |1〉 are taken here,

respectively, as the spin-up and spin-down states and {|0〉, |1〉} form a computational
basis of a qubit.

3 Thermal quantum correlations over HL approximation

To quantify the amount of quantum correlations in a bipartite quantum system, var-
ious indicators are suggested in the literature [6–19]. In our study, we employ three
main figures of merit, namely concurrence, TDD, and QC. To describe the behavior
of the quantum correlations, we calculate firstly the thermal state of our mentioned
Hamiltonian which describes a system state in equilibrium at temperature T .

3.1 Thermal state

In order to study the thermal behavior of quantum correlations in a two coupled spin-
1/2 Heisenberg model, we will be focused on systems that are in a state of thermal
equilibrium. Such state called thermal state and described by the Gibbs density matrix

�(T ) = 1

Z exp (−βH), (5)

with Z = Tr
[
exp (−βH)

]
being the partition function and the inverse temperature

β = 1/(kBT ) wherein kB is the Boltzmann’s constant. Throughout this paper, we use
kB = 1 for convenience.
The matrix form of �(T ) can be obtained through the spectral decomposition of the
Hamiltonian (3). Accordingly, for the considered two-qubit system, Eq. (5) can be
rewritten as
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�(T ) = 1

Z
4∑

m=1

e−βEm |ψm〉〈ψm |. (6)

Reporting Eqs. (4a-4c) in Eq. (6), the density matrix describing the suggested system
in thermal equilibrium can be written in the standard computational basis B as

�T = 1

Z

⎛
⎜⎜⎝
a 0 0 0
0 b+ c 0
0 c b− 0
0 0 0 a

⎞
⎟⎟⎠ , (7)

where

a = e
−β J (r)

2 ,

b± = e
β J (r)

2

(
e±βη + ξ2e∓βη

)
/(1 + ξ2),

c = −2ξe
β J (r)

2 sinh (βη) /(1 + ξ2),

Z = 2a + b+ + b−.

3.2 Trace distance discord

The concept of quantum correlations beyond entanglement can be quantified by quan-
tum discord [19]. It measures all non-classical correlations in a quantum bipartite
system. Let ρab be a state describing any bipartite system ab in a composite Hilbert
space H = Ha ⊗ Hb, where Ha and Hb are the Hilbert spaces corresponding to the
subsystems a and b of ab, respectively. The total correlation shared between a and b
can be quantified by the quantum mutual information defined as [53],

I
(
ρab

)
:= S

(
ρa) + S

(
ρb

)
− S

(
ρab

)
, (8)

where the quantity S(ρ) = −Tr
[
ρ log2 ρ

]
stands for the von Neumann entropy and

ρa(b) = Trb(a)[ρab] denotes the marginal state describing the subsystem a(b), which
is determined by tracing out the subsystem b(a). Given that a local measurement was
performed on the party b, the quantum discord is given by the quantity [19, 20]

D
(
ρab

)
:= I

(
ρab

)
− CC

(
ρab

)
, (9)

which is expressed as the difference between the mutual information I
(
ρab

)
and

classical correlation CC
(
ρab

)
of the bipartite state ρab, with

CC
(
ρab

)
= S

(
ρa) − min{


b
( j)

}
∑
j

p j S
(
ρa| j) . (10)
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We look that the optimization in Eq. (10) is performed over the set
{

b

( j)

}
com-

prising all one-dimensional orthogonal projectors. The density matrix ρa| j =
p−1
j Trb

[(
1a ⊗ 
b

( j)

)
ρab

(
1a ⊗ 
b

( j)

)]
refers to the post-measurement state of a

after obtaining outcome j on subsystembwith probability p j = Tr
{(

1a ⊗ 
b
( j)

)
ρab

(
1a ⊗ 
b

( j)

)}
, and 1a is the 2 × 2 identity operator on the subsystem a. In order to

obtain a simple and reliable analytical result of the quantum discord, the best way
is to treat this quantifier from a geometric perspective. One of the reliable geometric
measures of quantum discord is that based on TDD concept which has been proposed
recently [21, 24]. It quantifies the quantum correlation through the nearest Schat-
ten 1-norm distance between the state under study and the quantum-classical state

ρqc =
2∑

k=1

pkρ
a
k ⊗ |k〉b〈k| with zero discord [54, 55]. For a bipartite state ρab, TDD

is defined by [21, 24].

