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Role of fine-grained uncertainty in determining the limit of preparation contextuality
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The optimal success probability of a communication game sets fundamental limitations on an operational
theory. The quantum advantage of a parity oblivious random access code (PORAC), a communication game,
over classical resources reveals the preparation contextuality of quantum theory [R. W. Spekkens et al.,
Phys. Rev. Lett. 102, 010401 (2009)]. The optimal quantum advantage in the N-dit PORAC game for finite
dimensions is an open problem. Here, we show that the degree of uncertainty allowed in an operational theory
determines the amount of preparation contextuality. We connect the upper bound of the fine-grained uncertainty
relation to the success probability of a PORAC game played with the quantum resource. Subsequently, we find
the optimal success probability for a 2-dit PORAC game using mutually unbiased bases for the decoding strategy.
Finally, we also derive an upper bound on the quantum advantage for the N-dit PORAC game.
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I. INTRODUCTION

Quantum physics has several fundamental no-go theorems,
which reveals how radically it deviates from classical physics.
Bell theorem states that quantum theory cannot be repro-
duced by a local realist model [1,2]. On the other hand, the
Bell-Kochen-Specker theorem asserts that quantum theory is
contextual [3,4]. This means that the observables cannot be
assigned definite values, independent of the setting in which
they are measured, i.e., the context. Later, the notion of con-
textuality was generalized so that it can be associated with any
operational theory [5].

These no-go theorems arise out of quantum correla-
tions[2]. In the context of spatial correlation, it is known
that nonlocality of a theory is not enough that it allows sig-
naling [6]. Quantum correlation between spacelike separated
measurements is restricted by the Cirelson type bound [7].
Subsequently, it was asked whether there are some physical
principles which limit the amount of nonlocality. There are
approaches from information theory [8,9], communication
complexity [10,11], and local quantum mechanics [12] to
address this question. In Ref. [13], the authors took a very
different approach, i.e., they related the limit of nonlocality to
two inherent properties of any physical theory, called uncer-
tainty [14] and steerability [15–17].

Initially, uncertainty relations were stated in terms of
the product of standard deviations lower bounded by some
quantity related to commutators of the observables mea-
sured [14,18]. Later, entropic uncertainty relations which are
state independent were introduced [19,20]. However, entropic
measures depict uncertainty in a coarse way, as they do not
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capture uncertainty in the realization of different outcome
distributions for multiple measurements. To circumvent this,
the fine-grained uncertainty relation (FUR) was introduced,
which is a set of inequalities, one for each possible combina-
tion of outcomes [13]. Later this inequality was generalized
for higher-dimensional systems for mutually unbiased bases
(MUBs) [21].

Fundamental limiting features of a theory have often been
studied through the ability of some communication games to
process information [9,22]. The random access code (RAC) is
a two-player communication game [23,24]; a party, say, Alice,
holding a data set in the form of an n-bit string, encodes it
in a state and sends it to another party, Bob, whose task is to
guess any one of the bits randomly chosen from the string (see
Fig. 1). The generalization of bits to higher dimensions is dits.
A bit refers to a two-level system, whereas a dit is a d-level
system. Therefore, instead of an n-bit string, Alice can also
encode an n-dit string in a state and send it to Bob, who then
tries to guess a dit from the string [25].

An interesting connection between an RAC game and
contextuality was made by Spekkens et al. [26], invoking
the parity obliviousness constraint. The constraint of parity
obliviousness in an RAC game demands that encoding is
such that the receiver cannot know the parity of the incom-
ing signal x from the sender. One of the ways of defining
the parity of message x is as the sum (mod d) of the bit
values contained in the message. If the parity obliviousness
constraint is imposed on the RAC game, which we discuss
in detail, then the optimal success probability of winning
with classical resources coincides with that when resources
are taken from noncontextual theory. Therefore, the quantum
advantage of a parity oblivious random access code (PORAC)
game implies the preparation contextuality of quantum the-
ory. It was also shown that preparation contextuality leads
to nonlocality [27–30]. Following this notion connection has
been made between the PORAC game and other nonlocal
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FIG. 1. In this communication game, Alice encodes the classical
string x ∈ {0, 1, . . . , d − 1}N in state ρx . Upon receiving the state ρx

