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Abstract
The uncertainty principle bounds the measurement precision of two complementary
variables and the bipartite scenario of quantum-memory-assisted entropic uncertainty
relation (QMA-EUR)has been extensively studied.We investigate the tight uncertainty
bound (UB) of a tripartite scenario of QMA-EUR in a system consisting of three qubits
coupled either to their independent random telegraph noises (RTNs) or to a common
source of RTN. For both the initial GHZ- andW -type states, the results show that the
UB always increases monotonically with time in the Markovian regime and oscillates
in the non-Markovian regime.Moreover, theUBcan be significantly reduced due to the
non-Markovian effects in the finite-time region and approaches the same asymptotic
values in the infinite-time limit for both Markovian and non-Markovian cases.
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1 Introduction

The uncertainty principle plays a fundamental role in the quantum theory [1]. Apart
from the conventional uncertainty relation expressed via the variance of measurement
outcomes [2], the uncertainty principle can also be expressed in terms of the Shannon
entropy. The most well-known entropic uncertainty relation (EUR) was proposed
by Deutsch [3]. Its lower bound was improved by Kraus [4] and later was strictly
proven by Maassen and Uffink [5]. However, this EUR holds only for the situation
that the observer can access only to the classical information. In a pioneer work,
Berta et al. showed that the measurement uncertainty can be further decreased by
using the quantum information stored in a memory particle B which is entangled with
the particle A to be measured [6]. This leads to a new uncertainty relation known
as bipartite quantum-memory-assisted entropic uncertainty relation (QMA-EUR). By
denoting X and Z as two incompatible observables, the QMA-EUR can be expressed
as [6]

S(X |B) + S(Z |B) ≥ log2
1

c
+ S(A|B), (1)

inwhich S(A|B) is the conditional vonNeumannentropyofρAB , c = max{i, j} |〈xi |z j 〉|2
is the incompatibility of X and Z , with {|xi 〉} and {|z j 〉} being the eigenstates of
X and Z , respectively. Moreover, S(O|B) = S(ρOB) − S(ρB) (O = X or Z )
is the conditional von Neumann entropy of the post-measurement state ρOB =∑

i (�
i
A⊗1B)ρAB(�i

A⊗1B) aftermeasuringO on particle A, where themeasurement
operator �i

A = |xi 〉〈xi | (|zi 〉〈zi |) for O = X (Z ).
In the last decade, generalizing the EUR has been the subject of many researches in

the field of quantum information science and a great deal of efforts have been devoted
to tightening the lower bound of the QMA-EUR [7–22]. Moreover, the dynamics of
the measurement uncertainties have been investigated for various quantum systems
[23–46]. On the other hand, the bipartite QMA-EURcan be generalized to the tripartite
scenario inwhich two extra particles B andC are played as the quantummemories [47–
51]. The tripartite QMA-EUR could be described by the uncertainty game between
three players Alice (A), Bob (B), and Charlie (C). First, a quantum state ρABC is
shared among them. Then, Alice measures one of two non-commuting observables
X and Z on her particle A. If Alice measures X , then it is Bob’s task to minimize
his uncertainty about X , and if she measures Z , then it would be Charlie’s task to
minimize his uncertainty about Z . The tripartite QMA-EUR mathematically can be
written as S(X |B) + S(Z |C) ≥ log2(1/c) [6], and recently, some works have been
put into improving its bound [50, 51]. In particular, in Ref. [51], a tight uncertainty
bound (UB) for the tripartite QMA-EUR was obtained as

S(X |B) + S(Z |C) ≥ log2
1

c
+ S(A|B) + S(A|C)

2
+ max{0, δ}, (2)
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where

δ = 1

2
[I (A : B) + I (A : C)] − [I (X : B) + I (Z : C)], (3)

with I (A : B) = S(ρA) + S(ρB) − S(ρAB) being the quantum mutual information,
I (X : B) = S(ρB) − ∑

i pi S(ρB|i ) being the Holevo quantity [52], and likewise for
I (A : C) and I (Z : C). Here, S(ρB|i ) = TrAC (�i

AρABC�i
A)/pi is the collapsed

state of B after Alice measuring X on particle A, and pi = Tr(�i
AρABC�i

A) is the
probability of the outcome i . It has been shown that the UB of Eq. (2) is tighter than
the other bounds that have been introduced in the literature [53–55]. For a detailed
review on the bipartite and tripartite QMA-EUR as well as their applications, see Refs.
[8, 9].

