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Abstract

One-dimensional helical liquids can appear at boundaries of certain condensed matter systems.
Two prime examples are the edge of a quantum spin Hall insulator and the hinge of a
three-dimensional second-order topological insulator. For these materials, the presence of a
helical state at the boundary serves as a signature of their nontrivial electronic bulk topology.
Additionally, these boundary states are of interest themselves, as a novel class of strongly
correlated low-dimensional systems with interesting potential applications. Here, we review
existing results on such helical liquids in semiconductors. Our focus is on the theory, though we
confront it with existing experiments. We discuss various aspects of the helical liquids, such as
their realization, topological protection and stability, or possible experimental characterization.
We lay emphasis on the hallmark of these states, being the prediction of a quantized electrical
conductance. Since so far reaching a well-quantized conductance has remained challenging
experimentally, a large part of the review is a discussion of various backscattering mechanisms

https://doi.org/10.1088/1361-6641/ac2c27

which have been invoked to explain this discrepancy. Finally, we include topics related to
proximity-induced topological superconductivity in helical states, as an exciting application
toward topological quantum computation with the resulting Majorana bound states.

Keywords: topological insulators and superconductors, helical channels,
helical Tomonaga-Luttinger liquids, charge transport, Majorana bound states

(Some figures may appear in colour only in the online journal)

1. Introduction

In relativistic quantum field theory, spin-1/2 particles are gov-
erned by the Dirac equation. The Dirac Hamiltonian commutes
with the helicity operator, the projection of a particle spin on
the direction of its momentum. Therefore, helicity, defined as
the sign of the eigenvalue of the helicity operator, is an invari-
ant of motion®. It allows one to assign a definite—negative or
positive—helicity to eigenstates, as illustrated in figure 1(a).

* Author to whom any correspondence should be addressed.

4 Strictly speaking, the helicity of a massive particle is not an intrinsic prop-
erty, as the sign of momentum might change upon a Lorentz boost, thus
depending on the reference frame. However, being an invariant of motion,
the helicity can serve as a good quantum number in a given reference frame.

1361-6641/21/123003+43$33.00

In a condensed matter system consisting of spin-1/2 fermi-
ons, the low-energy Hamiltonian can mimic Dirac fermions
and one can define the helicity of a fermionic state accord-
ing to its momentum and spin in a similar manner. Assum-
ing that the Fermi momentum is nonzero, one can label the
states at the Fermi level (which have intrinsic spin degeneracy)
according to their helicity instead of spin’. We illustrate the
two sets of labeling in figure 1(b) for particles with quadratic
dispersion. The first set of labeling can be straightforwardly

5 In analogy to particle physics, we define the helicity through the spin pro-
jection onto its quantization axis, even though the latter does not need to be in
parallel to the momentum. In more general terms, states of the same helicity
are defined such that they form a time-reversal (Kramers) pair.

© 2021 IOP Publishing Ltd  Printed in the UK
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Figure 1. Notion of helicity. (a) In particle physics, the helicity of a
particle is defined through the relative orientation between its spin
and momentum p. (b) In a condensed matter system hosting
spin-1/2 fermions with quadratic dispersion, we can label the
degenerate states near the Fermi level either by their spins or by
their helicities. Unlike the spin, the states with opposite helicities
can be split in a time-reversal-invariant system.
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Figure 2. (a) The degeneracy for spin-1/2 fermions can be lifted
either by the Zeeman splitting A or by helicity-dependent
interactions. When the Fermi energy crosses only one of the
branches, the system is spin-polarized or has a definite helicity.

(b) Assuming that the chemical potential lies within an energy
window where only states with a definite helicity are populated, the
conduction modes are made of helical states whose spin orientation
is fixed by the propagation direction.

examined in experiments. Namely, upon applying a magnetic
field, which has a Zeeman coupling to the spin, the degener-
acy of the opposite spin states can be lifted, as illustrated in
figure 2(a).

Alternatively, one can image that, if the two states with
the opposite helicities can be split in energy, one can create
a helical liquid, with one of the helicity states being occupied
(see figure 2(a)). In real space, such a system hosts conduction
modes made of helical states with spin orientation fixed by
the propagation direction; an example with the negative heli-
city is shown in figure 2(b). Furthermore, in contrast to lifting
the spin degeneracy, since the helicity is invariant under time
reversal, the helical liquid can be generated in a time-reversal-
invariant setting.

While the fermion doubling theorem has proven that a hel-
ical liquid with an odd number of components (thus including
a single pair of helical states) cannot be formed in a purely one-
dimensional system (Wu et al 2006), the theorem can be cir-
cumvented by having a helical liquid as a part of two- or three-
dimensional systems. Indeed, recent progress in condensed
matter physics has demonstrated that it is possible to stabil-
ize such a helical liquid at boundaries of a higher-dimensional
bulk.

In this review, we focus on such gapless helical states flow-
ing along the edges of two-dimensional or hinges of three-
dimensional bulk materials. The helicity degeneracy is lifted
due to the electronic topology of the bulk, which results in one-
dimensional helical channels appearing on the boundaries. The
research on helical channels has both fundamental and prac-
tical motivations. First, as mentioned above, they appear on
surfaces of certain materials in a way analogous to the chiral
edge states in the quantum Hall effect under external mag-
netic fields. Since their existence is related to the electronic
bulk topology (Kane and Mele 2005b), their presence serves
as a signature for the topologically nontrivial phase (quantum
spin Hall effect) that goes beyond the notion of Landau’s spon-
taneous symmetry breaking. Second, being spatially confined
in a narrow channel, the role of electron—electron interac-
tions increases, offering a possible realization of a (quasi-)one-
dimensional strongly correlated fermion system (Wu et al
2006, Xu and Moore 2006). As we will see, while interactions
can potentially destabilize the helical liquid, in other scen-
arios they can drive the helical liquid into various phases ran-
ging from magnetic orders to topological superconductivity.
In other words, combining the electron—electron interactions
with other ingredients such as magnetic impurities, spin—orbit
coupling and superconducting pairing, helical states provide a
platform for unconventional states of matter.

Apart from academic motivations, the helical channels are
also candidates for potential applications, for example in spin-
tronics or topological quantum computation (Moore 2009).
First, in contrast to ordinary one-dimensional channels, the
topological origin of helical channels protects them from
Anderson localization due to weak disorder, possibly offering
low-dissipation charge and spin transport at nanoscales (Sheng
et al 2005, 2006). Second, as their spin degeneracy is lifted,
they can be used to produce Majorana or parafermion modes
for quantum computation (Fu and Kane 2009, Mi et al 2013,
Klinovaja et al 2014).

As we discuss in depth below, many of these expecta-
tions turn out to be much more involved in reality. Never-
theless, these prospects initiated extensive research on topo-
logical and strongly correlated systems over the past decade.
Especially the investigations of the quantized charge conduct-
ance, as the paramount property predicted for helical chan-
nels, continued unabated in both theory and experiments. In
particular, the possible mechanisms for the unexpected devi-
ation from the quantized conductance have been the subject
of numerous studies on helical channels. On the other hand,
the theoretical investigations, including those relying on the
helical Tomonaga—Luttinger liquid (hTLL) model, are rather
scattered in the literature. In addition to being not easy to
track, they include several sets of mutually contradicting res-
ults. This situation was among our motivations to undertake a
comprehensive review on this topic.

We organize the review as follows. In section 2, we dis-
cuss how the helical states arise on the boundaries of topo-
logically nontrivial systems. In section 3, we discuss the
hTLL realized in the edge or hinge channels of the topolo-
gical materials, setting the foundations for the next sections.
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We also discuss how to detect and characterize the hel-
ical channels. In section 4, we review experimental progress
(section 4.1) and discuss mechanisms which can lead to backs-
catterings and therefore affect the electrical conductance of a
helical channel. We divide the backscattering mechanisms into
two types—perturbations which break the time-reversal sym-
metry (section 4.2) and those which preserve it (section 4.3).
Table 1 summarizes the diverse nomenclature for backscat-
tering mechanisms induced by spin—orbit interactions (SOIs).
Since the resistance mechanisms are distinguishable through
their temperature dependence, we summarize the latter in
tables 2 and 3 for time-reversal symmetry breaking and time-
reversal-invariant mechanisms, respectively. In section 5, we
discuss how topological superconductivity arises upon adding
proximity-induced superconducting pairing, and how Major-
ana bound states (MBSs) arise in various setups. We give an
outlook in section 6.

We point out review articles on related topics, both
recent (Sato and Ando 2017, Rachel 2018, Gusev et al 2019,
Haim and Oreg 2019, Beenakker 2020, Culcer et al 2020) and
less recent ones (Hasan and Kane 2010, Maciejko et al 2011,
Qi and Zhang 2011, Alicea 2012, Beenakker 2013, Das Sarma
et al 2015, Chiu et al 2016, Dolcetto et al 2016). Compared
to those, we focus on the charge transport properties of the
one-dimensional helical channels themselves. Also, we cover
more recent developments, such as the possibility of helical
hinge states in higher-order topological insulators (HOTIs) or
realizations of MBSs using them.

2. Realization of helical edge states

2.1. Quantum spin Hall effect

We start with how the helical states are realized in solid-state
systems. As mentioned in section 1, even though a single pair
of helical states cannot arise in a purely one-dimensional sys-
tem, it can appear on the one-dimensional edge of a two-
dimensional system hosting the quantum spin Hall state, a
time-reversal-invariant analog of the quantum Hall state (Kane
and Mele 2005a, 2005b, Wu et al 2006, Xu and Moore
2006, Bernevig and Zhang 2006b). This mechanism is closely
related to the chiral edge channels in a quantum Hall system.
Here, the up- and down-spin states feel effective magnetic
fields with opposite signs, leading to two copies of quantum
Hall liquids with the opposite Hall conductance. Viewed sep-
arately, each spin subsystem realizes a quantum Hall liquid
hosting a chiral edge state with the opposite chirality for the
opposite spins. When combined, the two spin subsystems host
helical edge states, thus preserving the time-reversal symmetry
of the entire system.

As an initial prediction, Kane and Mele proposed that the
quantum spin Hall effect can be realized in graphene (Kane
and Mele 2005a), a state-of-art material at that time
(Novoselov et al 2004, Castro Neto et al 2009). The key
ingredient driving this effect is spin—orbit coupling: enter-
ing as an imaginary spin-dependent hopping term in a tight-
binding model of graphene, it results in the spin-dependent

magnetic field required for the quantum spin Hall state. Sim-
ilar to chiral edge channels of a quantum Hall liquid, which
led to the notion of topological order, the helical edge chan-
nels of a quantum spin Hall state are protected by the energy
gap of the bulk. The quantum spin Hall state in the Kane—
Mele model was subsequently identified as a Z, topological
order in a time-reversal-invariant system (Kane and Mele
2005b), a novel state distinct from an ordinary insulator or
a quantum Hall liquid with broken time-reversal symmetry.
The new classification was characterized by a Z, topolo-
gical invariant constructed from the bulk Hamiltonian (Fu
and Kane 2006, Sheng et al 2006, Moore and Balents 2007,
Roy 2009) and inspired the naming for the ‘topological insu-
lator’ phase (Moore and Balents 2007). In a bulk-boundary
correspondence, the invariant is related to the number of the
Kramers pairs of helical states on the boundary (Fu and Kane
2006, Moore and Balents 2007, Roy 2009, Hasan and Kane
2010).

Even though later it became clear that the spin—orbit coup-
ling, and the resulting gap, in graphene is too small to provide
a quantum spin Hall phase under realistic conditions (Min et al
2006, Yao et al 2007), the works by Kane and Mele were sem-
inal for subsequent investigations for more realistic setups and
for broader research on topological materials. In particular,
the identification of the Z, topological order further motiv-
ated works on topological classification of gapped systems
based on their symmetry classes. Specifically, one can charac-
terize gapped systems, including insulators and superconduct-
ors, based on the time-reversal and particle-hole symmetries
described by the relations (Hasan and Kane 2010, Ryu et al
2010),

TH(p)T ' =H(—p), )
CH(p)C~' = —H(—p), )

where H is the Bloch Hamiltonian in momentum (p) space,
and the time-reversal (particle-hole) symmetry is represented
by an antiunitary operator 7 (C). The gapped systems are then
categorized according to the values of 72 and C? (as well as the
product of 7 and C, if both 72 and C? are zero). The quantum
spin Hall insulator phase in the Kane—-Mele model, character-
ized by 72 = —1 and C> = 0, is in fact an entry in the periodic
table for topological insulators and superconductors (Kitaev
2009, Ryu et al 2010).

As reviewed here, while the term ‘topological insulator’
was originally coined for the nontrivial phase in the Kane—
Mele model and its three-dimensional generalization (Moore
and Balents 2007), it was later also used to cover a broader
class of topologically nontrivial insulating systems in the peri-
odic table (Kitaev 2009, Hasan and Kane 2010, Ryu et al
2010). The latter includes, for instance, quantum Hall states in
the absence of time-reversal symmetry. Nonetheless, since we
restrict ourselves to insulating systems hosting helical states,
we adopt the original terminology and use the terms ‘quantum
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spin Hall insulator’ and ‘two-dimensional topological insulat-
ors’ (2DTIs) interchangeably®. Below we review their realiz-
ations in heterostructures based on semiconductors.

2.2. Quantum spin Hall effect in a semiconductor quantum
well

Among other theoretical proposals (Sheng et al 2005,
Murakami 2006, Qi et al 2006, Bernevig and Zhang 2006b),
a key contribution was made by Bernevig et al, who predicted
the quantum spin Hall state in a composite quantum well made
of HgTe and CdTe (2006a). Owing to its significance, here we
review the BHZ model, named after the authors of Bernevig
et al (2006a). It is based on the k - p theory, a standard perturb-
ation theory for semiconductors, based on a restriction onto
a few energy bands around the Fermi level. The BHZ model
is constructed from symmetry considerations for a quasi-two-
dimensional quantum well grown along z direction with the in-
plane momentum 7k = (fk,, fik,) measured from the I' point
(k=0).
The BHZ model Hamiltonian takes the following form,

_( hon(K) 0

Here, the upper block is /i, (k) = ho (k)70 + Ay, (K) T, With
the Pauli matrices 7, for € {1,2,3}, and 7 is the identity
matrix. Finally, the lower block is related to the upper one
through the time-reversal symmetry. The basis for the above
Hamiltonian comprises |E, +), |H,+), |E,—), and |H,—) with
E.,H denoting the electron- and (heavy-)hole-like bands in
HgTe/CdTe and £ denoting the time-reversal indexes. In addi-
tion to the time-reversal symmetry imposed in (3), the form
of hpp, (K) is further restricted by parity, the eigenvalue under
the operation of spatial inversion. Using 1 or | to label the
spin, and s or p the orbitals, the electron-like band |E,=+)
consists of states |s,1/]) while the hole-like band |H,+) of
|+ (px £ipy),1/1). Since these two sets have opposite par-
ity, the matrix elements Ay and A3 must be even and the ele-
ments /; and A, must be odd under inversion. Taken together,
the time-reversal, inversion and crystal symmetries impose
the following functional form for the matrix elements Taylor-
expanded in momentum components around k = 0 (Bernevig
et al 2006a, Konig et al 2007),

ho(k) = Conz — Donz (k3 +K;),
hy(K) = Apnzks,
ha(K) = —Apnzky,

(k)

h3(K) = Myn, — Bth(kz + ki)’ “)

with the material- and structure-dependent parameters Appg,
Buhz, Cohz, Donz, and Myy,. The values of these parameters can-
not be obtained from symmetry analysis. Nevertheless, one

6 In addition, since the term 2DTI does not imply that helical states can be
labeled by a spin index, it also covers more generic settings that fulfill (1) but
do not conserve spin.

sees that there is a band inversion when the ratio My, /Boh,
changes its sign. Crucially, this ratio is experimentally con-
trollable through the width of the HgTe layer, sandwiched
by CdTe layers in the quantum well. As a remark, the bulk-
inversion asymmetry in the zinc-blend lattice induces an addi-
tional term not included in the BHZ model. However, detailed
studies (Dai et al 2008, Konig et al 2008, Rothe et al 2010)
demonstrated that while adding such a symmetry-breaking
term can affect the energy spectrum, it does not destroy the
topological phase transition that emerges in the simplified
model described by (3) and (4).

For illustration, we solve numerically a tight-binding ver-
sion of the BHZ model, using a two-dimensional rectangu-
lar grid with the lattice constant ag = 6.5 A. The Hamiltonian
Hgyz keeps the form given in (3) with &, for € {0,1,2,3}
replaced by Konig et al (2008), Qi and Zhang (2011)

D
ho(k) = Con, —2 % [2 — cos(keag) — cos(kyap)],
ag ’
Abhz .
hi(k) = Zbhz sin(kyap),
ao
Aphz .
h(k) =— bh sin(kyay),
ao
Bbhz
h3(K) = Mph, —2 2 [2 —cos(kwag) — cos(kyap)].  (5)

0

These expressions reduce to (4) at small k. To calculate the
energy spectrum, we consider a cylindrical geometry with zero
boundary conditions along x and periodic boundary conditions
along y. To reflect this geometry, we perform inverse Four-
ier transform in the x coordinate and plot the eigenvalues as
a function of ky, which remains a good quantum number. In
figure 3(a) where Myy, /B, < 0, the system is fully gapped,
indicating a trivial insulator with zero conductance. In con-
trast, in figure 3(b) with My, /Bun, > 0, the bands are inverted
and gapless states emerge within the bulk gap. Looking at the
corresponding eigenfunctions plotted in figure 4 reveals the
following two properties of these gapless states. First, they are
localized at the edges. Second, they are spin polarized, and
the spin polarization swaps on inverting the velocity. In other
words, these states are helical.

A realistic sample is finite in both x and y directions. This
case is illustrated in figure 5. There are gapless edge states cir-
culating around the sample, whereas the interior of the system
is gapped. Along a specific edge, gapless states with oppos-
ite spins flow in the opposite directions; hence they are hel-
ical. To distinguish the normal and the band-inverted regimes,
a straightforward probe is through the edge conductance. As
illustrated in figure 3, in the normal regime, the conductance
is zero when the chemical potential is in the gap. In contrast,
when the band is inverted, we expect a finite—and in an ideal-
ized case, quantized—edge conductance when the chemical
potential lies within the gap.

Having demonstrated the presence of the helical edge states
in the bulk gap, we now discuss how they are related to the
bulk topology by examining the Berry phase of the bulk eigen-
states. Since the upper and lower blocks in (3) are decoupled
(which can be viewed as the up- and down-spin components),
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Figure 3. Energy spectra of the BHZ model in a lattice of 500 sites
and the edge conductance G as a function of the chemical potential
u. As indicated in the inset of Panel (a), we take zero boundary
conditions along x and periodic along y. (a) Myh;/Boh, < 0. There is
no state within the gap, leading to a trivial insulator with zero
conductance when  lies in the gap. Here we adopt the parameter
values: App, = 3.87 eV A, Bpn, = —48.0 eV Az, Cpnz =0,

Dypp, = —30.6 eV A? and Mpn, = 0.009 eV, corresponding

to the quantum well width of 55 A (Qi and Zhang 2011).

(b) Moz /Boh, > 0. The bands are inverted, accompanied by gapless
states propagating along the edges; see figure 4. When the chemical
potential lies within the bulk gap Ay, the edge conductance is
quantized. The adopted parameter values are Apn, = 3.65 eV A,
Bon, = —68.6 eV A%, Cyn, = 0, Dy, = —51.2 eV A and

Myh, = —0.01 eV, corresponding to the width of 70 A (Konig et al
2008, Qi and Zhang 2011).

{17 wL
o[\ wi y‘ I Wi (|| etol|\ wi yl \ w3

X X

X X

Figure 4. Spatial density profile, p(x), of the in-gap states in the
band-inverted regime of the BHZ model in a lattice of 500 sites.
The states localized at the edge along x correspond to ones from
figure 3(b) for the energy within the bulk gap and for the
propagation directions along y as indicated in the insets. (a) Profile
of [ \2 for the eigenstates with positive velocity along y and spin
o. Here we set the chemical potential to 3.7 meV; the other
parameters are the same as those adopted in figure 3. (b) Similar to
(a) but for negative velocity denoted as |5 |2. The gapless states
with the opposite spins propagate in the opposite directions.

the Berry phase for the two blocks can be computed separately.
To this end, we define the Berry curvature as Griffiths (1995)

Qo2 =iV X(Po,+ (K)| Vi 05,2 (K)) ©)

Figure 5. Schematic of a 2DTI. While the interior (bulk states) of
the system is gapped, there are gapless states located in the exterior,
forming a helical liquid circulating the edge.

for the eigenstate |9, 1) with the periodic boundary condi-
tions along both x and y directions. Here, for each spin o,
the + sign corresponds to the upper-/lower-band of the BHZ
Hamiltonian with the (spin-degenerate) eigenvalues

ho(k) % /() + B3 (k) + 1 (K), )

where h,, are given in (5). As long as there exists a finite
bulk gap, we can define the unit vector h, =h, / |ﬁg| with

hy = (ohy,hy,h3), and express the nonzero (z) component of
the Berry curvature as
Ohy
) ) (8)

Oy

1. [oh
Vs =y 1€, =F=h,- Z
o,t o,t €; :tho' (akx X

The Berry phase is obtained upon integrating the curvature
over the momentum space. For convenience, we define the fol-
lowing quantity as the Berry phase divided by 27,

d*k
Na,:l: = / Tﬂa,ﬂ:v (9)
Bz< T

with the integral over the Brillouin zone. It can be shown
that the above expression is the skyrmion number, which
measures how many times the unit vector h, covers the unit
sphere around the origin while (k,,k,) spanning the Brillouin
zone (Hsu et al 2011). Therefore, it is quantized and cannot be
continuously varied unless the vector EU shrinks to zero, which
would require closing the bulk gap. Thus, the integer N, 1 is
a topological invariant protected by the bulk gap, in analogy
to Thouless—Kohmoto—Nightingale—den Nijs invariant in the
integer quantum Hall states (Thouless et al 1982).

As illustrated in figure 6, in the normal regime the traject-
ory of h, does not enclose the origin and we have N, + =
0, whereas in the inverted regime we get a nontrivial value
Ny + = Fo. Assuming that the chemical potential lies within
the gap so that the lower band is occupied and the upper band
is empty, we evaluate the total Chern number N and the spin
Chern number Nj,

N=Y Ny, =0,N=)» oN, =2.