Bob performs a measurement Xi chosen uniformly from a set of N
observables and tries to guess the yth dit of x using his measurement
outcome b.

games [30–32] and the optimal quantum bound follows from
the Cirelson-like bound associated with nonlocality [7]. To
reveal preparation contextuality, the PORAC game was stud-
ied for higher-dimensional single systems and experimental
realization was demonstrated as well [26,33,34]. The optimal
quantum advantage of the PORAC game was derived when
n-bit classical information is encoded in higher-dimensional
systems [32]. Up to a few dimensions, the maximal quantum
violation of preparation noncontextuality inequality was also
derived numerically in [33]. In general, finding the optimal
quantum bound for a high-level PORAC game or the maximal
quantum violation of noncontextuality inequality is an open
question.

Here we show that the degree of uncertainty, which is a
property of a theory, determines to what extent a theory would
be preparation contextual. Specifically, we derive a tight FUR
for any pair of measurements in any finite dimension and
show that the upper bound of the FUR is closely related to
the quantum advantage of the PORAC game in terms of the
enhanced success probability over classical strategy. We then
prove that the optimum quantum bound is reached when Alice
encodes a 2-dit string in a single qudit state, which are the
maximal certain states with respect to a pair of MUBs, while
Bob’s decoding strategy is to perform those MUBs. We also
derive the quantum upper bound of the FUR for n arbitrary
observables and show that the FUR upper bound also gives
the upper bound of the success probability in an n-dit PORAC
game, although our upper bound for an n-dit PORAC game
might not be exactly reached by the quantum strategy induced
by the FUR. Finally, we compare some results regarding the
maximal quantum bound obtained previously with our result,
for the sake of completeness.

The plan of the paper is as follows. In Sec. II, we describe
preliminary ideas on the PORAC game and parity oblivi-
ousness. Then, in Sec. III, we briefly discuss fine-grained
uncertainty relations and derive upper bounds of various sets
of sharp measurements. In Sec. IV, we present our main result;
we connect the FUR upper bound with the success probability
of the PORAC game. We also compare our results with the
known bounds. Finally, we conclude in Sec. V.

II. PREPARATION NONCONTEXTUALITY FROM PARITY
OBLIVIOUS RANDOM ACCESS CODES

Preparation noncontextuality associated with an opera-
tional theory was first introduced in [5]. An operational theory

provides the probabilities p(k|P, M ) of getting an outcome
k given the preparation procedure P and the measurement
M. Quantum theory is also an operational theory in which a
preparation procedure P is represented by ρP and a measure-
ment is represented by a positive operator-valued measure,
�M,k . The probability of getting an outcome k is p(k|P, M ) =
Tr(ρP�M,k ).

An operational theory is said to be preparation noncontex-
tual if two preparations yield the same measurement statistics
for all possible measurements, which implies that the proba-
bility associated with two different preparations at the hidden
variable level(λ) is also the same, i.e.,

∀M ∀k; p(k|P, M ) = p(k|P′, M ) ⇒ p(λ|P) = p(λ|P′), (1)

where λ is a hidden variable and P and P′ denote two prepa-
ration procedures.

