
PHYSICAL REVIEW A 103, 012604 (2021)

Pinned quantum Merlin-Arthur: The power of fixing a few qubits in proofs
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What could happen if we pinned a single qubit of a system and fixed it in a particular state? First, we
show that this leads to difficult static questions about the ground-state properties of local Hamiltonian problems
with restricted types of terms. In particular, we show that the pinned commuting and pinned stoquastic Local
Hamiltonian problems are quantum-Merlin-Arthur–complete. Second, we investigate pinned dynamics and
demonstrate that fixing a single qubit via often repeated measurements results in universal quantum computation
with commuting Hamiltonians. Finally, we discuss variants of the ground-state connectivity (GSCON) problem
in light of pinning, and show that stoquastic GSCON is quantum-classical Merlin-Arthur–complete.
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I. INTRODUCTION

The goal of quantum Hamiltonian complexity [1,2] is to
study the computational power of physical models described
by local Hamiltonians, the intricate properties of their dy-
namics and their eigenstates, as well as to understand the
computational complexity of determining these properties.
Many Hamiltonians are known to be universal for quantum
computation [3], while others are thought to be much simpler,
but still hard to investigate classically [4] or even efficiently
simulable by classical computation [5]. There is a long history
of searching for the simplest possible, closest to realistically
and efficiently implementable, and robustly controllable inter-
action with universal dynamics for quantum computation with
local Hamiltonians. Restrictions on the type and strength of
interactions, locality, and geometrical restrictions have been
investigated, e.g., in Refs. [3,6–10]. Thinking about univer-
sality for computation often comes hand in hand with asking
complexity questions such as identifying the hardness of
determining the properties of the eigenstates of these Hamil-
tonians.

Looking at this from a quantum control theory viewpoint
provides us with an interesting observation. An extra level of
control over a subsystem can result in a boost in state gener-
ation possibilities, or the difficulty of complexity questions.
We have seen this with the DQC1 (“one clean qubit”) model
[11,12], whose single fully initializable (clean) qubit gives rise
to quantum advantage over classical computation. Similarly, if
one is allowed to use magic states, computing with a restricted
set of universal gates such as Clifford gates [13] becomes uni-
versal for quantum computation. Effectively fixing parts of the
system to a particular state using perturbation gadgets allowed
us to build complex effective Hamiltonians from simpler ones
[14]. It has also been shown that a Zeno-effect measurement of
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a small subsystem can grant universal power to a nonuniversal
set of commuting gates [15].

In this article, we investigate the computational potential
offered by controlling a small subsystem. We focus on a spe-
cific type of control called pinning—fixing the state of a small
subsystem. Orsucci et al. [16] have formulated the related
question of Hamiltonian purification, investigating universal
dynamics for a set of commuting Hamiltonians, projected into
a particular subspace. As often in Hamiltonian complexity,
there are two views of this task, a static and a dynamic one.
Our goal is to uncover in which situations pinning-induced
effective interaction terms (weighted sums of the original
restricted terms) lead to an increase in complexity, or state
preparation power. In both approaches, we prove several re-
sults complementing what we know about the hardness of
problems without the special control.

Our complexity results will involve the class quantum
Merlin-Arthur (QMA). Loosely speaking, these are questions,
whose “yes” answers can be provided by a powerful, quan-
tum prover (Merlin), in order to be verified efficiently by
a verifier with a quantum computer (Arthur). For example,
the local Hamiltonian problem is asking whether the ground-
state energy of a Hamiltonian is below some limit. Given
a candidate (quantum) ground state by Merlin, the verifier
Arthur can efficiently measure its energy and confirm it is
low enough. Another class we will discuss is the quantum-
classical Merlin-Arthur (QCMA, with a classical Merlin and
a quantum Arthur), where the verification asks for a classical
hint or proof. For example, in the ground-state connectivity
problem, Merlin gives Arthur a classical description of a
sequence of quantum gates. Arthur then verifies that these
describe a sequence of low-energy states connecting two given
ground states, by using a quantum computer to construct the
intermediate states and measure their energies.

First, statically, we ask about the difficulty of finding
the properties of low-energy states of pinned Hamiltonians.
We pin a qubit by an external prescription and show that
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determining the lowest energy in the pinned subspace is
QMA-complete for a variety of restricted classes: commuting,
stoquastic, Markov, and permutation Hamiltonians. With this
we wish to shed light on the complexity of these problems
without pinning, which we believe to be weaker. One of these
is the currently actively investigated commuting local Hamil-
tonian problem, which can be nondeterministic polynomial
time (NP)-complete, or have ground states with topological
order [17,18]. At the same time, we know that the ground-state
connectivity problem for commuting Hamiltonians is QCMA-
complete [19]. Another is the stoquastic local Hamiltonian
problem, whose complexity is in the class stoquastic Merlin-
Arthur (StoqMA) which contains NP and MA, but is strongly
believed to be weaker than QMA [4]. Taking the method
of pinning to the extreme, we finally show that it yields
QMA-hardness results for Hamiltonians that are as simple
as permutation matrices. Some of our results on determining
the ground-state energies of pinned problems complement
the conclusions of Ref. [20] involving energy of the highest
excited state.