(10)
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Figure 6. Parametric surface formed by the trajectory of the unit
vector h, (blue arrow) when k = (ky, k,) spans over the Brillouin
zone. (a) In the trivial regime, the surface does not enclose the
origin (red dot), making the skyrmion number in (9) zero. (b) In the
topological regime, the origin is enclosed by the surface once,
leading to a skyrmion number of unity (up to a spin-dependent
sign). For the integer to change through varying the Hamiltonian
parameters, the surface has to pass through the origin,
corresponding to the vector ho vanishing at certain momentum and,
thus, to a gap closing point.

As aresult, unlike the quantum Hall states labeled by the total
Chern number, here the bulk topology is characterized by the
spin Chern number, which is a Z; invariant. Similar to the rela-
tion between the Chern number and the quantized Hall con-
ductance (Thouless et al 1982), here a nontrivial spin Chern
number indicates a quantized spin Hall conductance.

From the low-energy effective Hamiltonian of a quantum
spin Hall insulator, we can find a correspondence between the
topology of the system and the sign of the mass of a Dirac fer-
mion. Namely, the topological band-inverted regime is analog-
ous to a massive Dirac fermion with a negative mass while the
trivial regime is characterized by a positive mass. At a bound-
ary where two regions with opposite mass meet, the mass has
to pass through zero, thus forming a domain wall, which can
trap gapless states (Jackiw and Rebbi 1976). For a 2DTI, the
band inversion leads to a bulk gap with negative mass and
the vacuum surrounding it corresponds to a trivial insulator
with a positive mass. Therefore, we have the bulk-boundary
correspondence—at the boundary separating the topologically
distinct regions, gapless edge states are stabilized (Fu and
Kane 2006, Moore and Balents 2007, Roy 2009, Hasan and
Kane 2010).

2.83. Helical channels in various materials

In addition to HgTe composite quantum wells, the quantum
spin Hall effect was predicted in InAs/GaSb heterostruc-
tures (Liu er al 2008a). Here, it can be described by an exten-
ded BHZ model including additional terms induced by the
bulk inversion asymmetry and the surface inversion asym-
metry. These additional terms modify the location of the phase
transition between the quantum spin Hall and the trivial insu-
lating phases (phase boundary in the parameter space). How-
ever, they do not alter the character of the phases that transit
to each other, so the helical edge states are protected by the Z,
invariant as in HgTe. In addition, the heterostructure consisting

of an electron layer and a hole layer allows inducing topolo-
gically nontrivial phase electrically, by a gate. Soon after the
theoretical proposals, quantum spin Hall states were repor-
ted in experiments in HgTe (Konig et al 2007) and InAs/-
GaSb (Knez et al 2011). For HgTe, a finite edge conductance
is observed when the quantum-well width exceeds a critical
value, whereas a narrower well remains insulating. For both
HgTe and InAs/GaSb, a conductance close to the quantized
value was observed for sufficiently short edges. The nonlocal
conductance expected for edge transport was also demon-
strated in Roth er al (2009) and Suzuki et al (2013) for these
materials. Concerning the InAs/GaSb heterostructures, it is
known that their material properties strongly depend on the
details of fabrication processes. This fact leads to conflicting
experimental results, which may cast doubts on their topolo-
gical nature, as we will discuss in section 4.1.

There are other quantum spin Hall systems potentially host-
ing helical edge channels. Accompanied by the rapid progress
on novel van der Waals heterostructures (Geim and Grigor-
ieva 2013), the quantum spin Hall effect was predicted in
two-dimensional transition-metal dichalcogenides (Cazalilla
et al 2014, Qian et al 2014), including 1T’-WTe, mono-
layer (Tang et al 2017), further boosting the community’s
interest in topological phases of monolayer materials. The
experimental indication of edge channels was reported in 1T°-
WTe, monolayers (Tang et al 2017, Wu et al 2018). On the
one hand, spectroscopic observations of the gapless edge chan-
nels accompanied by a bulk gap at the Fermi level through the
scanning tunneling microscope (STM) and the scanning tun-
neling spectroscopy (STS) were reported (Jia et al 2017). On
the other hand, a contradicting STM study of Song et al (2018)
concluded instead a semimetal-like gapless bulk band struc-
ture. Furthermore, topological edge channels were observed
in spectroscopic measurements on bismuthene on SiC (Reis
et al 2017) and ultrathin Na3Bi films (Collins et al 2018), albeit
these materials so far lack transport measurements. Remark-
ably, there was an experimental indication of a hTLL along
the edge channels of bismuthene on SiC (Stiihler et al 2019).
In comparison to earlier semiconductor-based materials HgTe
and InAs/GaSb, the more recent van der Waals heterostruc-
tures tend to have a larger bulk gap and thus better topological
protection for the edge states. Whereas currently there are only
a handful of examples of semiconductor-based materials host-
ing helical channels, we expect the helical liquid to exist in a
broader variety of materials.

Going beyond the two-dimensional nanostructures, plat-
forms hosting helical channels include HOTIs (Benalcazar
et al 2014, 2017a, 2017b, Slager et al 2015, Ezawa 2018,
Okugawa et al 2019). Relevant to this review are three-
dimensional helical second-order topological insulators pre-
serving time-reversal symmetry (Langbehn et al 2017, Song
et al 2017, Geier et al 2018, Khalaf 2018, Schindler et al
2018a, Calugaru et al 2019, Ezawa 2019, Slager 2019,
Fang and Cano 2020, Plekhanov et al 2020, Tanaka et al
2020), where both the three-dimensional bulk and the two-
dimensional surfaces are gapped. One can generalize the
above notion of Dirac mass to this three-dimensional sys-
tem (Schindler 2020), in which the low-energy theory can still
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Figure 7. Illustration of a three-dimensional second-order
topological insulator, where the bulk and surface are gapped. (Left)
The sign of the gap (Dirac mass) on a given surface, which depends
on the surface orientation, is indicated by color. (Right) At the
hinges between two surfaces with opposite signs, there are gapless
helical states. The spin-up and -down hinge states are separated for
clarity. Here we illustrate a nanowire with a hexagonal cross section
(realized in, for instance, Bi); for a square cross section,

see figure 15.

be captured by the Dirac equation. Each of the surfaces is
described by the Dirac equation with a finite Dirac mass. Dis-
tinct from a trivial insulator or a first-order topological insu-
lator, the Dirac mass here depends on the surface orientation,
as illustrated in figure 7. In this figure, the colors of the sur-
faces are assigned according to the sign of the Dirac mass.
The mass has to change its sign, and therefore go through
zero, at a hinge separating two neighboring surfaces of oppos-
ite mass. In analogy to 2DTI, the sign change signifies clos-
ing the energy gap and appearance of gapless helical channels.
In consequence, three-dimensional helical second-order topo-
logical insulators are characterized by one-dimensional gap-
less helical hinge states with opposite spin states propagating
in opposite directions, similar to spin-momentum locked edge
channels in quantum spin Hall insulators.

Experimental indications for HOTI materials have been
reported in bismuth (Bi) nanodevices (Schindler e al 2018b,
Murani et al 2019), van der Waals stacking of bismuth-halide
(BiyBry) chain (Noguchi et al 2021) and multilayer WTe; in
T, structure (Choi et al 2020, Wang et al 2021a). The theory
so far has not come to a consensus on the identity of the bulk
topology in Bi, claiming 2DTI (Murakami 2006, Wada et al
2011), HOTT (Schindler et al 2018b), topological crystalline
insulator with multiple nontrivial topological invariants (Hsu
et al 2019b), or a system at the border between higher-
order and first-order (strong) topological insulating phases in
a combined theoretical and experimental study of Nayak et al
(2019). In contrast to the diverse theoretical results, experi-
mental studies are more consistent, showing evidence in favor
of edge or hinge channels: An earlier STM study on loc-
ally exfoliated Bi(111) bilayer showed topologically protected
transport over edges with length up to hundreds of nanomet-
ers (Sabater ef al 2013). Additional support on the existence
of gapless hinge channels was seen in spectroscopic (Drozdov
et al 2014, Takayama et al 2015) and transport (Murani et al
2017) experiments.

2.4. Other variations

Alternatively to these bulk topological materials, one can pro-
duce a spin-selective gap in a (quasi-)one-dimensional spin-
degenerate semiconducting nanowire combining Rashba SOIs
and magnetic field (Streda and Seba 2003, Pershin et al 2004,
Devillard et al 2005, Zhang et al 2006, Sanchez et al 2008,
Birkholz and Meden 2009, Rainis and Loss 2014, Cayao et al
2015). The remaining gapless sector is then formed by a pair
of pseudo-helical states’. The difference between the pseudo-
helical and helical states in their spectroscopy was pointed
out by Braunecker et al (2012). Later, similar approach was
adopted to carbon nanotubes, graphene nanoribbons, or 2DTI
constrictions (Klinovaja et al 2011, Klinovaja and Loss 2013,
2015). We, however, do not cover these pseudo-helical states
in systems where the time-reversal symmetry is explicitly
broken by the magnetic field. We refer the interested reader
to recent reviews on this topic (Frolov et al 2020, Prada et al
2020).

Finally, it was proposed that hTLL can arise in a cyl-
indrical nanowire made of a (strong) three-dimensional topo-
logical insulator threaded by a magnetic flux of a half-integer
quantum (Egger et al 2010). Alternatively, hTLL were pro-
posed to occur due a nonuniform chemical potential induced
by gating across the cross-section of nanowire in the presence
of the Zeeman field (Legg et al 2021). However, since we are
interested in helical states arising without external magnetic
fields, we do not cover this type of setups either. Besides, since
we focus on solid-state systems, we do not cover realizations in
other types of systems, such as photonic systems (Ozawa et al
2019), nonequilibirum/Floquet systems (Harper et al 2020,
Rudner and Lindner 2020), or magnonic systems (Nakata et al
2017). Although we will not cover non-Hermitian systems,
which provide an interesting new direction but are beyond
the scope of this article, we point out recent reviews (Mar-
tinez Alvarez et al 2018, Bergholtz et al 2021) on the role
of topology in non-Hermitian systems, including dissipative
cold-atom systems, optical setups with gain and loss, and topo-
logical circuits.

3. Interacting helical channels: hTLL

After discussing how helical states arise at the edges or the
hinges of a topologically nontrivial system, we now turn to
their own properties and how they can be characterized. Since
the helical states in either 2DTI edges or HOTI hinges are
spatially confined in one-dimensional channels, one expects
strong interaction and correlation effects. For the usual, non-
helical case, it is well known that elementary excitations in
interacting one-dimensional systems are of bosonic nature.
Such a system is known as Tomonaga—Luttinger liquid (TLL),
which differs strongly from a Fermi liquid describing interact-
ing fermions in higher dimensions (Haldane 1981, Giamarchi
2003). Adding their helical nature, the edge or hinge states

7 In Braunecker er al (2012), these pseudo-helical states are termed ‘spiral’
states as opposed to ‘helical’ states in a 2DTI.
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Figure 8. Energy spectrum of a 2DTI, where & is the momentum
along a given edge and p is chemical potential. In the energy
window within the bulk gap Ay near the Dirac point, one consider
only the edge states and ignore the bulk states. For the illustrated
spectrum, we have helical edge states composed of right-moving
spin-down and left-moving spin-up states.

realize a special form of matter, which is named A7LL in this
review. Kane and Mele’s proposal on the quantum spin Hall
effect motivated investigations on such a helical liquid formed
along the edge of the system. It was shown that it embod-
ies a novel class of matter (Wu et al 2006, Xu and Moore
2006, Dolcetto et al 2016), which is distinct from the spin-
ful TLL (formed in spin-degenerate systems such as semicon-
ductor quantum wires) or the chiral TLL (formed in the edge
of a fractional quantum Hall system). To discuss the proper-
ties of the hTLL, we next introduce a description based on the
bosonization formalism.

Let us consider the hTLL located at an edge (a hinge) of a
2DTI (HOTI). At energy scales above the bulk gap, the hTLL
description becomes invalid, as demonstrated in quantum
Monte Carlo simulations on the Kane—Mele model with Hub-
bard interaction (Hohenadler and Assaad 2012a, 2012b). We
therefore consider the illustrated spectrum in figure 8 and
restrict our discussions to energy scales within the bulk gap,
where the bulk states are absent. We note, however, the pos-
sibility to have coexisting gapless bulk and edge states in two-
dimensional topological systems (Baum ez al 2015).

With the above assumptions, we look at a single helical
channel, which can be described as

Hhel :Hkin +Hee7 (11)

where Hyi, and H. are the kinetic energy and electron—
electron interactions, respectively. In this section we assume
that the electron spin along the z axis S° is a good quantum
number; we will discuss the generalization to a generic hel-
ical liquid, where S* is not conserved, in section 4.3. Here, we
further assume that the helical edge or hinge states are formed
by right-moving spin-down and left-moving spin-up electrons
as in figure 8. We can thus write

Pr(r) = e TLy(r), Py (r) = 5 R (1), (12)

with the slowly varying right(left)-moving fermion field R
(Lt), the coordinate r along the channel, and the Fermi wave
vector kg of the helical states (measured from the Dirac point).
From now on we will suppress the coordinate and the spin
index unless it may cause confusion. The kinetic-energy term
reads

Hyin = — ihvp / dr (R'O,R—L'O,L), (13)
with the Fermi velocity vr. The electron—electron interaction
term is given by

Hee =2 / drR'RL'L

+%“/dr (R'R)+ (L) ], a4
where g, and g4 are the interaction strength describing the for-
ward scattering processes. The interaction term (14) describes
short-range interactions and is valid for systems in which
Coulomb interactions between particles are screened by, for
instance, electrons in a nearby metal gate.

The fermion operators can be expressed in terms of the
bosonic fields (6, ¢),

U .
R_il—p(r)+0()]

R(r) = 2ma

T

U (15)
L(r) = = /lo0)+00)]
2ma

where Uy, is the Klein factor and a = hvp /Ay is the short-
distance cutoff, which is associated with the high-energy
cutoff set by the bulk gap A,,. The bosonic fields satisfy

[6().6(")] =i sign(r' = 1), 16)
indicating that the field 9,6/7 is canonically conjugate to ¢.

With (15), the helical channel Hamiltonian can be bosonized
as

hu

1
Hpel Zg/dr {K(a@)z +K(6,9)2] 7 a7

where the velocity « and the interaction parameter K are given

- 8\ (&) ]”
u_[(vF+27rh) (27rh) } ’ (184)
1
27rth+g4—gz)2
=l — . 18b
<27rth +g1+& (185)

For repulsive electron—electron interactions (g, g4 > 0), we
have K < 1. For existing materials, the interaction parameter
was estimated in theory: K~0.2 for edge states in InAs/-
GaSb heterostructures (Maciejko et al 2009), K ~0.53-0.9
for HgTe quantum wells (Hou et al 2009, Strém and Johan-
nesson 2009, Teo and Kane 2009), K =~ 0.43-0.5 for strained
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InAs/(Ga,In)Sb devices (Li et al 2017), K ~ 0.4-0.6 for hinge
channels in a bismuth HOTI (Hsu ef a/ 2018b) and K =~ 0.4-0.6
for bismuthene on SiC (Stiihler et al 2019).

As we see in (17), the bosonized Hamiltonian is quad-
ratic in the bosonic fields and can, therefore, be exactly
diagonalized. In the bosonic language, one can thus per-
form calculations that are nonperturbative in the electron—
electron interaction strength, including the renormalization-
group (RG) analysis. Since the quantity K parametrizes the
strength of Coulomb interactions between electrons in the
helical channel, it serves as a crucial parameter for the RG
relevance of various interaction-induced and renormalized
scattering processes, as well as for the interaction-stabilized
topological bound states, which we will discuss in the fol-
lowing sections. It is, therefore, important to experimentally
quantify this parameter in realistic settings. However, dedu-
cing the interaction parameter is tricky, especially from the—
most common—dc transport measurements. First, for a clean
hTLL that is free from backscattering and adiabatically con-
nected to Fermi-liquid leads, it was found that the dc conduct-
ance of the helical channel does not depend on K (Hsu et al
2018a), resembling the ballistic conductance in a nonhelical
channel (Maslov and Stone 1995, Ponomarenko 1995, Safi and
Schulz 1995). Second, while in the presence of backscattering
sources the conductance through a helical channel in general
depends on the interaction strength, knowledge of the backs-
cattering mechanism and resistance sources is required to
extract K. This complication makes the extraction of the exper-
imental K value highly nontrivial, as pointed out by Viyrynen
et al (2016), Hsu et al (2017, 2019).

One may, therefore, consider alternative probes. For
instance, the ac conductivity o,.(w) of a hTLL can be meas-
ured optically without the influence of the leads. The real part
of o, shows a zero-frequency Drude peak with the weight
depending on the interaction strength (Meng et al 2014b, Hsu
et al 2018a). Alternatively, one can search for spectroscopic
signatures by probing the local density of states, which exhib-
its a scaling behavior as a function of energy E and temperature
T (Stiihler ef al 2019),

2
Pdos

E l+ags . E
h T
Tow & 6 <2kBT> ‘ ( 2 ket

with the Boltzmann constant kg and the interaction-dependent
parameter cgos = (K+ 1/K)/2 — 1. Remarkably, this formula
not only provides spectroscopic signature for a hTLL, but also
allows for the extraction of the interaction parameter K. This
universal scaling behavior was indeed observed on the edge
of bismuthene on SiC through STS measurements (Stiihler
et al 2019), and the deduced value of K was in good agree-
ment with a theoretical estimation. At 7' =0, the expression
reduces to a power-law density of states depending on energy
Pdos X |E|% as found earlier in the zero-temperature calcula-
tion (Braunecker et al 2012).

As an alternative, Ilan er al (2012) proposed a setup to
extract K by measuring the edge current through an artificial
quantum impurity, which is realized by combining a local gate

)

19)

and an external magnetic field. Since the artificial impurity
acts as a backscattering center with experimentally control-
lable strength, one can determine K by fitting the edge cur-
rent to the analytical expression. Finally, Miiller et al (2017)
proposed a dynamical approach to determine the interaction
parameter of the 2DTT edge states, from either time-resolved
transport measurements with sub-nanosecond resolution or the
frequency dependence of the ac conductance.

While in principle the above proposals allow one to
extract the K value, using conventional—and thus well
established—experimental probes seems more practical. To
this end, Braunecker and Simon (2018) proposed the double-
edge momentum conserving tunneling spectroscopy. It util-
izes a setting analogous to the double-wire tunneling spec-
troscopy based on cleaved edge overgrowth GaAs quantum
wires (Auslaender et al 2002, Tserkovnyak et al 2002, 2003,
Patlatiuk er al 2018, 2020), which has been used to detect the
spinful TLL in semiconductor quantum wires. Adopting it for
helical channels, it requires a setup using a pair of controlled
parameters: an applied bias voltage between edges of two
2DTIs and a flux induced by an external magnetic field penet-
rating in-between the edges. The bias voltage shifts the spec-
tra of the two edges in energy, while the magnetic flux shifts
them in momentum. A tunneling current then flows between
the edges whenever the flux and bias meet the conditions for
the energy and momentum conservation, leading to an oscil-
lating tunneling conductance as a function of the magnetic
field and the bias voltage. The oscillation period allows one
to deduce the parameter K of a double-edge system with sim-
ilar interaction strength. Hsieh et al (2020) extended the cal-
culation of Braunecker and Simon (2018) to finite temperature
and the presence of disorder, providing a systematic analysis
on the low-energy spectral function and the tunneling current.

While the hTLL description (17) allows for investiga-
tions on strongly interacting systems and is adopted in many
works, there exist studies that do not rely on the hTLL picture
and bosonization. They focus on weakly interacting systems
adequately described by the fermionic language, including
generic helical liquids, which we will discuss in section 4.3.1.

4. Charge transport of a helical channel

The presence of one-dimensional helical channels can be
experimentally examined through their charge transport: a
quantized conductance Gy = e?/h per channel is expected
when the chemical potential lies within the bulk gap. In addi-
tion, the charge transport has direct implications for applica-
tions in electronics and spintronics. Below we first review the
experimental progress, before discussing the theoretical res-
ults on charge transport.

4.1. Experiments on edge transport

There are a number of transport measurements on 2DTI edge
channels. For sufficiently short channels, the expected ballistic
value was observed in earlier studies on HgTe (Konig et al
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2007), InAs/GaSb (Knez et al 2011) and 1T’-WTe, monolay-
ers (Wu et al 2018), along with observations consistent with
nonlocal edge transport in these materials (Roth ef al 2009,
Suzuki et al 2013, Fei et al 2017). Additional experimental
features for helical channels include spin polarization of the
edge states (Briine et al 2012) and real-space imaging of edge
current in HgTe (Nowack et al 2013) and InAs/GaSb (Spanton
et al 2014) based on microscopic superconducting quantum
interference device (SQUID). However, in contrast to the well
quantized conductance of chiral edge channels in quantum
Hall states (von Klitzing et al 1980, von Klitzing 2017), imper-
fect quantization of the edge conductance was seen in longer
samples. Moreover, the scanning gate microscopy identified
individual scattering centers (Konig et al 2013), which may
originate from metallic puddles formed in inhomogeneous
potential landscape. These observations triggered further stud-
ies on charge transport of the potential 2DTI materials; such
experiments were reviewed in Gusev et al (2019), Culcer et al
(2020).

In most settings, the low-temperature conductance or
resistance was weakly temperature dependent, for both
HgTe (Konig et al 2007, Gusev et al 2011, 2014, Grabecki
et al 2013, Olshanetsky et al 2015, Bendias et al 2018) and
InAs/GaSb (Suzuki et al 2013, 2015, Knez et al 2014, Du
et al 2015). In addition, a peculiar fractional power-law con-
ductance was observed in InAs/GaSb, which was attributed to
hTLL signatures (Li et al 2015). Furthermore, reproducible
quasiperiodic fluctuations of both local and nonlocal resist-
ance as functions of gate voltage observed in HgTe (Grabecki
et al 2013) became less pronounced upon increasing the tem-
perature, consistent with the expectations from charge puddles
present in narrow-gap semiconductors with inhomogeneous
energy landscape. A more recent study on HgTe demonstrated
temperature-induced phase transition between the 2DTI and
trivial insulating phases (Kadykov et al 2018). For a 100 nm
channel of WTe, monolayer, the range for the temperature-
insensitive conductance persists even up to 100 K (Wu et al
2018), which is much higher than in the semiconductor het-
erostructures and is consistent with the theoretically predicted
large topological gap.