Preparation contextuality was demonstrated using the par-
ity oblivious communication game [26,33]. In the game, Alice
receives an N-dit string x ∈ {0, 1, . . . , d − 1}N , which she
encodes in a state ρx and then sends to Bob, chosen uni-
formly. Bob’s task is to guess the yth bit of string x, using his
measurement outcome b obtained by a set of measurements
Y, as shown in Fig. 1. There is the cryptographic constraint
that Alice can encode her message under the parity obliv-
iousness condition that no information about the parity of
x can be revealed to Bob. If s ∈ Par, where Par ≡ {s|s ∈
{0, 1, . . . , d − 1}N , ζ � d − 2}, with ζ denoting the number
of zeros appearing in a particular s, then no information about
x · s = ⊕ixisi(mod d ) = l , ∀l � d − 1, should be revealed to
Bob. We refer to this task as N → 1 d-parity oblivious random
access codes (d-PORACs). The parity obliviousness condi-
tion, for the set of measurements Y performed by Bob, can be
cast down in the form of the equality

∀s, b, l, l ′, y;
1

p(l )

∑
x·s=l

p(b|x, y) = 1

p(l ′)

∑
x·s=l ′

p(b|x, y),

where p(l ) = ∑
x·s=l p(x). As for all l-parity strings xl , we

have dN−1 uniform choices, p(l ) = p(l ′). Thus, the above
obliviousness condition reduces to

∀s, b, l, l ′, y;
∑
x·s=l

p(b|x, y) =
∑

x·s=l ′
p(b|x, y). (2)

It should be noted that Eq. (1) is the most general form of
parity obliviousness, whereas Eq. (2) implies obliviousness
with respect to the measurements performed by Bob. For our
purpose it is sufficient to consider the above condition of
parity obliviousness.

Given the obliviousness constraint, Bob’s task is to maxi-
mize the average success probability of reporting the correct
output b = xy. The average probability of guessing the correct
bit is given by

p(b = xy) = 1

dN N

∑
x∈{0,1,...,d−1}N

∑
y∈{1,...,N}

p(b|x, y),

Different operational theories provide different maximal suc-
cess probabilities of the game. It was shown in [33] that for
an operational theory which admits a preparation noncontex-
tual hidden-variable model, the probability of success for an
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N → 1 d-PORAC is bounded by the following inequality:

1

dN N

∑
x∈{0,1,...,d−1}N

∑
y∈{1,...,N}

p(b|x, y) � N + d − 1

dN
. (3)

Any operational theory which violates this inequality is
contextual.

III. FINE-GRAINED UNCERTAINTY RELATIONS

Suppose we want to measure N different observables Xi,

where i ∈ {1, . . . , N}, and outcomes xi ∈ {0, . . . , d − 1}. One
can quantify the uncertainty associated with the measure-
ments using entropic uncertainty relations as

N∑
i=1

H (Xi )ρ � β,

where β depends on the compatibility between different ob-
servables. However, entropy is a coarse way of measuring the
uncertainty and incompatibility of a set of measurements. It
does not reflect the uncertainty inherent in obtaining a particu-
lar combination of outcomes xi for different measurements Xi.
To circumvent this issue, a fine-grained uncertainty relation
was proposed in Ref. [13]. The uncertainty relation is a set of
dN inequalities of the form

Pcert (ρ, x) =
N∑

i=1

p(Xi )p(xi|Xi )ρ � Cx(O,P ), (4)

where Cx(O,P ) depends on the particular combination of
measurement outcomes from a set of observables O = {Xi}
and chosen with distribution function P = {p(Xi )}. For the set
of observables O = {Xi}, the state which saturates Eq. (4), is
a maximally certain state for these observables. The quantity
Cx(O,P ) captures the amount of uncertainty allowed in a par-
ticular physical theory. If Cx(O,P ) < 1 for any x, one cannot
obtain any outcome with certainty. Later, in Ref. [21] FURs
were generalized for MUBs in d-dimensional systems. For a
set of N MUBs chosen with equal probability, the inequality
takes the following form [21]:

1

N

N∑
i=1

p(xi|Xi )ρ � 1

d

(
1 + d − 1√

N

)
. (5)

Now we present the FUR for a set of N arbitrary d-level
observables.