DT(ρab) = min
ρqc∈�0

‖ρab − ρqc‖1, (11)

where�0 denotes the set of all zero discord states and ‖.‖1 is the usual trace norm. An
explicit formula of TDD was derived when the shape of considering two-qubit state
ρab is X-structured [25]. It is given by

DT(ρab) =
√

max{R2
33, R

2
22 + R2

30} · R2
11 − min{R2

11, R
2
33} · R2

22

max{R2
33, R

2
22 + R2

30} − min{R2
11, R

2
33} + R2

11 − R2
22

, (12)

where Rμν = 〈σ a
μ ⊗ σ b

ν 〉 in Eq. (12) being the components of the correlation matrix
occurring after decomposing the state ρab in the Fano–Bloch representation as [56]

ρab = 1

4

3∑
μ,ν=0

Rμνσ
a
μ ⊗ σ b

ν . (13)

In the case of the thermal state �T , which belongs to X-states family, its corresponding
TDD can be easily computed. Indeed, by making use of Eqs. (7), (12), and (13), one
straightforwardly finds that

DT (�T ) = 4e
β J (r)

2

Z
|ξ |(

1 + ξ2
) sinh (βη). (14)

3.3 Concurrence

To quantify the quantum entanglement contained in an arbitrary two-qubit mixed state
ρab, shared between two subsystem a and b, we present here the concurrence [6, 7].
It can be evaluated by using the formula
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C(ρab) = max
{
0, λ1 − λ2 − λ3 − λ4

}
, (15)

where λi represents the square roots of the eigenvalues of the operator ρab
(
σ a
y ⊗ σ b

y

)

(�ab)∗
(
σ a
y ⊗ σ b

y

)
in descending order. Here (ρab)∗ denotes the complex conjugate of

the density matrix ρab in the standard two-qubit computational basis B, while σ
i=a,b
y

being the well known 2D-Pauli spinmatrix for the two level systems. For the two-qubit
X-shaped thermal density operator (7), the amount of the thermal entanglement can
be straightforwardly evaluated. By using Eqs. (7) and (15), one finds

C (�T ) = 2e
β J (r)

2

Z max

{
0,

2|ξ |
1 + ξ2

sinh (βη) − e−β J (r)
}

. (16)

3.4 Quantum consonance

In the following, we deal with the QC [26] as quantum correlations quantifier. This
measure is defined as a sum of the entanglement and some other quantum correla-
tions after omitting, by means of a local unitary operations, the local coherence from
the total one [27]. By considering a bipartite quantum state ρab, the QC is defined
mathematically according to the following expression

QC (ρab) =
∑
i jmn

∣∣∣ρc
i jmn (1 − δim)

(
1 − δ jn

)∣∣∣ , (17)

where ρc = (U1 ⊗U2) ρab (U1 ⊗U2)
† stands for the transformed state achieved

by making specific local unitary operations U1 and U2 on the original state ρab.
Interestingly, QC is simplified for a two-qubit X-state as the sum of off-diagonal
terms of the density matrix [31].
The QC for thermal state �T can be easily computed because it belongs to X-states.
By using (7), we indeed find that

QC (�T ) = 4e
β J (r)

2

Z
|ξ |(

1 + ξ2
) sinh (βη), (18)

which is identical to the analytical expression of TDD (14). Hence, we restrict in our
analysis to compare only the thermal TDD behavior with the thermal entanglement.

