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Second order quantum phase transitions, with well-known features such as long-range entanglement,
symmetry breaking, and gap closing, exhibit quantum enhancement for sensing at criticality. However, it is
unclear which of these features are responsible for this enhancement. To address this issue, we investigate
phase transitions in free-fermionic topological systems that exhibit neither symmetry-breaking nor long-
range entanglement. We analytically demonstrate that quantum enhanced sensing is possible using
topological edge states near the phase boundary. Remarkably, such enhancement also endures for ground
states of such models that are accessible in solid state experiments. We illustrate the results with 1D Su-
Schrieffer-Heeger chain and a 2D Chern insulator which are both experimentally accessible. While neither
symmetry-breaking nor long-range entanglement are essential, gap closing remains as the major candidate
for the ultimate source of quantum enhanced sensing. In addition, we also provide a fixed and simple
measurement strategy that achieves near-optimal precision for sensing using generic edge states
irrespective of the parameter value. This paves the way for development of topological quantum sensors
which are expected to also be robust against local perturbations.

DOI: 10.1103/PhysRevLett.129.090503

Introduction.—The sensitivity of quantum systems to the
variation of their environment makes them excellent
sensors [1]. The uncertainty of measuring an unknown
parameter λ, quantified by standard deviation δλ is bounded
by Cramér-Rao inequality δλ ≥ 1=

ffiffiffiffiffiffiffiffiffi
MF

p
, where M is the

number of trials and F is the Fisher information [2]. In a
classical setup, the Fisher information scales linearly with
the sensor size (known as standard limit). However,
quantum features, such as superposition, may enhance
the resource efficiency of a quantum sensor such that
the Fisher information scales quadratically with system size
(known as the Heisenberg limit) [2], or even faster (super-
Heisenberg limit) [3–8]. There are at least two major
approaches for achieving quantum enhanced sensing:
(i) exploiting Greenberger-Horne-Zeilinger (GHZ)-type
entangled states [9–14] for estimating the angle of a unitary
rotation [3]; and (ii) utilizing quantum criticality for
directly estimating the Hamiltonian parameters [15–24].
In the former, the interaction between the particles in the
quantum sensor degrades the sensing quality [24–27]. Also,
because of extreme vulnerability of GHZ states to
decoherence and particle loss, it is difficult to be scaled
up [28]. In the latter, however, the interaction between the
constituents of the quantum sensor is crucial and the system
is more robust against decoherence. Originally the criti-
cality-enhanced quantum sensing has been introduced for
the ground state of many-body systems undergoing a
second order quantum phase transition [15–24]. In such

symmetry breaking transitions, the ground state reveals
long-range correlations which lead to the scaling of
F ∼ V2=Dν, where V is the system size (volume), D is
the dimension, and ν is the critical exponent with which the
correlation length diverges near the criticality [3]. Recently,
quantum enhanced sensing has also been observed in
integrable Floquet systems [7,29] along the line that the
Floquet gap vanishes. An important open question is what
feature of a phase transition, e.g., symmetry breaking, long-
range correlations, or vanishing gap, is truly responsible for
obtaining quantum enhanced sensing.
To answer this, one needs to investigate the scaling of

Fisher information in different types of quantum phase
transitions, e.g., those not of the symmetry-breaking kind.
Phase transitions in symmetry-protected topological (SPT)
phases of noninteracting fermions [30,31] are ideal candi-
dates for this investigation. These topological phase tran-
sitions (TPT) are fundamentally different from the
symmetry-breaking ones in at least three aspects [32].
First, a fermionic SPT phase transition manifests in the
form of robust edge or surface states protected against
symmetry-preserving local perturbations [33,34]. Second,
they are not detected by a local order parameter, but rather by
an integer-valued nonlocal quantity called a topological
invariant [32]. Third, unlike the symmetry-breaking phase
transitions, the fermionic SPT phases at TPT are short-
range entangled [35]. These differences between second-
order quantum phase transitions and fermionic SPT phase
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transitions motivate our investigation of quantum enhanced
sensitivity in the latter. In fact, sensing based on non-
Hermitian systems [36] including topological systems
[37–39] and TPTs for rotation angle estimation [40–46]
(like GHZ state-based metrology) have been already pro-
posed. Nonetheless, the sensing capability of free-fermionic
TPTs for estimating Hamiltonian parameters is yet to be
explored. Fermionic SPT phases have been realized with
solid-state systems [47,48] and simulated platforms [49,50].
Therefore, finding quantum enhanced precision in such
systems is a key step forward for developing topological
quantum sensors.
In this Letter, we analytically address the quantum