Concerning nonlocal transport, measurements on HgTe
have been performed for samples of different sizes. On
the one hand, the edge conductance is well described by
the Landauer—Biittiker formula for submicron-size samples in
the ballistic regime (Roth et al 2009). On the other hand, non-
quantized resistance was observed for larger samples in the
diffusive regime (Grabecki et al 2013) and for even larger
samples with channel lengths (perimeters of the samples) in
the order of millimeter (Gusev et al 2011, 2013, Olshanet-
sky et al 2015). By fabricating lateral p-n junctions in wide
HgTe quantum wells with thickness of 14 nm, Piatrusha
et al (2017) observed highly linear current—voltage charac-
teristics, indicating transport via ballistic edge states. For
InAs/GaSb, Suzuki et al (2013) was able to observe dom-
inant nonlocal edge transport in a micrometer-long device
by optimizing the InAs layer thickness, along with reprodu-
cible resistance fluctuations in the gate voltage dependence,
indicating multiple scatterers along the channel. Utilizing a

dual-gate device, Suzuki et al (2015) monitored the transition
from the semimetallic to the 2DTI phase through the nonlocal
resistance measurements. Mueller et al (2015) observed non-
local edge transport with the resistance systematically below
the expected quantized values, indicating a residual bulk con-
duction. For WTe;, Fei et al (2017) demonstrated edge con-
ductance in monolayer devices present over a wide range of
gate voltage and temperature. On the other hand, the bilayer
devices showed insulating behavior without a sign of edge
conduction.

As mentioned above, the helical states arise from a time-
reversal-invariant system. To examine how they respond to
broken time-reversal symmetry, one applies the external mag-
netic field. Measurements showed anisotropy with respect to
the field orientation. For the ballistic regime of HgTe, Konig
et al (2007) observed a sharp cusp-like conductance peak
centered at zero for an out-of-plane magnetic field B, (per-
pendicular to the two-dimensional heterostructure) and a much
weaker field dependence for an in-plane magnetic field B,.
The observation was attributed to an anisotropic Zeeman gap
opening in the edge spectrum. Gusev et al (2011) examined a
HgTe sample in the diffusive regime under both B, and B,.
They observed an increasing resistance with a small B | , which
developed a peak and eventually was suppressed by a strong
field, probably due to a transition to a quantum Hall state.
On the other hand, the same reference reports a large positive
magnetoresistance for |B||| < 2 T, in contrast to the ballistic
samples. For |B)|| > 6 T, both local and nonlocal resistances
quickly dropped with |By|. For |B}|| > 10 T, local resistance
saturated while the nonlocal one vanished, suggesting the
emergence of conductive bulk states and thus a field-induced
transition to a conventional bulk metal state. Similar results
followed in their subsequent work (Gusev et al 2013), which
observed a decrease of the local resistance by B, accom-
panied by the complete suppression of nonlocal resistance by
B = 10 T, consistent with a transition from 2DTI to a metal-
lic bulk. A systematic investigation of the field dependence of
the edge transport was carried out by Ma et al (2015), in com-
bination with scanning microwave impedance probe allowing
for detection of the local electromagnetic response. Unexpec-
tedly, whether B suppresses the edge conductance depends
on the position of the chemical potential with respect to the
charge neutrality point. On the p-doped side, the edge con-
duction is gradually suppressed by applying B , whereas the
edge conduction on the n-doped side shows little changes up to
9 T, contradicting the theoretical expectation. A recent study
showed an almost perfectly quantized edge conductance in a
6 pm-long edge at the zero magnetic field, which was strongly
suppressed by a small field of B, =50 mT (Piatrusha et al
2019). With the field-induced broken time-reversal symmetry,
they observed the exponential temperature dependence of con-
ductance indicating Anderson localization for the edge states,
along with reproducible mesoscopic resistance fluctuations as
a function of gate voltage and the gap opening in the current-
bias characteristics.

Concerning different materials, surprisingly robust
edge transport against magnetic fields was reported for
InAs/GaSb. A weak B|-dependence of edge conductance
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was observed (Du et al 2015), which remained approximately
quantized up to 12 T. Nonetheless, magnetic fields can still
modify the edge transport upon combining them with elec-
tric fields. Qu et al (2015) demonstrated the tunability of the
InAs/GaSb system through a dual-gate setting and magnetic
fields. Utilizing the top and back voltage gates, which con-
trol the Fermi level and the relative alignment between the
electron and hole bands, together with By, which shifts the
two bands in momentum, they established the phase diagram
by measuring the local resistance. In contrast to the semicon-
ductor heterostructures, the edge conductance in WTe; can
be suppressed exponentially by either B)| (Fei et al 2017) or
B, (Wu et al 2018), demonstrating the Zeeman gap opening
in the edge spectrum.

The peculiar features in HgTe and InAs/GaSb under mag-
netic fields reported by Du et al (2015), Ma et al (2015) motiv-
ated theoretical works on ‘Dirac point burial’ or ‘hidden Dirac
point’ (Li ef al 2018, Skolasinski et al 2018). Namely, detailed
band structure calculations in these theoretical works revealed
a Dirac point buried within the bulk valence or conduction
bands. It results in a hidden Zeeman gap responsible for robust
edge-state transport against magnetic fields.

In addition to the unexpected temperature and field depend-
encies, there exist other puzzles in experiments, including a
more recent observation of the localization of HgTe edge chan-
nels with length of O(1 m)-O(10 pm) in the absence of mag-
netic fields (Bubis er al 2021). Particularly for InAs/GaSb,
the residual bulk conduction in parallel to the edge trans-
port was observed since its first 2DTI demonstration (Knez
et al 2011) and later on confirmed by scanning SQUID micro-
scopy (Nichele ef al 2016). It has motivated subsequent works
on intentional impurity doping, either through Ga source
materials with different impurity concentrations (Charpentier
et al 2013) or Si doping (Knez et al 2014, Du et al 2015). By
suppressing the bulk conduction with disorder, quantized edge
conductance with a deviation of about 1% was observed in a
wide temperature range (Du et al 2015). Alternatively, Couédo
et al (2016) employed specific sample design, using a large-
size device with asymmetric current path lengths, to electric-
ally isolate a single edge channel and observed a conductance
plateau close to the quantized value.

There are also puzzles in the trivial regime of InAs/GaSb,
where the energy bands are not inverted. In contrast to the the-
oretical expectation, Nichele et al (2016) observed edge chan-
nels even in the trivial regime in the scanning SQUID micro-
scopy. This observation was further confirmed in a device with
the Corbino geometry, in which the conduction through the
bulk and edge states were decoupled (Nguyen et al 2016).
Together with the resistive transport (the resistance growing
with the edge length) reported in Nichele et al (2016), the
edge states are likely trivial and thus nonhelical; they might
share the same origin as the counterpropagating edge trans-
port observed in the quantum Hall regime of the InAs quantum
well, as a result of the Fermi-level pinning and carrier accu-
mulation at the surface (Akiho er al 2019). The observa-
tion of Nichele er al (2016) motivated a systematic invest-
igation (Mueller et al 2017) on length dependence of the
edge resistances in the nominally topological InAs/GaSb and

trivial InAs materials. Importantly, the two systems showed
similar resistances with linear dependence on edge length,
clearly indicating the presence of multiple resistance sources.
More recently, Shojaei et al (2018) assessed the disorder
effects due to charge impurities and interface roughness of
a dual-gate device by measuring the temperature and mag-
netic field dependence of resistance. Upon tuning the system
from the band-inverted to the band-normal regime, the conduc-
tion resembles the behavior of a disordered two-dimensional
system. Therefore, even with the most advanced fabrication,
potential fluctuations are sufficiently strong to destroy the
topological state as a result of the small hybridization gap.

Motivated by a better understanding on the topological
nature of the InAs/GaSb heterostructure, Akiho et al (2016),
Du et al (2017) investigated strained InAs/(Ga,In)Sb compos-
ite quantum wells, aiming at engineering the band structure.
The lattice mismatch between the (Ga,In)Sb and AlSb lay-
ers in the heterostructure induces a strain in the former layer,
which enhances the hybridization between the electron band
of InAs and the hole band of (Ga,In)Sb. As a result, the bulk
gap was increased by about two orders in comparison with the
gap of InAs/GaSb. The edge transport of the strained material
was confirmed by Du et al (2017), revealing weak temperature
dependence which can be fitted in a logarithmic form (Li et al
2017). Using the strained material, Irie et al (2020a) demon-
strated the gate-controlled topological phase transition. They
also observed a tunable bulk energy gap, the magnitude of
which can reach above the room temperature in highly strained
quantum wells. Irie ef al (2020b) investigated the effects of
epitaxial strain on the topological phase transition of InAs/-
GaSb by combining different substrates and buffer layers.
Upon inducing biaxial tensile strain in the GaSb layer, they
observed that the strain can close the indirect gap of the bulk
spectrum, resulting a semimetallic behavior even in the band-
inverted regime.

While these great experimental efforts finally led to the
observation of well quantized edge conductance through gate
training in macroscopic HgTe samples with edge length in the
order of 100 um (Lunczer et al 2019), there are apparent dis-
crepancies among the above experimental results, as well as
between the observations and theoretical predictions. Motiv-
ated by these observations, numerous backscattering mechan-
isms were proposed. In addition to being resistance sources,
since backscattering mechanisms might potentially localize
the edge states and open a gap in the edge or hinge energy
spectrum, it is also important to examine the stability of the
helical states against them. In the following subsections, we
group the mechanisms considered in the literature according
to the time-reversal symmetry. We discuss mechanisms that
break the time-reversal symmetry in section 4.2, and those that
preserve it in section 4.3.

In theoretical works, the charge transport is discussed in
terms of various physical quantities, including ac/dc conduct-
ivity, resistance, conductance correction, or backscattering
current. In order to make a systematic discussion, we focus
on the dc limit and convert all the expressions in the follow-
ing way. When a given mechanism involves multiple scatterers
with the scatterer number increasing with the channel length,
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we summarize the results in terms of the resistance R, includ-
ing the linear-response resistance in the low-bias regime and
differential resistance dV/dI in the high-bias regime (we will
use the same notation for simplicity). For mechanisms arising
from a single backscattering source, the resistance does not
scale with the edge length, which prompts us to express the
results in terms of the (differential) conductance correction
5G < 08.

Below we assume that the bulk samples are sufficiently
large so that parallel edges or hinges of the system are well
separated, allowing us to focus on a single channel. After
discussing various backscattering mechanisms and the res-
ulting formulas for R or G as functions of the temperat-
ure 7, bias V, and channel length L, we will summarize their
temperature dependence in tables 2 and 3 for time-reversal
symmetry breaking processes and time-reversal-invariant pro-
cesses, respectively.

4.2. Mechanisms with broken time-reversal symmetry

Since the nontrivial topology of 2DTI and helical HOTT relies
on the time-reversal symmetry, it is natural to ask how the hel-
ical channels are affected by perturbations that explicitly break
the time-reversal symmetry.

4.2.1. Single magnetic impurity A simple way to break
the time-reversal symmetry is to introduce a single magnetic
impurity in the helical channel. Wu et al (2006), Maciejko
et al (2009) considered a localized spin impurity (called Kondo
impurity) with spin /= 1/2 and an exchange coupling to the
helical edge states in the following form,

Hg =Y / dr J,S*(rn1*8(r), (20)
I

with the 4 component of the electron spin S and the localized
impurity spin I located at the origin. In terms of the right-and
left-moving fields (see (12)), the electron spin operators read

1 i
x _ L (pt f v _ Lipty gt
S—Z(RL+LR),S_2(RL L'R), (2la)
1
e _ _ (777 _ pt
S_Z(LL R'R), (21b)

where we omit the spatial coordinate. For isotropic transverse
coupling J, = J;, the Kondo coupling can be expressed as

_!

Hyx 2

/ dr(r) [J L (I"R'L+ 1" L'R)

+ILF(L'L— R R)] , (22)
with /= = I* £ iP’. The transverse coupling J| = (J, +J,)/2
leads to a spin-flip backscattering between the right- and

8 1In an edge of intermediate length, the channel resistance R might be com-
parable to the contact resistance 1/Gy = h/e?, with the total series resistance
h/e* + R. The two quantities (R and 6G) are related through §G oc —RG3.

left-moving states, and the z component describes the for-
ward scattering, which modifies the effective strength of the
electron—electron interactions but does not affect the charge
transport directly. The interaction Hg, derived for J, = J,,
conserves the z component of the total spin of the electron and
impurity. For anisotropic transverse coupling J, # J,, there
can be additional terms breaking this conservation.

In the strong-coupling regime, the formation of the Kondo
singlet at the impurity site screens the spin and effectively
removes the impurity from the helical channel at low tem-
perature. In consequence, the helical channel follows the
deformed boundary of the underlying lattice due to its topo-
logical nature. One thus expects no conductance correction
in this regime (Maciejko et al 2009). In the weak-coupling
regime where J and J, are small parameters, Maciejko et al
(2009) employed the Kubo formula and found that the Kondo
scattering induces a power-law correction to the edge conduct-
ance at low temperature,

2

5GK X —i

keT 2K-2
2
- ) ! (23)
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where the modification in K due to the forward-scattering term
is given by
2
).

with vy = a/(mhu) being the density of states of the hTLL.
When the temperature is above the Kondo temperature 7'k, one
has, instead, a logarithmic correction

1Z0) Jz
2K

i(ocK(l— (24)
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with g and vk depending on the interaction parameter K and
the bare couplings J, and J..

In contrast, Tanaka ef al (2011) pointed out that, for the iso-
tropic transverse coupling (22), the result (23) does not hold
in the dc limit (w — 0). It is because the Kubo formula imple-
mented in the calculation relies on a perturbation expansion in
the Kondo couplings, which is valid for sufficiently high fre-
quency where J| , < Jw but not at zero frequency. Instead,
Tanaka et al (2011) concluded that, for a single magnetic
impurity which has an isotropic transverse coupling to the hel-
ical states, the dc conductance correction vanishes regardless
of the formation of the Kondo singlet and the conductance
quantization is preserved.

The physical reason behind this property can be under-
stood from the fact that in the isotropic limit the electron-
impurity-spin coupling conserves the sum S° + ¢ of the elec-
tron and the magnetic impurity spin components. An elec-
tron spin flip necessary for backscatterings must be accom-
panied by the flop of the magnetic impurity. Since a mag-
netic impurity with the spin / can be flopped only up to 21/
times, in a transport measurement with the electric current
flowing through a helical channel, the magnetic impurity even-
tually becomes completely polarized and cannot allow for sub-
sequent backscatterings without a depolarization mechanism.
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Therefore, a steady-state backscattering current cannot be sus-
tained by a single magnetic impurity and thus the dc conduct-
ance remains quantized. To assess the influence of the single
magnetic impurity on the helical states, one has to probe the
system in the finite-frequency regime. Alternatively, one needs
either a depolarization mechanism or a non-spin-conserving
interaction (arising from, for instance, anisotropic transverse
coupling J, # J,) in order to have observable effects in dc
transport.

The situation changes when one includes the SOI. It can
be induced, for instance, by an electric field of a gate on top of
the heterostructure. Eriksson et al (2012) studied the effects of
spatially uniform Rashba SOI on the helical states coupling to
a Kondo impurity; a subsequent work considering additionally
the Dresselhaus term reached the same conclusion (Eriksson
2013). Upon a unitary transformation that removes the SOI
terms, the spin—spin interaction becomes non-spin-conserving
(via an anisotropic coupling) and generates additional noncol-
linear terms in the form of

S'F LS (26)
with "¢ being the y’,z’ component of the electron spin S in
the transformed frame at the impurity site. As these Rashba-
induced terms disfavor the formation of a Kondo singlet, the
Kondo screening is suppressed. As a consequence of the SOI,
the Kondo impurity leads to a correction similar to (23), but
with the prefactor and the parameter K modified by the SOI,
along with subleading terms of higher order in 7. Interestingly,
in contrast to the general expectation that the SOI does not
affect the Kondo effect, here the Kondo screening gets obstruc-
ted by the Rashba-induced noncollinear coupling in certain
parameter regimes. In consequence, in this setting the Rashba
effect can be exploited to externally control the Kondo screen-
ing and Tk.

Zheng and Cazalilla (2018) studied a single magnetic
impurity with I = 1/2 strongly coupled to the electrons above
Tk. Starting from the Kane—Mele model in two dimensions,
they mapped the single magnetic impurity problem to a gen-
eralized Fano model, which describes an interacting one-
dimensional channel coupled to resonant levels. As a result,
the edge state electrons can tunnel into the resonant levels at
the impurity site, thus causing a suppression of the transmis-
sion through the edge channel at low temperature. Backscat-
tering in this mechanism is allowed even without electron—
electron interactions, in contrast to charge puddles, which we
discuss in section 4.3.

More recently, Vinkler-Aviv et al (2020) made a detailed
numerical analysis on the single magnetic impurity problem.
Specifically, they employed time-dependent numerical RG
method for a local spin I=1/2 coupling to helical states
with a general exchange coupling tensor to compute the low-
temperature conductance over a wide range of bias voltage and
coupling strength. In the low-energy limit, the RG analysis
shows that the exchange couplings tend to flow to the isotropic
fixed point, restoring the U(1) symmetry associated with the $°
conservation. In this limit, the formation of the Kondo singlet

protects the conductance quantization, consistent with earlier
findings in the Kondo regime (Maciejko et al 2009) or the iso-
tropic limit (Tanaka et al 2011). In typical measurements, how-
ever, finite temperature or bias voltage can stop the RG flow
earlier, with the characteristic energy scale set by Tk, thus des-
troying the conductance quantization.

In addition to these works on impurity /= 1/2, there are
theoretical works on a single magnetic impurity with large
spin, particularly relevant for HgTe doped with Mn* ions,
which has a spin of I = 5/2 (Furdyna 1988, Novik er al 2005).
By extending the analysis of Eriksson et al (2012) to spatially
non-uniform Rashba SOI, Kimme et al (2016) demonstrated
that a single Kondo impurity with an anisotropic coupling that
breaks the S° symmetry can result in backscattering. In partic-
ular, in the nonlinear regime where the bias voltage is larger
than the thermal energy (eV > kgT), such a scattering causes
aresistance increasing with eV/kg T for I > 1/2. Furthermore,
Kurilovich et al (2019b) considered a noninteracting channel
coupled to an impurity with 7> 1/2, with a general form of
the anisotropic exchange coupling. In particular, they incor-
porated the electron-mediated indirect exchange interaction of
the magnetic impurity with itself,

Dy(F)* + D:(F)?, @7
with couplings |D,| > |Dy|. Such a local anisotropy term
breaks the /° conservation. It can significantly affect the con-
ductance for integer I and easy-plane anisotropy, leading to
a T* power-law correction. In other cases, the correction has
weak temperature dependence at low temperatures.

In summary, a single magnetic impurity can cause conduct-
ance correction when the Hamiltonian breaks the U(1) axial
rotational symmetry associated with the conservation of the
spin component S° of the electrons and /° of the impurity.
As this symmetry can be naturally broken in typical hetero-
structures, in general one expects nonvanishing effects on the
charge transport.

4.2.2. Ensemble of magnetic impurities  Having discussed
the effects of a single magnetic impurity, it is natural to ask
how an ensemble of magnetic impurities influences the edge
transport. To this end, Altshuler et al (2013), Yevtushenko
et al (2015) considered a one-dimensional array of spin-1/2
Kondo impurities interacting with the helical states with ran-
dom anisotropic couplings. The total spin conservation along
z axis is violated by the random anisotropies in the coupling
constants. Focusing on noninteracting electrons and at 7 =0,
Altshuler ef al (2013) concluded that in general the edge states
can be localized and estimated the localization length as a
function of the Kondo coupling Jy, and the strength of the
anisotropy disorder Dy,. As a side remark, Maciejko (2012)
investigated also a Kondo lattice on the edge of a 2DTI. Instead
of the transport, that work focused on the stability of the hel-
ical states themselves. It found that new phases emerge in the
regime 1y J, > 2K, which is not accessible perturbatively in
vp J;, resulting in a rich zero-temperature phase diagram.
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Yevtushenko er al (2015) generalized the calculation
of Altshuler er al (2013) to interacting electrons at finite
temperature and showed that the conclusion holds also
for interacting systems, with the renormalized gap Ay, x
Ap(Jxa/Ap) '/ =K In addition, their findings can be summar-
ized in terms of the resistance in different temperature regimes.
Below the localization temperature, the channel is insulating,
where the resistance Ry, grows to infinity for long samples.
When the temperature is increased but still below the classical
depinning energy

/3
VDAL (AT
Eyp = | L4 ka , 28
P [mmg "\ A %)

the channel exhibits transport features similar to glassy sys-
tems. For a transient system where the sample size is close to
the localization length, the resistance is almost independent of
the temperature, while the theory for long and short systems is
still lacking. Further increasing the temperature gives

Epin ?
kgT
for Epip < kpT < Ay, with the energy scale Epi, separating

the quantum and semi-classical regimes. Finally, for higher
temperature kg7 > Ay,, one has

A, \ 2K
)
The findings in Altshuler er al (2013), Yevtushenko et al
(2015) motivated subsequent theoretical works on magnetic-
impurity ensemble.

In addition to works on general magnetic impurities without
specifying their physical origins (Jiang et al 2009, Hattori
2011, Vidyrynen et al 2016), Hsu et al (2017, 2018a) pointed
out that nuclear spins embedded in the lattice forming 2DTI
host materials is a natural source of magnetic impurities. Nuc-
lear spins are typically present in semiconductor materials and
can directly flip electron spins through the hyperfine inter-
action, leading to the main decoherence mechanism in spin
qubits made of III-V semiconductor materials (Khaetskii ef al
2002, 2003, Schliemann et al 2003, Coish and Loss 2004).