Second, dynamically, asking about the preparation power
of evolution with restricted time-independent Hamiltonians
combined with Zeno pinning of a qubit, we find connections to
previous work on Hamiltonian purification [15,16], showing
that the quantum Zeno effect can drive efficient universal
quantum computation in several restricted settings. This in-
cludes, in particular, commuting Hamiltonians. Owing to the
details of the constructions, our results carry time and space
requirements and guarantees from universal evolution models
with unrestricted Hamiltonians.

Third, we find an application of pinning for the ground-
state connectivity (GSCON) problem [21] and its variants
with restricted types of terms. Specifically, we prove that
GSCON with stoquastic Hamiltonians is QCMA-complete,
complementing a similar recent result on commuting
GSCON [19].

Finally, we note that there are strong limits to the pinning
technique. First, dimensionality arguments from Ref. [16]
mean a necessary increase in the size of the purified system
in which interactions are restricted. Second, we encounter
questions regarding locality of the required terms. Note that
pinning does not allow us to create multiplicative effective
terms, as perturbative gadgets do—creating effective 3-local
terms from 2-local ones. We do not know if it is possible
to build gadgets for effective k + 1 local interactions from
k-local Hamiltonian terms with the help of pinning, for our
commuting or stoquastic settings. Many such questions with
low locality thus remain open.

Doing something special on a single additional qubit is not
new. Besides Ref. [19], where the idea has been exploited to
show that the GSCON problem is QCMA-complete already
for commuting Hamiltonians, Jordan, Gosset, and Love [20]
have used techniques tracing back to Ref. [22] to get rid of
varying signs of matrix elements by increasing the system
size and replacing positive 1’s by 2 × 2-identity matrices and
negative 1’s by the Pauli X matrices. They prove the universal-
ity of adiabatic quantum computation in an excited state of a
stoquastic local Hamiltonian, instead of the usual ground-state
computation, by splitting the Hilbert space into two, depend-
ing on the state of an auxiliary qubit. Moreover, by adding a

stoquastic term effectively pinning this auxiliary into a state
that results in a high energy, they showed QMA-completeness
of understanding the energy bounds for the highest excited
energy of a stoquastic local Hamiltonian. Stoquastic local
Hamiltonians are those local spin Hamiltonians whose matrix
elements in the standard basis satisfy the condition that all off-
diagonal matrix elements are real and nonpositive [23–27].
Next, they also show QMA-hardness of bounding the lowest
energy of doubly stochastic (Markov) matrices, and QMA1-
hardness of the stochastic 6-SAT problem (deciding whether
or not a sum of stochastic matrices is frustration free).

This article is structured as follows: First, in Sec. II,
we show that several restricted versions of the pinned local
Hamiltonian problem are QMA-complete, in particular, com-
muting, stoquastic, and permutation Hamiltonians. In Sec. III
we then turn to the dynamical problem of universal time
evolution, showing that the Zeno-pinned time evolution under
both commuting and stoquastic Hamiltonians is complete for
universal quantum computations. Finally, in Sec. IV, we prove
that the stoquastic GSCON problem is QCMA-complete and
discuss the free-fermionic GSCON problem.

II. PINNED LOCAL HAMILTONIANS: A COMPLEXITY
VIEWPOINT

A. Local Hamiltonians and states with fixed qubits

In QMA, a verifier asks for a witness of the form |ψ〉, to
which she adds a few auxiliary qubits and verifies it with a
quantum circuit V . Does anything change, if she demands that
the witness must have a few qubits that are pinned to some
fixed state? No, as the verifier can ask for all but the pinned
qubits of the witness, supply those pinned qubits on her own,
and verify the whole state as before.

Rather straightforwardly, we can show that problems in the
class QMA can be verified using pinned QMA and vice versa,
so that pinned QMA = QMA. If we ask for a pinned proof
of the form |ψ ′〉 = |ψ〉|0〉, with one pinned qubit, the extra
demand does not increase the complexity of the problem. If
the verifier that asks for |ψ ′〉 is V ′, the same thing can be ver-
ified in QMA with a modified circuit V which adds one more
auxiliary system that stores a check of whether the pinned
qubit is really |0〉, and then does the verification V ′, accepting
only if both are accepted. Thus, pinned QMA can be verified
in QMA. On the other hand, for any QMA verifier circuit W ′
that demands a witness |φ′〉, there exists a pinned version,
which demands a witness |φ〉 = |φ′〉|0〉 with one extra qubit,
and whose verifier circuit W simply disregards the pinned
qubit and verifies only the |φ′〉 part with W ′.