sensing capability of free-fermionic topological systems.
We have two main findings. First, from a practical perspec-
tive, we show that these systems indeed reveal quantum
enhanced sensitivity and thus are legitimate candidates for
developing topological quantum sensors naturally robust
against local perturbations. Second, from a fundamental
perspective, we highlight the importance of gap closing, as
opposed to symmetry-breaking or long-range entanglement,
for quantum enhanced sensing.
Ultimate precision limit.—To infer an unknown param-

eter λ, encoded in a quantum state ρλ, one has to perform
measurement on the system and then feed the outcomes into
an estimator algorithm. For a basic introduction to single
parameter estimation, we refer to Supplemental Material
(SM) [51]. For a given measurement setup, described by a
set of projective operators fΠng, every outcome appears
with the probability pnðλÞ ¼ Tr½ρλΠn�. In this case, all the
information is encoded in a classical probability distribution
and thus the Cramér-Rao bound is determined by classical
Fisher information (CFI), defined as FC ¼ P

k pn
ð∂λ logpnÞ2. One can maximize the CFI for all possible
measurement setups to obtain quantum Fisher information
(QFI) as the ultimate precision bound. The QFI can be
computed as FQ ¼ Tr½L2

λρλ�, where Lλ is the symmetric
logarithmic derivative (SLD) operator defined as
∂λρλ ¼ ðρλLλ þ LλρλÞ=2. For pure states ρλ ¼ jψλihψλj,
SLD operator simplifies to Lλ ¼ 2∂λρλ, and FQ ¼
4ðh∂λψλj∂λψλi − jh∂λψλjψλij2Þ [2]. It is worth emphasizing
that the optimal measurement setup that achieves the ultimate
precision bound is not unique, although one solution is
always given by the eigenvectors of the SLD operator.
Free-fermionic SPT model.—Free-fermionic SPT phases

host energy excitations localized on the boundary known as
edge or surface states. The existence of these states is
guaranteed by the nontrivial topology of the filled bandwave
functions [33]. These states are studied using tight-binding
models [52–55] (see SM [51] for more details). We first
analyze the QFI of the edge states in 1D systems and later
generalize our results to higher dimensions. Consider a 1D
lattice with sites labeled by fj∶j ∈ ½L�g, where
½L� ¼ f0; 1;…; L − 1g. Suppose there ared internal degrees
of freedom associated to each lattice site. The single-particle

Hilbert spaceH is then spanned by orthonormal basis states
fjj; mi∶j ∈ ½L�; m ∈ ½d�g, and can be tensor factorized as
H ≅ HL ⊗ HI [52,53]. The single-particle Hamiltonian
of a number-conserving, noninteracting fermionic system
with uniform coupling and open boundary conditions
(OBC) can be expressed as

H¼
X
j∈½L�

jjihjj⊗h0ðλÞþ
X

j<j0∈½L�
½jjihj0j⊗hj0−jðλÞþH:c:�;

ð1Þ

where each hj0−j is a d × dmatrixwhose entries are complex
amplitudes of hopping between lattice sites separated by
distance j0 − j possibly accompanied by a change in internal
state [52,53], and these entries depend on the parameter λ
that is being estimated. Hamiltonians of the form in Eq. (1)
are routinely used for investigation of edge states in 1D free-
fermionic topological systems. Our analysis can be gener-
alized to number nonconserving systems including Kitaev
chain [56], as Bogoliubov–de Gennes–Hamiltonian of such
systems has the same structure as in Eq. (1).
Edge states in 1D.—The zero-energy edge states

