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Classical communication with indefinite causal order for N completely depolarizing channels
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If two identical copies of a completely depolarizing channel are put into a superposition of their possible
causal orders, they can transmit nonzero classical information. Here we study how well we can transmit classical
information with N depolarizing channels put in superposition of M causal orders via a quantum SWITCH. We
calculate the Holevo quantity if the superposition uses only cyclic permutations of channels and find that it
increases with M and it is independent of N . For a qubit it never reaches 1 if we are increasing M. On the other
hand, the classical capacity decreases with the dimension d of the message system. Further, for N = 3 and 4
we studied the superposition of all causal orders and uniformly superposed causal orders belonging to different
cosets created by a cyclic permutation subgroup.
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I. INTRODUCTION

In classical information theory, it is assumed that the infor-
mation carriers are deterministic, and the transmission lines
are used in a definite configuration in space as well as in
fixed time [1,2]. However, physical systems obey principles
of quantum theory and they offer resources which are not
available in its classical counterpart. These unique resources
can be harnessed to achieve communication protocols which
are impossible in classical information theory [3–5]. These
findings led to a complete revolution in quantum information
theory [6,7]. Still, quantum information theory assumes that
the channels maintain a specific order in space and time.
However, quantum theory allows the configurations where
channels themselves are in superposition [8,9]. Moreover,
recently, it was realized that the superposition can exist also
in the order of channels in time, in a scenario known as
indefinite causal order or a quantum SWITCH [10–14]. In a
quantum SWITCH, the relative order of the two channels is
indefinite and gives rise to quantum advantages in reducing
communication complexity [15,16], improving channel dis-
crimination [17,18], and quantum computing [19]. Moreover,
several proposals for an experimental realization of a quantum
SWITCH have actually been built and tested [20,21], suggesting
that the notion is not just a theoretical possibility.

Recently, in Ref. [22] Ebler et al. showed that one may
achieve nonzero classical communication rates using two
completely depolarizing channels (CDCs) inserted into the
quantum SWITCH, which was also experimentally demon-
strated later in [23]. Likewise, it was reported that, using two
completely entanglement breaking channels in a SWITCH, one
may achieve perfect quantum communication [24–26]. After
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these findings, several applications of quantum SWITCH have
been discovered in quantum metrology, quantum thermome-
try, and quantum information [27–34].

The extension of such settings beyond the superposition of
two channels is an immediate and interesting generalization
to make to see whether it provides a bigger communication
advantage. However, such generalization comes with a serious
concern, whether it is not beyond the experimental scope.
In Ref. [35] Procopio et al. showed that there is an almost
twofold increase in communication rate if a causal superposi-
tion of three channels is used instead of a two-channel causal
superposition. On the other hand, the number of relevant
configurations jumps from 2 to 3! = 6. This makes experi-
mental implementation very cumbersome but, nevertheless,
possible. Furthermore, their numerical results suggests that
usage of three channels in three cyclic causal orders gives
gain similar to that in all 3! causal orders. This bolsters the
idea that considering N causal orders for N channels should
be efficient. An extension to N channels with N! causal orders
was proffered in Ref. [36]; however, Procopio et al. used a
numerical approach to find the communication rates which
might suffer from numerical errors. An analytical approach
is in demand to delve deeper into these matters and to answer
the following open questions: Can N channels in a quantum
SWITCH allow perfect transmission of classical information?
Can we achieve substantial gain in classical communication
rates with an optimal number of causal orders in a quantum
SWITCH? We answer these questions in detail in this paper.

Cyclic permutations of N elements form a subgroup of
all N element permutations. In this paper we find that all
cosets of a permutation group factorized with respect to
cyclic permutations behave equivalently when they determine
the casual order superposition of CDCs used in a quantum
SWITCH. Therefore, we consider single-coset or multiple-coset
causal superposition. We refer to causal orders of channels
from a single coset as cyclic causal orders and we term the
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superposition of causal orders of channels from more than
one coset as noncyclic. We analytically find the classical
communication capacity for N CDCs inserted into a quantum
SWITCH, which superposes M ∈ [2, N] cyclic causal orders.
Similarly, we derive some results for M ∈ [2, N!] noncyclic
causal orders, when N = 3 and 4. We find that for the cyclic
case the classical communication rate depends on M � N ,
the number of superposed cyclic permutations, but does not
depend on N , the number of CDCs in the quantum SWITCH.
If we keep on increasing M (and necessarily increasing
also N), we observed that the communication rate increases
rapidly with the increase in the number of causal orders,
but it never reaches noiseless transmission. For example, it
saturates at 0.311 bits for qubit systems. For the noncyclic
case, the increase of the classical communication rate is not
directly linked to M. On the other hand, we find that the
classical communication rate decreases almost exponentially
with the dimension of the message state, which seems a bit
counterintuitive at first.

The rest of the paper is organized as follows. In the next
section we briefly introduce the quantum SWITCH formalism.
In Sec. III we present results for N completely depolarizing
channels in a quantum SWITCH while superposing only cyclic
causal orders. Section IV contains a detailed analysis of N
CDCs with arbitrary noncyclic causal orders in a quantum
SWITCH with special emphasis on N = 3 and 4. We summarize
in Sec. V.

II. QUANTUM SWITCH AND QUANTUM CHANNELS IN
THE SUPERPOSITION OF DIFFERENT CAUSAL ORDERS

Quantum communication devices can be modeled as quan-
tum channels, i.e., a completely positive and trace preserving
linear map � : L(H) → L(H). Any such map admits Kraus
decomposition, i.e., �(ρ) = ∑

i KiρK†
i , where {Ki} is a set of

Kraus operators with
∑

i K†
i Ki = I and ρ ∈ L(H).

In this work we are considering a scenario where N chan-
nels are put into a coherent superposition of their differently
ordered concatenations. Originally, a quantum SWITCH was
used to construct a superposition of N = 2 causal orders [19].
In this case, the quantum SWITCH is a higher-order map which
takes two channels as input and then outputs the superposition
of their orders based on the state of the control qubit (see
Fig. 1). Mathematically, the quantum SWITCH transforms two
input channels �1 and �2, with Kraus decompositions {K (1)

i }
and {K (2)

i }, respectively, into the overall channel

S(�1,�2)(·) =
∑

i j

Wi j (·)W †
i j,

whose Kraus operators Wi j are defined as

Wi j = |0〉〈0| ⊗ K (1)
i K (2)

j + |1〉〈1| ⊗ K (2)
j K (1)

i .

Note that though Wi j depends on the specific Kraus decompo-
sition of channels �1 and �2, the effective quantum channel
S(�1,�2) depends only on the input channels, allowing the
SWITCH to be a valid higher-order map [19]. We can extend the
SWITCH formalism for more than two inputs, i.e., for N > 2
[36,37]. In this case, the extended SWITCH is a higher-order
map which takes N channels as input and then outputs the su-

FIG. 1. Illustration of a quantum SWITCH. Based on the state of
the control qubit |ψ〉c, a SWITCH takes two channels �1 and �2 as
input and outputs (i) either �1 ◦ �2 or �2 ◦ �1 if the control qubit is
in |0〉 or |1〉, respectively, and (ii) a superposition of causal orders if
|ψ〉c = 1√

2
(|0〉 + |1〉). Here ρ is the message quantum state and ρout

is the final output after postselecting the control qubit.

perposition of orders based on the state of the control system
that must have sufficiently high dimensionality. Then for N
channels {�p} with Kraus representations {K (p)

j }, the extended
SWITCH will output an effective channel of the form

S(�1,�2, . . . , �N )(·) =
∑
i j···η

Wi j···η(·)W †
i j···η, (1)

whose Kraus operators Wi j···η are defined as

Wi j···η =
M−1∑
�=0

|�〉〈�| ⊗ P�(K (1)
i , K (2)

j , . . . , K (N )
η ), (2)

where M ∈ [2, N!] and P� ∈ SN represents concatenation of
N operators reordered according to the permutation j, e.g.,
P0(K (1)

i , K (2)
j , . . . , K (N )

η ) = K (1)
i K (2)

j · · · K (N )
η . For brevity, we

will drop the upper index (p) in the rest of the paper.
To have a simple but sufficient picture suitable for further

consideration, let us consider two unitary channels U1 and
U2 and the control qubit in the state |ψ〉c = 1√

2
(|0〉 + |1〉).