Concerning the helical channels of the topological mater-
ials, several remarks are in order. First, the dipolar interac-
tion between nuclear spins enables the spin diffusion (Lowe
and Gade 1967) and thus provides the dissipation mechanism
for the nuclear spin polarization, which would otherwise be
accumulated during the backscattering process and eventually
suppress the steady-state backscattering current (Lunde and
Platero 2012, Kornich et al 2015). In the presence of the spin
diffusion, the nuclear spins are able to (partially) retain their
unpolarized states with random orientations, therefore allow-
ing for subsequent backscattering events. In consequence,
unlike isolated magnetic impurities, nuclear spins can lead
to a substantial edge resistance in dc measurements. Second,
whereas for 2DTI edge states the hyperfine coupling is some-
what weaker, due to the mixed s- and p-wave orbitals of the

h LEgn
ez hvp
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(29)
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RN o — (30)
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electron and hole wave functions (Lunde and Platero 2013),
the quasi-one-dimensional nature of the edge channels drastic-
ally enhance the backscattering effects, making nuclear spins
a potential resistance source. Third, the interplay between
electron—electron interactions and the electron-nuclear-spin
coupling further complicates the analysis. Namely, a spiral
order of the nuclear spins can be stabilized at low temper-
ature. In the spiral-order phase, magnons and a macroscopic
magnetic field (that is, Overhauser field in the context of nuc-
lear spins) lead to additional resistance sources. In addition to
nuclear spins, artificially doped magnetic moments might be a
source of the localized spins. A relevant example is Mn-doped
HgTe quantum well (Furdyna 1988, Novik et al 2005), a plat-
form of interest due to its potential in realizing the quantum
anomalous Hall effect (Liu ef al 2008b, Wang et al 2014). In
this case, the intentionally doped magnetic impurities interact
with the helical states via the exchange coupling, which can be
much stronger compared to the hyperfine coupling to nuclear
spins.

Motivated by these observations, below we consider a hel-
ical channel coupled to a lattice of classical localized spins
without specifying their origin, but having in mind that nuc-
lear spins serve as a concrete example. While the gapless hel-
ical states move along one dimension only, the localized spins
are distributed in all three dimensions and can interact with
other localized spins in the bulk through, say, dipolar interac-
tion. The coupling of the localized spins to the helical states
can be written in an effective one-dimensional form,

1 T
His = 5= 2 AusS" ()T} @31
B

with p € {x,y,z}, the coupling constant A, ; (which is in
general anisotropic), the number of localized spins per cross
section in the transverse directions N, the electron spin S,
and the effective, classical spin ij including all spins in a cross
section labeled by j. Since the z component of ij only leads
to forward scattering terms and therefore does not affect the
charge transport (Giamarchi 2003), we focus on its transverse
components. In the continuum limit, they can be written in
terms of the right- and left-moving fermion fields (see (21a)).
To proceed, we bosonize (31) using (15),

Hrs,b :/

The effective Hamiltonian now reads Hpe + Hys,p, With Hpel
given in (17). In the above, electrons experience a random
potential induced by the localized spins, which has a 2kr com-
ponent

dr

2ma (32)

Vis(r)e?@) 4 Hee.

1

2N, (33)

Vis(r) = [A(DF(r) + Ay (1) ()] 24",

Considering independent and unpolarized spins (see figure 9),
we assume that the disorder average satisfies

{

VIS(F)VrS(V/»rS =M5(r—r'), (34)
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Figure 9. Edge states of a 2DTI and randomly oriented localized
spins at the edge. The electron wave function of the edge states
(red/blue for up/down spin) has a finite transverse extent, motivating
us to define the cross section (gray) along the edge. In each of the
cross sections (green blocks), the edge states interact with N |
localized spins and can be spin-flopped by the latter.

with (- --) . denoting the average over the random spin config-
urations and the strength Mys = aA2I(1+ 1) /(6 N1 ) depending
on the typical coupling Ag. The effective action can be obtained
using the replica method (Giamarchi 2003), which leads to

D, u?
8ma’

Srs _

h

/drdeT’ cos[2 ¢(r,7) —2¢(r, )],
(35)
with Dy = 2aM, [ (mh*u?).
Using (17) and (35), one can derive the RG flow equations

upon changing the cutoff a({) = a(0)e with the dimensionless
scale [ (see appendix) and get

dD N

7‘5 =(3 —2K)Dys, (36a)
dK K2 .
o= 30w (36b)
du uk -
- b (36¢)

The cosine term in (35) is RG relevant for K < 3/2, and
the random-spin-induced backscattering is enhanced by the
repulsive (or even weakly attractive) interactions. Importantly,
a gap is opened when the effective coupling Dy flows to the
strong-coupling limit, and thus localizes the helical states. The
corresponding localization length and localization temperat-
ure are given by

T
* kBgrs )

For a channel longer than £, the helical states get local-
ized below Ty, suppressing the conductance. The localiza-
tion length and temperature strongly depend on the interaction
parameter K, which enters the exponents of the above formu-
las. Considering nuclear spins in InAs/GaSb, the estimation

frs — ab;l/@fﬂ()’ T.

(37

on &5 and T, suggest that the nuclear-spin-induced localiz-
ation transition is experimentally accessible (Hsu e al 2017,
2018a).

For a channel length L comparable to &, at temperature 7'
comparable to T4, the localized spins can in general lead to
a substantial resistance. Before the channel gets localized, the
resistance exhibits a power law, serving as a transport signa-
ture of this resistance mechanism. The functional form of the
(differential) resistance depends on experimental conditions,
which can be summarized as

h L

7*Drs [Max(kBT eV a
e2a

Ri, AL
s X Ay Ay L

2K—-2
)} D)

with the bias voltage V across the channel. In the high-
temperature regime, the temperature power law is the same
as (30) from the Kondo impurity array in a purely one-
dimensional model. On the other hand, when the localization
length &, is shorter than the other length scales, L, hivg/ (kg T),
and fivp/(eV), we have a localized channel with an exponen-
tial resistance
h L.

— ,DrSeArs/(kB T) ,

Ry x 5 (39a)
e’a

Ar =Dy (2KDy) 70 (39b)
with the thermal activation gap A.

Before proceeding, we give several remarks on the above
formulas. First, for an ensemble of magnetic impurities along
the channel, the resistance grows with the length L, in con-
trast to the single-impurity case where the conductance cor-
rection does not scale with L. Second, instead of assuming
a random potential (see (32) and (34)), one might start with
a single weak impurity and then sum up the contributions
from many alike impurities by assuming that they are inde-
pendent (Viyrynen et al 2016). However, the second approach
does not capture the localization feature and leads to differ-
ent RG flow equations, thus missing the renormalization of
bulk quantities # and K as in nonhelical systems (Giamarchi
2003, Hsu et al 2019). Nonetheless, the approach employed
by Viyrynen et al (2016) allows one to obtain the refined
form of the resistance near the crossover ¢V = kg7, which
was not captured by (38) due to the limitation of the RG
approach. Interestingly, there appears an additional crossover
%T ~ 1hAest in the current-bias curve with the effective coup-
ling Acfr = (A7 +A} +A?)/A.. The second crossover occurs
when one takes into account the dynamics of the local mag-
netic moment in the presence of the effective field eVipAes
generated by the electron spin imbalance due to a finite bias
V. When eV/kgT drops below vpA.r, the conductance is par-
tially restored because the effective field partially polarizes the
spin and thus reduces its ability to backscatter. As a result, for
%/T < wAefr, the resistance is partially suppressed.

While the backscattering on thermally randomized spins
is rather straightforward, the situation is complicated by
the possible ordering of these spins. It was shown that
at low temperatures a spiral spin order can be stabilized



Semicond. Sci. Technol. 36 (2021) 123003

Topical Review

‘Z.ﬁfézp
=L,

~

i,

i

Figure 10. Illustration for the RKKY-induced spiral order of the
localized spins along a 2DTI edge. The spins within a cross section
have ferromagnetic alignment, while along the edge they rotate with
the wavelength depending on kr. For clarity, only spins along one
edge are plotted.

by the Ruderman—Kittel-Kasuya—Yosida (RKKY) interac-
tion, which is mediated by the edge states (Hsu et al 2017,
2018a); we refer the interested readers to Maciejko (2012),
Yevtushenko and Yudson (2018) for discussion beyond the
RKKY regime. Since the RKKY interaction is mediated
mainly by electrons at +kr, in momentum space it develops
a dip at 2k with the absolute magnitude

KA(Z) Ab 2—-2K
~— 4
JRKKY A, (27TKkBT) Ix (40a)
2
i r(1-x)r&
e ESIH(T;K) ( ) K(Z) , (40[7)

with the Gamma function I'(x). As is clearly seen in (40a), the
magnitude of Jrgky depends strongly on K and is enhanced
by the electron—electron interactions, in a similar fashion
as in nonhelical channels (Braunecker et al 2009a, 2009b,
Klinovaja et al 2013, Meng and Loss 2013, Stano and Loss
2014, Meng et al 2014a, Hsu et al 2015, 2020). The localized
spins minimize their RKKY energy if aligned along a direction
which rotates as one moves along the edge. At low temperat-
ure, the spins are thus ordered into a spiral pattern as illustrated
in figure 10, described by

(1(r))s = mgN I [cos(2kzr)e, — sin(2kzr)e,], 41)

where (- - - ) indicates the expectation value of the nuclear spin
state in the spiral phase and my is the temperature-dependent
order parameter, which is normalized to unity at zero temperat-
ure. In the above, the rotation direction of the spiral spin order
is fixed by the helicity of the electron edge state. The order
parameter and the ordering temperature 7', defined through
ms(T;) = 1/2, are given by (valid for T not much larger
than T)

(42a)
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which strongly depend on the interaction strength paramet-
rized by K. Interestingly, the tendency to RKKY-induced spin
order is stronger in a helical channel than in a nonhelical
one (Braunecker et al 2009a, 2009b), as a result of the quench
of the spin degree of freedom (Hsu er al 2018a).

Concerning the edge transport, the presence of the spiral
order can lead to two effects. First, the ordered spins are now
polarized and generate a macroscopic magnetic field acting
back on the electrons, which can break the time-reversal sym-
metry and mix the opposite spin states. As a result, the helical
states become susceptible to charge impurities, which couple
to the helical states through

Himp Z/drVimp(r)p(r), (43)
where p is the charge density and Vi, is the random potential
induced by charge impurities, satisfying

{Vimp (r))imp = 0,
<Vimp(r)vimp(r/)>imp = Mimp(r* r/)7 (44)
with the disorder average (:--)imp, the strength My, =
imp Vizmp, the impurity density niyp (the impurity number per
length), and the typical magnitude Vi, of the disorder poten-
tial. Second, at low but finite temperature, where the localized
spins are not completely ordered, thermally excited magnons
are present. They can interact with the electrons and induce
additional backscattering processes.

These additional backscattering mechanisms can be cap-
tured by the following contributions to the effective action,
with the spiral-order-assisted backscattering on charge
impurities,

:_Msa/

and the magnon-induced backscattering,

drdrdr’

> Gtay 200 =20(7)], (49

h

Sfm = Mm/% cos[2 ¢(r,7) = 2¢(r,7")]
% {e—wmlT—TW + 2 fp(hwn ) cosh(wp|T — 7)) |-
(46)

In the above, Mgy =Mn,B2/(8 hvekp)? and My, =
Alal/(4Ny) are the backscattering strengths, hwy, is the
magnon energy, By =mAol is the spiral field, induced by
the ordered spins, and fp is the Bose—Einstein distribution.
For a typical device with micrometer-long channels, the
Mermin—Wigner theorem (Mermin and Wagner 1966) and
its extensions (Bruno 2001, Loss et al 2011) are not applic-
able. Instead of being Goldstone zero modes, the magnons
have a finite energy, which can be approximated as
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In the above, (45) is identical to (35) upon replacing the coup-
ling Dys by Dy, = 2aM, /(wh*u?). Therefore, one can derive
the RG flow equations and show that (45) is also RG relevant
for K < 3/2 and can lead to localization of the helical chan-
nels for an edge longer than &, = abs_al/ (372K) at temperat-
ure lower than Ty, = ft/(kp&s,). Before entering the local-
ized regime, the spiral-order-assisted backscattering induces
a resistance in the form of (38) with a different prefactor
Dy, B2, which depends on the temperature through the spiral
field By. In the localized regime, on the other hand, the res-
istance becomes Rgy(T) ox Dge™/®7) with a gap Ay, =

Ay (2 KDy,) /G2 depending on the temperature.
The RG flow equations for the magnon-induced backscat-
tering, derived from (46), are given by

dy, -

71“‘ = (3 —2K) Y, (48a)
dK K2 wona o aius
=, Y, (48b)
d K -
?Lz{ = e Ty, (48¢)

with Yy, =2 My, /(7h? uwn,). In contrast to the spiral-order-
assisted backscattering, here the coupling strength vanishes
at zero temperature because it would cost large energy to
excite the magnons (see (47)). The magnons therefore do
not lead to localization. At low temperature T < Tp,, defined
by wm(Tm) = Drln/ 4=2K),, /a, the RG flow reaches the strong-
coupling regime and the magnon-induced resistance is dom-
inated by the magnon emission,
} 2K-3

with D, = 2aM,, /(wh*u?). In addition, in the range Ty, < T <
T, the magnon absorption leads to a subdominant term,

on

That the prefactor is set by the scale Dy, follows because the
magnon absorption can be viewed as the resistance induced
by the localized spins that remain disordered. Overall, we
find that in the spiral-order phase the spiral-order-assisted
backscattering on charge disorder dominates over the magnon-
induced backscattering.

As a summary for the discussion on localized spins embed-
ded in the lattice, regardless of whether they are ordered by the
RKKY interaction or not, they can localize helical states in a
sufficiently long channel at a low temperature. Since nuclear
spins are in general present in typical semiconductor-based
2DTI materials, they serve as the local magnetic moments dis-
cussed here, what places a fundamental limitation on exploit-
ing helical channels in scalable quantum devices.

hem(T)
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Ry(T) o<— —Dpy 49
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R®(T) o T
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In addition to the above mechanisms, new types of pro-
cesses arise when taking into account the nonequilibrium
dynamics of the localized (nuclear) spins. Namely, in a typ-
ical experiment, the applied current through the edge can
induce the dynamic nuclear spin polarization (DNP) (Lunde
and Platero 2013, Kornich ef al 2015, Russo et al 2018), which
induces an Overhauser field and can influence the charge trans-
port. It was found that the DNP alone is not sufficient to main-
tain a steady-state backscattering current and to alter the trans-
port (Lunde and Platero 2012). To cause a finite resistance, it
requires the presence of a spin-flip mechanism that relaxes the
polarization of the localized spins, in accordance with our dis-
cussion in section 4.2.1. By introducing a phenomenological
parameter I's; for the spin-flip rate per localized spin, Lunde
and Platero (2012) computed the magnitude of the DNP as a
function of the bias voltage and temperature in a noninteract-
ing channel. It leads to a reduction of the current,
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where 74np = (10A0)? Ns/N2, is a dimensionless constant with
N; being the total number of localized spins coupling to the
helical states along the edge and Ny, being the total number
of the lattice sites. In the linear-response regime, it leads to a
resistance

h 7hl,
Rany fh (52)
2k T+ Ty
7r77dnp

Clearly, Rqnp reduces to zero when there is no spin flip to
dissipate the current-induced polarization. Del Maestro et al
(2013) investigated how the DNP can induce resistance in the
presence of a random, spatially nonuniform Rashba spin—orbit
coupling. Since the spin—orbit coupling breaks the spin con-
servation, it can depolarize the DNP. For a short channel, the
induced resistance is

2
dnp Mo

h LAG (1)
h* v ’

Rdanrrso(T) X ) g (53)

where M., denotes the disorder strength of the random spin—
orbit coupling and the temperature-dependent spin polariza-
tion () 4np can be determined numerically. For a long channel,
they obtained a nonlinear current voltage relation Rynprso ¢
(eV/kgT)*/3.

Similar to studies on a single magnetic impurity, there were
also investigations on an ensemble of magnetic impurities with
large spin /. For instance, with /> 1 and uniaxial anisotropy,
mesoscopic conductance fluctuations arise from the quantum
interference of electron scattering amplitudes through multiple
scatterers (Cheianov and Glazman 2013). It leads to conduct-
ance fluctuations as a function of the Fermi energy, which are
different to those of nonhelical channels. Wozny et al (2018)
investigated the effects of magnetic adatoms (for example,
Mn) on helical edge states, taking into account not only their
local magnetic moments but also the random electrostatic
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potential that they induce. Whereas the magnetic moments can
induce elastic backscatterings and open a gap for the helical
channels, the accompanying electrostatic potential can have
the opposite effect on the charge transport, by reducing the
gap opened by the magnetic moments. Under certain experi-
mental conditions it can even close the gap, restoring the hel-
ical transport. Finally, we note that a full first-principle study
of edge transport was carried out (Vannucci et al 2020), par-
ticularly focusing on several recently proposed quantum spin
Hall materials with large bulk gaps (bismuth and antimony hal-
ides, binary compounds BiX and SbX with X € {F, Cl, Br,
I}). As expected, magnetic impurities trapped at the vacancy
defects were identified as crucial backscattering sources which
break the time-reversal symmetry and, in general, lead to the
conductance quantization breakdown.

4.2.3. Other mechanisms with broken time-reversal
symmetry  Other than localized spins, one might consider
single-particle backscattering off a charge impurity in the
presence of an external magnetic field B (Lezmy et al 2012).
The high-temperature and high-bias limit of the resulting (dif-
ferential) conductance correction can be summarized as

(2 (5T, s

Ay’ Ay

with the normalization parameter By with the magnetic-field
units. The correction has the same scaling as backscattering off
localized spins (23). The zero-temperature edge conductance
of a helical channel in the presence of an external magnetic
field and quenched charge disorder was studied numerically by
Maciejko et al (2010). As expected, the conductance deviates
from its quantized value when the disorder strength and the
Zeeman energy are comparable to the bulk gap.

Tkachov and Hankiewicz (2010) studied a ballistic edge
subject to an out-of-plane magnetic field at zero temperat-
ure, which can drive the system through a transition from
quantum spin Hall to quantum Hall phases. Near the trans-
ition, the backscattering is enhanced, with a power-law sup-
pression of the longitudinal conductance. In addition, Delplace
et al (2012) investigated effects of random magnetic field flux
in a noninteracting helical channel at zero temperature. Based
on the scattering theory, they concluded that the random mag-
netic field flux can localize the edge states, with a localiza-
tion length which is inversely proportional to the square of the
magnetic field for small fields and saturates for a sufficiently
strong magnetic field. Vezvaee et al (2018) considered a hel-
ical edge channel formed at the outer boundary of a 2DTI ring
threaded by a magnetic flux and coupled to magnetic impur-
ities with arbitrary spin. They found a universal flux depend-
ence of the energy spectrum independent of the details of the
electron-impurity interaction and concluded that the magnetic
impurities can lead to sizable energy gaps in the spectrum, thus
affecting the edge transport. Furthermore, Wang et al (2021b)
investigated the effects of an out-of-plane magnetic field on
a diffusive Na3Bi sample, in which charge puddles with odd
occupation numbers were modeled as magnetic impurities.

&2

5GB X 7%

B
By

Since the field can polarize the magnetic impurities, it can sup-
press the backscattering and thus enhance the mean free path.
A sufficiently strong field can even drive the system into the
ballistic regime.

In addition to the RKKY-induced spiral spin order dis-
cussed above, there exist theoretical findings on other uncon-
ventional orderings that can be formed in the edge chan-
nels and influence the transport. For instance, due to the
smooth (nonabrupt) edge confinement potential in a realistic
setup, the system undergoes edge reconstruction and addi-
tional edge states emerge (Wang et al 2017). Due to a large
exchange energy, the additional edge states are spin-polarized
and thus break the time-reversal symmetry, inducing elastic
single-particle backscattering and spontaneous breakdown of
the topological protection. We note, however, that the oppos-
ite conclusion was drawn in John et al (2021), which demon-
strated the robust edge transport even in the presence of the
edge reconstruction. As another example, Novelli et al (2019)
studied nonmagnetic impurities in a combination with on-site
electron—electron interactions in a 2DTI. By incorporating the
onsite interaction in the Kane—Mele model and employing the
Hartree—Fock approximation, they demonstrated formation of
noncollinear magnetic scatterers which break the time-reversal
symmetry and thereby cause backscattering of edge electrons.
The same conclusion holds as well in the presence of Rashba
spin—orbit coupling, allowing them to conclude that, in gen-
eral, the conductance quantization is not protected. This mech-
anism might be more relevant for monolayer systems such as
WTe,, where vacancy defects are naturally present.

Balram et al (2019) pointed out that in typical experiments
on charge transport, the current-carrying state itself breaks the
time-reversal symmetry, thus lifting the topological protection
of the helical channels. Specifically, the applied current leads
to an imbalance between the left and right-moving states, res-
ulting in a momentum-dependent dynamic spin polarization
in the helical channel. Through the electron—electron inter-
actions, the spin polarization generates an internal magnetic
field acting back on the electrons themselves. Similar to the
Overhauser field from either the RKKY-induced spiral spin
order or the DNP, this internal magnetic field allows for elastic
backscattering and therefore generates a finite resistance. They
found a nonlinear contribution to current-bias curves, which
remains finite even at zero temperature and concluded that
the internal-field-assisted backscattering can eventually open
a gap in the edge-state spectrum.

Instead of the static local magnetic moments discussed in
the previous subsection, Bagrov et al (2019) considered the
coupling of the helical states to an external bath of itinerant
spins. The interplay between the Coulomb and spin—spin inter-
actions leads to a renormalization of the backscattering amp-
litude, and can even suppress backscattering processes in cer-
tain regimes. Finally, Yevtushenko and Yudson (2019) studied
a lattice of Kondo impurities. Similar to the conclusion drawn
from studies on a single magnetic impurity in, for example,
Tanaka et al (2011), Vinkler-Aviv et al (2020), they emphas-
ized the importance of the non-spin-conserving interaction.
Namely, whereas the time-reversal symmetry is responsible
for the formation of helical states, for a mechanism to have
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influence on the dc transport, one still needs to break the spin
conservation.

In addition to the above, there are also mechanisms that do
not break the time-reversal symmetry explicitly, which we dis-
cuss below.

4.3. Time-reversal-invariant mechanisms

Whereas the time-reversal symmetry precludes the over-
lap of wave functions of counterpropagating degenerate
time-reversal states, there is no such restriction for the
counterpropagating states at different energies. Therefore,
time-reversal-invariant perturbations can still lead to backscat-
tering of the electrons in a helical channel through inelastic
processes. Since the U(1) symmetry associated with the elec-
tron spin plays an important role for inelastic scattering, we
first introduce the generic helical liquid where this symmetry
might be broken.