(topologically protected or accidental) localized on the
j ¼ 0 edge are described (or well approximated) by
jψ edgei ¼ jϕzijui, where

jϕzi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jzj2
1 − jzj2L

s X
j∈½L�

zjjji; z ∈ C; jzj < 1 ð2Þ

parametrized by z accounts for the spatial part of exponen-
tially decaying nature of jψ edgei, and jui ∈ HI is an internal
state vector [52–54]. Both z and jui depend on λ in general.
We now derive the scaling of QFI for jψ edgei, assuming

argðzÞ is independent of λ, and leave the general case for SM
[51]. Our results are stated using O, Ω, and Θ asymptotic
notations, to denote upper, lower, and tight bounds on the
scaling, respectively [57]. TheQFI for jψ edgeiwith respect to
λ can be expressed as FjψedgeiðλÞ ¼ FjϕziðλÞ þ FjuiðλÞ. For
L ≫ 1, both z and jui approach a fixed value that does not
depend on L [52,53]. However, the state jϕzi depends on L
due to the normalization. Therefore, the scaling of QFI
comes from the scaling of FjϕziðλÞ ¼ 4ðh∂λϕzj∂λϕzi−
jh∂λϕzjϕzij2Þ. For argðzÞ independent of λ, h∂λϕzjϕzi ¼ 0,
and simple algebra reveals

FjϕziðλÞ¼
4ð∂λjzjÞ2f1þjzj4L−jzj2L−2½2jzj2þL2ð1−jzj2Þ2�g

ð1−jzj2Þ2ð1−jzj2LÞ2 :

ð3Þ

Away from TPT, jzj < 1 yields limL→∞FjϕziðλÞ ¼
4ð∂λzÞ2ð1 − z2Þ−2, so that Fjψ edgeiðλÞ ∈ Θð1Þ. As edge states
are localized single particle excitations, we do not expect
L-dependent scaling away fromTPT. In contrast, at TPT, the
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zero-energy edge states undergo delocalization, so that
jzj → 1 as λ approaches the transition point λc [52,53].
Consequently, by calculating the limit of Eq. (3) as λ → λc,
we get

lim
λ→λc

FjϕziðλÞ¼
ð∂λzÞ2ðL2−1Þ

3
⇒Fjψ edgeiðλcÞ∈ΘðL2Þ; ð4Þ

independent of the model Hamiltonian. The same result
holds for complex z, as we show in the SM [51]. This
quadratic scaling of the QFI of edge states at the phase
transition is a remarkable observation showing the power of
free-fermionic topological systems for achieving quantum
enhanced sensitivity. This is in fact the first main result of
our work.
Edge states in higher dimensions.—We now investigate

the scaling of the QFI of the edge states of D-dimensional
systems in which periodic boundary conditions (PBC) are
enforced alongD − 1 directions, and OBC along the remain-
ing direction. For ease of explanation, consider a 2D square
lattice with the orthonormal basis states fjj1; j2; mi∶j1 ∈
½L1�; j2 ∈ ½L2�; m ∈ ½d�g [55]. A Hamiltonian with PBC
along both the spatial directions can be expressed asHPBC ¼
⊕k Hk with k in the 2D Brillouin zone and Hk the Bloch
Hamiltonian. If OBC is enforced along the first spatial
direction, then k is no longer a good quantum number.
However, kk (component of k along the periodic direction)
remains a good quantum number, and therefore the total
Hamiltonian can be expressed asHOBC ¼⊕kk Hkk , withHkk
denoting the Hamiltonian of a virtual 1D wire labeled by kk
[55]. Each Hkk has a structure similar to that of the
Hamiltonian in Eq. (1). An edge state jψ edgei at a fixed kk
is well approximated by jψ edgei ¼ jkkijϕzijuðz; kkÞi, where
jϕzi is given in Eq. (2) with the replacement L → L2, and
jkki ¼ ð1= ffiffiffiffiffiffi

L1

p ÞPj1∈½L1� e
ikkj1 jj1i with kk ∈ ½−π; πÞ. For

an edge state at a fixed value of kk, we have ∂λjkki ¼ 0, and
therefore FjψedgeiðλÞ ¼ FjϕziðλÞ þ constant ∈ ΘðL2