Result 1. For a set of N arbitrary observables in dimension
d , the FUR has the form

1

N

N∑
i=1

p(xi|Xi ) � 1

d

⎛
⎝1+

(d− 1)
√

N+ 2
∑N

j>k=1 cos(θ jk )

N

⎞
⎠,

(6)

where cos(θ jk ) is the angle between the Bloch vectors corre-
sponding to eigenvectors |x j〉 and |xk〉.

Proof. To prove this, we need to find the state ρmax which
maximizes the left-hand side of Eq. (6). The eigenvectors |xi〉
corresponding to eigenvalues xi and the state ρmax can be

expressed using Bloch vector representation as [35]

ρxi = 1

d
I + �xi · �� and ρmax = 1

d
I + �b · ��,

where �xi and �b are the respective Bloch vectors and {�i; i ∈
(0, . . . , d − 1)} are the generalized Gell-Mann matrices in
dimension d . The length of the Bloch vector in dimension d
should be less than

√
(d − 1)/2d , where the maximum length

indicates pure states. The generalized Gell-Mann matrices are
traceless, i.e., Tr(�i ) = 0, and orthogonal, i.e., Tr(�i� j ) =
2δi j [35].

Now, using the Bloch vector representation, we find that

1

N

N∑
i=1

p(xi|Xi ) = 1

N

N∑
i=1

Tr[|xi〉〈xi|ρmax]

= 1

N

N∑
i=1

Tr

[(
1

d
I + �xi.��

)(
1

d
I + �b · ��

)]

= 1

N

N∑
i=1

(
1

d
+ 2�xi · �b

)

= 1

d
+ 2

N

(
N∑

i=1

�xi

)
· �b.

It is straightforward to see that the quantity (
∑N

i=1 �xi ) · �b
is maximum when �b is collinear with

∑N
i=1 �xi, i.e., �b =

η
∑N

i=1 �xi, where η is the scaling factor. For maximiza-
tion, we have to find appropriate value of η so that the

length of �b is
√

d−1
2d which implies that ρmax has to be

a pure state. On supplying this information in the equal-

ity | ∑N
i=1 �xi| = √

N ′
√

d−1
2d , we get η = 1

N ′ , where N ′ = N +
2

∑
j>k=1 N cos(θ jk ). Thus, by substituting η, we find the

Bloch vector, �b = 1√
N ′

∑N
i=1 �xi, which gives the upper bound

for the considered FUR. �
These inequalities are tight for d = 2 but not always tight

for d � 3. This is so because not all the points on the surface
of the (n2 − 1)-dimensional hypersphere correspond to a valid
pure state. As a corollary of our derivation the fine-grained
upper bound for MUBs can be reproduced using the following
lemma.

Lemma 1. The Bloch vectors belonging to d-dimensional
mutually unbiased bases are orthogonal to each other.

Proof. We note that the overlap between two mutually
unbiased state vectors is

1

d
= Tr

[(
1

d
I + �xi · ��

)(
1

d
I + �x j · ��

)]
= 1

d
+ 2�xi · �x j,

where we have used the tracelessness and orthogonality
of the generalized Gell-Mann matrices. Therefore, we get
�xi · �x j = 0. �

Using Lemma 1 in Eq. (6), for any pair of mutually unbi-
ased bases, cos(θ jk ) = 0, which gives Eq. (5). An example of
the above inequality in the qubit case, for measurements σx

032424-3



SHARMA, SAZIM, AND MAL PHYSICAL REVIEW A 104, 032424 (2021)

and σz, is given by [13]

1

2
p(xσx |σx ) + 1

2
p(xσz |σz ) � 1

2

(
1 + 1√

2

)
.

The above inequality is saturated for all four possible vectors
�x ∈ {xσx , xσz } and the maximally certain states are given by the
eigenstates of σx±σz√

2
.

A. Tight fine-grained uncertainty relations for two arbitrary
observables in arbitrary dimension

For two d-dimensional observables X1 and X2, we can
prove the following fine-grained inequalities, corresponding
to the combination of outcomes x1 and x2, respectively.