For the pure state |�〉 of the message system (we often call
it a target state as well), the output of the SWITCH will be
a pure state S(U1,U2)(|ψ〉c 〈ψ | ⊗ |�〉 〈�|) = |ξ 〉 〈ξ |, where
|ξ 〉 = 1√

2
(|0〉 ⊗ U1U2 |�〉 + |1〉 ⊗ U2U1 |�〉). To see the in-

terference phenomenon, one needs to measure the control
qubit in the Fourier basis, i.e., {|±〉 = 1√

2
(|0〉 ± |1〉)}; then the

resulting target state will take the form |� f
±〉 = 1√

2
(U1U2 ±

U2U1) |�〉.
Extending this idea to N channels is possible [36], and the

number of possible causal orders increases to M ∈ [2, N!]. For
the brevity of the explanation, let us consider N unitary chan-
nels {Uj} and the control state 1√

M

∑M−1
j=0 | j〉. Then the final

target state after the measurement of the control system will
be |� f

k 〉 = 1√
M

(
∑M−1

j=0 〈ek | j〉P j (U1,U2, . . . ,UN ) |�〉, where

{|ek〉 | |ek〉 = 1√
M

∑M−1
j=0 e2iπ jk | j〉} is the Fourier basis of

{| j〉}.
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III. USING CYCLIC ORDERS OF N COMPLETELY
DEPOLARIZING CHANNELS IN QUANTUM SWITCH

A completely depolarizing channel in d dimensions can be
described by

�(X ) = 1

d2

d2∑
i=1

UiXU †
i = 1

d
Tr[X ]Id , (3)

where {Ui | i = 1, 2, . . . , d2} are d × d unitary operators sat-
isfying Tr[U †

i Uj] = dδi j , Id is the identity operator of order d ,
and X is an arbitrary linear operator in d-dimensional Hilbert
space. Direct transmission of information through single or
several concatenated CDCs necessarily results in a zero clas-
sical communication rate. In contrast, it was shown that, given
two identical CDCs labeled as �1 and �2 and a control qubit
state |ψ〉c = 1√

2
(|0〉 + |1〉), there is a possibility of nonzero

classical communication using a quantum SWITCH [22].
Here we generalize the scheme represented in [22] to N

CDCs {�i}. We consider first only M ∈ [2, N] possible cyclic
orders. Accordingly, the state of the control qubit is |ψ̃〉c =

1√
M

∑M−1
j=0 | j〉. Therefore, the Kraus operators of a channel

resulting from N CDCs in an extended quantum SWITCH can
be written as [see Eq. (2)]

Ki j···η = 1

dN

M−1∑
�=0

|�〉〈�| ⊗ P (c)
� (Ui,Uj, . . . ,Uη ), (4)

where P (c)
� (Ui,Uj, . . . ,Uη ) defines the cyclic permutations of

unitaries. For example, for N = 3 the cyclic permutations are
P (c)

0 (Ui,Uj,Uk ) = UiUjUk , P (c)
1 (Ui,Uj,Uk ) = UjUkUi, and

P (c)
2 (Ui,Uj,Uk ) = UkUiUj . If the sender prepared the target

system in the state ρ, then the receiver will receive the output
from the quantum SWITCH as

ρM : = S(�1,�2, . . . , �N )(ρc ⊗ ρ)

= 1

Md2N

∑
i, j,...,η

M−1∑
l=0

M−1∑
l ′=0

|l〉 〈l ′|

⊗P(c)
l (Ui,Uj, . . . ,Uη )ρ(P(c)

l ′ (Ui,Uj, . . . ,Uη ))†, (5)

where ρc = |ψ̃〉〈ψ̃ |c. For cyclic permutations of orders we
will see below that only two types of contributions are present
in the final output state: (i) diagonals (l = l ′), which are
proportional to I, and (ii) off-diagonals (l 
= l ′), which are
proportional to ρ. All the diagonal terms are equivalent to the
prototypal form

1

d2N

d2∑
i j···η=1

N−1︷ ︸︸ ︷
Uη · · ·Uj Ui(ρ)U †

i

N−1︷ ︸︸ ︷
U †

j · · ·U †
η

= 1

d2N−2
Tr(ρ)

d2∑
j···η=1

N−1︷ ︸︸ ︷
Uη · · ·Uj

I

d

N−1︷ ︸︸ ︷
U †

j · · ·U †
η

= 1

d2N−2
d2(N−1) I

d
= I

d
(6)

and all off-diagonal terms are equivalent to the form

1

d2N

d2∑
i j···η=1

k︷ ︸︸ ︷
Uη · · ·Uμ U� · · ·UjUi

⎛
⎜⎝ρ

k︷ ︸︸ ︷
U †

μ · · ·U †
η

⎞
⎟⎠U †

i U †
j · · ·U †

�

= 1

d2N−2

d2∑
j···η=1

Tr

⎛
⎜⎝ρ

k︷ ︸︸ ︷
U †

μ · · ·U †
η

⎞
⎟⎠ k︷ ︸︸ ︷

Uη · · ·Uμ U�

× · · ·Uj
I

d
U †

j · · ·U †
�

=d2(N−k−1)

d2N−2

d2∑
μ···η=1

Tr

⎡
⎢⎣
⎛
⎜⎝ρ

k−1︷ ︸︸ ︷
U †

μ · · ·

⎞
⎟⎠ 1√

d
U †

η

⎤
⎥⎦ 1√

d
Uη

⎛
⎝ k−1︷ ︸︸ ︷

· · ·Uμ

⎞
⎠

= 1

d2k
d2(k−1)ρ = ρ

d2
, (7)

where k ∈ {1, . . . , N − 1} and we used
∑d2

i=1
1
d Tr(XU †

i )Ui =
X and Eq. (3) multiple times. Note that the index k represents
all possible cyclic k shifts. Therefore, for N CDCs in a SWITCH

the final output state for M ∈ [2, N] causal orders is

ρM = 1

M

(
I ⊗ I

d
+

∑
i 
= j

|i〉〈 j| ⊗ ρ

d2

)
. (8)

We note that the output density matrix does not depend on
N and only its off-diagonal entries depend on ρ. Further, if
the control system is measured in the Fourier basis and the
outcome is known, the target system will regain a depen-
dence on ρ and one can extract information about it [22].
Therefore, there is a possibility of nonzero classical commu-
nication according to the Holevo-Schumacher-Westmoreland
theorem [38,39]. Let us note here that from Eq. (8) we see
that distinguishability of any signal states will be strongly
suppressed with increasing dimension d of the target system
as the off-diagonal terms decay quadratically with d , making
the signal just a small admixture (perturbation) to a white
noise. As we will see later, this results in a steep decrease of
classical communication capacity and for the relevant range
of dimensions it qualitatively behaves as an exponential func-
tion. Thus, we refer to this decrease as an almost-exponential
decrease. In what follows, we will quantitatively investigate
the above scheme.

A. Method

The classical capacity of the quantum communication
channel � is characterized by the Holevo quantity, which is
defined as

χ (�) = max
{piρi}

[
H (�(ρ)) −

∑
i

piH (�(ρi ))

]
. (9)

In Ref. [22] Ebler et al. determined how to evaluate the Holevo
quantity for two quantum channels when the information
is sent through a pair of quantum channels processed by a
quantum SWITCH. Since this method works with the channel
induced by the SWITCH on the control plus the target system
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after the insertion of the depolarizing channels, it automati-
cally works also for N channels in the generalized SWITCH.