2Þ at TPT
as in the 1D case. Interestingly, for L1 ¼ L2 ¼ L, we have
Fjψ edgeiðλÞ ∈ ΘðVÞ where V ¼ L2 is the total system size
(area). In D dimensions, lattice sites are indexed by
fj1;…; jDg, and PBC are enforced along the first D − 1
directions. Similar analysis as above yields FjψedgeiðλÞ ∈
ΘðV2=DÞ at TPT, similar to the behavior of QFI at second
order phase transitions [3]. This establishes the scaling ofQFI
of edge states in any spatial dimension.
Optimal measurement basis for edge states.—While QFI

determines the ultimate precision bound, its saturation in
the Cramér-Rao inequality relies on the choice of an
optimal measurement basis. For the case where argðzÞ is
independent of λ, the position measurement in the basis

B ¼ fjjihjj ⊗ 1d; j ∈ ½L�g ð5Þ

is sufficient to saturate the Cramér-Rao bound for QFI
FjϕziðλÞ for every λ. We note that for the generic QFI

expression Fjψ edgeiðλÞ ¼ FjϕziðλÞ þ FjuiðλÞ, only the first
term contributes to scaling. The second term Fjui, coming
from the intrasite physics, does not depend on lattice size
and approaches a fixed value for L ≫ 1. Consequently, the
measurement of jψ edgei performed in this basis yields
optimal precision up to a length-independent constant.
The proof, obtained by showing that QFI for jϕzi equals
the CFI in this basis, is detailed in the SM [51]. Physically,
this entails measuring the location of the particle in the
lattice. We emphasize that this measurement basis, inde-
pendent of parameter values and obviously localized on
sites, is in sharp contrast to many proposals of quantum
many-body sensors, where Heisenberg scaling is achiev-
able in theory, but only through highly nonlocal, compli-
cated, and parameter-sensitive measurement bases. Even
dropping the assumption of argðzÞ being independent of λ,
we show in the SM [51] that this measurement basis still
yields quadratic scaling of QFI, which lends generality to
quantum-enhanced sensitivity.
At this point, we note that the localization feature of the

edge states is not necessary for quadratic scaling of QFI at
TPT. For example, as we later show numerically, quadratic
scaling is observed for the bulk states at the top of the lower
energy band as well as bottom of the upper energy band as
we approach TPT from the trivial phase. However, for such
states, the measurement basis in Eq. (5) may not be optimal.
Example for 1D.—As a concrete example we consider

the Su-Schrieffer-Heeger (SSH) Hamiltonian [58]

ĤSSH ¼ −
X
j∈½L�

ðJ1b̂†j âj þ J2â
†
jþ1b̂j þ H:c:Þ; ð6Þ

where J1 and J2 are the exchange couplings of the two
internal states (denoted by fermionic operators âj and b̂j
at site j) at a single site and between adjacent sites,
respectively. This Hamiltonian is of the same form as in
Eq. (1), with only nonzero matrices h0 ¼ −J1σx, and
h1 ¼ −J2ðσx − iσyÞ=2, with σx, σy being Pauli matrices.
This model exhibits TPT at J1 ¼ J2 protected by sublattice
symmetry, and has been realized in both solid state [58] and
optical lattice [59] experiments. For simplicity, we shall
assume that b̂L−1 is isolated from other sites in the SSH
chain [60], and λ ¼ J1=J2 is a real parameter which has to
be estimated. For λ < λc ¼ 1, the normalized edge state
solution is given by [61] jψSSH

edgei ¼ jϕz¼−λijui, where jϕzi
is given by Eq. (2) and jui ¼ ½1 0�T . We obtain the same
scaling relation for QFI as in the general case. To verify this
numerically, one can use a fit function aLb þ c to the QFI
of jψSSH

edgei for each value of λ and extract the exponent b. For
the trivial regime (λ > λc), the edge state smoothly deforms
into the bulk state at the top of the lower energy band,
which we use to calculate the QFI scaling. As displayed in
Fig. 1(a), scaling of QFI changes from quadratic (b ¼ 2) to
constant (b ¼ 0), as one moves away from TPT. Note that z
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is real and jui is constant, therefore the measurement
described by Eq. (5) is optimal.
Example for 2D.—We now illustrate the scaling of QFI

for a Chern insulator on a square lattice—a prototype of
topological insulators with broken time-reversal symmetry
[31]. It has also been experimentally realized in optical
lattices [62]. The spin-orbit coupled (SOC) Hamiltonian is
[63,64]