Result 2. The fine-grained inequality corresponding to ob-
taining outcomes x1 and x2 by measuring observables X1 and
X2, respectively, in state ρ has the following form:

1

2
Tr(|x1〉〈x1|ρ) + 1

2
Tr(|x2〉〈x2|ρ) � 1 + |〈x1|x2〉|

2
. (7)

Proof. Again, we need to find the state ρ which maximizes
the left-hand-side term in Eq. (7). For this, we use the Landau-
Pollak uncertainty, which states that for two projectors |x1〉
and |x2〉, corresponding to outcomes x1 and x2, respectively,
the following inequality exists:

Arccos〈x1〉ρ + Arccos〈x2〉ρ � Arccos|〈x1|x2〉|. (8)

Note that Tr(|x1〉〈x1|ρ) = 〈x1〉2
ρ , and similarly,

Tr(|x2〉〈x2|ρ) = 〈x2〉2
ρ . From Eq. (8), we have Arccos〈x2〉ρ �

Arccos|〈x1|x2〉| − Arccos〈x1〉ρ . We denote Arccos〈x1〉ρ = α

and Arccos|〈x1|x2〉| = θ and substitute this inequality for the
left-hand-side term in Eq. (7):(

1

2
Tr(|x1〉〈x1|ρ) + Tr(|x2〉〈x2|ρ)

)

� 1

2
(cos2 α + cos2(θ − α)).

Now, finding the maximum of this expression is a simple
optimization problem, which attains the maximum for α = θ

2
and gives the upper bound in Eq. (7). Thus our inequality is
proved. �

For MUBs the inequality in Eq. (7) becomes

1

2
Tr(|x1〉〈x1|ρ) + 1

2
Tr(|x2〉〈x2|ρ) � 1

2

(
1 + 1√

d

)
. (9)

In the next section, we present the states which saturate the
inequalities for MUBs when we connect the FUR with a RAC
game.

IV. VIOLATING NONCONTEXTUALITY INEQUALITY
WITH FINE-GRAINED UNCERTAINTY

In this section, we show how the FUR determines the
preparation contextuality of quantum theory. As previously
stated, there exist dN such inequalities for N mutually unbi-
ased observables, Eq. (9). If we take the average over all such

inequalities for N = 2, we obtain

1

2d2

∑
x∈{0,1,...,d−1}2

2∑
i=1

p(xi|Xi )ρx � 1

2

(
1 + 1√

d

)
, (10)

where xi ∈ {0, 1, . . . , d − 1} are the measurement outcomes
corresponding to the observable Xi. If Alice encodes the
classical string x by preparing ρx and sends it to Bob, who
measures Xi to guess the ith bit of x, then the left-hand side
of the inequality, Eq. (10), becomes the success probability
of a 2 → 1 d-RAC game. Now, the right-hand side of the
inequality, Eq. (10), gives the quantum upper bound for the
success probability of the game. Later we also show that
this encoding and decoding scheme also respects the parity
obliviousness condition, with respect to Bob’s choice of mea-
surements. Now we state our result in terms of a theorem when
Bob performs measurement with MUBs.

A. Preparation contextuality via a 2 → 1 d-PORAC game

Using a 2 → 1 d-RAC game one can demonstrate prepa-
ration contextuality on the basis of the following theorem.

Theorem 1. In a RAC game, if Alice encodes the 2-dit
classical string x in quantum states, which are maximally cer-
tain states for Bob’s set of measurements (which are MUBs),
then the preparation contextuality of quantum theory can be
revealed. Moreover, this encoding-decoding strategy, guided
by fine-grained uncertainty relations for MUBs, satisfies the
parity obliviousness condition, given by Eq. (2) for a 2 → 1
d-PORAC.

Demonstrating the preparation contextual nature with an
encoding and decoding scheme requires two things: (i) The
RAC game should satisfy the parity obliviousness condition
and (ii) the success probability should be greater than that
obtained in a noncontextual theory. First, we show that our en-
coding and decoding scheme respects the parity obliviousness
condition, Eq. (2), given a set of measurements performed by
Bob.