Therefore, the Holevo quantity of N CDCs in the SWITCH

is given by (we refer readers to the Supplemental Material of
Ref. [22])

χ (M ) = log d + H (ρ̃c(M )) − Hmin(ρM ) ∀ M ∈ [2, N], (10)

where ρ̃c(M ) is the reduced state of the control qubit
after evolution [see Eq. (8)], i.e., ρ̃c(M ) = 1

M (
∑

i |i〉〈i| +
1

d2

∑
i 
= j |i〉〈 j|), and Hmin is the minimum output entropy

of the effective channel, i.e., Hmin(ρM ) = minρ H (ρM ), with
H (·) the von Neumann entropy. Note that we use logarithm
base 2 in the whole paper. However, the main difficulty will
be to calculate the eigenvalues of the Md × Md matrix, ρM ,
to evaluate Hmin(ρM ). First, we use the method given in
Refs. [40,41] to evaluate the determinant of the matrix ρM ,

Det(ρM ) =Det

(
1

M

[
I

d
− ρ

d2

])×(M−1)

× Det

(
1

M

[
I

d
+ (M − 1)

ρ

d2

])
, (11)

where Det(·)×(M−1) indicates that there are M − 1 products
of the same determinant. Full details of the calculations for
Eq. (11) and the following claim are given in Appendix A.
The beautiful simplified form of the determinant of an actual
Md × Md matrix in Eq. (11) tells us that finding the eigenval-
ues of an actual matrix is reduced to finding the eigenvalues of
these small matrices, i.e., 1

M [ Id − ρ

d2 ] with degeneracy M − 1
and 1

M [ Id + (M − 1) ρ

d2 ] with degeneracy 1. As [I, ρ] = 0, the
eigenvalues of the matrix ρM will be the union of the eigen-
values of these two smaller matrices with their appropriate
degeneracy. If we let {λ+

i }d
i=1 and {λ−

i }d
i=1 be the eigenvalues

of 1
M [ Id + (M − 1) ρ

d2 ] and 1
M [ Id − ρ

d2 ], respectively, then

λ+
i = 1

Md
+ M − 1

Md2
λ

ρ
i , λ−

i = 1

Md
− 1

Md2
λ

ρ
i ,

where {λρ
i }d

i=1 are eigenvalues of ρ. As Hmin(ρM ) =
minρ H (ρM ), certainly the minima will be ascertained if λ

ρ
i =

1 and λ
ρ
j = 0 with i 
= j. Therefore, with the constraint that∑

i λ
ρ
i = 1, we can find that

Hmin(ρM ) = −
{

d + (M − 1)

Md2
log

d + (M − 1)

Md2

+ (M − 1)(d − 1)

Md2
log

(d − 1)

Md2
+d − 1

d
log

1

Md

}
.

(12)

Now the remaining task is to find the expression for
H (ρ̃c(M )), which is given by

H (ρ̃c(M )) = −
(

M − 1 + d2

Md2
log

M − 1 + d

Md2

+ (M − 1)
d2 − 1

Md2
log

d2 − 1

Md2

)
. (13)

With these expressions, we can evaluate the classical commu-
nication rate χ (M ) for N CDCs with the SWITCH from Eq. (10)
for cyclic causal orders M ∈ [2, N]. Note that for M = 2 it

FIG. 2. Plot illustrating that the Holevo quantity for different
number of causal orders M is almost exponentially decreasing with
the dimension d of the target state ρ.

reduces to the result for the N = 2 scenario as discussed in
Ref. [22]. This observation tells us that the gain in classical
communication depends only on the number of superposed
causal orders M.

B. Results

Figure 2 illustrates the behavior of the Holevo quantity
χ (M ) with respect to the dimension d of the input state ρ

and the number of causal orders. We find that the clas-
sical communication capacity increases as we increase M;
however, it decreases almost exponentially as d increases.
Figure 3 shows the communication rates for different choices
of (M, d ). It is clear from the contour plot that the higher
values of communication rates are achieved with smaller d
values as well as higher M values. This means that using a
quantum SWITCH with M causal orders in d = 2 will offer
the maximum classical communication rate. However, we find
that the communication rate saturates with the increase of M,
indicating that it is not possible to reach perfect communi-
cation in the asymptotic limit, i.e., χ (∞) 
= 1 (see Fig. 4). To
prove this claim, we write down the expression for the Holevo

FIG. 3. Contour plot depicting the Holevo quantity for different
number of causal orders M and the dimension d of the target state ρ.
It can be seen that higher classical communication rates are achieved
for lower d and higher M.
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FIG. 4. Logarithmic plot depicting that the Holevo quantity is
increasing for different number of causal orders M for d = 2. The
communication rate is converging to the value of 0.311 bits per single
system transmission.

quantity for d = 2, i.e.,

χ (M )|d=2 = 1 + 1

4

[
log2

4

27
+

(
1 + 1

M

)
log2

(
1 + 1

M

)

+ 1

M
log2

27

M2
−

(
1 + 3

M

)
log2

(
1 + 3

M

)]
.

Therefore, at M → ∞, the Holevo quantity χ (∞)|d=2
∼= 1 +

1
4 log2

4
27 ≈ 0.311 bits per transmission.

IV. GENERALIZATION TO VARIOUS COMBINATIONS OF
CYCLIC AND NONCYCLIC CAUSAL ORDERS

There are N! possible permutations of N elements; thus
there exist N! causal orders of N channels. However, above
we considered only M � N cyclic causal orders of channels,
because the increase in communication rate is sufficiently
substantial to notice and it becomes problematic to implement
a superposition of N! causal orders in an experiment.

In this section we discuss whether the extension from N
cyclic causal orders to all N! orders for N CDCs provides
a significant improvement in the communication rates. In a
recent work [36] Procopio et al. showed that communication
rates do not increase evenly with the increase of the number
of causal orders. We think that this behavior can be attributed
to inevitable mixing of cyclic and noncyclic causal orders,
which hinders the potential benefit due to the appearance of
input-state-independent terms (see Appendix B). This is why
we considered the cyclic orders separately.

By considering any order of action of N channels as the
zeroth element and then performing cyclic permutations of
this element, we can form a coset of cyclic causal orders (coset
of a permutation group with respect to the subgroup of cyclic
permutations of N elements) which contains N elements. In
this way, we can identify N!

N = (N − 1)! such cosets in the
set of all N! permutations. We refer to these individual cosets
as cyclic causal orders, and each of them yields the same
classical communication rate, which we already evaluated in
the preceding section.

TABLE I. Off-diagonal blocks in the output density matrix for N
channels in the SWITCH when we are considering all possible causal
orders, i.e., M ∈ [2, N!]. Note that off-diagonal terms within a single
coset are always ρ

d2 (see Appendix B).

N Terms in off-diagonal block

2 ρ

d2

3 ρ

d2 , I
d3

4 ρ

d2 , I
d3 , ρ

d4

...
...

2k ρ

d2 , I
d3 , ρ

d4 , . . . , I
dN−1 , ρ

dN

2k + 1 ρ

d2 , I
d3 , ρ

d4 , . . . , ρ

dN−1 , I
dN

However, if we consider the superposition of orders of
elements from different cosets the situation becomes a bit de-
manding. Off-diagonal contributions to ρM that map between
control system states belonging to a single coset act on the
message system as ρ

d2 [see Eq. (7)]; however, this is no longer
the case if the control system states are not from the same
coset.

Let us note that as the number of channels increases the
number of types of off-diagonal contributions increases and
will include the terms presented in Table I. For a derivation
of the terms appearing in the table, we refer the reader to
Appendix B. In accordance with Table I, for N � 3 we found
that many cross-coset off-diagonal terms are proportional to I
and the terms which are proportional to ρ have a decreasing
weight factor as N increases. To illustrate the impact of the
above findings, we present a case study for N = 3 and for
N = 4.