ĤCh ¼
X
k

½ ĉ†k;↑ ĉ†k;↓ �HCh
k ½ ĉk;↑ ĉk;↓ �T; ð7Þ

where HCh
k ¼ B · σ is the Bloch Hamiltonian with B ¼

½2t1 cos kx; 2t1 cos ky; mz þ 2t2ðsin kx þ sin kyÞ� and σ the
vector of Pauli matrices. Here ↑, ↓ denote spin-1=2 up and
down states, and mz, t1, t2 are lattice parameters. We will
consider λ ¼ mz=t2 as the parameter to be estimated. The
eigenvectors form two bands that touch at phase transition
at the Dirac points ðkx; kyÞ ¼ �ðπ=2; π=2Þ for nonzero λ,
and the phase boundaries are given by λc ¼∓ 4 [64]. We
impose PBC along the x direction (kk ¼ kx), and decom-
pose the Hamiltonian as HCh ¼⊕kx Hkx , where Hkx
describes a virtual 1D wire Hamiltonian of the form in
Eq. (1) with h0ðkxÞ ¼ 2t1 cos kxσx þ ðmz þ 2t2 sin kxÞσz,
h1ðkxÞ ¼ t1σy − it2σz. The QFI of the edge state at kx ¼
π=2 localized near j ¼ 0, displayed in Fig. 1(b), shows
quadratic scaling at TPT and constant scaling away from it.
As before, the quadratic scaling is shown to be approached
from the trivial phase as well for the corresponding
bulk state.
QFI of many-body ground state.—We now look at the

scaling nature for the fermionic many-body ground states,
which are relevant for solid state experiments. We first
derive a formula for the QFI of a general many-body state
jΨi of N fermions occupying single-particle states denoted
by jψ1i;…; jψNi. The antisymmetrized wave function for
this state is given by the Slater determinant formula [65]
jΨi ¼ ð1= ffiffiffiffiffiffi

N!
p ÞPσ∈SN sgnðσÞjψσ1i…jψσN i where SN is

the symmetric group. The QFI of this state, with P ¼P
N
l¼1 jψ lihψ lj as projector on the occupied states, sim-

plifies to (see SM [51])

FjΨi ¼ 4
XN
l¼1

h∂λψ lj1 − Pj∂λψ li: ð8Þ

We now analytically derive the scaling of QFI under
PBC, and later numerically validate similar results for

OBC. Consider the ground state in the D-dimensional case
under PBC, with filled lowest band and empty higher
bands. Translational invariance dictates that each single-
particle state in the filled band is of the form jψki ¼
jkijuki, where jki is the plane-wave state. Using j∂λψki ¼
jkij∂λuki, Eq. (8) simplifies to

FPBC
GS ¼ 4

X
k

ðh∂λukj∂λuki − jh∂λukjukij2Þ ¼
X
k

Fjuki: ð9Þ

Many-body QFI at TPT.—We now show how ΩðL2Þ
scaling of FPBC

GS emerges at TPT in a simplistic model of
band-gap inversion in 1D systems [32]. Consider a two-
band Hamiltonian that can be approximated as Hk ¼
αkσx þ ðλ − λcÞσz near the Dirac point k ¼ 0, with α a
Hamiltonian parameter independent of λ and L. The two
energy bands touch at k ¼ 0 at TPT (i.e., λ ¼ λc). Major
contribution to QFI is expected from the states near the
Dirac point. In fact, as shown in SM [51], it is enough to
consider only the two lowest k states to establish a ΘðL2Þ
scaling for QFI. This, combined with Eq. (9), rules out
subquadratic scaling of FPBC

GS , so that FPBC
GS ∈ ΩðL2Þ.

To explicitly see this scaling behavior at TPTwe look at
our prototypical examples of 1D SSH chain and 2D Chern
insulator mentioned before. In the first case (see SM [51])

FSSH
PBCðλcÞ ¼

XL−1
κ¼1

cot2ðπκ=LÞ
4

¼ L2 − 3Lþ 2

12
; ð10Þ

which clearly shows the ΘðL2Þ scaling for large L.
Moreover, the Fock basis is an optimal measurement basis,
as the ground state of SSH Hamiltonian has real coef-
ficients in that basis [61]. Such a measurement can be
performed by measuring the number operator ĉ†j;mĉj;m for
each fermionic mode.
For the Chern insulator on a L × L lattice, QFI at TPT

is [51]