In the real situation, any quantum system will be affected by its surrounding envi-
ronments, which induces decoherence of the state in most cases [56–58]. Thus, it
is crucial to investigate the influence of environmental noises on the QMA-EUR in
different physical systems. Although the decohering effects on the QMA-EUR have
been widely studied in the bipartite systems [59–67], the tripartite QMA-EUR has
been investigated only in few studies [53–55]. Motivated by this fact, we investigate
dynamics of the tripartite QMA-EUR in an explicit system consisting of three non-
interacting qubits and subject to a classical random telegraph noise (RTN). Indeed,
RTN can be caused by charge trapping in the surfaces of thin films [68]. In addi-
tion, the experimental investigation of RTN has revealed dephasing influences in the
dynamics of open systems, resulting in rapid quantum correlations degradation [69].
In this work, we focus on the dephasing effect of RTN because it is common in many
quantum information protocols [70, 71]. Two different initial states are considered,
i.e., the three-qubit GHZ- andW -type states. Here, the classical noise is characterized
by a stochastic Hamiltonian with a coupling term mimicking the RTN, and the time
evolution of the system can be obtained by averaging over the noise [72–76]. Specifi-
cally, the three qubits coupled either to their independent RTNs or to a common source
of RTN will be considered.

This paper is organized as follows. In Sect. 2, the physical model consisting of three
qubits subject to a classical RTN will be explained. In Sect. 3, dynamics of the UB for
the tripartite QMA-EUR with two different initial states is analyzed. The results will
be summarized in Sect. 4.

2 Solution of themodel

In this paper, we consider a physicalmodel consisting of three non-interacting identical
qubits subject either to three independent RTNs or to a common source of RTN [72,
73]. For the independent RTNs, each qubit of the system interacts independently
with its own environment, whereas for the common RTN, the three qubits are coupled
simultaneously to the same environment.A schematic diagram for these configurations
is shown in Fig. 1. The system’s Hamiltonian can be written as [72, 73]
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Fig. 1 A schematic diagram of three qubits interacting with independent (left) and common (right) RTN.
The black dashed lines represent the entanglement between the qubits and the red wavy lines show the
coupling of each qubit to the RTN (Color figure online)

H(t) = HA(t) ⊗ 1BC + HB(t) ⊗ 1AC + HC (t) ⊗ 1AB, (4)

where 1BC is the identity operator in the Hilbert space of BC , and likewise for 1AC

and 1AB . Moreover, HL(t) stands for the single-qubit Hamiltonian for qubit L ∈
{A, B,C}, which reads [77, 78]

HL(t) = ε1L + vηL(t)σ x
L , (5)

where ε denotes the qubit energy without noise, v is the coupling constant of the
qubit L to the RTN, and σ x

L is the first Pauli operator for the qubit L . Here, the
RTN corresponds to a stochastic process characterized by ηL(t) describing a coin-flip
variable switching randomly between the possible values ±1 with rate γ .

The time-dependency of H(t) in Eq. (4) results in a stochastic dynamics of the
qubits due to the random nature of the telegraph processes. As a consequence, we
need to take an average over differential noise configurations to acquire the time-
evolved state under the influence of RTN [77–79]. To be explicit, for the given noise
configuration {η} = {ηA, ηB, ηC }, the evolution of the system’s density operator can
be expressed as

ρ(t) = 〈U ({η}, t)ρ(0)U †({η}, t)〉{η}, (6)

withρ(0) being the initial state of the systemandU ({η}, t) is the corresponding unitary
evolution operator for the given noise configuration {η}. Since there are no direct
interactions among the three qubits,U ({η}, t) can be written as the tensor products of
the single-qubit evolution operators,U ({η}, t) = UA(ηA, t)⊗UB(ηB, t)⊗UC (ηC , t).
It should be mentioned that ηA �= ηB �= ηC corresponds to the independent RTNs and
ηA = ηB = ηC corresponds to the common RTN. By setting � = 1,UL(ηL , t) can be
expressed as [72]

UL(ηL , t) = e−i
∫ t
0 HL (t ′)dt ′ = e−iεt

(
cosφL(t) i sin φL(t)
i sin φL(t) cosφL(t)

)