A. Case study for N = 3

For three CDCs, there will be two cosets of cyclic causal
orders. The Kraus operator for three CDCs with a SWITCH

can be expressed as d3Ki jk = ∑M−1
�=0 |�〉〈�| ⊗ P�(Ui,Uj,Uk ),

where 2 � M � 6. For the message qubit prepared in ρ,
the evolved state at the output of the quantum SWITCH is
ρM1,M2 = S(�1,�2,�3)(ρc ⊗ ρ), where M1 and M2 denote
the number of causal orders from two cosets, respectively, and
M1 + M2 = M. In Appendix B 1 we find that

ρM1,M2 = 1

M

{
Ic ⊗ I

d
+ LM1,M2 ⊗ ρ

d2
+ BM1,M2 ⊗ I

d3

}
,

(14)

where 2 � M � 6. The matrices L and B are M × M matrices
of the form

L =
(

SM1×M1 0M1×M2

0M2×M1 SM2×M2

)
, B =

(
0M1×M1 1M1×M2

1M2×M1 0M2×M2

)
,

where the matrix S = ∑m−1
i 
= j=0 |i〉〈 j|, 0 is a null matrix, and 1

is a matrix with all entries equal to 1. For such a scenario, the
general expression for the classical communication for three
CDCs with M ∈ [2, 6] causal orders can efficiently be written
as before

χ (M1,M2 ) = log d + H (ρ̃c(M )) − Hmin(ρM1,M2 ), (15)
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TABLE II. Communication rates χ (M1,M2 ) for three CDCs in a
superposition of M = M1 + M2 causal orders from two cosets. Here
we consider the message state to be a qubit (d = 2). The Holevo
quantity is higher for the cases when either M1 or M2 is zero.

�������M1

M2

0 1 2 3

0 0 0.0488 0.0817
1 0 0 0.0334 0.0640
2 0.0488 0.0334 0.0524 0.0767
3 0.0817 0.0640 0.0767 0.0981

where ρ̃c(M ) is the reduced state of the control system after
evolution, i.e., ρ̃c(M ) = 1

M (I + 1
d2

∑
i 
= j |i〉〈 j|).

To evaluate H (ρ̃c(M )) and Hmin(ρM1,M2 ), we need to di-
agonalize the matrices ρ̃c(M ) and ρM1,M2 , respectively. We
know that the expression for H (ρ̃c(M )) is given in Eq. (13).
However, diagonalizing ρM1,M2 is much more complicated.
Analytical diagonalization is done in Appendix B 1 using
the method in Appendix C. It follows that for M1 = M2,
[L, B] = 0 and therefore the matrices L and B are simulta-
neously diagonalizable. Consequently, Hmin(ρM1,M1 ) is given
by

−Hmin(ρM1,M1 )

= λ+ log λ+ + λ− log λ−

+ (d − 1)

[
λ0

+ log λ0
+ + λ0

− log λ0
−

+ (M − 2)

{
1

Md2
log

(d − 1)

Md2
+ 1

Md
log

1

Md

}]
,

where λ± = d2+(M1−1)d±M1
Md3 and λ0

± = d2±M1
Md3 with M = 2M1.

We show in Appendix B 1 that the output states for M1 
=
M2 can also be diagonalized using the method presented in
Appendix C.

To further elucidate our findings here, we compute the
Holevo quantity for all (M1, M2) values in Table II for d = 2.
We find that the Holevo quantity is higher for the case when
either M1 = 0 or M2 = 0 compared to M1 
= M2. However,
we find that the Holevo quantity reaches its maximum for
M1 = M2 = 3.

We also plot the Holevo quantity for different (M1, M2)
values with respect to the dimension of the target state d in
Fig. 5 and find that the Holevo quantity decreases with d in an
exponential-like fashion. In Fig. 6 we plot the Holevo quantity
of (N = 3, M = 6) (all cosets) as well as (N = 3, M = 3)
(cyclic orders) against the dimension d . The figure shows that
both scenarios yield the same communication rates except for
d = 2, where the former dominates. This plot indicates that it
might be efficient to consider only cyclic permutations (one
coset).

B. Case study for N = 4

For four channels there are six [(4 − 1)! = 6] cosets of
cyclic causal orders. Let us denote by Mη the number of causal
orders in a coset where Mη ∈ [0, 3] for each η ∈ [1, 6]. Let
us consider that the target state is ρ. Now if we consider
M = (

∑
η Mη ) causal orders in a quantum SWITCH, the output

FIG. 5. Holevo quantity for N = 3 and different (M1, M2) values
depending on the dimension d of the target state.

state will have the following: (i) Within each cyclic coset
the diagonal terms are proportional to I

d and off-diagonal
terms are proportional to ρ

d2 and (ii) cross-coset off-diagonal
terms are proportional to I

d3 as well as ρ

d4 (for detailed cal-
culation see Appendix B). We will use a particular way of
listing causal orders for each coset. Namely, the first en-
try of each coset is linked with the order �1�2�3�4 by
some permutation of the last three labels. In this way, the
first element in each coset is starting with �1 and the rest
are constructed using cyclic permutations from the first el-
ement of the corresponding coset. For η = 1, 2, . . . , 6, the
zeroth elements are �1�2�3�4, �1�2�4�3, �1�3�2�4,
�1�3�4�2, �1�4�2�3, and �1�4�3�2, respectively. Us-
ing this setup, we find that the output state after evolution
driven by the SWITCH is given by

ρMη
= 1

M

{
Ic ⊗ I

d
+

(
LMη

d2
+ QMη

d4

)
⊗ ρ + BMη

⊗ I

d3

}
,

(16)

where the matrices L, B, and Q are specified in Appendix B.
Also, in this case, the general expression for the classical com-
munication for four CDCs with 2 � M � 24 causal orders can
efficiently be written as

χ (Mη ) = log d + H (ρ̃c(Mη )) − Hmin(ρMη
), (17)

where ρ̃c(Mη ) is the reduced state of the control qubit after
evolution, i.e., ρ̃c(Mη ) = 1

M (I + 1
d2 {LMη

+ BMη
} + 1

d4 QMη
).

FIG. 6. Holevo quantity as a function of target state dimension d
for (N = 3, M = 6) and (N = 3, M = 3).
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FIG. 7. Holevo quantity for N = 4 and different Mη values de-
pending on the dimension d of the target state. See the text for a
detailed description of the curves.

It is very hard to evaluate the Holevo quantity for arbi-
trary {Mη}, as diagonalizing ρMη

is usually hard analytically.
Therefore, we mostly resort to a numerical approach. How-
ever, there are specific cases where it is possible to analytically
diagonalize ρMη

, e.g., the scenario with (M3 = M5 = 4; M =
8) (we refer readers to Appendix B 2 for a complete analysis).

To graphically illustrate our findings for N = 4 we present
two plots. In Fig. 7 we plot dependence of the Holevo quan-
tity on d for different M values, i.e., M = {6, 8, 12, 16, 24}.
For M = 6, we consider two scenarios (M1 = 4, M2 = 2) and
Mη = 1 ∀ η (red and blue lines with circles, respectively, in
Fig. 7). In the former case, we consider a situation such that
only two cross-coset off-diagonal terms are dependent on ρ.
However, in the latter case, we consider the maximum number
of ρ-dependent cross-coset off-diagonal terms (see Appendix
B 2). Figure 7 shows that the Holevo quantity is decreasing
in an exponential-like fashion with d . Unlike Fig. 5, here
the Holevo quantities for all the plotted Mη are very close to
each other except for d = 2. This is due to the presence of
a big number of cross-coset off-diagonal terms ρ

d4 in these
scenarios. In Fig. 8 we plot the Holevo quantity for (N =
4, M = 24) and its cyclic counterpart (N = 4, M = 4) with
respect to the message system dimension d . Analogously to
Fig. 6, also here the plot shows that both scenarios provide
the same communication rates except for d = 2. Comparing
Figs. 6 and 8, we find that the gap between the Holevo quanti-

FIG. 8. Holevo quantity as a function of target state dimension d
for (N = 4, M = 24) and (N = 4, M = 4).

ties for (N, M = N!) (all cosets) and (N, M = N ) (one coset)
increases for d = 2 as we increase N from 3 to 4.

V. CONCLUSION

A completely depolarizing channel erases all information
about its input state and always prepares a completely mixed
state. Thus, sequential application of two such channels on the
same system in any fixed order must have a zero classical (or
quantum) communication capacity. It was a rather surprising
finding of Ebler et al. [22] that processing of two depolarizing
channels by a quantum SWITCH followed by suitable control
system measurement enables a nonzero classical communica-
tion rate.