Breaking the U(1) symmetry is generally expected in the
presence of an out-of-plane electric field. In a heterostructure
hosting two-dimensional electron gas, the electric field gener-
ates the Rashba SOI term,

HY!' = g (0ky — 0”ky), (55)

with the Rashba coupling strength ag depending on the out-
of-plane electric field, the Pauli matrix o** and the momentum
hky . With (55), the electron spin along z is no longer a good
quantum number. Concerning the edge states, their spin polar-
ization direction is not necessarily fixed to any global axis and
can change with the state energy. The only remaining sym-
metry is the time-reversal symmetry, which is not broken by
the SOL. It requires that the left- and right-moving states at a
given energy still form a Kramers pair. In the literature, such
a system has been termed a generic helical liquid (Schmidt
etal 2012). Below we first discuss backscattering mechanisms
which rely on the S° symmetry being broken and then turn to
those that do not require the broken $° symmetry.

To investigate the generic helical liquid, one can start from
the Kramers doublet 1) , defined in momentum space, where
the + sign labels the moving direction. These helical eigen-
states are related to the spin states v, 4 through

() )

Here, the SU(2) matrix U, satisfies Ul, (q) U, (q) = diag(1,1)
stemming in the orthonormality of the eigenstates and
Uso(q) = Uso(—¢q) due to the time-reversal symmetry. The
presence of the Rashba SOI leads to a momentum dependence
of the U, matrix, reflecting a momentum-dependent rotation
of the spin-quantization axis (Rod et al 2015, Ortiz et al 2016).
In consequence, the right- and left-moving helical states are
now a mixture of the up- and down-spin states. In momentum
space, the density operator can be expressed as

%q
Wq

7/}+,q
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Uso(q) ( (56)
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with the indices «,f € {+,—} labeling the direction of
motion. There appear backscattering terms (« # (3) in the
density operator, which enter the Hamiltonian either through
the electron—electron interactions or by coupling to the dis-
order potential induced by charge impurities.

In terms of the helical fermion fields v+ 4, the electron—
electron interactions can be written as

H.. :/drdr'Uee(r— rp(r)p(r')

1
:ZZ Z Ueeaqwl,k¢5»k+qwl’,pwﬁ’,p—q

gkp aa’ BB’
X (UL, (k) Uso(k+ @)]ap (UL (P) Uso(p = @))ar7s (58)

with the Fourier transform of the electron—electron interaction
Uee,4- The coupling to the disorder (43) now becomes

1
Hinp =7 D Vimpgk )_[UL (@) Uso(R)]ast0l 5 1
qk ap

(59)

In the above, we model disorder by a random potential Vi,
induced by charge impurities distributed along the entire chan-
nel. As an alternative to such ‘quenched disorder’ (Wu et al
2006), one might consider an isolated impurity localized at a
single spatial point (Kane and Fisher 1992). While a single
impurity might lead to negligible effects in weakly interact-
ing systems, electron—electron interactions can enhance its
backscattering effects. Therefore, in section 4.3.2 where we
go beyond the weak-interaction regime, we will explicitly con-
sider the conductance correction due to a single impurity. In
any case, we assume that the electron—electron interactions
in the helical channels are short-range due to the screening
effect from a metallic gate in proximity to the helical chan-
nel, which allows us to approximate U 4 = Ue.. Finally, we
also assume that the random potential due to impurities has
roughly the same weight for all the Fourier components and
hence Vimp 4 & Vimp.

Clearly, there are several terms in (58) and (59), which
would otherwise be absent at zero SOI (that is, when Uy, —
diag(1,1)). This in turn leads to inelastic backscatterings
without breaking the time-reversal symmetry. Kainaris et al
(2014) made a systematic investigation on the backscatter-
ings in both the weakly interacting regime (with the fermionic
description) and beyond it (with the bosonization formalism).
In the following subsections, we discuss the two regimes sep-
arately.

4.3.1. Weak interactions: generic helical liquid When
the electrons in a helical channel are weakly interacting,
the perturbation terms can be described in the fermion
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picture (Schmidt et al 2012, Kainaris et al 2014), which is
valid for K close to unity. To proceed, we specify the form of
the matrix Uy, by symmetry arguments and expanding around
q~0,

1
7>k,

_qz/kszo

1 (60)

Uso(q) = ( ) +0(q4)a
where the zero-SOI limit corresponds to kg, — oco. It is
simple to check that (60) satisfies the requirements for Uy,
described below (56). Physically, hiks, can be understood as
the momentum scale at which the quantization axis of the elec-
tron spin changes appreciably. The SOI-induced spin rotation
enters (58) and (59) through the product of Uy, at different
momenta. To the leading order, the product reads

q2_k2

. (6l
L (61)

which can be plugged into (58), leading to the following scat-
tering terms (Kainaris et al 2014),
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In the above, the first four terms are in analogous to the
electron—electron interactions in a nonhelical TLL in the lit-
erature (Giamarchi 2003). The forward scattering terms H. »
and He. 4 are present also at zero spin—orbit coupling (which
gives (14) upon linearization), whereas the other terms are
induced by the broken S$° symmetry. Among these SOI-
induced terms, He. | describes backscattering of one left- and
one right-moving particle, whereas He. 3 describes umklapp
backscattering of two right movers or two left movers. In
comparison with a nonhelical channel, both He. and H 3
acquire momentum-dependent amplitude and are of fourth
order in 1/ks,. What is unique to the generic helical liquid

20

is the emergence of the H. 5 term, which describes a single-
particle backscattering. Since it is of lower order in 1/ks, it
dominates over H. ; and H,. 3 for typical parameters.

Concerning the impurity-induced scattering (59), it can be
separated into forward (H;mp ) and backward (Hipp,p) scatter-
ing terms,

1mp f= lmp Z Z ¢T 7q1/1a ks (63(1)
Vim 2 — k2
Himpo =—2 3 adaml oo (630)
& SO

Clearly, the backscattering term (63b) is absent without the
momentum-dependent spin rotation.

Since the scatterings in Hee,1, Hee,2, Hee,d4 and Hiyp ¢ do
not change the number of the left and right movers, they
alone do not cause resistance. Due to the restrictions from
the momentum and energy conservation, the scattering pro-
cesses described by the remaining electron—electron interac-
tion terms, H. 3 and H, 5, are not allowed at zero temperature
for finite kr in a clean system. Nonetheless, at finite temperat-
ures the restrictions can be relaxed. Therefore, the scattering
processes in general take place when the Fermi level is close
to the Dirac point kr ~ 0 or in the presence of disorder/lattice
potential®.

In a clean system, the scattering in H,. 3 does not conserve
momentum, and only He. 5 can directly lead to a finite edge
resistance. In contrast, both H. 3 and He 5 allow for backscat-
terings in a system with disorder, where the momentum differ-
ence between the initial and final states can be compensated
by disorder either in the form of random potential in (63a)
and (63b) or a single impurity localized at one spatial point.
In consequence, up to second order in Hee and Hiy,p, there can
be various scattering processes, which back scatter one or two
particles. We therefore call them one-particle backscattering
(1PB) and two-particle backscattering (2PB), respectively. We
illustrate the three main processes in figure 11. The nomen-
clature for the SOI-induced mechanisms varies in the literat-
ure; for convenience we list them in table 1.

4.3.11 1PB process Here we discuss first a clean weakly-
interacting helical channel, where the resistance is exclus-
ively due to Hc. 5. Since the momentum and energy conser-
vation limit the process to only states near the Dirac point (see
figure 11(a)), the resistance strongly depends on the position
of the Fermi level (Schmidt et al 2012, Kainaris et al 2014).
Omitting the numerical prefactors, for ivpkr < kg T it is given

(i) (mite)

9 Although the backscattering due to He., 3 could be allowed at commensur-
ate fillings (Wu et al 2006), for typical helical states the Fermi wavelength
is much longer than the lattice period and achieving commensurate filling is
unrealistic. We therefore do not consider the lattice potential here.
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Figure 11. In a generic helical liquid, the interaction terms Hee 3 and
He. 5 lead to time-reversal-invariant processes which change the
numbers of right- and left-moving particles. The term He 5 in (62e)
can back scatter one particle, with the energy difference
compensated by the creation of a particle-hole pair. The term He. 3
in (62c) back scatters two particles. When the Fermi level is
sufficiently close to the Dirac point (kr ~ 0), Hee 5 is allowed in a
clean system, as illustrated in (a). For a general kr, the presence of
disorder allows for a one-particle backscattering (1PB) arising from
He. 5 (b) and a two-particle backscattering (2PB) induced by Hec 3
(c), with the momentum differences compensated by the disorder
potential.

(c)

whereas for Avpkr > kgT by
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The result in (65) describes thermal-activation behavior, due
to the fact that the process is allowed only for states near the
Dirac point which are deep below the Fermi level.

In a system with disorder, Hee and Hipp, lead to vari-
ous 1PB or 2PB processes (Kainaris et al 2014). Among
the 1PB processes, the combination of Hees and Hipp s
described in figure 11(b) gives a dominating contribution to the

resistance,
2 4
() () - @

There are also contributions from combining the disorder
potential and H 1 or He 3, leading to different power laws in
temperature or the kr/k, ratio. Specifically, the combination

of Hee,1 and Hiyp 1, gives
(o) (&) (i)

whereas the combination of Hee 3 and Hipp p leads to
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Among the three 1PB processes in disordered systems,
since typically kp/ks, < 1 and we are interested in the low-
temperature regime, Rsyx¢ dominates. Therefore, we have
Rlpb ~ RSXf 0.8 T‘

4.3.12. 2PB process The 2PB process is dominated by the
combination of He. 3 and Hiyp r, illustrated in figure 11(c). We
obtain Ry, & R3 ¢ and therefore

) (i)

) ( .

The T° power law of Ry, leads to a much smaller resistance
than the one from 1PB at low temperature. Generally speak-
ing, in comparison with clean systems, here the energy and
momentum conservation conditions for backscatterings are
relaxed by the random disorder potential, so the resistance is
not very sensitive to the Fermi level.

Overall, both the 1PB and 2PB processes lead to resistance
with high powers of T stemming from the phase space neces-
sary for energy conservation. Nonetheless, the weak temper-
ature dependence observed in experiments called for altern-
atives. The literature followed two strategies (other than the
elastic scattering from broken time-reversal symmetry). The
first one is to include the TLL effect, which is known to
render fractional power laws in observables; we will turn to
this in section 4.3.2. The second one is to relax the restriction
from energy and momentum conservation further. The second
strategy can be achieved by considering charge puddles, which
we discuss below.

Ue. Vimp
24,2
h? vg

kg T
hwekso

ke
kSO

h
R2pb oc?Lnimp (

4.3.1.3. Charge puddles Viyrynen et al (2013, 2014) poin-
ted out that charge puddles can be formed in the 2DTT hetero-
structure as a result of nonuniform potential landscape. These
charge puddles can be viewed as accidentally formed quantum
dots which host the spin-degenerate states. Some of these acci-
dental dots will be close enough to the helical edge channel to
be tunnel coupled to it.

Concerning edge conductance, charge puddles allow for
inelastic processes, where an edge electron tunnels into the
dot and interacts with another electron during the dwelling
time, and then tunnels back to the channel with reversed mov-
ing direction. In addition, the presence of an accidental dot
introduces new characteristic energy scales smaller than the
2DTI bulk gap Ay. As a result, the low-temperature trans-
port is governed by the dot energy level d4, the charging
energy E., and the level width I'; set by the tunneling between
the dot and the edge state. By considering a single puddle
occupied by an even number of electrons and weak interac-
tions, Viyrynen et al (2013) computed the conductance cor-
rection due to the inelastic 1PB and 2PB with the corres-
ponding corrections dGpipy and dGepopp, respectively. In the
low-temperature limit, one finds 0 Gepipp o< —T*and 0Gpoph X
—79, respectively. Therefore, typically, 6Gepipp 1S dominant,
and one can restrict the analysis to the 1PB process. Corres-
pondingly, we drop the part ‘1pb’ from the subscripts below.
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Table 1. SOI-induced backscattering mechanisms discussed in section 4.3. The mechanisms involve the electron—electron interactions

5
Hee = ) Hee,i (see (62a) —(62¢)) and disorder. The latter is modeled either in the form of quenched disorder potential

i=1

Himp = Himp, + Himp,b (see (63a) and (63b)) or a single local impurity
in Hee, Himp and

H!oc

imp>

the original works, and their names or notations therein.

H%:’,fp = V%?ncp5 (). For a given mechanism, we list the involved terms

the equation number(s) for the induced resistance R or conductance correction dG, the corresponding references to

Involved terms Equation Reference Notation or name in the original work
Hee,1 and Himp b 67) Kainaris et al (2014) g1 X b process
Wu et al (2006) H is or two-particle backscattering due to quenched disorder
Hee 3 and Himp ¢ (69), (101) Xu and Moore (2006) Scattering by spatially random quenched impurities
Kainaris et al (2014) g3 X fprocess (in their class of two-particle processes)
. Schmidt er al (2012) S
Hee,3 and Himp,» 68) Kainaris et al (2014) g3 X b process (in their class of one-particle processes)
Wau et al (2006) Hy or impurity-induced two-particle correlated backscattering
Hee 3 and H}ﬁfp (103) Maciejko et al (2009) H; or local impurity-induced two-particle backscattering
Lezmy et al (2012) 82p process or two-particle scattering
Schmidt et al (2012) Hip or inelastic backscattering of a single electron with energy trans-
. (64) and (65), o fer to another particle-hole pair
Hee s (94) and (95) Kainaris et al (2014) g5 process
an Chou et al (2015) Hy or one-particle spin-flip umklapp term
Kainaris et al (2014) g5 X fprocess (in their class of one-particle processes)
Hee,s and Himp ¢ (66), (97) Chou et al (2015) Hy (same notation for clean and disordered systems)
Hee s and Hipp b N/A Kainaris et al (2014) gs X b (in their class of one-particle processes)
He 5 and Hiﬁfp (99) Lezmy et al (2012) gie process or inelastic scattering
Strom et al (2010) Hp or randomly fluctuating Rashba spin—orbit coupling
Random SOI® N/A Ge¥ssle.r et al (2014) Random Rashba spin—orbit coupling
Kainaris et al (2014) Zimp,b Process
Xie et al (2016) Random Rashba backscattering
Random SOI° N/A Kharitonov ef al (2017)  Hg or U(1)-asymmetric single-particle backscattering field
Hiso and Hifrfpd (105) and (106) Crépin et al (2012) Inelastic two-particle backscattering from a Rashba impurity

 For clean systems, He., 5 can lead to a finite resistance by itself.
b The random SOI H,, arises from the backscattering terms Himp,p due to the quenched disorder potential.
¢ Kharitonov et al (2017) considered a nonlocal generalization of Hso.
4 Crépin et al (2012) considered the second-order contribution from H,s, in the presence of a local impurity.

We summarize first the conductance correction due to a
single puddle, which is relevant for relatively short channels.
The correction strongly depends on the dot parity state, which
is determined by the occupation number in the dot (being even
or odd) and can be adjusted through the gate voltage. When
the dot is occupied by an even number of electrons, the low-

temperature correction is
1 62 F4 kBT 4
GOV ox ———— | = 70

cp,e X hgzég (Ech> ) (70)

with g = Emy,/d4 and the Thouless energy Ey, of the dot. The
T* dependence holds at low temperatures, kgT < &4. For the
temperature range dg < kgT < E¢p,, the dependence changes
to

. 2 (kT >
502;1;0@% ((‘;d) . 1)

The correction eventually saturates at

2
hi e Ft
6GCE),C 0.8 7;&,

(72)
for kgT > E.

Upon changing the gate voltage, the magnitude of the con-
ductance correction goes through a local maximum whenever
a dot energy level passes through the Fermi energy, due to
the enhanced dot-edge tunneling. At such a transition between
the even- and odd-occupation states, the deviation has distinct
temperature power laws, again different for different ranges.
For kgT < T', one has

2 4
1 e (ksT)
0Gy X HED 2 (73)
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which is also T* as the even-parity dot state. At higher tem-
peratures, I'y < kgT < dq, the correction becomes temperat-
ure independent,

e2 th

m1d h
0G, y 57

ept X

(74)

Further increasing the temperature to kg7 >> 4 gives the same
corrections as (71) and (72) for the corresponding temperature
ranges.

Finally, when the dot is in the odd-parity state, one has a
single unpaired spin in the dot. As discussed in section 4.2,
since the Kondo effect can influence the transport, there
emerges an additional energy scale set by the Kondo temper-
ature Tx. For T < Tk, one gets

(%)

where E = 2E4 (N, — CgVy/e —1/2) is the energy cost of
adding an electron into the dot with the electron number
N., the gate-dot capacitance C, and the gate voltage V. For
kT < kgT < 44, one gets
FZ 11’12 (*
t

h g2 (0q+Eq) 12 (7

e’ 2

h g2 (0a+Ey)?

T

5 Glow o
Tk

cp,o X

(75)
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For kgT > 4, the corrections are the same as (71) and (72)
in the corresponding temperature ranges. Whereas the correc-
tions in (70) —(76) have T* dependence in the low-T limit, sim-
ilar to the 1PB in a generic helical liquid (see (66)), in the inter-
mediate temperature range the 7 dependence becomes weaker.
In consequence, charge puddles can be the dominating resist-
ance source in weakly interacting channels at this temperature
range.

Remarkably, since the dot level spacing is determined by
the puddle size, there can be puddles of certain sizes with one
of the dot levels aligned to the Fermi energy of the helical
channel. In this case, electrons can tunnel into the puddle eas-
ily and get scattered. Such a ‘resonant condition’ indicates that
mostly puddles with particular sizes participate in the puddle-
induced scattering. In addition, the dwelling of carriers in the
puddles can enhance inelastic backscattering if the dwelling
time is longer than the scattering lifetime. Taking this into
account for a long helical channel coupled to multiple puddles
and assuming incoherent scattering off the puddles, one can
find the resistance upon averaging over the puddle configur-
ation (weighted by puddles with certain sizes and tunneling
rates).

The resistance for a long channel depends on the relative
magnitude of the charging energy and the dot level spacing.
For E, < dq, the charging effect is negligible and the scatter-
ing is dominated mostly by dots with I'y comparable to kg7,
which leads to (for kg T < dq)

ksT

Rep,« LanCp 204’ (77)
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with the dot density n, (puddle number per area). For E¢;, ~
&4, one gets (for kg T < dq)

h
Rep ~ o e—zLanCp

1
dq

e (2)

(78)

For E, > d4, the system is in the Coulomb-blockade regime.
The resistance is dominated by puddles with an odd occupa-
tion number, which reads

h 1
ROYS o Lancpi (79)
¢ In? (Ld)
kgT
for kg T < dqe~™Een/(204) and
1) 1
Rhl o> X LanCp d (80)

for dge™Een/(200) « kpT < §4. As a consequence, the resist-
ance in the Coulomb-blockade regime has a weak T depend-
ence for kgT < d4.

So far we have discussed various mechanisms arising from
the SOI-induced terms in (58). In contrast, whether the SOI-
induced terms in (59) (or, more precisely, the backscattering
terms in (63b)) induce a finite resistance by themselves has led
to a lively debate. Since their role in transport was discussed
in the context of bosonized models, we will come back to this
topic in section 4.3.2. Before that, we discuss how a term sim-
ilar to (59) can arise in a weakly interacting channel when we
go beyond the static disorder potential.

4.3.14. Noise-induced backscattering  Remarkably, apart
from static disorder, the restrictions from the momentum
and energy conservation can be lifted by charge noise which
includes not only spatial but also temporal fluctuations. Spe-
cifically, instead of a static potential in (59), one can consider
the coupling to noise-induced potential Viyrynen et al (2018),

ﬂzvns q—k
X Z so

K)]aptl sk (81)

Here, the noise is modeled by a product of functions of the
time coordinate w(¢) and the spatial coordinate Vi,s(r), which
has Fourier components V x. The backscattering terms o # 3
in (81) lead to a conductance correction

/dCI/dk{ 20(@) Uso( 12}

’Vnsk+q+2kp‘ Sw(vrlg —k|)

ns—_*

2 ﬂthT

XfF(hVFk)[l —fp(thk)] (82)
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Here, fF is the Fermi—Dirac distribution and the noise enters
through its spectrum,

oo

/

which is the Fourier transform of the noise time-correlator. The
latter is defined as a statistical (long-time) average

Sy (w) dr e (w(t)w(t+7))s,

oo

(83)

w(tw(t+7))g = lim —

Ty — o0 To

To
/ dw(t)w(t+7).  (84)
0

The general formula (82) displays two important points. First,
for a helical channel preserving the S symmetry, the matrix
U, is diagonal and there is no conductance correction from
any kind of charge noise. Second, for static disorder, described
by a constant w(z), we have S,,(w) x §(w), which imposes
q =k in the integrand and thus zero correction. Therefore, for
the noise-induced term (81) to have nonvanishing effects on
the conductance, one has to remove the S° conservation and to
involve fluctuating disorder in time'°.

To this end, one incorporates the spin-orbit-induced rota-
tion (see (60)) and obtains (Vdyrynen et al 2018)

/

Here ny, 1 ~ 1 depends on the direction of spin rotation and
Dy, denotes the energy scale over which the spin rotates; using
the notation in (60), we have Dy, = hvgky,. Since (85) holds for
a general noise, one can consider, in particular, telegraph noise
from fluctuating two-level charge states in puddles, which
have Lorentzian noise spectra. For a long channel with mul-
tiple charge puddles, averaging over the random parameters
of the two-level fluctuators yields

e? |Vn5:2k1’ |2 ngoL

dw
_ o _
VFDso
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W S,(w).  (85)
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where 7 is the relaxation time of the excited state of the two-
level fluctuator. Focusing on a regime where 7y is independ-
ent of temperature, one can see that Ry o< T2 for kgT < Eg,
whereas Rys o< T for kgT > E,.