4 Results and discussions

In the present section, we examine the behavior of thermal quantum correlations in
the isotropic two-qubit XXX Heisenberg model in the HL approach described by the
thermal state (7). More precisely, we are concerned in our analysis by studying the
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Fig. 3 (Color online) XXX model for fixed temperature T = 0.1. TDD (a) and concurrence (b) versus the
HL coupling relative distance r and nonuniform magnetic field B

quantum correlations quantified by the geometric trace discord and quantum entangle-
ment over the HL coupling relative distance r with the varying parameters; absolute
temperature T and nonuniform magnetic field B.
In Fig. 3, we have plotted the TDD (14) and the concurrence (16) as functions of the
nonuniform magnetic field B and the inter-spins relative distance r for fixed value
of the absolute temperature T = 0.1. The results show that the thermal quantum
correlations amounts are always zero for r → 0 whatever the B values. That is to
say that there are no pairwise thermal quantum correlations when the two spins are
uncoupled J (r) → 0. This happens due to the fact that for r → 0, the two-spin
system is uncoupled. We notice also that for a fixed value of B, the amounts of
quantum correlations become more significant for r = 1.357 wherein the exchange
coupling constant J (r) is maximal (see Fig. 2). Figure 3 depicts that the quantumness
of correlations undergoes an amplitude decreasing with B advancing. Furthermore,
it turns out that as HL coupling relative distance increases, both entanglement and
geometric quantum discord slowly vanish after a certain range of r . It is interesting to
notice that for T = 0.1, the entanglement dies at r0 ≈ 3 for B = 0 while the TDD
sustains over the larger ranges of HL coupling relative distance r and weak values of
B. The entanglement vanishingmoves away from r0 when the intensity of B increases.
This can be perceived by the fact that, for β = 10, that is T = 0.1, and fixed values
of B, an entangled-unentangled phase transition takes place for a threshold value r f
of HL relative distance r .
According to Eq. (16), this threshold value r f can be achieved by resolving the fol-
lowing nonlinear equation

e10J (r f ) sinh
(
10η f

) = 1 + ξ2f

2|ξ f | , (19)
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(a) (b)

Fig. 4 (Color online) Thermal quantum correlations over the HL coupling relative distance r with fixed
T = 0.1 and B = 0.7 (a) and B = 5 (b). Here, dotted red line represents the entanglement and dashed blue
line represents the TDD

where η f =
√
J 2(r f ) + B2 and ξ f = (

B + η f
)
/J (r f ). It is worth of mentioning

that TDD (QC) reveals the non-classical correlations even in the absence of the entan-
glement. This implies that the TDD can capture the quantum correlations even in the
separable mixed states.
Figure 4 shows that for T = 0.1 and B = 0.7 (Fig. 4a) and B = 5 (Fig. 4b), the TDD
and concurrence are considerably matched. This typical behavior emerges due to the
link between the quantum entanglement and the quantum coherence concept, quanti-
fied here by QC, which is a fundamental manifestation of the quantum superposition
principle on which based the quantum entanglement [57].

The thermal behaviors of TDD (QC) and concurrence as functions of the HL cou-
pling distance r and nonuniform magnetic field B are plotted in Figs. 5 and 6, where
the temperature is chosen to be T = 0.3 and T = 0.6, respectively. As can be seen
in Fig. 5, the TDD behavior is similar to the previous case (Fig. 3), which means
TDD decreases gradually with increasing B; however, the only difference is that its
maximum value is less than the previous case. The entanglement behavior here is
different from TDD. The amount of the magnetic field in which entanglement reaches
its maximum value is larger than the previous case. It is interesting to note that, as the
temperature increases, this difference becomes more apparent (see Fig. 6). As seen
from Fig. 6, when B < 2, the entanglement is zero while TDD reaches its maximum
value in this interval. In other words, although the quantum correlation captured by
TDD achieves its maximum in this range, the entanglement does not have any role in
this correlation. Moreover, it is observed that the non-classical correlation quantified
by TDD decreases whereas entanglement increases to reaches its maximum value to
coincide, therefore, with TDD for strong magnetic field values. This indicates that
increasing the nonuniform magnetic field plays a positive role in the production of the
entanglement in high temperatures.
Furthermore, by comparing Figs. 3, 4, 5 and 6, it can be found that the behavior of
both quantum correlations is the same with varying the HL coupling distance r . One
can note that when the HL coupling distance r increases, the quantum correlations
after reaching their maximum value then monotonically decrease down to zero. The
physical reason for this observation may be rooted in the behavior of HL coupling