, (7)
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where φL(t) = −v
∫ t
0 ηL(t ′)dt ′ is the stochastic phase picked up during the time

interval [0, t]. Then one can obtain the time-evolved density operator ρ(t) of Eq. (6)
by first estimating the averaged terms of the type 〈[cosφ(t)]m[sin φ(t)]k〉 (m, k ∈ N),
which can be expressed in terms of the average of the characteristic function of the
noise phase 〈einφ(t)〉 (n ∈ N) as [80]

〈
einφ(t)

〉
= 〈cos nφ(t)〉 + i 〈sin nφ(t)〉 , (8)

where 〈sin nφ(t)〉 = 0 and

〈cos nφ(t)〉 = Gn(t) = e−γ t [ cosh(δnvt) + γ
δnv

sinh(δnvt)
]
, (9)

where δnv = √
γ 2 − (nv)2. Note that when γ > nv (weak coupling), Gn(t) decays

exponentially with time t and the evolution is Markovian. But when γ < nv

(strong coupling), δnv = i |δnv|, hence cosh(δnvt) = cos(|δnv|t) and sinh(δnvt) =
i sin(|δnv|t), then Gn(t) oscillates with time and the evolution will be non-Markovian
[81].

3 Results and discussion

In this section, we explore effects of the RTN on the UB of the tripartite QMA-EUR
for the system introduced above. Without loss of generality, we consider two types
of initial states, i.e., the three-qubit GHZ- and W -type states. As illustrated in Fig. 1,
the dynamics of the UB will be investigated for both the cases of independent and
common RTN, and herein, the incompatible observables measured on particle A are
taken to be X = σ x and Z = σ z .

3.1 The initial GHZ-type state

Let us consider the initial GHZ-type state of the following form

ρG(0) = r |GHZ〉〈GHZ| + 1 − r

8
1ABC , (10)

where |GHZ〉 = (|000〉+|111〉)/√2 is the three-qubitGHZstate, 0 ≤ r ≤ 1 represents
the corresponding ratio of |GHZ〉 in ρG(0), and 1ABC is the identity operator.

For the initial state ρG(0), the time-evolved states have been obtained in Ref. [72]
when the three qubits are coupled to their independent environments (ie) and common
environment (ce) of RTN (see also Appendix A), based on which one can obtain the
UB of the tripartite QMA-EUR as follows:

Ub

[
ρie
G(t)

]
= 1 + H2

(
1 + rG2

2(t)

2

)

, (11)

123



356 Page 6 of 16 H. Dolatkhah et al.

Fig. 2 The UB of the tripartite QMA-EUR versus γ t and r when the three qubits are initially prepared in
the GHZ-type state ρG (0) and are coupled to their independent RTNs, where the parameter is chosen to be
γ /v = 10 (left) and γ /v = 0.1 (right)

and

Ub[ρce
G (t)] = 1 + 1

2
H2

(
1 + rG4(t)

2

)

+ 1

2
H2

(
1 + r

2

)

+ max
{
0, δceG (t)

}
, (12)

where H2(x) = −x log2 x − (1− x) log2(1− x) denotes the binary Shannon entropy
function and

δceG (t) = H2

(
2 + r + rG4(t)

4

)

− 1

2
H2

(
1 + rG4(t)

2

)

− 1

2
H2

(
1 + r

2

)

. (13)

For the case that the three qubits are coupled to their independent RTNs, the UB of
the tripartiteQMA-EUR (11) as functions of the rescaled time γ t and the initial purity r
is plotted in Fig. 2. Two different values of γ /v, namely γ /v = 10 corresponding to the
Markovian dynamics and γ /v = 0.1 corresponding to the non-Markovian dynamics,
are considered. For the special case r = 0 which corresponds to a maximally mixed
state, the UB remains the constant 2 in the whole time region. For r �= 0, as can be
seen from Fig. 2, the UB increases monotonically with time in the Markovian regime
and approaches the asymptotic value 2 when γ t → ∞. In the non-Markovian regime,
however, the UB oscillates with time in the finite-time region due to the memory
effects caused by the temporal correlations occurring in the time evolution of each
qubit. With the increasing time, the memory effects of the RTN will be weakened and
its detrimental effects turn to dominate, so the UB still approaches its asymptotic value
2 in the infinite-time limit. This indicates that the memory effects of the RTN play a
positive role in reducing the measurement uncertainty in the finite-time region.