In this paper we studied a generalization of this scenario to
N completely depolarizing channels inserted into a (general-
ized) quantum SWITCH. A quickly growing number of possible
causal orders (N!) might become a roadblock for experimental
realization of the SWITCH; thus one might wonder if less de-
manding superpositions of causal orders could provide similar
advantages. As previous numerical results for N = 3 show
[35], M = N superposed causal orders can provide almost the
fully achievable communication rate. We provided analytical
results for the transmission of classical information via super-
positions of M cyclically permuted completely depolarizing
channels. We found that the Holevo quantity is increasing with
M and is independent of N . Surprisingly, the classical capac-
ity decreases with the dimension d of the message system.
We found that the classical communication rate for a qubit
never reaches 1 if we are increasing M (and inevitably also
N); it saturates at around 0.311 bits per transmission. Out of
N! possible causal orders for N channels there are N cyclic
permutations forming a subgroup. Factoring the permutation
group with respect to it, we obtained (N − 1)! cosets, each
of which is shown to be equally usable for the investigated
task. However, for general N we did not consider all possible
causal orders together as the cross-coset off-diagonal terms
are mostly independent of the message state. Instead, for N =
3, 4 we studied separately cyclic, all causal orders and vari-
ous superpositions of causal orders consisting of a different
number of terms from different cosets. For the causal orders
from an arbitrary number of cosets, i.e., the noncyclic case, we
found that with growing N the cross-coset off-diagonal terms
have smaller scaling factors and are either proportional to
identity or to the message state ρ. Therefore, we found that the
Holevo quantity does not always increase as we increase the
number of superposed causal orders. Our findings support the
belief that considering superpositions of cyclic causal orders
might yield almost optimal classical communication rates for
N CDCs in the SWITCH.

Note added. Recently, we noticed a similar work by Chiri-
bella et al. [42] which independently derives one of our
results. They also claim that the classical capacity of N chan-
nels with a superposition of cyclic orders is exactly equal to
the Holevo quantity, which will also strengthen our results in
Sec. III.
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APPENDIX A: CALCULATIONS FOR N CHANNELS WITH CYCLIC ORDERS IN A QUANTUM SWITCH

Initially, we calculated the determinant of the matrix from Eq. (8) for small values of M using Eq. (C1). This allowed us to
anticipate its form for general M. However, the following lemma will be proved in a simpler way using the properties of the
block circulant matrix [43].

Lemma 1. For a Hermitian matrix ρ, the determinant of the Md × Md matrix ρM defined in Eq. (8) is

Det(ρM ) = Det

(
1

M

[
I

d
+ (M − 1)

ρ

d2

])
× Det

(
1

M

[
I

d
− ρ

d2

])×(M−1)

, (A1)

where Det(·)×(M−1) indicates that there are M − 1 products of the same determinant.
Proof. We will begin here by mentioning some properties of the block circulant matrix [43]. A block circulant matrix C of

the form

C =

⎛
⎜⎜⎜⎜⎝

A0 A1 · · · AM−2 AM−1

AM−1 A0 · · · AM−3 AM−2
...

...
. . .

...
...

A2 A3 · · · A0 A1

A1 A2 · · · AM−1 A0

⎞
⎟⎟⎟⎟⎠

can be written in the form

C =
M−1∑
i=0

Pi ⊗ Ai,

where Pi are permutation matrices. Now we can block diagonalize C using the properties of Pi matrices as mentioned in Ref. [43].
We can decompose the matrix ρM in Eq. (8) into the form

ρM = P0 ⊗ I

Md
+

(
M−1∑
i=1

Pi

)
⊗ ρ

Md2

= P0 ⊗ I

Md
+ S ⊗ ρ

Md2
, (A2)

where S = ∑M−1
i=1 Pi is a symmetric matrix with the entries, Si j = 1 − δi j ,

S =

⎛
⎜⎜⎜⎜⎝

0 1 1 · · · 1
1 0 1 · · · 1
...

...
. . .

...
...

1 1 · · · 0 1
1 1 · · · 1 0

⎞
⎟⎟⎟⎟⎠

M×M

. (A3)

Therefore, the block diagonalization of ρM will depend on the properties of the matrix S alone as P0 = I. Then we can define a
matrix function G : X → M2 such that

G(x) = x0 ⊗ I

Md
+ x1 ⊗ ρ

Md2
, (A4)

where each element of an object in X is mapped to a d × d matrix. If x is a (complex) number then the symbol ⊗ will just be a
product and the zeroth power of x is 1. Hence, we can show that ρM = G(S), since S0 = I.

Next we diagonalize the matrix S. Its characteristic equation is Det(S − λI) = 0 ⇒ {λ − (M − 1)}(λ + 1)M−1 = 0, i.e.,
eigenvalues of S are M − 1 with degeneracy 1 and −1 with degeneracy M − 1. So we can find a unitary T which diagonalizes S
such that T †ST = diag(M − 1,−1,−1, . . . ,−1). Consequently, the matrix of the form T̃ = T ⊗ I block diagonalizes ρM as

T̃ †ρMT̃ = P0 ⊗ I

Md
+ T †ST ⊗ ρ

Md2
,

i.e., we can write T̃ †ρMT̃ = diag[G(M − 1), G(−1), . . . G(−1)]. Hence, we can conclude the validity of Eq. (A1). �
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Equipped with Lemma 1 and its proof, it is an easy task to show that the characteristic equation for ρM is of the form

Det(ρM − λI) = 0 ⇒ Det

(
1

M

[
I

d
+ (M − 1)

ρ

d2

]
− λI

)
× Det

(
1

M

[
I

d
− ρ

d2

]
− λI

)×(M−1)

= 0. (A5)

Therefore, the eigenvalues of ρM can be obtained as the union of eigenvalues of matrices 1
M [ Id + (M − 1) ρ

d2 ] with degeneracy 1
and 1

M [ Id − ρ

d2 ] with degeneracy M − 1.

APPENDIX B: ALL POSSIBLE CAUSAL ORDERS

Here we sketch a proof for the entries in Table I. Below, in Eq. (B1), we show that for more than two channels, if we go beyond
cyclic causal orders, the off-diagonal terms are also proportional to I

d3 along with the terms proportional to ρ

d2 . Also, in Eq. (B2)
we show that some of the off-diagonal terms for more than three channels are proportional to ρ

d4 . Using these observations, we
sketch how off-diagonal terms appear for arbitrary N . Let us begin with the following term:

1

d2N

∑
i j···η

N−3︷ ︸︸ ︷
Uη · · ·U� UkUjUi(ρU †

j U †
k )U †

i

N−3︷ ︸︸ ︷
U †

� · · ·U †
η = 1

d2N
· d2 · d2 · d2(N−3)Tr[ρ]

I

d
= I

d3
. (B1)

Next consider the off-diagonal term

1

d2N

∑
i j···η

Uj

N−4︷ ︸︸ ︷
Uη · · ·Um UkU�Ui(ρU †

j U †
k U †

� )U †
i

N−4︷ ︸︸ ︷
U †

m · · ·U †
η = 1

d2N
· d2 · d2 · d2(N−4)ρ = ρ

d4
. (B2)

It is evident from the above calculation that the term ρ

d4 will not occur if N < 4. Now notice the similarity between Eqs. (B1)
and (B2). They are quite similar except for the positioning of Uj . Using this connection, we consider the term

1

d2N

∑
i j···η

N−5︷ ︸︸ ︷
Uη · · ·Un UjUmUkU�Ui(ρU †

j U †
mU †

k U †
� )U †

i

N−5︷ ︸︸ ︷
U †

n · · ·U †
η = 1

d2N
· d2 · d2 · d2 · d2(N−5)Tr[ρ]

I

d
= I

d5
.

The above term will not occur when N < 5. Therefore, we can infer the terms proportional to I
d2k and ρ

d2k , where k ∈ Z+:

1

d2N

∑
i j···η

N−(2k+1)︷ ︸︸ ︷
Uη · · ·Uμ Uj

2(k−1)︷ ︸︸ ︷
Up · · ·Uk U�Ui

⎛
⎜⎝ρU †

j

2(k−1)︷ ︸︸ ︷
U †

p · · ·U †
k U †

�

⎞
⎟⎠U †

i

N−(2k+1)︷ ︸︸ ︷
U †

μ · · ·U †
η = 1

d2N
· d4 · d2(k−1)d2[N−(2k+1)]Tr[ρ]

I

d
= I

d2k+1
.