Finally, for 1/f noise, which is omnipresent in solid-state
devices and can be viewed as an ensemble of two-level fluc-
tuators, one can average over the distribution of 7y, and get

Rll"/‘;’, o T? for kT < Eg, and
R oM Vi, ok |* 131 daksT g7
1/f 0(672 Nimp 2 v% Dgo (87)

for kgT > Eq,. In comparison with T* or T° power-law res-
istance of a generic helical liquid due to static disorder, the
noise-induced resistance has a weaker 7' dependence.

10 This result supports the conclusion of Kainaris et al (2014) that the static
perturbation (63b) alone does not influence the charge transport, which will
be discussed in section 4.3.2.
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Interestingly, applying an external ac gate voltage described
by Vac(r) cos(wyt) results in a deviation of the dc conductance
for Awye, kT < Do, hvrkp,

& WVaeo > 031 5

0Gye X
2 N2 acy
h VFDso

(88)

where Vi 2, is the spatial Fourier transform of the ac voltage.
In consequence, by verifying the quadratic dependence of G
on the voltage amplitude |V,.| and frequency w,c, one can
demonstrate the existence of the momentum-dependent spin
texture (that is, a nonzero 1/Dj, o 1/ks,), which is important
for characterizing the generic helical liquid (Viyrynen et al
2018).

Having discussed time-reversal-invariant perturbations in
a weakly interacting channel, we now move on to a helical
channel with an arbitrary interaction strength. In particular, we
aim to discuss how the electron—electron interactions, known
for enhancing the backscatterings in one dimension, affect the
transport in a helical channel.

4.3.2. Generic hTLL  As discussed in section 3, since elec-
trons in a helical channel are spatially confined, one expects
substantial effects from the electron—electron interactions. It is
thus natural to go beyond the weakly interacting fermion pic-
ture described in the previous subsection. Here, we look into a
different regime, where electron—electron interactions are no
longer weak perturbations. Since we consider a generic helical
liquid beyond the weak-interaction regime, we adopt an ana-
logous name for it: generic helical Tomonaga—Luttinger liquid
(generic hTLL).

It is convenient to bosonize (58) and (59) and establish the
bosonic form of the generic hTLL. It will allow us to invest-
igate the resistance for arbitrary interaction strength. For con-
venience, we first linearize the model, which amounts to modi-
fying the up- and down-spin fermion operators in (12) into

Y1 (r) =e T L(r) —iCl e O,R(r), (89a)

¥y (r) =" R(r) — iCsoe ™" O,L(r). (89b)

In this form, the fermion operators mix the left- and right-
moving helical states. Also, we parametrize the spin-orbit
strength with a complex parameter (,; with the notation used
in section 4.3.1, it reduces to , = 2kr/kZ,. Neglecting terms
of the second order in |(y,|, the density operator is

p~R'R+L'L

+ {igsoe*”"” [(8,R")L— RTO,L] + Hc} (90)
exhibiting in the second line the spin-orbit-induced correction
proportional to (.. These additional terms allow backscatter-
ing processes which would be forbidden in a helical channel
conserving the spin component S°. Guided by the discussion
on the weakly interacting fermion systems, we group the pro-
cesses into three types below.
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The first two types, corresponding to (62¢) and (62e), arise
from the screened Coulomb interaction, [ drUe(r)p(r)p(r).
The interaction includes the usual g, and g4 forward-scattering
processes described in (14), as well as (5,-induced terms,

8k U, :
Hog 5 o SN Use / dre= 7 (0,RNRY(9,L)L + He.,
SO
On
4k U, :
Hees ~ % / dr [ie—Z’kF’LTRTL(a,L)
SO
+ie® " RILTR(O,R) +Hc.|. (92)

These additional terms can also be derived by directly linearl-
izing (62¢) and (62e). We note that here we do not include
H,. as it does not change the number of left nor right movers
and has higher-order derivatives, which makes it less relevant
in the RG sense. As already mentioned, for in-gapped helical
states the Fermi wavelength is much longer than the underly-
ing lattice constant, so the condition for a commensurate lattice
would be unrealistic. Therefore, the oscillating factors in the
above integrands indicate vanishing contributions for kr # 0
due to momentum mismatch. However, as in weakly interact-
ing channels, each of (91) and (92) can lead to backscatterings
when disorder is present.

The third type, corresponding to (63b), arises from the
coupling of the disorder potential Viy,, to the anomalous (o
term in the density operator,

_/dr Vimp(r){iCsoe_ZikFr

x [RTO,L— (OR)L] +Hee.,

Hgo =
93)

with Viy, characterized by the averages in (44). The expres-
sion (93) can be derived by directly linearlizing (63b).
Next, we discuss the resistance arising from Hee 3, Hees
and H .

4.3.2.1. 1PB process in a generic hTLL  In a clean channel,
the backscattering by He 5 is allowed when the Fermi level is
sufficiently close to the Dirac point (Kainaris et al 2014). This
1PB process, illustrated in figure 11(a), leads to the resistance

for Avpkr < kgT,
) h 2 2K+3
wogt(5) (k)

which reverts to the T° power for K = 1. For hvgky >> kg T, we
again get a thermal activation behavior,

(Uee)

hu
due to the energy and momentum conservation.
In a typical system, disorder is present and can relax the
restriction from momentum conservation, by compensating

Uee
hu

kgT
Rk,

(94)

(kpa)+ -

(ksoa)s ¢ ’

h
X 7Lk50
e

R (95)
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the oscillating factors in (91) and (92). As a consequence, sim-
ilar to the weak-interaction regime, the combination of He. s
and disorder leads to 1PB, whereas H,. 3 and disorder jointly
induce 2PB, with the momentum difference compensated by
the corresponding Fourier components of the random disorder
potential.

We now consider a generic hTLL with disorder. The results
obtained in the weakly-interacting-fermion picture showed
that the 1PB processes involving Himp, are parametrically
suppressed by higher powers of a small factor kr/kg,. There-
fore, the 1PB process is dominated by the combination of
Hg. 5 and the forward scattering term of the quenched dis-
order Hjn, ¢, which we illustrate in figure 11(b). In the
bosonic form, it leads to a contribution to the action (Kainaris
et al 2014)

Sipb

; _—DlpruzaZ/drdeT'arz 0, (r,7)
m

x 02 O, (r, ") cos [2 ¢y (r,7) = 2¢ (r, 7))
+Dypoou® / drdrdr’ 97 0,,(r,7)

nm’
x&,&n/(r,T )Sln[z ¢(V,T)—2¢(V,T/)], (960)

with the replica indices 7, " and the dimensionless backscat-
tering strengths

N 2ULK* Mipp 8 kpULK? Minp
Dipy1 = W, Ipb,2 = W. (96b)

Due to the higher-order derivative, (96a) is RG irrelevant for
any interaction strength and cannot lead to localization. It

induces a resistance,
)2 ( )4 (

which reduces to oc 7* in the noninteracting limit.

Instead of the random potential Viy, from quenched dis-
order, one might consider the combination of H. 5 and a single
scatterer due to a local impurity. The latter can be modeled by
a Dirac delta function at the origin, H}gfp V}gfp (r). Together
with (92), one obtains

Uee Vimp
h2u?

1
kyoa

h kpT 2K+2
Rlpb “;Lnimp Tb ’

o7

H, =g1,hua [a 0(0)e%? °>+Hc} (98)

with the effective coupling g1, and the boson fields ¢ and 0 at
r=0. The local perturbation Hll‘;fb was investigated by Lezmy
et al (2012), who found the following correction to the (differ-
ential) conductance,

&2

eV kgT
0G1pb X — hglpb °

Ay’ Ay

2K+2
] ;99

(55T

in the high-temperature and high-bias limits.
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4.3.2.2. 2PB process in a generic hTLL ~ We now turn to the
2PB process due to He. 3 and quenched disorder (Wu et al
2006, Xu and Moore 2006, Kainaris et al 2014). The scattering
process is plotted in figure 11(c). It contributes the following
term in the action,

Swb __py ”:Z drdrdr’
B = Zpba3m7/ rarart

X cos[4 ¢y, (r,7) — 4y (r,7")], (100a)

with

~ 2k ULK? My
R (10057
In contrast to the 1PB process, the 2PB process due to
quenched disorder becomes relevant at K < 3/8 and can loc-
alize the helical states at low temperature in a long channel.
Before entering the localization regime, the resistance induced
by the 2PB process is given by

) s

(

which recovers the T¢ dependence for K — 1. In the localiza-
tionregime, Ry, has an exponential form due to thermal activ-
ation. By analyzing (100a), Chou et al (2018) pointed out that
the localized phase for K < 3/8 exhibits a glassy, insulating
edge state, which breaks the time-reversal symmetry locally,
but preserves the global time-reversal symmetry upon disorder
average.

In addition to quenched disorder, a single scatterer can also
induce the 2PB (Wu et al (2006), Maciejko et al (2009), Lezmy
et al (2012)). Combining H%‘r’ncp with (91) leads to

h

Uee Vim
p
R2pb 08 ; Lnimp

h2u?

(kra)®
(ksoa)®

kT 8K—2
Ay ’
(1on)

oc -~ hu
Higo =8opp= cos[4 ¢(0), (102)
with the effective coupling g, It gives rise to a correction to
the edge (differential) conductance,

2

(SGzpb X — h

B [Max( . a03)
assuming K > 1/4. In the regime K < 1/4, where the 2PB is
relevant, g, flows to the strong-coupling limit and blocks the
current. In this case, the charge transport at low temperature
proceeds by tunneling through the single impurity. The tun-
neling conductance, Gy, o T/ 2K =2 (Maciejko er al 2009),
is analogous to a nonhelical channel (Kane and Fisher 1992),
though the power law is different.

We have two remarks regarding the 2PB process. First, a
fractional power-law conductance was observed in InAs/GaSb
edge channels by Li e al (2015). To extract the value of K, they
fitted the measured curves to the above 7'/ ()2 power law.
However, it remains to be clarified whether the conductance
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was indeed due to the tunneling through a single impurity or
other resistance sources, which would invalidate the K extrac-
tion since the power law might be different. Second, while
the 2PB process from both a local impurity and quenched
disorder result in similar power-law resistance, they differ in
the crossover value of the interaction parameter below which
the channel becomes insulating, namely K < 1/4 and K <
3/8, respectively. This difference, arising from the different
scaling dimensions of the corresponding operators, has been
pointed out in the context of nonhelical channels (Giamarchi
2003, Hsu et al 2019). Generally speaking, the additional time
integral in the disorder-averaged effective action (see (100a))
makes the backscattering due to quenched disorder more RG
relevant than the one due to a single impurity.

4.3.2.3. Random SO!  We now revisit the spin-orbit-induced
term given in (93). As explained there, it does not involve He
but arises from the combination of the anomalous (, term in
the density operator and the quenched disorder Viy,. In this
review, we refer to (93) as random spin-orbit interaction (ran-
dom SOI); see table 1 for the nomenclature for the same term
in the literature.

By performing the disorder average, one obtains the follow-
ing term in the action (Strom et al 2010),

S[‘SO

[)rsou2
el TZ/drd’rdT’8,0n(r,7)3,0n/(r,7")
nn’

X €COs [2 ¢7](r77—) _2¢7]'(ra7-/)]7 (1040)
with the dimensionless coupling
. 4kF Mimp 32 k7 ULK* M,
o = —5——t F e P (104b)

mw2aky, W2u? moaky, htut
The effects of this random SOI have been studied in Strém
et al (2010), Geissler et al (2014), Kainaris et al (2014), Xie
et al (2016), Kharitonov et al (2017) and, in a combination
with DNP, in Del Maestro et al (2013). We now discuss these
results.

By computing the scattering time due to (104a), (Kainaris
et al 2014) demonstrated that the random SOI does not lead to
a finite scattering time to the first order in D, for any interac-
tion strength. They thus concluded that, to the lowest order, the
ballistic transport of the edge states is protected against per-
turbations given by (93) alone, contradicting the conclusions
of Strom et al (2010), Geissler et al (2014). To resolve the
paradox, (Xie et al 2016) analyzed (93) by mapping the prob-
lem onto a free boson theory with inhomogeneous density—
density interactions. Upon the mapping, the random SOI is
translated into modifications of the velocity u(r) and the inter-
action parameter K(r) that are random in space. As a result,
the conductance of a helical channel in contact with Fermi-
liquid leads is quantized irrespective of the random SOI. This
property is analogous to nonhelical channels (Maslov and
Stone 1995, Ponomarenko 1995, Safi and Schulz 1995), where
the ballistic conductance does not depend on the interaction
strength and the velocity in the channel. This result should not
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be surprising, given that the linear-in-momentum SOI terms in
strictly one-dimensional systems (without Zeeman terms) can
be gauged away and does not affect the charge transport (Brau-
necker et al 2010, Meng et al 2014, Kainaris and Carr 2015).
A detailed analysis on the random SOI combined with backs-
cattering current calculation at zero temperature (Kharitonov
et al 2017) confirmed the conclusion from (Kainaris et al
2014, Xie et al 2016), together with the criterion for which
a generalized backscattering beyond the simple form (93) is
allowed. Specifically, the generalized backscattering is not
forbidden in a realistic system, since it requires only one of
the following ingredients: nonlocal U(1)-symmetry breaking
terms, nonlocal/SU(2)-symmetry-breaking electron—electron
interactions, or the high energy cutoff in the edge-state spec-
trum. However, one expects that the resistance is parametric-
ally suppressed.

4.3.2.4. Higher-order random SOl  Crépin et al (2012)
investigated the higher-order contributions of (93) to the
effective action. In combination with the forward scattering
terms from H,., it generates an effective 2PB process similar
to (100a). To distinguish it from the 2PB from H, 3, we refer
to it as higher-order random SOI in this review.

With a single impurity H}?ncp, the higher-order random SOI
leads to a conductance correction for T < T,

(
(

multiplied by an overall prefactor g2, o ag/(hu)*. The
crossover temperature is given by Ty, = Ap[2K/(4K —
1))/~ For T> T, the correction has a logarithmic

dependence for any K value,

(3 (%)

In consequence, whereas for sufficiently strong interactions
the higher-order random SOI leads to the same power law
as the 2PB (103), for weaker interactions the two processes
lead to distinct resistance. In particular, in the weak-interaction
limit K ~ 1, the above temperature dependence predicts a T*
power law instead of T® from (103). However, one should
notice that the leading-order contribution here is of second
order in Hiyp 1, so the conductance correction is of fourth order
in a typically small parameter ag /(hu).

Before proceeding, we briefly summarize the SOI-induced
mechanisms discussed so far. To this end, in table 1 we
list the backscattering processes and the nomenclature in the
literature.
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4.3.2.5. Phonon-induced backscattering  In addition to dis-
order, phonons can also compensate the momentum and
energy difference for scatterings. Budich et al (2012) invest-
igated electron-phonon coupling in a one-dimensional helical
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channel. They considered spatially-dependent linear and cubic
Rashba terms,

=3 [arw' 0 {30 b oen, a0

Hgs :%/dr\w(r) {am(r),iaf }U"\Il(r), (107b)
with the linear ag; and cubic agr3 Rashba spin—orbit
coupling strengths and the two-component vector ¥(r) =
[¢1(r),%_(r)]T. In the latter, T is the transpose operator and
1+ is the inverse Fourier transform of the fermion fields intro-
duced in (56). Finally, the helical states are linearly coupled to
longitudinal acoustic phonons (Martin and Loss 1995),

He—ph =ep / drUt(r)(r)0,dpn, (108)
where A is the electron-phonon coupling strength and d, is
the displacement field of the phonon.

Budich et al (2012) found that the first- and second-order
contributions from the linear Rashba term to the backscat-
tering matrix element vanish for any interaction strength. To
obtain a nonvanishing matrix element, one needs to involve
either the cubic Rashba term or the third-order contribution
from the linear Rashba term. For instance, in a noninteracting
channel with a local cubic Rashba impurity they found a non-
linear conductance correction §Ge—_pn — V0 at zero temper-
ature. However, due to the higher-order origin of the prefactor
and high power of V, one expects a negligible resistance for
typical conditions.

4.3.3. Other time-reversal-invariant perturbations  While
most of the time-reversal-invariant mechanisms stem from
the broken S° symmetry, there are exceptions. For instance,
Mani and Benjamin (2016, 2019) investigated the effects of
disordered contacts on the edge transport. Moreover, addi-
tional perturbations arise when considering transverse phon-
ons instead of longitudinal ones (108).

4.3.3.1. Backscattering induced by spin-phonon coupling
In contrast to Budich ef al (2012), Groenendijk er al (2018)
proposed that phonon-induced backscatterings can arise even
in the absence of broken S* symmetry. In particular, they poin-
ted out that whereas the helical channels have one-dimensional
character, phonons are inherently three-dimensional. By mod-
eling the lattice deformations induced by phonons, they
demonstrated a direct coupling of transverse phonons to the
electron spins in a helical channel without Rashba spin—orbit
coupling. Such a direct spin-phonon coupling induces inelastic
spin-flip scattering without breaking the time-reversal sym-
metry.

For short edges, it leads to a conductance deviation
0Gs—ph X —T° for kr =0. For a finite but small kr where
Twrkp/(kgT) << vp/cph, With the transverse-phonon velocity
Cph,r» an additional energy window opens for backscattering,
leading to an additional term o —-T° in 0Gs—ph. For
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Table 2. Temperature (7) dependence of the resistance (R) or the conductance correction (§G) due to backscattering mechanisms that break
the time-reversal symmetry discussed in section 4.2. We give the expressions for general K, if present in the literature; the noninteracting
expressions follow upon using K = 1. In realistic settings, multiple resistance sources are present; they should be added in series, including
the contact resistance, i/ e, per channel. Here and in table 3, the abbreviations 1D and TRS stand for one-dimensional and time-reversal

symmetry, respectively.

TRS breaking mechanism Ror —6G

Remark

T2K—2

Single magnetic impurity

const. + In (%"T) for T > Tk

for T < Tx

See Footnote * for the regime of validity.

Single charge impurity (with a 72K=2

finite magnetic field)

See Footnote °.

T—2

Kondo lattice (1D Kondo array) 72K~

for Epin < k3T < Aga,
for kT > Aya

Localization at low T; see Footnote °.

Magnetic-impurity ensemble (with

e/ T)  for T < T

Localization for K < 3/2; see Footnote ¢.

2K—2
spin diffusion into the bulk) r for T'> Tis
. . m2e®s/ &) for T < Ty, o
Spiral-order-induced field (below YooK Localization for K < 3/2; see Footnote .
spiral ordering T’) mg T for T'> Tsa
w2=3 " for magnon emission

Magnon (below spiral ordering T's)

{

See Footnote €.

7°~2K for magnon absorption

DNP! (for K ~ 1 and finite (T + const.) ™!
spin-flip rate)
DNP with random SOI# (for K ~ 1 T-2%/3

and long channels)

2 While the correction vanishes in the presence of Kondo screening (Maciejko et al 2009) or an isotropic coupling (Tanaka ef al 2011), in general it is nonzero
in the presence of an anisotropic coupling (Tanaka e al 2011) or SOI-induced non-spin-conserving interaction (Eriksson et al 2012, Eriksson 2013). In the
latter case, the correction takes the form listed here, with K modified by SOI. See also Kimme ef al (2016), Zheng and Cazalilla (2018), Kurilovich et al
(2019a), Vinkler-Aviv er al (2020) for more general cases including / > 1/2 and nonlinear response, where the conductance is beyond a simple power law.

b See Lezmy et al (2012) for a refined expression for general V and T.

¢ See Altshuler et al (2013) for a discussion on the localization at 7 — 0 in a noninteracting channel and (Yevtushenko ef al 2015) for a detailed discussion on

transport at a finite temperature.

4 In addition to the listed power law obtained from the RG analysis (Hsu et al 2017, 2018a), one can refer to Viyrynen et al (2016) for a refined expression,
which includes an additional crossover below which the conductance is partially restored.
¢ In the spiral-ordered phase, the expressions contain the magnon energy fwm and the spiral-order parameter m, with their temperature dependence given by

wm o< TPK=2mg and (1 — my) oc (T/Ts)3 =K (Hsu et al 2017, 2018a).
T From Lunde and Platero (2012).
€ From Del Maestro et al (2013).

hwekp/(kgT) > vi/cpn,» the conductance correction is sup-
pressed exponentially. For long edges, the spin-phonon coup-
ling leads to distinct power laws in different temperature
ranges determined by the Debye temperature 6. Specifically,
for kBT<< hVFkF, kBQD,

()

where p,, is the material density. For Avpkr < kgT < kg0p,

ﬁ Lthh’ [k%

2 2
€ Vg Pm

kgT

Rlow
thh,l

s—ph X (109)

4 thcht<kBT>5
RMd o — B[ BT ) 110
s—ph 2 V%; Om hcph,t ( )
and for kgT > kgbp > hvpkr,
, h Lhcon, [ ksbp\> T
RN — = —. 111
s—ph & e? v% Pm (hcph7,> Op i

28

The above results are from a noninteracting model, and it
might be interesting to explore the resistance due to the spin-
phonon coupling in an interacting channel.

4.4. Discussion on the charge transport

Since the theoretically proposed backscattering mechanisms
generally lead to different bias, length, and temperature
dependences of the resistances, these predictions can be veri-
fied by experiments. For convenience, we summarize the
temperature dependences, giving table 2 for time-reversal
symmetry breaking mechanisms and table 3 for time-reversal
symmetry preserving ones. In these tables, we also summarize
three sets of theoretical results discussed above and the cor-
responding references. For Kondo impurities, they are given
in footnote a of table 2; for H. s5-induced 1PB process, the
discrepancies are summarized in footnote a of table 3; for
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Table 3. Similar to table 2, but for time-reversal-invariant backscattering mechanisms introduced in section 4.3.

TRS preserving mechanism

Ror -G

Remark

1PB by Hc. 5 (for clean

e~ ke /() for ko T < Rvpkr

See Footnote®.

systems) 72K+3 for kg T > hvrkr

1PB by Hee 5 & Himp ™€ 72k+2

IPB by Hee s & H%?,fp 7K+2 See Footnote?.

IPB by Hee,1 & Himp,p° T® for K=~ 1

1PB by Hee 3 & Himp,p™* T*forK~1

2PB by Hee,3 & Himp,i° 78K=2 Localization for K < 3/8.
2PB by Hee 3 & H§°m°p 7362 See Footnote! and Footnote'.
Random SOI 0 See Footnote®.