When the three qubits are coupled to a common source of RTN, we show in Fig. 3
dependence of the UB (12) on γ t and r . For such a case, due to the RTN-mediated
indirect interactions among the qubits, the dynamical behaviors of the UB may be
complicated. As can be seen from Fig. 3, it still remains the constant 2 when r = 0,
regardless of the Markovian or non-Markovian nature of the noise. When r �= 0, one
can see that in the Markovian regime, the UB shows a similar behavior to that of the
independent RTNs, and the only difference is that its asymptotic value in the infinite-
time limit decreases monotonically with the increase of r . In the non-Markovian
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Fig. 3 The UB of the tripartite QMA-EUR versus γ t and r when the three qubits are initially prepared in the
GHZ-type state ρG (0) and are coupled to a common RTN, where the parameter is chosen to be γ /v = 10
(left) and γ /v = 0.1 (right)

regime, the UB also oscillates with time and approaches the same asymptotic values
as those in the Markovian regime. But the amplitudes of oscillations are more evident
than those for the independent RTNs. This shows that for the initial three-qubit GHZ-
type state, the common RTN is beneficial for reducing the measurement uncertainty
compared to the independent RTNs.

3.2 The initialW-type state

In this subsection, we turn to consider the case that the three qubits are prepared
initially in the following generalized W -like state

ρW (0) = r |W 〉〈W | + 1 − r

8
1ABC , (14)

where |W 〉 = (|001〉 + |010〉 + |100〉)/√3 is the three-qubit W state and 0 ≤ r ≤ 1
is the ratio of |W 〉 in ρW (0).

For such an initial state, the time-evolved state for both the cases of the independent
and common RTN can be found in Ref. [72] (see also Appendix A). Therefore, one
can obtain the UB of the tripartite QMA-EUR as

Ub[ρie
W (t)] = 3

2
−

∑

i=0,1

[
3 − rG2

2(t) + (−1)i
(t)

12
log2

3 − rG2
2(t) + (−1)i
(t)

12

]

+ 1

2
H2

(
3 + 2r + rG2

2(t)

6

)

− H2

(
x(t)

6

)

+ max{0, δieW (t)},

Ub[ρce
W (t)] = 1 − 1 − r

4
log2

1 − r

4
− 3 + 2r + 3rG4(t)

12
log2

3 + 2r + 3rG4(t)

12

− H2

(
x(t)

6

)

−
∑

i=+,−

[
yi (t)

24
log2

yi (t)

24

]

+ max{0, δceW (t)},

(15)
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Fig. 4 The UB of the tripartite QMA-EUR versus γ t and r when the three qubits are initially prepared in
the W -type state ρW (0) and are coupled to their independent RTNs, where the parameter is chosen to be
γ /v = 10 (left) and γ /v = 0.1 (right)

where

δieW (t) = H2

(
ε(t)

6

)

− H2

(
x(t)

6

)

+ 3 + 2r + 3rG2
2(t)

12
log2

3 + 2r + 3rG2
2(t)

12

+ 3 − 2r − rG2
2(t)

12
log2

3 − 2r − rG2
2(t)

12
− 3 + rG2

2(t)

6
log2

3 + rG2
2(t)

12

+
∑

i=0,1

[
3 − rG2

2(t) + (−1)i
(t)

12
log2

3 − rG2
2(t) + (−1)i
(t)

12

− 3 − rG2
2(t) + (−1)i2rG2(t)

12
log2

3 − rG2
2(t) + (−1)i2rG2(t)

12

]

,

δceW (t) = 1 − r

4
log2

1 − r

4
+ H2

(
ε(t)

6

)

− H2

(
x(t)

6

)

+ 3 + 2r + 3rG4(t)

12
log2

3 + 2r + 3rG4(t)

12

− 6 − r + 3rG4(t)

12
log2

6 − r + 3rG4(t)

24

+
∑

i=+,−

[
yi (t)

24
log2

yi (t)

24
− π i (t)

24
log2

π i (t)

24

]

,

(16)

and the parameters
(t), ε(t), x(t), y±(t), and π±(t) appeared in the above equations
are given by


(t) = 2r
√
1 − G2

2(t) + G4
2(t), ε(t) = 3 + r

√
4 + G2

2(t), x(t) = 3 + rG2(t),

y±(t) = 6 + r − 3rG4(t) ± r
√
9(G4(t) − 1)2 + 16G2

2(t),

π±(t) = 6 + r − 3rG4(t) ± 4rG2(t).