Again, we can note that the above term will not occur if N < (2k + 1). Analogously, we have the term

1

d2N

∑
i j···η

Uj

N−2k︷ ︸︸ ︷
Uη · · ·Uμ

2(k−1)︷ ︸︸ ︷
Up · · ·Uk U�Ui

⎛
⎜⎝ρU †

j

2(k−1)︷ ︸︸ ︷
U †

p · · ·U †
k U †

�

⎞
⎟⎠U †

i

N−2k︷ ︸︸ ︷
U †

μ · · ·U †
η = 1

d2N
· d2 · d2(k−1) · d2(N−2k)ρ = ρ

d2k
.

Thus, we showed the existence of the terms presented in Table I.

1. Three channels in a SWITCH

For three CDCs, there are two cosets ( 6
3 = 2) of cyclic orders. Let us consider the following permutation of channels �2�1�3.

Now applying cyclic permutations to it, we get a coset {�2�1�3,�1�3�2,�3�2�1}. One can also see that the rest of the
channel orders form the other coset. The remaining task is to see how a message state behaves when it is sent through the
superposition of M1 + M2 = M causal orders. It is easy to see that off-diagonal elements [in the sense of Eq. (5)] within a single
coset will contribute in the same way as in Eq. (8). Next we need to investigate the off-diagonal terms between two cosets. By
a calculation analogous to Eq. (7), which we summarize below, we found that these are proportional to identity, implying that
they will not contribute to the classical communication. In particular, there are two types of terms that can be evaluated as

1

d6

∑
i jk

UiUjUkρU †
j U †

k U †
i = 1

d4

∑
ik

Ui

(
1

d2

∑
j

Uj (Ukρ)U †
j

)
U †

k U †
i = 1

d4

∑
ik

Ui

(
Tr[ρUk]

I

d

)
U †

k U †
i = 1

d4

∑
i

UiρU †
i = I

d3
,

1

d6

∑
i jk

UiUjUkρU †
i U †

j U †
k = 1

d4

∑
ik

Ui

(
1

d2

∑
j

Uj (UkρU †
i )U †

j

)
U †

k = 1

d4

∑
ik

Ui

(
Tr[U †

i (Ukρ)]
I

d

)
U †

k = 1

d4

∑
k

UkρU †
k = I

d3
,

where we used 1
d

∑
k (Tr[ρUk])U †

k = ρ and 1
d

∑
i(Tr[U †

i (Ukρ)])Ui = Ukρ.
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Hence, the final output state is

ρM1,M2 = 1

M

{
Ic ⊗ I

d
+

(
M1−1∑

� 
=�′=0

|�〉〈�′|c +
M−1∑

μ 
=μ′=M1

|μ〉〈μ′|c
)

⊗ ρ

d2
+

∑
�,μ

(|�〉〈μ|c + |μ〉〈�|c) ⊗ I

d3

}
. (B3)

To find the eigenvalues of the matrix in Eq. (B3) for general M1 and M2, we rewrite it in the block form, i.e.,

ρM1,M2 = 1

M

{
Ic ⊗ I

d
+ LM1,M2 ⊗ ρ

d2
+ BM1,M2 ⊗ I

d3

}
, (B4)

where the M × M matrices L and B have the form

L =
(

SM1×M1 0M1×M2

0M2×M1 SM2×M2

)
M×M

, B =
(

0M1×M1 1M1×M2

1M2×M1 0M2×M2

)
M×M

,

where the matrix S is defined in Eq. (A3), 0 is a null matrix, and 1 is a matrix with all entries 1. For M1 = M2, [L, B] = 0,
so these two matrices are simultaneously diagonalizable using an M ⊗ M unitary matrix U , i.e., U †LU = diag(M1 − 1, M1 −
1,−1, . . . ,−1) and U †BU = diag(−M1, M1, 0, . . . , 0). Consequently, the unitary matrix Ũ = U ⊗ I will block diagonalize the
matrix ρM1,M1 , i.e.,

Ũ †ρM1,M1Ũ = 1

M

{
Ic ⊗ I

d
+ U †LU ⊗ ρ

d2
+ U †BU ⊗ I

d3

}
. (B5)

This enables us to find the characteristic equations for the above Block diagonal matrix as

Det(ρM1,M1 − λI) = 0 ⇒Det

(
1

M

[
I

d
+ (M1 − 1)

ρ

d2
+ M1

I

d3

]
− λI

)

× Det

(
1

M

[
I

d
+ (M1 − 1)

ρ

d2
− M1

I

d3

]
− λI

)
× Det

(
1

M

[
I

d
− ρ

d2

]
− λI

)×(M−2)

= 0. (B6)

Therefore, the eigenvalues of ρM1,M1 are the union of eigenvalues of 1
M [ Id + (M1 − 1) ρ

d2 ± M1
I
d3 ] with degeneracy 1 and 1

M [ Id −
ρ

d2 ] with degeneracy M − 2.
However, for M1 
= M2, we will resort to the technique described in Appendix C. In this scenario, we have three distinct cases,

i.e., (M1 = 2, M2 = 1), (M1 = 3, M2 = 1), and (M1 = 3, M2 = 2). To diagonalize the output matrix ρM1,M2 for these cases, we
consider the characteristic equation Det(ρM1,M2 − λI) = 0 and solve it to find eigenvalues.

Case (2,1). The characteristic equation for this case can be written using Appendix C,

Det

(
1

3

[
I

d
− ρ

d2

]
− λI

)
× Det

(
1

9

[
a2I

d2
+ aρ

d3
− 2I

d6

])
= 0, (B7)

where a = 1 − 3dλ.
Proof. Using Eq. (C1), the characteristic determinant reduces to Det(ρ2,1 − λI) = Det[X(2)

11 ]Det[X(1)
22 ]Det[X(0)

33 ]. Again using
Eq. (C2), we find X(2)

11 = X(1)
11 − X(1)

12 (X(1)
22 )−1X(1)

21 , and as in this case [X(1)
22 , X(1)

21 ] = 0, then Det[X(2)
11 ]Det[X(1)

22 ] = Det[X(1)
11 X(1)

22 −
X(1)

12 X(1)
21 ]. Now we notice that X(1)

11 = X(1)
22 and X(1)

12 = X(1)
21 , which means that

Det
[
X(2)

11

]
Det

[
X(1)

22

] = Det
[
X(1)

11 − X(1)
12

]
Det

[
X(1)

11 + X(1)
12

]
,

where we have used the fact that [X(1)
11 , X(1)

12 ] = 0. At this stage we will consider the product of determinants Det[X(1)
11 +

X(1)
12 ]Det[X(0)

33 ]. Applying Eq. (C1), we can simplify it as

Det
[
X(1)

11 + X(1)
12

]
Det

[
X(0)

33

] = Det
[{

X(0)
11

}2 + X(0)
12 X(0)

11 − 2
{
X(0)

13

}2]
,

where we have used the fact that X(0)
11 = X(0)

33 = aI
3d and X(0)

13 = X(0)
31 = X(0)

32 = I
3d3 . Noticing that X(0)

12 = ρ

3d2 and Det(X(1)
11 −

X(1)
12 ) = Det( aI

3d − ρ

3d2 ), we complete the proof. �
Therefore, the eigenvalues of the matrix ρ2,1 are the union of eigenvalues of matrices 1

3 [ Id − ρ

d2 ] and 1
3 [ Id + ρ

2d2 ± 1
2

√
8I
d6 + ρ2

d4 ].
Note that the above method and results directly apply also for the case ρ1,2 due to symmetry with respect to the exchange of M1

and M2.
Case (3,1). Using the method described in Appendix C, we find that the characteristic equation for this case takes the form

Det

(
1

4

[
I

d
− ρ

d2

]
− λI

)×2

× Det

(
1

16

[
b2I

d2
+ 2bρ

d3
− 3I

d6

])
= 0, (B8)

where b = 1 − 4dλ.
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Proof. Using Eq. (C1), the characteristic determinant reduces to Det(ρ3,1 − λI) = Det[X(3)
11 ]Det[X(2)

22 ]Det[X(1)
33 ]Det[X(0)