Higher-order random SOI! For K > 1/2:

(single scatterer)

K for T < Tjso

T 1n? (kg T/ Ay) for T > T,
For1/4 <K< 1/2:
52 for T< T7,
{ T 1n? (ks T/ Ay) for T > T,

Crossover

2K )1/(2K71).

temperature: Trso = Ap (7007

1PB in charge puddles' (for
K=~1)

Short channel (a single puddle):
T for kT < dq
even valley: ¢ T° for §¢ < kT <K Ech

const. for kg7 > E.p

even—odd transition:
for kgT < I'
const. for I'f < kT < dq
7’ for 6g < kgT < Ech

const. for kgT > E,

T for T < Tk
1n2(T/TK) for kgTx < kT < g
odd valley:
7° for 0 < kT < Een
const. for kgT > Ecpy
Long channel (averaged over puddle
configurations):
Enh < 6a: T forkpT < dq

Eq =~ 0q4: 1/1n2[5d/(kBT)} for kg T < 04
1/In?[64/ (kg T)] for kpT < 3§

1/1In[da/ (ks T)]

Ech > dq:
for (55 <K kgT < dq

The 2PB in charge puddles is dominated by
1PB and thus neglected. For short channels,
the expressions vary with the dot parity states
(tuned by gate voltage) and the temperature
ranges set by the dot level spacing dg4, the
dot-edge tunneling I'; and the charging
energy Ech.

For long channels, the resistance depends on

the additional energy scale
51 = bqeTEN/ 280,

Noise! (for K = 1, long channels)

2 Eg
Telegraph noise: 7- tanh (2 k,l;T)
> forkgT < Een
1/f noise:
T for kgT > E¢,

Acoustic longitudinal
phonon

See FootnoteX.
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(Continued.)
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Table 3. (Continued.)

TRS preserving mechanism

Ror —0G

Remark

Transverse phonon' (for
K=~1)

Short channel:
{ e—ﬁVFkF/ (ksT)

const. T° -+ const. T°

for kgT < hCPh’th
for kT > hcpn ikr

Long channel:
T3 for kT < hVFkF, kgbp
T°  for hvrkr < ksT < ksfp
T for kgT > kgbp > hvrkr

The spin-phonon coupling arises from
deformation and does not require Rashba
SOLI.

The expressions depend on the trans-
verse phonon velocity cpp ; and the Debye
temperaturefp.

# There exist discrepancies in the literature. For low temperatures, Kainaris et al (2014) obtained the listed expression and explained its difference
from Schmidt et al (2012) as a result of Pauli blocking at the Dirac point. In the high-temperature regime, Chou et al (2015) found 75F! but did not
comment on the difference from the listed expression in Kainaris ez al (2014).
b Schmidt et al (2012) investigated the K ~ 1 limit of the conductance correction.
¢ Kainaris et al (2014) obtained the conductivity for 1PB by combining Hee,5 and Himp ¢, and for 2PB for a general K, as well as others for K ~ 1.

d See Lezmy et al (2012) for a refined expression for general V and T.

f Wau et al (2006), Xu and Moore (2006) investigated the localization due to the 2PB induced by quenched disorder.
fWu et al (2006), Maciejko et al (2009), Lezmy et al (2012) investigated 2PB off a single scatterer. For K < 1/4, the edge channel is cut by 2PB, leading to a

power-law tunneling conductance with 7'/ (2)=2 (Maciejko et al 2009).

& Kainaris et al (2014), Xie et al (2016) concluded that the random SOI has no influence on the transport, contradicting (Strom et al 2010, Geissler et al
2014); see Kharitonov et al (2017) for discussions on the generalized random SOI.

" From Crépin et al (2012).
i From Viyrynen et al (2013, 2014).
I From Viyrynen et al (2018).

X The linear Rashba term gives a vanishing electron-phonon backscattering matrix element in the first order (Budich et al 2012).

! From Groenendijk et al (2018).

random SOI, we point out the contradicting results in Foot-
note g of table 3.

Comparing the two tables, the following major differ-
ence stands out. The mechanisms arising from time-reversal
invariant inelastic processes lead to conductance corrections
which vanish at zero temperature (due to the vanishing phase
space), whereas those due to broken time-reversal symmetry
might not (depending on the material parameters). In addition,
mechanisms involving hTLL physics in general lead to frac-
tional power-laws with exponents decreasing upon increas-
ing the strength of repulsive interactions. Therefore, electron—
electron interactions enhance the backscattering and thus the
low-temperature resistance, a feature common with nonhelical
channels (Giamarchi 2003).

In addition to the dc resistance reviewed above, there are
also studies on other transport-related quantities. For instance,
finite-frequency conductivity, backscattering current noise, or
shot noise in 2DTI edges were studied (Lezmy et al 2012, Del
Maestro et al 2013, Aseev and Nagaev 2016, Kurilovich et al
2019a, Pashinsky et al 2020). The influence of disorder on the
propagation of the edge-state wave function and the induced
momentum broadening were investigated in Gneiting and Nori
(2017).

In this review, we focus on an isolated helical channel and
its transport properties. For a nanoribbon or stripe-like geo-
metry in which the interchannel coupling becomes nonneg-
ligible, the stability of multiple parallel helical liquids has
been investigated (Xu and Moore 2006, Tanaka and Nagaosa
2009, Santos et al 2019). In addition, there is a first-principle
study on interedge scattering due to a single nonmagnetic
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bulk impurity, a relevant backscattering source for narrow rib-
bons (Vannucci et al 2020), as well as works on Coulomb
drag in two parallel interacting helical edge modes (Zyuzin
and Fiete 2010, Chou et al 2015, Kainaris et al 2017, Chou
2019, Du et al 2021). Furthermore, Hou et al (2009) proposed
corner junctions as a probe of 2DTT helical edge states. Pos-
ske et al (2013), Posske and Trauzettel (2014) studied two
2DTI helical edges coupled to a spin-1/2 magnetic impurity
in a gate-defined quantum antidot. Employing a two-channel
Kondo model, they investigated correlation functions between
the impurity spin and the electron spin, which form a Kondo
screening cloud. Utilizing the spin-momentum locking prop-
erty of the helical edges, they proposed a setup to detect the
Kondo cloud through the space- and time-resolved current
cross correlation functions. There are also studies on quantum
point contacts (Strdom and Johannesson 2009, Teo and Kane
2009, Lee et al 2012, Dolcetto et al 2016); we note that 2DTI
quantum point contacts have been achieved experimentally
using HgTe (Strunz et al 2020). Surprisingly, in addition to the
expected conductance plateaus at multiples of 2¢/h through
the point contact, they observed anomalous conductance plat-
eau at the half-quantized value e?/h. Attributed to the open-
ing of a spin gap, it urges further theoretical and experimental
efforts on reproducing the results and examining alternative
interpretations.

We have shown that helical channels bring about unusual
phenomena of charge transport, distinct from nonhelical chan-
nels. We now discuss how even more exotic states of mat-
ter can arise in helical channels when superconductivity is
added.
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5. Topological superconductivity in helical
channels

Analogous to topological insulators, there are superconduct-
ing materials with nontrivial topology. They are topological
superconductors (Hasan and Kane 2010, Qi and Zhang 2011,
Ando and Fu 2015, Sato and Ando 2017). Theoretical propos-
als for their realizations include various materials or settings,
ranging from unconventional superconducting phase in stoi-
chiometric compounds such as chiral p-wave superconductors
Sr,RuOy (Kallin and Berlinsky 2016) to artificially engineered
structures such as proximitized three-dimensional topological
insulators (Fu and Kane 2008), Cu-doped three-dimensional
topological insulators (Hor et al 2010) or LaAlO3/StTiO3
bilayer with interface superconductivity (Nakosai et al 2012).

As their insulating counterparts, topological supercon-
ductors are characterized by their bulk topology and in-gap
modes at their boundaries. Similar to the analogy between
the low-energy edge theory of topological insulators and the
Dirac Hamiltonian, here the in-gap modes find their ana-
logues in Majorana’s theory on real solutions of the Dirac
equation (Majorana 1937). These real solutions, representing
exotic particles identical to their own antiparticles, are neither
ordinary fermions nor bosons. While such exotic particles
have so far not been found as elementary particles (Wilczek
2009), they can appear as quasiparticles in certain supercon-
ducting systems.

Mathematically, an ordinary fermion can be expressed as a
combination of two Majorana modes (Kitaev 2001). To real-
ize a single Majorana mode in a realistic system, one has to
separate the modes in space. This task is challenging in con-
ventional solid-state systems hosting spin-1/2 electron or hole
states, where the fermion modes have intrinsic spin degener-
acy. In helical channels, the spin degeneracy is lifted, mak-
ing them potentially suitable for Majorana modes, either in the
form of zero-energy modes or dispersive (propagating) modes.
In this review, we focus on Majorana zero modes, which are
bound states with exponentially localized wave functions in all
three spatial dimensions.

In addition to an academic interest, zero-energy MBSs can
have technological applications, providing building blocks for
advanced quantum computation (Ivanov 2001, Kitaev 2003,
Sato and Fujimoto 2009, Tanaka et al 2009, Alicea et al 2011,
Crépin and Trauzettel 2014, Hoffman et al 2016, Landau et al
2016, Karzig et al 2017). There are existing reviews and tutori-
als on this topic (Nayak er al 2008, Alicea 2012, Beenakker
2013, 2020, Das Sarma et al 2015, Sato and Ando 2017,
Laubscher and Klinovaja 2021). Remarkably, while the ini-
tial work by Fu and Kane (2008) motivated subsequent works
on MBS localized at vortices in topological superconductors
in three-dimensional structures (Wang et al 2018a, Kong et al
2019, Machida et al 2019, Chiu et al 2020, Liu et al 2020,
Zhu et al 2020), one can realize MBS by assembling exist-
ing ingredients in quasi-one-dimensional nanoscale systems.
Along this line, great efforts were made on semiconductor
nanowires combining Rashba spin—orbit coupling, magnetic
field, and proximity superconductivity (Lutchyn et al 2010,
Oreg et al 2010, Alicea et al 2011, Das et al 2012, Deng et al

31

2012, Klinovaja and Loss 2012, Mourik et al 2012, Rokhinson
et al 2012, Churchill et al 2013, Finck et al 2013, Rainis et al
2013, Cayao et al 2015, Albrecht et al 2016, Giil et al 2018,
Frolov et al 2020, Prada et al 2020), though a smoking-gun
evidence for the existence of MBS in this setup is still miss-
ing (Castelvecchi 2021, Frolov 2021). In spite of being rel-
atively accessible in experiments, the Rashba setup has dis-
advantages, including the detrimental effects of the external
magnetic fields on the superconductivity and the sensitivity of
topological bound states to the field orientation, which might
affect their scalability for practical applications.

The disadvantages motivated works on alternative plat-
forms, including semiconductor-ferromagnet-superconductor
hybrid devices (Sau et al 2010), spontaneous helical spin
textures in either magnetically doped nanowires or atomic
chains (Braunecker and Simon 2013, Klinovaja et al 2013,
Nadj-Perge et al 2013, 2014, Vazifeh and Franz 2013, Pientka
et al 2014, Hsu et al 2015, Ruby et al 2015, Pawlak et al
2016, 2019, Kim et al 2018) and nanodevices with micromag-
nets (Kjaergaard et al 2012, Klinovaja et al 2012, Klinovaja
and Loss 2013, Maurer et al 2018, Desjardins et al 2019).

There are also proposals on time-reversal-invariant set-
tings (Haim and Oreg 2019), such as iron-based superconduct-
ors with s pairing (Zhang et al 2013), nonhelical channels in
multisubband quantum wires (Gaidamauskas et al 2014, Haim
et al 2014), or multiple Rashba wires (Klinovaja and Loss
2014a, 2014b, Ebisu et al 2016, Schrade et al 2017, Thakurathi
et al 2018). Some of these quasi-one-dimensional systems
involve interaction-induced MBS and might be able to real-
ize parafermions (Alicea and Fendley 2016), which provide
an even more advanced quantum computation scheme (Hutter
and Loss 2016).

A common trait of the just mentioned alternative setups is
that they do not require magnetic fields and that they exploit
nonhelical channels. Interacting helical channels provide addi-
tional advantages. Namely, repulsive interactions in helical
channels can have stronger effects on suppressing the local
pairings than the nonhelical channels (Hsu et al 2018b), thus
favoring nonlocal pairing that is crucial for topological bound
states. Below, we point out that MBS arise in helical channels,
taking coupled pairs of helical channels in 2DTI and HOTT as
examples.

5.1. Setups using double helical channels

Utilizing the proximity effect, one can induce pairings in
the helical channels to realize topological superconductivity.
Majorana or parafermion bound states can appear at domain
walls between the band-inverted and non-inverted regimes.
Creating such a domain wall requires a second gap open-
ing (that is, mass inducing) mechanism, in addition to the
proximity-induced direct pairing. Some works considered the
Zeeman gap induced by either external magnetic fields (Fu and
Kane 2009, Mi et al 2013, Fleckenstein et al 2021) or ferro-
magnetism (Crépin et al 2014, Keidel et al 2018, Jick et al
2019) serving this purpose. However, similar to the prototype
setup with Rashba nanowires, the magnetism or magnetic
fields are detrimental to the superconductivity. In this section,
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Figure 12. Proximity-induced s-wave local (black arrows) and
nonlocal (green arrows) pairings in helical channels. For simplicity
we illustrate a system where S° is a good quantum number. (a) For
two channels with the same helicity (parahelical), the chemical
potentials should be the same for the crossed Andreev pairing
between the two channels. (b) For two channels with the opposite
helicity (orthohelical), the chemical potentials should be opposite.

we discuss theories proposing an alternative, albeit less
familiar, mechanism relying on a nonlocal superconducting
pairing.

To dispose the magnetic field, one can use a pair of helical
channels, which can be formed by either 2DTI edge channels
or HOTT hinge channels. When bringing the two helical chan-
nels into proximity of an s-wave superconductor, two types of
superconducting pairing arise. One is the local, intrachannel
pairing, where the Cooper pairs in the parent superconductor
tunnel into one of the two channels. Since each helical chan-
nel consists of Kramers partners with the opposite spin and
momentum, the local pairing is allowed for the s-wave super-
conductivity. The other pairing type is the nonlocal, interchan-
nel pairing (also known as crossed Andreev pairing (Klinovaja
and Loss 2014b, Reeg ef al 2017)), where the two partners of a
Cooper pair tunnel into different channels. For the momentum-
and spin-conserving tunneling process to take place, we have
different conditions on the chemical potential, depending on
the relative helicity between the two channels. For conveni-
ence, we adopt the terminology of Klinovaja ef al (2014) and
name the combination as parahelical (orthohelical) when the
two channels have the same (opposite) helicity. In figure 12,
we illustrate the local and nonlocal pairings for different com-
binations of helical channels. For the parahelical setup shown
in figure 12(a), the nonlocal pairing is in effect when the chem-
ical potentials in the two channels are the same. For orthohel-
ical channels (see figure 12(b)) the nonlocal pairing is effect-
ive when the chemical potentials (tuned by local gates) are
opposite.

After introducing the basic concept for the interchannel
pairing, we now discuss how to achieve the crossed Andreev
pairing using the helical channels of topological materials. In
figures 13 and 14, we show two structures for the parahelical
setup using two 2DTIs, one in a vertical and the other in a
horizontal arrangement. In both structures, a superconductor is
deposited in such a way that it induces a crossed Andreev pair-
ing in two edge segments (for instance, in the region 0 < r < L
in figure 13) and only local pairing in other segments. As a res-
ult, at a corner (either r =0 or r = L) where the edges change
their direction, a domain wall separates two regions, one with
a finite nonlocal pairing and the other without it.

Alternatively, one can use a three-dimensional helical
second-order topological insulator (see figures 7 and 15 for
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Figure 13. Parahelical setups for stabilizing MBS in proximitized
edge channels of two 2DTI layers in a horizontal alignment. A
superconductor (yellow) is deposited to proximitize the edge
channels, while gates (blue) control their chemical potentials. With
identical chemical potential, both local and nonlocal pairings take
place in the segment 0 < r < L with the edge coordinate r, whereas
there is only local pairing in other segments » <0 and > L.

Figure 14. Similar to figure 13 but with a vertical alignment, which
might be suitable for van der Waals materials.

HOTI nanowires with a hexagonal or a tetragonal cross
section, respectively). In contrast to 2DTI, the hinge channels
in a single HOTI bulk can have both parahelical and orthohel-
ical arrangement. Since the two parallel hinges on a single side
surface are orthohelical and the chemical potential is uniform
along the hinges, the nonlocal pairing between the two hinges
is forbidden (see the right panel of figure 15). However, one
can cover two side surfaces with a superconducting layer (see
figure 16), where the nonlocal pairing is allowed in two hinges
of the same helicity. Then, the crossed Andreev pairing takes
place between a pair of parallel hinges of the same helicity, but
vanishes at the short hinges perpendicular to them, thus creat-
ing a domain wall separating two regions, with and without
the nonlocal pairing.
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Figure 15. Illustration of a nanowire made of a three-dimensional
second-order topological insulator with square cross section (left)
and hinge-state spectrum of two parallel hinges sharing a side
surface (right). Since the two parallel hinges are orthohelical, the
nonlocal pairing is forbidden.

d

Figure 16. (Left) MBS setup using a HOTI nanowire with two side
surfaces covered by a superconductor. (Right) A pair of MBS (dots)
emerges at each end of the nanowire. Each MBS wave function has
a finite weight on both channels (a single solution is marked by the
same color), showing its composite nature. We emphasize that,
while we intentionally separate the two MBS at one end for clarity,
they are in fact located at the same position.

For both the 2DTI and HOTI setups, the competition
between the gap opening mechanisms (local vs nonlocal pair-
ing) leads to the band inversion and bound states at the domain
walls which are located at corners, as we demonstrate below.
The HOTT has an advantage that it does not require local gates
to adjust the chemical potential. The latter is uniform since all
the hinge channels are connected.

The parahelical setting is described by the following single-
particle Hamiltonian, H, = Hﬂin + Hioc + Heqp. The first term
is the kinetic energy,

HY, = —ihvpy / dr (RIO,R, — L} 9,L,), (112)

with the channel index n € {1,2} and the spatial coordinate r
along the channel. The second term is the local pairing,

Hie =Y / dr [%(R;le —LIRI)—i—H.c.}, (113)

with spatially uniform pairing amplitude A,,. The last term is
the nonlocal pairing,

1
5 [ @A) [(RILE - LiR)

+(RIL] ~ LRD)] + Hee.,

Hcap =

(114)
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Figure 17. Orthohelical setup for creating MBS in proximitized
edge channels of two 2DTT layers. Upon adjusting the chemical
potentials of the two edges with local gates, one can realize
orthohelical configuration with the energy spectrum shown in
figure 12(b).

with a spatially dependent pairing amplitude

{

In the above, we consider real pairing amplitudes A, and
A.. Apart from the single-particle terms, there are forward
scattering interaction terms corresponding to (14), which will
be included later when we discuss the interaction effects.
The Hamiltonian (112)—(114) describes noninteracting double
channels in either 2DTI or HOTI depicted in figures 13, 14 and
16.

On the other hand, the orthohelical arrangement can be
achieved using two layers of 2DTI as displayed in figure 17,
where the local gates adjust the chemical potentials in differ-
ent edges. Again, at both » =0 and r =L, a domain wall sep-
arates two regions. While both parahelical and orthohelical
setups can produce MBS in 2DTI (Klinovaja et al 2014), only
the parahelical setup can be exploited in a HOTI-based setup.
Therefore, below we take the parahelical setup as an example
to demonstrate how MBS can be stabilized in both systems
and its topological criterion.

A,
0,

for 0<r<L

Ac(r) otherwise.

(115)

5.2. Topological criterion for Majorana zero modes

We now examine the topological criterion considering the
single-particle Hamiltonian (112)—(114). We rewrite it as

Hyp :% /dr Ul (r)Hep (1) (r), (116a)

using ¥ = (Ry,Li,Ry, Ly, R}, LT, RY, L1)T where T is the trans-
pose operator, and the Hamiltonian density
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Hop(r) =— itven® 7° 6°0, — AL 0¥

— AP0 — ATV, (116b)

with Ay =(A; +A;)/2 and the Pauli (identity) matrices
for superscripts 1 € {x,y,z} (©=0). In the above, n*, T+,
and o act in the particle-hole, channel, and spin space,
respectively.

Assuming a periodic boundary condition along the r
coordinate and performing Fourier transform on Hgp, it can be
shown that the system is time-reversal-invariant with the time-
reversal operator 7 = io” K introduced in (1) and the complex
conjugate operator K. Since the operator 7 squares to —1,
the Kramers degeneracy theorem applies, indicating a time-
reversal pair of states at a given energy. Indeed, the corres-
ponding ‘bulk’ spectrum deep inside the 0 < r < L region is
doubly degenerate and given by

k) == \/(thk)2 + (A+ + \/TW>2~ (117)

It has a gap Appe at k=0,

(£,
prc

Apre =ES 7 (k=0) —E o7 (k=0)

=2 <A+7\/A2_ +Ag).

Assuming A, A; >0, the sign of Ap,. becomes negative
when

(118)

AjA, — A2 <0. (119)

Therefore, a band inversion can be achieved by reversing the
relative strength of the local and nonlocal pairings, which gives
rise to domain walls at r =0 and r = L.

Before demonstrating that MBS can indeed appear at the
domain walls, we remark that, for A; and A, with general
signs, the band inversion can occur in the absence of the non-
local pairing. Indeed, setting A, =0, Ay is negative when
the signs of A and A, are opposite (dubbed a 7-junction con-
figuration). In the above setup with a single superconducting
layer, the phases of A and A, are the same and do not form a
m junction. Alternatively, one can achieve the 7-junction setup
by proximitizing the two helical channels with two separ-
ate superconducting layers and controlling the phase between
them through a magnetic flux (Laubscher et al 2020a). Below
we focus on the setting with a single superconducting layer
and the case where Ay and A, have the same sign.