(17)

To show effects of the independent RTNs on the UB of the QMA-EUR for the
initial three-qubitW -type state, we display in Fig. 4 dependence of Ub[ρie

W (t)] on the
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Fig. 5 The UB of the tripartite QMA-EUR versus γ t and r when the three qubits are initially prepared in
theW -type state ρW (0) and are coupled to a common RTN, where the parameter is chosen to be γ /v = 10
(left) and γ /v = 0.1 (right)

rescaled time γ t and purity r , where the left panel is plotted for the Markovian case
and the right panel is plotted for the non-Markovian case. When r = 0, the UB always
remain the constant 2. When r �= 0, it can be found that for the Markovian case, the
UB increases monotonically with the evolving time, and for the non-Markovian case,
the memory effects of the RTNs induce oscillations of the UB. By comparing Fig. 4
with Fig. 2, one can also note thatUb[ρie

W (t)] is smaller thanUb[ρie
G(t)]. This indicates

that theW -type state is beneficial for reducing the measurement uncertainty compared
to the GHZ-type state. The physical reason for such an observation may be rooted in
the fact that the GHZ state is significantly more fragile under environmental coupling
than theW state [82]. In particular, there is no pairwise entanglement in the GHZ state,
while there is pairwise entanglement between any two qubits of the W state.

Finally, we see the case that the three qubits are coupled to a common source of
RTN. The corresponding dynamical behaviors of the UB of the tripartite QMA-EUR
are shown in Fig. 5. In theMarkovian regime, one finds again themonotonic increase of
the UB with time, while in the non-Markovian regime, the UB also oscillates with the
evolving time. But different from the case of the independent RTNs, one can see that
in the non-Markovian regime of the common RTN, there exist two different patterns
of oscillations for which we term them as the main oscillation and sub-oscillation, that
is, there is an extra shallow valley between the two deep valleys.

4 Summary

Anumber ofworks have been devoted to exploring quantum correlations for a tripartite
systemcoupled to different sources of environments, and itwas found that their dynam-
ical behaviors are strongly dependent on the types of the system-environment coupling
[83–96]. As the measurement uncertainty in a QMA-EUR is intimately related to
quantum correlations of the system, it is expected that it may also be affected by the
system-environment coupling. In this paper, we have investigated a tight UB of the
tripartite QMA-EUR in an explicit system consisting of three non-interacting qubits
which are coupled either to independent or to a common source of RTN. We have
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considered two types of initial states, i.e., the GHZ- andW -type states. It was shown
that the behaviors of the UB strongly depends on the nature of the system-environment
coupling. Specifically, the UB increases monotonically with time in the Markovian
regime and oscillates with time in the non-Markovian regime. Moreover, the mem-
ory effects of the non-Markovian dynamics are beneficial for reducing the UB in the
finite-time region. In the infinite-time region, however, the detrimental effect of the
RTN dominates and thus the UB approaches the same asymptotic values, regardless
of the Markovian or non-Markovian nature of the system dynamics.
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AppendixA: Time-evolvedstates for the initialGHZ-andW-type states

For the initial GHZ-type state of Eq. (10), the explicit form of the time-evolved state
has been obtained in Ref. [72].We list it here for facilitating discussion of the tripartite
QMA-EUR in the main text. First, for the case that the three qubits are coupled to
their independent environments (ie) and common environment (ce), one has [72]

ρie
G(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α(t) 0 0 0 0 0 0 σ(t)
0 θ(t) 0 0 0 0 β(t) 0
0 0 θ(t) 0 0 β(t) 0 0
0 0 0 θ(t) β(t) 0 0 0
0 0 0 β(t) θ(t) 0 0 0
0 0 β(t) 0 0 θ(t) 0 0
0 β(t) 0 0 0 0 θ(t) 0

σ(t) 0 0 0 0 0 0 α(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A1)
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and

ρce
G (t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
8 + 3μ(t) −λ(t) −λ(t) −λ(t) −λ(t) −λ(t) −λ(t) r