Proof. The 2 → 1 d-RAC game has d sets of different
parity and the number of classical messages, x = x0x1, in
each set is d . We follow the encoding and decoding scheme
presented in [25] for a d-level quantum random access code
(QRAC) game and show that the scheme is parity oblivious
and can be derived from fine-grained inequalities for MUBs.
To detect the message x0x1 we use a mutually unbiased basis
given by the computational basis {|p〉}p and Fourier basis
ep = 1√

d

∑d−1
q ωpq|q〉, where ω = exp( 2π i

d ). Alice encodes

the classical signal x0x1 = 00 in the state |ψ00〉 = 1
Nd

(|0〉 +
|e0〉), where Nd =

√
2 + 2√

d
. For the two projectors |0〉 and

|e0〉, this state is the maximally certain state, i.e., it saturates
the fine-grained inequality in Eq. (9). Similarly, for other sig-
nals we use the encoding state |ψx0x1〉 = X x0 Zx1 |ψ00〉, where
X = ∑d−1

q=0 |q + 1〉〈q| and Z = ∑d−1
q=0 ωq|q〉〈q| are the unitary

operators. To learn about the first bit x0 Bob will do the
measurement in the computational basis and to learn about
x1 he will do the measurement in the Fourier basis. Given this
encoding and decoding scheme, the success probability for
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Bob’s determining the x0 and x1 bits is given by

Px0 (p) = |〈p|ψx0x1〉|2 = 1

N2
d

∣∣∣∣δx0,p + ωx1(p−x0 )

√
d

∣∣∣∣
2

,

Px1 (p) = |〈ep|ψx0x1〉|2 = 1

N2
d

∣∣∣∣ω−x0x1δx1,p + ω−px0

√
d

∣∣∣∣
2

.

Bob’s prediction is correct when either p = x0 for Px0 or
p = x1 for Px1 . In bothcases the success probability turns
out to be 1

2 (1 + 1√
d

). Thus, it also saturates the fine-grained
inequality for the measurements in the {|p〉} basis and {|ep〉}
basis.

We note that since the success probability of Px0 is inde-
pendent of the dit at position x1, and similarly the success
probability Px1 is independent of dit x0, our encoding and
decoding scheme is parity oblivious in this scenario. �

Next, we show that the success probability of our encoding
and decoding scheme exceeds the noncontextual bound of a
PORAC.

Proof. The maximum success probability of the 2 → 1 d-
level RAC game in quantum theory is exactly the right-hand
side of Eq. (10). Comparing the upper bound of the N → 1
d-PORAC game with that of the FUR, we find that 1

d (1 +
d−1√

2
) � 2+d−1

2d = 1
d (1 + d−1

2 ). Therefore, we have obtained a
violation of the preparation noncontextuality inequality. �

It should be noted that a full set of MUBs for an arbitrary
dimension d is not known. But in the 2 → 1 d-PORAC game,
we need only two such observables of dimension d for our
scheme to work.

Example 1. First, we present the simplest example of a
2 → 1 2-PORAC. This has been presented earlier [26], so we
only highlight how the fine-grained uncertainty relation enters
the picture. The classical signals {00,01,10,11} are encoded
in the states with Bloch vectors (0,± 1√

2
,± 1√

2
), because for

σx and σy these states saturate the fine-grained uncertainty
relation. To decode the signal Bob uses σx to measure the
first bit and σy to measure the second bit. Using this method
he detects the correct signal with probability 1

2 (1 + 1√
2

) =
0.853 555 3 � n+1

2n = 3
4 and, thus, violates the inequality in

Eq. (3). The parity obliviousness condition is also respected,
since the parity 0 and 1 states are represented by the same
density matrix operator, i.e., 1

2ρ00 + 1
2ρ11 = 1

2ρ10 + 1
2ρ01 =

I
2 . Thus, by using the fine-grained uncertainty relation we
obtain a violation of preparation noncontextuality.