44 ].
Again using Eq. (C2), we find X(3)

11 = X(2)
11 − X(2)

12 (X(2)
22 )−1X(2)

21 , and as in this case [X(2)
22 , X(2)

21 ] = 0, then Det[X(3)
11 ]Det[X(2)

22 ] =
Det[X(2)

11 X(2)
22 − X(2)

12 X(2)
21 ]. Now we notice that X(2)

11 = X(2)
22 and X(2)

12 = X(2)
21 , which means that

Det
[
X(3)

11

]
Det

[
X(2)

22

] = Det
[
X(2)

11 − X(2)
12

]
Det

[
X(2)

11 + X(2)
12

]
,

where we have used the fact that [X(2)
11 , X(2)

12 ] = 0. At this stage we will consider the product of determinants Det[X(2)
11 +

X(2)
12 ]Det[X(1)

33 ]. Applying Eq. (C1), we can simplify it as

Det
[
X(2)

11 + X(2)
12

]
Det

[
X(1)

33

] = Det
[{

X(1)
11

}2 + X(1)
12 X(1)

11 − 2
{
X(1)

12

}2
]

= Det
[
X(1)

11 − X(1)
12

]
Det

[
X(1)

11 + 2X(1)
12

]
,

where we have used the fact that X(1)
11 = X(1)

33 and X(1)
12 = X(1)

13 = X(1)
31 = X(1)

32 . Now the product Det[X(1)
11 + 2X(1)

12 ]Det[X(0)
44 ]

simplifies to

Det
[
X(1)

11 + 2X(1)
12

]
Det

[
X(0)

44

] = Det
[{

X(0)
11

}2 + 2X(0)
12 X(0)

11 − 3
{
X(0)

14

}2]
,

where we have used the fact that X(0)
11 = X(0)

44 = bI
4d and X(0)

14 = X(0)
41 = X(0)

42 = I
4d3 . Noticing that X(0)

12 = ρ

4d2 and Det[X(2)
11 −

X(2)
12 ] = Det[X(1)

11 − X(1)
12 ] = Det( bI

4d − ρ

4d2 ), we complete the proof. �
Therefore, the eigenvalues of the matrix ρ3,1 are the union of eigenvalues of matrices 1

4 [ Id − ρ

d2 ] with degeneracy 2 and
1
4 [ 3I

d + 4ρ

d2 ± 1
2

√
3I
d6 + ρ2

d4 − 7I
16d2 − ρ

2d3 ]. Note that, due to symmetry, the above applies also to the case of ρ1,3.
Case (3,2). Using the method described in Appendix C, we find that the characteristic equation for this case takes the form

Det

(
1

5

[
I

d
− ρ

d2

]
− λI

)×3

× Det

(
1

25

[
c2I

d2
+ 3cρ

d3
+ 2ρ2

d4
− 6I

d6

])
= 0, (B9)

where c = 1 − 5dλ.
Proof. Using Eq. (C1), the characteristic determinant reduces to Det(ρ3,2 − λI) = ∏5

k=1 Det[X(5−k)
kk ].

Again using Eq. (C2), we find X(4)
11 = X(3)

11 − X(3)
12 (X(3)

22 )−1X(3)
21 , and as in this case [X(3)

22 , X(3)
21 ] = 0, then Det[X(4)

11 ]Det[X(3)
22 ] =

Det[X(3)
11 X(3)

22 − X(3)
12 X(3)

21 ]. Now we notice that X(3)
11 = X(3)

22 and X(3)
12 = X(3)

21 , which means that

Det
[
X(4)

11

]
Det

[
X(3)

22

] = Det
[
X(3)

11 − X(3)
12

]
Det

[
X(3)

11 + X(3)
12

]
,

where we have used the fact that [X(3)
11 , X(3)

12 ] = 0. At this stage we will consider the product of determinants Det[X(3)
11 +

X(3)
12 ]Det[X(2)

33 ]. Applying Eq. (C1), we can simplify it as

Det
[
X(3)

11 + X(3)
12

]
Det

[
X(2)

33

] = Det
[{

X(2)
11

}2 + X(2)
12 X(2)

11 − 2
{
X(2)

13

}2
]

= Det
[
X(2)

11 − X(1)
12

]
Det

[
X(1)

11 + 2X(1)
12

]
,

where we have used the fact that X(2)
11 = X(2)

33 and X(2)
12 = X(2)

13 = X(2)
31 = X(2)

32 . Next the product Det[X(2)
11 +

2X(2)
12 ]Det[X(1)

44 ]Det[X(0)
55 ] simplifies to

Det
[
X(2)

11 + 2X(2)
12

]
Det

[
X(1)

44

]
Det

[
X(0)

55

] = Det
[{

X(1)
11 + 2X(1)

12

}
X(1)

44 − 3
{
X(1)

14

}2]
Det

[
X(0)

55

]
= Det

[{
X(1)

11 + 2X(1)
12

}{
X(0)

44 X(0)
55 − X(0)

45 X(0)
54

} − 3X(1)
14

{
X(0)

14 X(0)
55 − X(0)

15 X(0)
54

}]
,

where in the first line we have used the fact that X(1)
14 = X(1)

41 = X(1)
42 . We know that X(0)

44 = cI
5d , X(0)

45 = X(0)
54 = ρ

5d2 , and X(0)
14 =

X(0)
15 = I

5d3 . After few tedious algebraic steps, we find that X(1)
11 = cI

5d − I
5cd3 , X(1)

12 = ρ

5d2 − I
5cd3 , and X(1)

14 = I
5d3 − ρ

5cd4 . Putting
all these in the above equation, we find the simplification

Det
[
X(2)

11 + 2X(2)
12

]
Det

[
X(1)

44

]
Det

[
X(0)

55

] = Det

(
1

5

[
I

d
− ρ

d2

]
− λI

)
Det

(
1

25

[
c2I

d2
+ 3cρ

d3
+ 2ρ2

d4
− 6I

d6

])
.

Noticing that Det(X(2)
11 − X(2)

12 ) = Det(X(3)
11 − X(3)

12 ) = Det( cI
5d − ρ

5d2 ), we complete our proof. �
Therefore, the eigenvalues of the matrix ρ3,2 are the union of eigenvalues of matrices 1

5 [ Id − ρ

d2 ] with degeneracy 3 and
1
5 [ Id + 3ρ

2d2 ± 1
2

√
24I
d6 + (9−6d−8ρ)ρ

d4 ]. Due to symmetry, the above results apply also for the case of ρ2,3.
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The reduced density matrix for the control system after the evolution can be calculated using the prescription given in Ref. [22]
and is given by

ρ̃c(M ) = 1

M

{
Ic + 1

d2

M−1∑
i 
= j

|i〉〈 j|
}

, (B10)

whose eigenvalues are 1
M (1 − 1

d2 ) with degeneracy M − 1 and 1
M (1 + M−1

d2 ) with degeneracy one. Note that we can retrieve the
special cases of the cyclic orders by replacing either M1 = 0 or M2 = 0.

2. The N = 4 case

To show that ρ

d4 terms occur in an off-diagonal block, we will pick two instances

1

d8

∑
i jk�

UjUkU�Ui(ρU †
j U †

� )U †
i U †

k = 1

d8
· d2

∑
jk�

UjUkU�

(
Tr[ρU †

j U †
� ]

I

d

)
U †

k

= 1

d6

∑
jk

UjUk (ρU †
j )U †

k = 1

d6
· d2

∑
j

UjTr[ρU †
j ]
I

d
= ρ

d4
,

where we have used the fact that 1
d

∑
k (Tr[ρU †

k ])Uk = ρ, and another off-diagonal term

1

d8

∑
i jk�

UjU�UkUi(ρU †
j U †

k U�)U †
i = 1

d8
· d2

∑
jk�

UjU�Uk

(
Tr[ρU †

j U †
� U †

k ]
I

d

)

= 1

d6

∑
j�

UjU�(ρU †
j )U †

� = 1

d6
· d2

∑
j

UjTr[ρU †
j ]
I

d
= ρ

d4
,

where we have used the fact that 1
d

∑
k (Tr[ρU †

j U †
� U †

k ])Uk = ρU †
j U †

� .
Using the ordering within cosets described in the main text, we find that the output state after evolution is given by

ρMη
= 1

M

{
Ic ⊗ I

d
+ LMη

⊗ ρ

d2
+ BMη

⊗ I

d3
+ QMη

⊗ ρ

d4

}
, (B11)

where the matrices L, B, and Q are given by

L =

⎛
⎜⎜⎜⎜⎝

SM1×M1 0M1×M2 0M1×M3 · · · 0M1×M6

0M2×M1 SM2×M2 0M2×M3 · · · 0M2×M6
...