8 + 3μ(t)
−λ(t) 1

8 − μ(t) λ(t) λ(t) λ(t) λ(t) λ(t) −λ(t)
−λ(t) λ(t) 1

8 − μ(t) λ(t) λ(t) λ(t) λ(t) −λ(t)
−λ(t) λ(t) λ(t) 1

8 − μ(t) λ(t) λ(t) λ(t) −λ(t)
−λ(t) λ(t) λ(t) λ(t) 1

8 − μ(t) λ(t) λ(t) −λ(t)
−λ(t) λ(t) λ(t) λ(t) λ(t) 1

8 − μ(t) λ(t) −λ(t)
−λ(t) λ(t) λ(t) λ(t) λ(t) λ(t) 1

8 − μ(t) −λ(t)
r
8 + 3μ(t) −λ(t) −λ(t) −λ(t) −λ(t) −λ(t) −λ(t) 1

8 + 3μ(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(A2)

where the parameters appeared in the above two equations are given by

α(t) = 1

8

[
1 + 3rG2

2(t)
]
, β(t) = r

8

[
1 − G2

2(t)
]
, θ(t) = 1

8

[
1 − rG2

2(t)
]
,

σ (t) = r

8

[
1 + 3G2

2(t)
]
, μ(t) = r

16
[1 + G4(t)] , λ(t) = r

16
[1 − G4(t)] .

(A3)

Similarly, for the three qubits being prepared initially in theW -type state of Eq. (14)
and subject to their independent RTNs and common RTN, the time-evolved density
matrices of the system can be obtained, respectively, as [72]

ρie
W (t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

κ(t)
8 + ς 0 0 κ(t)

12 0 κ(t)
12

κ(t)
12 0

0 τ(t)
24 + ς

ϑ(t)
12 0 ϑ(t)

12 0 0 χ(t)
12

0 ϑ(t)
12

τ(t)
24 + ς 0 ϑ(t)

12 0 0 χ(t)
12

κ(t)
12 0 0 ξ(t)

24 + ς 0 ψ(t)
12

ψ(t)
12 0

0 ϑ(t)
12

ϑ(t)
12 0 τ(t)

24 + ς 0 0 χ(t)
12

κ(t)
12 0 0 ψ(t)

12 0 ξ(t)
24 + ς

ψ(t)
12 0

κ(t)
12 0 0 ψ(t)

12 0 ψ(t)
12

ξ(t)
24 + ς 0

0 χ(t)
12

χ(t)
12 0 χ(t)

12 0 0 χ(t)
8 + ς

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(A4)

and

ρce
W (t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
8 + �(t) 0 0 �(t) 0 �(t) �(t) 0

0 1
8 + ϒ(t) �(t) 0 �(t) 0 0 �(t)

0 �(t) 1
8 + ϒ(t) 0 �(t) 0 0 �(t)

�(t) 0 0 1
8 + �(t) 0 �(t) �(t) 0

0 �(t) �(t) 0 1
8 + ϒ(t) 0 0 �(t)

�(t) 0 0 �(t) 0 1
8 + �(t) �(t) 0

�(t) 0 0 �(t) 0 �(t) 1
8 + �(t) 0

0 �(t) �(t) 0 �(t) 0 0 1
8 + �(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (A5)
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where the parameters appeared in the above two equations are given by

κ(t) = r [1 + G2(t)]
2 [1 − G2(t)] , ς = 1

8
(1 − r),

χ(t) = r [1 − G2(t)]
2 [1 + G2(t)] ,

τ (t) = r [1 + G2(t)]
{
[1 + G2(t)]

2 + 2 [1 − G2(t)]
2
}

,

ϑ(t) = r [1 + G2(t)]
[
1 + G2

2(t)
]
,

ξ(t) = r [1 − G2(t)]
{
2 [1 + G2(t)]

2 + [1 − G2(t)]
2
}

,

ψ(t) = r [1 − G2(t)]
[
1 + G2

2(t)
]
,

�(t) = r

(
1

16
+ 3G2(t)

32
− 3G4(t)

16
− 3G6(t)

32

)

,

�(t) = r

(
1

16
+ 3G2(t)

32
− G4(t)

16
− 3G6(t)

32

)

,

ϒ(t) = r

(−1

48
+ 7G2(t)

96
+ G4(t)

16
+ 3G6(t)

32

)

,

�(t) = r

(
5

48
+ 7G2(t)

96
+ G4(t)

16
+ 3G6(t)

32

)

,

�(t) = r

(
1

16
− 3G2(t)

32
− G4(t)

16
+ 3G6(t)

32

)

,

�(t) = r

(−1

48
− 7G2(t)

96
+ G4(t)

16
− 3G6(t)

32

)

,

�(t) = r

(
5

48
− 7G2(t)

96
+ G4(t)

16
− 3G6(t)

32

)

,

�(t) = r

(
1

16
− 3G2(t)

32
− 3G4(t)

16
+ 3G6(t)

32

)

.

(A6)
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