Example 2. In [25], the authors found a violation of the
2 → 1 3-PORAC game analytically as well as numerically.
Although they did not call it a parity oblivious game, the
analytical value of the success probability is 1

2 (1 + 1√
3

) =
0.788 675. As we have shown, their encoding and decoding
scheme is parity oblivious also.

B. Parity obliviousness in a 3 → 1 2-PORAC game

In this section, we use the fine-grained inequality in Eq. (5)
for demonstrating preparation contextuality. Since this in-
equality is tight only for d = 2 we limit ourselves to that.
In the 3 → 1 2-PORAC game, Alice encodes the classical
signal {000,001,010,011,100,101,110,111} in qubit quantum

states and sends them to Bob. Following the fine-grained in-
equality in Eq. (6), if Alice encodes these states with Bloch
vectors (± 1√

3
,± 1√

3
,± 1√

3
), which saturate the fine-grained

uncertainty for three observables, σx, σy, and σz, with mutually
unbiased bases. Bob employs the σx, σy, and σz operators to
detect the first, second, and third bits, respectively, and obtains
the correct signal with probability 1

2 (1 + 1√
3

) = 0.788 675 �
n+1
2n = 2

3 . It has been shown that this encoding scheme is also
parity oblivious [26]. Moreover, this is the optimal success
probability for this game [30,32].

Now, we find the upper bound of the quantum violation of
the preparation noncontextuality inequality.

Theorem 2. The encoding-decoding strategy based on
the FUR for MUBs gives the upper bound of the quan-
tum violation of the preparation noncontextuality inequality;
specifically, it gives the upper bound of the success probability
of quantum theory in the N → 1 d-PORAC game, in which
decoding is done using rank 1 projective measurements.

We prove Theorem 2 in Appendix B.

V. CONCLUSION

The optimal success probabilities of certain communica-
tion games reveal the fundamental limitations of different
operational theories. The quantum advantage of a random
access code game with the additional constraint of parity
obliviousness asserts that quantum theory is preparation con-
textual. Here, we show that the success probability of a parity
oblivious RAC game is determined by the amount of fine-
grained uncertainty for Bob’s choice of rank 1 projective
measurements. To show this, we have derived an upper bound
for fine-grained uncertainty relations of N arbitrary observ-
ables of dimension d . In addition, we have also found the
tight fine-grained inequalities for two observables, which pro-
vide the optimal encoding and decoding strategy for a 2 → 1
d-PORAC. Subsequently, we find analytically the quantum
violation of the preparation contextuality inequality for the
2 → 1 d-PORAC game. Some partial results of optimal vi-
olations were known up to a few dimensions with the help of
numerical methods, i.e., semidefinite programming [31]. Our
results are derived under the condition that the dimension of
the resource states corresponding to the d-PORAC game is
also d in classical or quantum theory. In future, one can try to
find the violation of preparation noncontextuality for N → 1
d-PORAC games for N > 2 also.
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APPENDIX A

Lemma 2. The sum of the Bloch vectors corresponding to
eigenvectors of an observable is 0.

Proof. The eigenvectors |vi〉 of an observable O satisfy∑
i |vi〉〈vi| = I . In terms of Bloch vectors �b, one can write

|vi〉〈vi| = 1

d
I + �bi · ��.
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By taking the sum over all the eigenvectors, we get∑
i |vi〉〈vi| = I + (