123



Non-classical correlations in a Heisenberg spin model… Page 11 of 15 235

Fig. 5 XXX model for fixed temperature T = 0.3. TDD (a) and concurrence (b) versus r and B

Fig. 6 XXX model for fixed temperature T = 0.6. TDD (a) and concurrence (b) versus r and B

strength J (r) in terms of the inter-spins relative distance r (see Fig. 2). On the other
hand, the correspondence of TDD and thermal entanglement for sufficient magnetic
field values may be understood by the fact that the strong nonuniform magnetic field
induces entangled phase in the two-qubit (antiferromagnetic XXX model) thermal
state.

Finally, Fig. 7 shows the thermal evolutionofTDDandconcurrenceover the nonuni-
form magnetic field B and temperature with fixed HL coupling relative distance r . As
can be seen, the behaviors of TDD and entanglement are almost the same although the
rate of changes in entanglement is slower than that of TDD. Also, one can observe that
for any givenmagnetic field, the entanglement is equal to zero for temperatures greater
than a certain threshold temperature. It is intriguing to note that by increasing B, the
critical temperature above that entanglement disappears increases. That is to say, the
high value of nonuniform magnetic field plays a crucial role in sustaining entangle-
ment at high temperatures; however, the role of the magnetic field is destructive at low
temperatures (see Fig. 3). It seems that the possibility of maintaining entanglement in
such a quantum system at high temperatures requires stronger magnetic fields.
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Fig. 7 XXX model for fixed HL relative distance r = 1.357. TDD (a) and concurrence (b) versus B and
absolute temperature T

5 Concluding remarks

In summary, we have investigated the thermal quantum correlations shared between
the bipartite system parts in the ambit of the Heitler–London scheme. We dealt with
a system composed of two XXX Heisenberg spins subjected to a transverse exter-
nal nonuniform magnetic field. For T = 0.1, we have found that the amplitude of
quantum correlations decrease with nonuniform magnetic field increasing. Further-
more, it is observed that the TDD surpasses the entanglement for small values of B
and therefore persists over the large range of HL coupling relative distance r in com-
parison with entanglement. Besides, the entanglement behavior in terms of B and r
detects an entangled-unentangled phase transition. When the temperature increases,
TDD retains the same appearance but with a reduced amount. Correspondingly, the
thermal entanglement exhibits a completely different behavior to the one of T = 0.1,
especially for a small range of B. However, there is a kind of correspondence between
thermal entanglement and thermal non-classical correlations for a strong value of B.
TDD can detect the quantum correlations even in the absence of the entanglement,
which is generally an expected behavior of quantum discord. The obtained results
confirmed that the suitable strong value of the nonuniformmagnetic field helps to sus-
tain entanglement even for higher absolute temperatures. However, the magnetic field
has a destructive effect on the entanglement at low temperatures. We mention that the
adopted model may be useful for designing quantum wires, data bus, solid-state gates,
and quantum processors [41]. Therefore, we think that our observations may provide a
new insight into the dynamics of non-classical correlations in Heisenberg spin chains
and shed light on the maintenance of quantum correlations within the framework of
real quantum systems, especially solid-state ones.

As a prolongation, the present study can be extended to another spin chain con-
figurations such as XXZ and XYZ in the presence of the Dzyaloshinskii–Moriya and
Kaplan–Shekhtman–Entin–Wohlman–Aharony interactions [30, 32, 38] to know the
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behavior of quantum discord and entanglement in the Heitler–London approach. We
think this can be useful for quantum information processing.
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