FCh
PBCðλcÞ ¼

X
k≠ðπ=2;π=2Þ

B2
x þ B2

y

4ðB2
x þ B2

y þ B2
zÞ2

: ð11Þ

As we show later, this sum also shows ΩðL2Þ dependence.
Many-body QFI away from TPT.—To see the scaling of

FPBC
GS away from TPT, we prove that Fjuki is bounded by

a constant independent of N. Therefore, FPBC
GS ∈ OðNÞ,

by Eq. (9). We first observe that Fjuki ≤ 4h∂λukj∂λuki.
First-order perturbation theory yields h∂λukj∂λuki ¼
jhvkj∂λHjukij2=ðϵ1;k − ϵ0;kÞ2, where jvki is the higher band
wave function, and ϵ0;k (ϵ1;k) is the lower (higher) band
energy eigenvalues. Now we can bound Fjuki by
4h∂λukj∂λuki ≤ 4k∂λHkk2=ΔE2, where ΔE is the band
gap, and k • k denotes the operator norm. Furthermore,
kHkk ≤ sup k∂λHkk ¼ k∂λHk, hence h∂λukj∂λuki ≤
k∂λHk2=ΔE2. This proves that QFI of jΨPBC

GS i scales at

0.05-0.05 0
λ - λc

   fit: 
 aLb + c

(a)

b

0

1

2

0.05-0.05 0
λ - λc

   fit: 
 aLb + c

(b)

b

0

1

2

FIG. 1. Scaling exponent of QFI of edge state (for λ < λc) and
corresponding bulk state (for λ > λc) as a function of λ for
(a) SSH model, and (b) Chern insulator model.
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most linearly with the system size [OðNÞ ¼ OðVÞ] away
from TPT. This is in stark contrast with the constant scaling
of QFI for the edge states.
Linear scaling away from TPT can be explicitly proved

for SSH model in the continuum limit L → ∞ (see SM
[51]), as

lim
L→∞

FSSH
PBCðλÞ
L

¼
�
1=2ð1 − λ2Þ if λ < 1

1=2ðλ4 − λ2Þ if λ > 1:
ð12Þ

We further provide numerical confirmations by repeating
the fitting procedure as before. The scaling exponents
versus λ are shown in Figs. 2(a)–2(b) for the SSH and
Chern insulator model respectively. Expectedly, the ΩðL2Þ
scaling at TPT and OðLDÞ scaling far enough away in the
topological phase are independent of the boundary con-
ditions. We observe qualitatively similar scaling behavior
in the trivial phase as well. For the Chern insulator, true
OBC are numerically intractable beyond small system
sizes, hence we use strip geometry, which leads to the
small discrepancies with the PBC results.
Experimental realization.—All the ingredients for our

proposals are already present in cold atom experiments in
optical lattices. As edge states are single-particle states they
have been observed with both fermions [66] and bosons
[67] in quantum Hall systems on optical lattices using
standard imaging techniques for synthetic dimensions by
populating the edge states without populating the bulk. For
SSH chain, proposals for edge state preparation are also in
place [68,69]. Position basis for optimal measurement can
be accessed using quantum gas microscopy [70]. To access
the fermionic many-body state filling up the entire lower
band one can bank on the successful experiments on 1D
SOC lattice systems [71–73]. For 2D cases, the fermionic
lattice Hamiltonians are yet to be realized but SOC has been
observed in trapped gases [74,75].
Conclusion.—Through analytical investigation, we show

that one can achieve precision beyond the standard limit at
the transition point of free-fermionic topological models.
This paves the way for development of topological quan-
tum sensors, which are expected to be robust against local
perturbations. Our edge-state based schemes allow achiev-
ing Heisenberg-limited sensing via a simple position
measurement, thus avoiding the necessity of complicated
highly entangled optimal measurements that hitherto
seemed necessary to build quantum many-body sensors.

From a fundamental point of view, our analysis indicates
that gap closing, rather than long-range entanglement and
spontaneous symmetry breaking, is essential for obtaining
quantum enhanced precision. This observation is consistent
with recent discovery of quantum enhanced sensitivity at
Floquet gap closing [7,29] in periodically driven systems.
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