∑
i
�bi ) · �� = I , which gives

∑
i
�bi = 0. �

APPENDIX B

Here, we prove Theorem 2 and find the maximal success
probability of an N → 1 d-PORAC game, over all possible
measurement settings. The success probability of the N → 1
d-PORAC is given by

psucc = 1

dN N

∑
x∈{0,1,...,d−1}N

N∑
i=1

p(xi|Xi )ρ,

where we have not specified the measurement setting chosen
by Bob. For any arbitrary measurement performed by Bob,
p(xi|Xi )ρ = 1

d + 2�xi · �b, where �xi is the Bloch vector corre-

sponding to the outcome xi, and �b is the Bloch vector of the
encoding state. For optimal encoding it will depend on the
�xi’s, which we prove now. Substituting this probability into
the above equation we get

psucc = 1

dN N

∑
x∈{0,1,...,d−1}N

N∑
i=1

(
1

d
+ 2�xi · �b

)

= 1

d
+ 2

NdN

∑
x∈{0,1,...,d−1}N

N∑
i=1

�xi · �b

= 1

d
+ 2 �( �X , �b)

NdN
, (B1)

where �( �X , �b) = ∑
x∈{0,1,...,d−1}N

∑N
i=1 �xi · �b. To get the opti-

mal success probability, we need to maximize �( �X , �b) over
all possible measurements Xi and encodings �b. We denote the
maximum value �(N ):

�(N ) = max
�X ,�b

�( �X , �b) = max
�X

∑
x∈{0,1,...,d−1}N

max
�b

�b ·
∑

i

�xi.

The second maximization can be easily done by choosing �b
in the direction of

∑
i �xi, so that �b · ∑

i �xi =
√

d−1
2d || ∑i �xi||.

Then

�(N ) = max
�X ,�b

�( �X , �b) =
√

d − 1

2d
max

�X

∑
x∈{0,1,...,d−1}N

∣∣∣∣∣
∣∣∣∣∣
∑

i

�xi

∣∣∣∣∣
∣∣∣∣∣.

To find the value of �(N ), we use the following lemma.
Lemma 3. For vectors �xi, we have∑
x∈{0,1,...,d−1}N || ∑N

i=1 �xi||2 = (d−1)
2d NdN .

Proof. We prove Lemma 3 by induction. For N = 1, we
have ∑

x∈{0,1,...,d−1}
|| �x1||2 = d (d − 1)

2d
.

Assuming that our lemma holds for N = m, then for N =
m + 1 we have

∑
x∈{0,1,...,d−1}m+1

∣∣∣∣∣
∣∣∣∣∣
m+1∑
i=1

�xi

∣∣∣∣∣
∣∣∣∣∣
2

=
∑

x∈{0,1,...,d−1}m+1

|| �x1 + �x2 + . . . + �xm+1||2.

By summing over the m + 1 index, we get∑
x∈{0,1,...,d−1}m

(|| �x1 + . . . + �xm||2 + || �xm+1||2

+ 2 �xm+1( �x1 + . . . + �xm)
)
.

By using Lemma 2, we note that∑
x∈{0,1,...,d−1}N

2 �xm+1( �x1 + �x2 + . . . + �xm) = 0.

Since we have assumed that the lemma holds for N = m,
the above expression simplifies to d (m · dm + dm) (d−1)

2d =
(d−1)

2d (m + 1)dm+1. �
Now �(N ) can be seen as an inner product between∑
x∈{0,1,...,d−1}N

∑N
i=1 �xi and the vector (1, 1, . . . , 1) ∈ RdN

,
hence we can apply the Cauchy-Schwarz inequality to get the
upper bound on �(N ), so that

�(N ) �
√

(d − 1)

2d

√
dN

√
(d − 1)

2d
NdN =

√
N (d − 1)

2d
dN .

By substituting �(N ) in Eq. (B1), we get the maximum
success probability as

psucc = 1

d

(
1 + d − 1√

N

)
.

Note. We are finding the upper bound of an N → 1 d-
RAC game, based on projective measurements. Therefore, to
find the quantum upper bound we consider FUR inequalities
involving projective measurements. The maximum success
probability for a 2 → 1 RAC game is obtained by encoding
the signal in a two-dimensional quantum state. Therefore, for
an N → 1 d-level RAC game also, we have restricted the
dimension of the encoding state (classical/quantum) to be
equal to dimension d .
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