...
. . .

...
...

0M5×M1 0M5×M2 · · · SM5×M5 0M5×M6

0M6×M1 0M6×M2 · · · 0M6×M5 SM6×M6

⎞
⎟⎟⎟⎟⎠,

and for the sake of simplicity we write the form of B and Q when M = 4!, i.e.,

B =

⎛
⎜⎜⎜⎜⎜⎝

0 B1 B2 B3 B4 B7

B1 0 B3 B6 B2 B4

B2 B3 0 B4 B5 B1

B3 B6 B4 0 B1 B2

B4 B2 B5 B1 0 B3

B7 B4 B1 B2 B3 0

⎞
⎟⎟⎟⎟⎟⎠, Q =

⎛
⎜⎜⎜⎜⎜⎝

0 Q1 Q2 Q3 Q4 Q7

Q1 0 Q3 Q6 Q2 Q4

Q2 Q3 0 Q4 Q5 Q1

Q3 Q6 Q4 0 Q1 Q2

Q4 Q2 Q5 Q1 0 Q3

Q7 Q4 Q1 Q2 Q3 0

⎞
⎟⎟⎟⎟⎟⎠,

where Bi and Qi are defined as

B1 =

⎛
⎜⎝

1 0 1 1
0 1 0 0
1 0 1 1
1 0 1 1

⎞
⎟⎠, B5 =

⎛
⎜⎝

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

⎞
⎟⎠, Q1 =

⎛
⎜⎝

0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

⎞
⎟⎠, Q5 =

⎛
⎜⎝

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎞
⎟⎠.

In addition, Bp = πp[B1] for p = 2, 3, 4 and Bp = πp[B5] for p = 6, 7; similarly, Qp = πp[Q1] for p = 2, 3, 4 and Qp = πp[Q5]
for p = 6, 7, where πp are permutation operators which permute among the columns as well as rows of the target matrix. For
our scenario, π2 = π row

1↔2 · π col
1↔2, π3 = π7 = π row

2↔4 · π col
2↔4, and π4 = π6 = π row

2↔3 · π col
2↔3, where i ↔ j denotes exchange between

the specific labels. Therefore, we find that in each row (and column) in ρMη
, there are 12 entries proportional to I

d3 and 8 entries
proportional to ρ

d4 . Note, however, that our analysis of the Holevo quantity is invariant under arbitrary arrangement of elements
in a particular coset. The reduced density matrix for the control qubit after the evolution can be calculated using the prescription
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given in Ref. [22] and is given by

ρ̃c(Mη ) = 1

M

{
Ic + 1

d2
(LMη

+ BMη
) + 1

d4
QMη

}
. (B12)

It would be too tedious to diagonalize analytically the output matrix in Eq. (B11) for M = 4! for arbitrary d . Instead, we will
use numerical methods to diagonalize the output state in order to calculate the Holevo quantity of the effective channel. However,
there are specific cases where we can easily take the analytical routes. Specifically, we consider some nontrivial situations such
as the following.

Case M = 8. We consider a scenario where most of the off-diagonal elements are proportional to ρ. Such a situation occurs
when M3 = M5 = 4 and other Mη = 0. Therefore, the output density matrix is given by

ρ4,4,�0 = 1

8

(
Ic ⊗ I

d
+ L4,4 ⊗ ρ

d2
+ B4,4 ⊗ I

d3
+ Q4,4 ⊗ ρ

d4

)
, (B13)

where the coefficient matrices L, B, and Q are

L4,4 =
(

S4×4 04×4

04×4 S4×4

)
, B4,4 =

(
04×4 B5

B5 04×4

)
, Q4,4 =

(
04×4 Q5

Q5 04×4

)
.

As [L4,4, B4,4] = [L4,4, Q4,4] = [B4,4, Q4,4] = 0, the matrices L, B, and Q are simultaneously diagonalizable, i.e., there exists a
unitary matrix U4,4 such that U †LU = diag(3, 3,−1, . . . ,−1) and U †BU = U †QU = diag(−2, 2, 0, . . . , 0).

Case M = 6. We can choose many scenarios here with different Mη. The most trivial case can occur when Mη = 1 ∀ η.
However, there exist two interesting scenarios (M1 = 3, M4 = 3) and (M3 = 4, M5 = 2).

Example 1. We consider those causal orders for (M1 = 3, M4 = 3) such that the output state is exactly that of (N = 3, M = 6)
given in Eq. (B4). Further, we know that the output state is exactly diagonalizable using simultaneously the diagonalization
method.

Example 2. Here we choose those causal orders for (M3 = 4, M5 = 2) such that we get the output state

ρ4,2,�0 = 1

6

(
Ic ⊗ I

d
+ L4,2 + ⊗ ρ

d2
+ B4,2 ⊗ I

d3
+ Q4,2 ⊗ ρ

d4

)
,

where the coefficient matrices (L, B, and Q) are

L4,4 =
(

S4×4 04×2

02×4 S2×2

)
, B4,4 =

(
04×4 B̃T

5
B̃5 02×2

)
, Q4,4 =

(
04×4 Q̃T

5
Q̃5 02×2

)
,

with B̃5 = (
0 0 1 1
0 0 1 1) and Q̃5 = (

1 1 0 0
1 1 0 0). The output state in this case can be diagonalized using the method given

in Appendix C.
Example 3. The trivial scenario can occur when Mη = 1 ∀ η where all the off-diagonal terms are proportional to I. However,

we consider another scenario where not all the off-diagonal elements are proportional to I and the output state is given by

ρ�1 = 1

6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I
d

ρ

d4
ρ

d4
ρ

d4
ρ

d4
ρ

d4

ρ

d4
I
d

I
d3

ρ

d4
I
d3

ρ

d4

ρ

d4
I
d3

I
d

I
d3

ρ

d4
I
d3

ρ

d4
ρ

d4
I
d3

I
d

I
d3

ρ

d4

ρ

d4
I
d3

ρ

d4
I
d3

I
d

I
d3

ρ

d4
ρ

d4
I
d3

ρ

d4
I
d3

I
d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B14)

This matrix can be diagonalized using the method presented in Appendix C.

APPENDIX C: DETERMINANT OF BLOCK MATRICES

In order to find the eigenvalues of the dM × dM block matrix, ρout in the main text, we need to find how its determinant
factorizes into the determinant of small matrices as discussed in Refs. [40,41]. The lemma from Refs. [40,41] is stated as
follows.

Lemma. Let A be a pN × pN complex matrix partitioned into N2 blocks, each of size p × p, i.e.,

A =

⎛
⎜⎜⎝

A11 A12 · · · A1N

A21 A22 · · · A2N
...

...
. . .

...

AN1 AN2 · · · ANN

⎞
⎟⎟⎠

pN×pN

.
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Then its determinant is given by

Det[A] =
N∏

k=1

Det
[
X(N−k)

kk

]
, (C1)

where X(i) are defined as

X(0)
i j = Ai j,

X(k)
i j = Ai j − �bT

i,N−k+1Ã−1
k �aN−k+1, j, k � 1,

with �ai j = (Ai j, Ai+1, j, . . . , AN j )T , �bT
i j = (Ai j, Ai, j+1, . . . , AiN ), and Ãk the k × k block matrix formed from the lower right

corner of A. In Ref. [41] Powell also notices that

X(k+1)
i j = X(k)

i j − X(k)
i,N−k

(
X(k)

N−k,N−k

)−1
X(k)

N−k, j . (C2)

Equipped with the lemma from [40,41], we should be able to find the eigenvalues of the matrix ρM .
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