To examine the presence of MBS, we solve the
Bogoliubov—de Gennes equation at zero energy near the ori-
gin r =0 (assuming a sufficiently long channel so that r =L
is far away). We find that two Majorana solutions ®pps
and ®pypso localized at r =0 emerge for A2 > AA;. The
wave function of the first solution is given by P (r) =
O (r)O(r) + ©(r)O(—r) with the step function O(r) and

34

i1m inme"™ "
~Tlm —Nme"™ "
—i —ie™’
1 emz r
— p Rel —
(D>(}’) =e _inm ’ (I)<(I’)— _inmem r )
~Tlm —Nme"™ "
i ie™ "’
1 emz r
(120a)

where we omit the normalization constants and introduce the
parameters,

VAL A2 AL

fn = (1200)
VAL +AZ-AY

Ke = , (120c¢)

hVF

A,

ky =— forn e {1,2}. (1204)
hVF

The localization length of the wave function ® s is given by

1
Min(kc, K1, k2)

gloc = (121)

with Min(- - - ) denoting the minimal value. The second Major-
ana solution is related to the first one by ®Pmps 2 = T Prps,1
and Ppps ] = —7 Prps2 With the time-reversal operator 7
defined above. The two solutions @ 1 and Py 2 localized
at r =0 form a Kramers pair; another Kramers pair of MBS is
formed at » = L, with the wave functions given by @, 1 and
®pps,2 upon replacing r — (L —r). We remark that, in con-
trast to MBS appearing in, for example, proximitized Rashba
nanowires, the two MBS of each Kramers pair are not spatially
separated. Nonetheless, as guaranteed by the Kramers the-
orem, their wave functions are orthogonal and the MBS do not
hybridize unless the time-reversal symmetry is broken. From
the wave functions we see that each MBS has nonlocal and
composite nature, with a finite weight on both channels. We
depict the MBS positions in a HOTI nanowire with a square
cross section in figure 16 and with a hexagonal cross section
in figure 18. Since the zero-energy MBS are located at the
corners of the overall three-dimensional crystal structure, they
are often named Majorana corner modes or Majorana corner
states in the literature on setups utilizing proximitized HOTT;
we will review additional proposals for their realization in
section 5.4.

Whereas the simplified model (116a) might be further
enriched by various single-particle perturbations, such as
(co)tunneling processes within (between) channels and spin—
orbit coupling (Klinovaja ef al 2014, Klinovaja and Loss 2015,
Reeg er al 2017, Schrade et al 2017, Hsu et al 2018b), they do
not lead to any gap closure and, therefore, cannot lead to addi-
tional topological phase transitions. In addition, since these
additional perturbations are less RG relevant than the nonlocal
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trivial
(no MKP)

topological
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Figure 18. (Left) MBS in a HOTI nanowire; similar to figure 16 but
for a wire with hexagonal cross section. (Right) Phase diagram
obtained from the effective-Hamiltonian model. Sufficiently strong
interactions lead to Majorana Kramers pairs (denoted as MKP). For
simplicity, we assume identical initial parameters for the two
channels A (0) = A2(0) and K, (0) = K»(0).

pairing, their strengths are suppressed by interactions more
significantly. In conclusion, the MBS are robust against these
perturbations.

In summary, a Kramers pair of MBS can be stabilized at
each end of the double helical channels when the nonlocal
pairing is stronger than the local ones, described by the cri-
terion (119). As long as the time-reversal symmetry is pre-
served, the pair does not hybridize. While in noninteracting
systems, the local pairing typically dominates (Reeg et al
2017), electron—electron interactions can lead to the oppos-
ite (Thakurathi et al 2018, 2020), as we demonstrate below.

5.3. Interacting double helical channels

In order to investigate the electron—electron interaction effects
on the pairings A, and A., we employ the bosonization
description and perform the RG analysis. While the analysis
presented in Hsu ez al (2018b) focused on HOTI, it also applies
to the 2DTI edge channels.

Generalizing the boson fields (15) to a double-channel sys-
tem, we introduce 6, and ¢, with the channel index n € {1,2}
and get two copies of Hyg in (17),

hdr Uy
Hﬁel = Z / ? |:unKn (aran)2 + —

2
w00 |,

(122)

with the interaction parameter K, for the channel # and the cor-
responding velocity u, = vg/K,. The boson fields of a given
channel satisfy the commutation relation in (16) and the fields
of different channels commute. The local and nonlocal pairing
terms are given by

A,
Hie =) — / dr cos(26,), (123a)

2
Hcap :E

/drAC(r) cos(0; + 602)cos(¢pr — ). (123b)
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The Hamiltonian HY,| + Hoc + Heap describes two interacting
parahelical channels in both HOTT and 2DTI settings.

Since H.,, contains the ¢, field while H,. contains their
conjugate field 6,, the two pairing processes compete with
each other. As a result, the relative strength of the local and
nonlocal pairings varies with the electron—electron interaction
strength. Quantitatively, the renormalization of the pairings is
captured by the RG flow equations,

dA, 1) -
={2—— A 124
dl < Kn) ns ( a)
dKk, - 1 ~
"N (1-K2)A? 124b
AL Y
dA. 1 1y |«
=[2-1 n (K+?) A, (124¢)
with the dimensionless coupling constants
- A ~ A
p=m A=t (124d)
hu,, h\ /Uy U

From the RG flow equations, one can obtain the renormal-
ized values of A, and A, at the end of the flow, and examine
the existence of MBS Kramers pairs using the topological cri-
terion in (119). The results depend on the initial values of the
interaction parameters and the gap ratio, as summarized in the
phase diagram in figure 18.

Crucially, as a result of the distinct scaling dimensions of
the cosine terms in (123a) and (123b), the interactions sup-
press the local pairing gap more significantly than the non-
local one. Therefore, the repulsive interactions favor the non-
local pairing. For sufficiently strong interactions, the relative
magnitudes of AI,Z and AC can be reversed. It can be shown
that, for a given set of initial parameters, the end point of the
RG flow is adiabatically connected to the noninteracting point
(K =1, with renormalized pairings) without closing the sys-
tem gap (Hsu et al 2018b). Since at the noninteracting point
the model can be refermionized, one can employ the criterion
(119) to justify the presence of MBS. Concluding, sufficiently
strong interactions can drive the system into a topological
superconducting phase with Kramers pairs of MBS either at
the corners of the 2DTI layers or at the ends of the HOTI
nanowire. For very strong interactions, both Al,z and AC are
suppressed, as the corresponding operators are irrelevant in
the RG sense. In this limit, both pairing gaps vanish, mak-
ing the helical channels nonsuperconducting. Interestingly, by
comparing figure 18 to the phase diagram for double Rashba
wires (Thakurathi et al 2018), one finds that the required inter-
action strength for the helical channels is weaker than the non-
helical channels, making it easier to achieve topological super-
conductivity in the former.

The above analysis is based on the effective Hamiltonian
given in (122), (123a) and (123b), where the initial pairing
gap values are set by hand. A more realistic model would
reflect the actual physical separation d between the helical
channels on the scale of the coherence length & of the parent
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Figure 19. Phase diagram obtained from a microscopic model for
different interchannel separations d. For simplicity, we assume
identical parameters for the two channels with the material
parameters for Bi HOTI (Wada ef a/ 2011, Murani et al 2017, Hsu
et al 2018b, Schindler et al 2018b) : the velocity u, = 10° ms™',
cutoff a(0) = 5 nm, channel length L = 1 pm, Fermi wave vector
Krs = 10" m™!, and pairing gap A = 0.35 meV corresponding to
the coherence length £ = 1.9 pum.

superconductor. To this end, one can use a microscopic model
describing the tunnel coupling between the helical states and a
proximity s-wave superconductor from (Hsu ef al 2018b). The
proximity superconductor is described by

2|KJ* — 1? K

H =
sc 2m,

K,o=1,{
+ A, Y (K)ty (-K) + He,,
K

Ul (K)ts, 0 (K)

(125)

with the electron mass m,, the parent pairing gap A, the
momentum /K and the Fermi wave vector Krg of the super-
conductor. Also, the operator 1/):,(, creates a fermion with spin
o in the superconductor. The tunneling between the supercon-
ductor and the helical modes is grasped by

Hun= Y [ drax {5;%0) [R1). (%

n=1,2

+ L} 1(X)| +He. |, (126)
where we introduce the three-dimensional coordinate X =
(X,Y,Z) of the bulk superconductor and the tunnel amplitude
t,

n

t(X,r) =t,6(Z—r)d6(X —d,)d(Y), (127)

with dy =d/2 and d, = —d/2. Here we work in the weak-
pairing regime by assuming a weak tunnel coupling 7, which
does not strongly perturb the helical modes. We remark that
a strong tunnel coupling might drastically affect the one-
dimensional channels themselves. In the nonhelical case, it can
lead to metallization in proximitized Rashba wires (Reeg er al
2018) or formation of a quantum dot in the nanowire (Awoga
et al 2019) ; for the helical case, the hinge channel of a HOTI
can also be altered by strong pairing (Queiroz and Stern 2019).

Onmitting the details given in Hsu et al (2018b), in figure 19
we present the resulting phase diagrams obtained from (122),

36

(125) and (126) for two different interchannel distances d = 50
and 100 nm with the material parameters for Bi HOTI. The
tunnel coupling enters the vertical axis through the parameter

o(5)

with the superconductor Fermi velocity vgs = hikgs/m, and the
modified Bessel function of the second kind K. The phase dia-
grams are consistent with the one obtained from the effective
Hamiltonian in figure 18. Here, the blue region is the para-
meter regime where the renormalized couplings A, and A,
are both less than 0.1, corresponding to the gapless regime
in figure 18. In addition to verifying the result from the effect-
ive Hamiltonian, the more elaborate calculation allows one to
conclude that, for the interchannel separation d of O(100 nm)
and superconducting coherence length &, of O(pm), one can
find a fairly wide regime with Kramers pairs of MBS. This
finding indicates that materials with a micrometer-long super-
conducting coherence length, such as aluminum, serve as a
suitable proximity superconductor.

Remarkably, using a similar setup one can achieve Kramers
pairs of parafermions at the system corners (Klinovaja et al
2014). The setup can be achieved by replacing the two 2DTI
layers with two-dimensional fractional topological insulators
(also known as fractional quantum spin Hall insulator) sup-
porting fractional edge states (Levin and Stern 2009, Maciejko
and Fiete 2015, Stern 2016). We conclude this subsection by
pointing out that since the discussed setups with double helical
channels do not invoke magnetic fields, the topological protec-
tion of both the helical channels and the zero modes remains
intact.

2 2
tn MeVEs

A
Ap = 5
O A2 21 A,

Ay

(128)

5.4. Topological superconductivity in other helical systems

Let us now shortly review additional proposals for realization
of topological matter involving helical channels. As already
discussed below (119), in the above double-channel setting,
one can exploit that the ‘band inversion’ in (118) takes place
even without nonlocal pairing. To this end, one can use a 2DTI
bilayer in proximity to two superconductors. Indeed, it was
demonstrated that Kramers pairs of Majorana corner states can
be stabilized when a phase of 7 between the two superconduct-
ors is introduced (Laubscher ef al 2020a).

A similar 7 junction can be formed in the following
way. Consider a 2DTI layer tunnel coupled to a supercon-
ductor through either a layer of randomly oriented magnetic
impurities or quantum dots occupied by randomly oriented
spins (Schrade et al 2015). The two scenario might be real-
ized, respectively, using magnetic impurities introduced in
section 4.2.2 and charge puddles naturally formed in 2DTI
introduced in section 4.3.1. Changing parameters of such a
system, one can invert its effective gap. Therefore, using two
sets of such layered structures, one can realize a 7 junction
with Kramers pairs of MBS. Alternatively, by placing a 2DTI
layer on top of an s-wave superconductor, one can induce
Majorana hinge modes and MBS by applying an external mag-
netic field in the plane of the heterostructure (Wu et al 2020).



Semicond. Sci. Technol. 36 (2021) 123003

Topical Review

Furthermore, parafermion bound states can be formed in a con-
striction made of a quantum spin Hall insulator in proximity
to two s-wave superconductors (Fleckenstein et al 2019).

In addition to MBS or parafermions, exotic bound states
carrying fractional charge and spin can be realized using
2DTI constrictions (Klinovaja and Loss 2015). Here, domain
walls separate topologically distinct regions with competing
gap-opening mechanisms via tunneling, magnetic field, and
charge density wave modulation. Alternatively, magnetic bar-
riers can be employed to stabilize fractional charges in hel-
ical edges (Fleckenstein et al 2016). Moreover, in proximity
to a ferromagnetic insulator and an s-wave superconductor,
helical liquids can realize unconventional superconductivity
with even-parity, spin-triplet and odd-frequency pairing amp-
litude (Crépin et al 2015).

Instead of s-wave superconductors, one can realize higher-
order topological superconductivity by bringing the hel-
ical channels in proximity to unconventional superconduct-
ing compounds. For even-parity pairing, examples include
cuprates with d,»_»-wave pairing and iron-based supercon-
ductors with s -wave pairing. Exploiting the high critical tem-
perature of the parent superconductor and quantum spin Hall
state in, for instance, WTe, monolayer, this setup provides
a high-temperature platform for Kramers pairs of MBS at
the corners of the two-dimensional structure (Yan et al 2018,
Wang et al 2018b). Upon confinement, this setting can form
flat bands of Majorana corner modes with a harmonic trap-
ping potential (Kheirkhah ez al 2020). Alternatively, Major-
ana corner modes can be induced using a two-dimensional
magnetic topological insulator proximitized by either d,2>_ .-
wave or s -wave superconductors (Liu ef al 2018). Yet dif-
ferently, in a heterostructure consisting of a superconduct-
ing FeTe;_,Se, monolayer and a bicollinear antiferromagnetic
FeTe monolayer (Zhang et al 2019), Majorana corner modes
appear through the competition of the pairing gap and the fer-
romagnetic gap in two perpendicular edges.

Superconductors with odd-parity pairing (Yan 2019) can be
used, too. Here, the early ideas about the first-order topological
superconductivity with odd-parity pairing (Sato 2009, 2010,
Fu and Berg 2010) have been generalized to higher-order topo-
logy (Ahn and Yang 2020). For instance, a second-order topo-
logical superconducting phase arises when the (p, + ip,)-wave
pairing is induced in a Dirac semimetal (Wang et al 2018c);
a two-dimensional (p, + iop,)-wave superconductor is trans-
formed into a second-order topological superconductor host-
ing Majorana corner modes upon applying an in-plane mag-
netic field (Zhu 2018). Finally, superconductors with pairing
symmetry of mixed parity, such as (p + id)-wave pairing, were
explored in Wang et al (2018c).

Instead of 2DTI or HOTI discussed above, one can make
use of layered materials with strong Rashba SOI to create
helical channels along the boundaries and subsequently use
them to realize MBS or parafermion corner states. Volpez
et al (2019) considered a Josephson junction bilayer setup
made of either a three-dimensional topological insulator thin
film or two tunnel-coupled layers with opposite Rashba SOI,
with each layer proximitized by an s-wave superconductor.
When the phase difference between the two pairing amplitudes
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is m, the bilayer has topological superconductivity with a
Kramers pair of gapless helical states propagating along the
edge. When the interlayer tunneling dominates over the pair-
ing, further applying a weak in-plane Zeeman field drives
the system into a second-order topological superconducting
states, hosting MBS at diagonally opposite corners. Finally,
by employing a two-dimensional heterostructure consisting
of graphene and transition metal dichalcoginde layers with
proximity-induced SOI, one can realize 2DTI phase with hel-
ical edge states (Laubscher e al 2020b). With proximity super-
conductivity and additionally applied in-plane magnetic field,
Majorana and parafermion corner states can be created in a
rectangular sample (Laubscher et al 2019, 2020b).

6. Conclusion and outlook

The past decade has witnessed a surge of investigations on
helical liquids in topological systems based on semiconductor
materials. In this review, we cover several aspects of them,
including their realization in various materials, the topological
protection for their presence, their properties and characteriz-
ation, charge transport in their nonsuperconducting phase and
their capability of realizing topological superconductivity. In
particular, we present systematic discussions on various mech-
anisms for resistance sources, including several sets of mutu-
ally contradicting references, and summarize the predicted
features that can be used to examine the mechanisms in exper-
iments. We also review proposals on various settings hosting
topological bound states in helical channels with proximity-
induced superconductivity.

There are other aspects beyond the scope of this review.
There have been numerous studies on the ac/dc Josephson
effects in the 2DTI edge channels, both experimental (Hart
et al 2014, Pribiag et al 2015, Wiedenmann et al 2016,
Bocquillon et al 2017, Deacon et al 2017) and theoret-
ical (Fu and Kane 2009, Crépin and Trauzettel 2014, Haidek-
ker Galambos et al 2020, Novik et al 2020, Zhang and
Trauzettel 2020); we refer to Bocquillon er al (2018) for
a book chapter on Josephson effects in 2DTI-based junc-
tions. Relevant for the time-reversal-invariant settings dis-
cussed in section 5, it was proposed that Majorana Kramers
pairs can be detected through the parity-controlled 27 Joseph-
son effect (Schrade and Fu 2018a), which might be further
extended to perform measurement-based topological quantum
computing (Schrade and Fu 2018b). Concerning the HOTI
themselves, the Josephson effect is also useful for identify-
ing the hinge channels, where usual charge transport probes
are limited by their insufficient spatial resolution. By fabricat-
ing Josephson junctions via higher-order topological mater-
ials, one can deduce the current path from the interfer-
ence patterns measured from critical current as a function of
magnetic flux, thus confirming the presence of hinge chan-
nels (Murani et al 2017, Schindler et al 2018b, Choi et al
2020).

On the subject of quantum computing, while we focus on
the realization of MBS, there are proposals on how to detect
or manipulate them in helical systems in order to achieve
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topological quantum computation (Liu et al 2014, Schrade and
Fu 2018a, 2018b, Pahomi et al 2020, Plekhanov et al 2021), a
topic covered by review articles (Sato and Ando 2017, Haim
and Oreg 2019). In addition to various MBS setups reviewed
above, there exist proposals using nanowires or nanoribbons
made of three-dimensional topological insulators (Cook and
Franz 2011, Cook et al 2012, Manousakis et al 2017, Legg
et al 2021) or atomic/optical systems with higher-order topo-
logy (Luo and Zhang 2019, Nag et al 2019, Plekhanov et al
2019, Zeng et al 2019, Bomantara 2020, Bomantara and Gong
2020). Finally, other than the zero-energy modes, topolo-
gical superconductors hosting propagating Majorana modes
with linear dispersion and their difference from MBS were
reviewed in Sato and Ando (2017). Quantum computation
exploiting these propagating Majorana modes, as an alternat-
ive to the MBS, was reviewed in Beenakker (2020).

There remain puzzles. As discussed above, the intensive
studies on charge transport phenomena of 2DTI not only
revealed the presence of edge states and their peculiar features,
but also led to more puzzles—some of which question even the
topological nature of the observed edge states. Meanwhile,
the emerging field of van der Waals heterostructures (Geim
and Grigorieva 2013) is promising new topological materi-
als (Qian et al 2014). Beyond the first-order topology, HOTI
are currently in the spotlight, with increasing numbers of
materials or systems having been discovered or under invest-
igation (Wang et al 2021a). Concerning MBS, given that
their existence in the most intensively investigated setups
based on Rashba nanowires remains questionable (Zhang
et al 2020, 2021), alternative strategies for their realiza-
tions, such as setups using helical channels reviewed here, is
called for.
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Appendix. Derivation of the RG flow equations

In this section we sketch the derivation of the RG flow
equations given in the main text. To be concrete, we take the
random-spin-induced backscattering Sy in (35) for illustration.
Following Giamarchi and Schulz (1988), Giamarchi (2003),
we start with the correlation function,

38

_ 71 — (She1+Sis) /R
:ZheHrs/DW (Sr+S0)/

« gl =o(r)]

<ei[¢<n>f¢<rz)1>
hel+rs

(A.1)

where we define the space-time coordinate rj = (rj,y;) =
(ry,ut;) for two points j € {1,2} in spacetime and the partition
function,

Zheltrs = / D¢ e~ (Shat5:) /1 (A2)

The hTLL part Sy of the action reads

/

derived from (17).

To proceed, we expand the correlation function in orders of
the dimensionless coupling Drs, which is the overall scale of
the backscattering term Sy5. To the zeroth order, we get

drdt
2mukK

Shel _
h

{”2 [0:6(r,7)] + [0r6(r, 7] } (A3)

<ei[¢(r1)—¢(r2)]> —,—KF(r1—r2)/2 (A.4)
hel ’
with the function,
B 1 (rl—r2)2+u2(71—72)2
F(r1r2)21n|: az
+ ECOS(Z Or—1,)s (A.5)

where O; is the angle between the vector r and the spatial
coordinate axis. The RG flow generates an anisotropic contri-
bution between the spatial and the temporal coordinates, which
we express as the \ term.

The first-order term in Dy, is given by

/ drdydy’
[y=y’|>a
" {<ei[¢>(r1)*¢(r2)] cos 26 (r,7) — 2¢(m’)]>
B <ei[¢(r1)*¢(l‘2)]>
h

DI'S
8mad

hel
(c0s[20(r,7) = 26(r,7 )y |
(A.6)

el

which can be written in terms of

e~ KettFeri(ri—12)/2
)

(A.7)

with Fer(r; — r3) in the form of (A.5) and the following effect-
ive parameters,

K2 Dr © g 2-2K
Ka=k-500 [CE(ETE
. a \a

- - KD o 4 2-2K
Aett = A+ = / ;Z (2) . (A.9)

Since the correlation function should not change with the
cutoff, we keep the effective parameters fixed while changing
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the cutoff a — ae” = a+ da. This procedure gives the RG
flow equations,

dbrs(l) o [3 o 2K(l)} Dl_s(l)7 (A.10)
di
dK(l) _ K*(I) -
7__TDrS(l)7 (A.1D)
d\(l)  K(I) -
7 = 4 Drs(l)a (A.12)

where the last line can be transformed into the renormalization
of u through

dull) _
di

(A.13)

The RG flow equations for u#, K and D, are given in (36a)—
(36¢) in the main text. From the equation for D,,, we see that
the coupling grows with an increasing cutoff when K < 3/2,
indicating that the perturbation in (35) is RG relevant for K <
3/2.

A similar procedure can be employed for the spiral-order-
assisted backscattering S5, in (45). The generalization to a
double-channel system can be utilized to derive the RG flow
equations (124a)—(124c). Due to the magnon-energy depend-
ent factor in (46), the calculation for the magnon-induced
backscattering S, is more involved. We, therefore, refer the
interested readers to Appendix E of Hsu et al (2018a).
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