However, things are not quite as straightforward when in-
stead of QMA witnesses we start pinning qubits of low-energy
states for the local Hamiltonian problem. Let us consider
the QMA-complete problem local Hamiltonian (LH), and
investigate the pinning requirement. Imagine we look at a
Hamiltonian H ′, and ask if there exists a low-energy state of
the form |ψ ′〉 = |ψ〉|0〉. We call this problem pinned LH.

Definition 1. The p-pinned k-local Hamiltonian problem.
Consider a k-local Hamiltonian H for a system of size n,
a p-qubit state vector |φ〉, with p = poly(n) and two energy
bounds b, a, such that b − a � 1/poly(n). You are promised
that either:
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YES There exists an n − p qubit state vector |ψ〉, such
that the energy of the n-qubit state vector |ψ〉|φ〉 with respect
to H is at most a, or

NO for any state vector |ψ〉, the energy of the n-qubit state
vector |ψ〉|φ〉 with respect to H is at least b.

Decide, which is the case.
We will prove the following theorem:
Theorem 1. QMA-completeness of the pinned k-local

Hamiltonian problem. The pinned k-local Hamiltonian prob-
lem is QMA-complete.

Proof. First, on the one hand, pinned LH is no easier than
LH, because for any local Hamiltonian H , we can choose
|φ〉 = |0〉 and set up

H ′ = H ⊗ I. (1)

There exists a low-energy state of H ′ of the form |ψ〉|0〉
if and only if there exists a low-energy state vector |ψ〉 of
H . Thus, pinned LH is QMA-hard as solving it allows one
to solve the LH problem. On the other hand, observe that
pinned LH belongs to QMA. We can set up a quantum verifier
that receives the witness |ψ〉, adds its own single-qubit state
vector |φ〉, and then tests whether the state vector |ψ〉|φ〉 has
low enough energy for the pinned local Hamiltonian G′. In
summary, pinned LH is QMA-complete.

This could be the end of the proof. However, one might
desire more details in order to understand how to translate
the energy bounds between these problems. We can explicitly
set up the LH problem to contain pinned LH for example
as follows. Let us construct a local Hamiltonian G, which
has a low-energy state if and only if a pinned LH G′ has
a low-energy state vector of the form |ψ〉|φ〉. Without loss
of generality, we can again take |φ〉 = |0〉, by a local basis
transformation on the operators acting on the last qubit.

Let us then set up a local Hamiltonian G retaining the
properties of a pinned G′ by penalizing the additional qubit
with energy � > 0 if it is not in the desired pinned state vector
|0〉,

G = G′ + � I ⊗ |1〉〈1|. (2)

If there exists a state vector of the form |ψ〉|0〉 for the pinned
local Hamiltonian G′ with energy Eψ,0 � a, the same state
will also have a “low” energy for the local Hamiltonian G,

〈0|〈ψ |G|ψ〉|0〉 � a. (3)

On the other hand, if it is the case that any state vector of the
form |ψ〉|0〉 has energy at least Eψ,0 � b, then taking a general
state vector,

|S〉 = (cos ϕ)|ψ0〉|0〉 + (sin ϕ)|ψ1〉|1〉, (4)

we can show that the ground-state energy of the local Hamil-
tonian G obeys

ES = 〈S|G|S〉 (5)

= (cos2 ϕ)〈0|〈ψ0|G′|ψ0〉|0〉
+ (sin2 ϕ)(〈1|〈ψ1|G′|ψ1〉|1〉 + �)

+ (cos ϕ sin ϕ)(〈1|〈ψ1|G′|ψ0〉|0〉 + c.c.)

� b cos2 ϕ + � sin2 ϕ (6)

+ (sin2 ϕ)〈1|〈ψ1|G′|ψ1〉|1〉

+ (sin 2ϕ)Re[〈1|〈ψ1|G′|ψ0〉|0〉]
� b cos2 ϕ + (� − ‖G′‖) sin2 ϕ − sin 2ϕ‖G′‖. (7)

Let us label c := � − ‖G′‖ and d := ‖G′‖ to write

ES � b

2
(1 + cos 2ϕ) + c

2
(1 − cos 2ϕ) − d sin 2ϕ. (8)

Assuming c − b > d > 0, it is easy to find that the extrema of
this expression appear at

tan 2ϕ = 2d

c − b
, (9)

producing

ES � 1
2 [c + b −

√
(c − b)2 + (2d )2]. (10)

Let us now set

c = 1

2

(
b + a + (2d )2

b − a

)
, (11)

i.e.,

� = c + d = b + a

2
+ d

(
2d

b − a
+ 1

)
= poly(n). (12)

With basic algebra, recalling b > a, we can show that this
satisfies c −

√
(c − b)2 + (2d )2 � a, and thus

ES � a + b

2
, (13)

which means in the NO instances, the ground-state energy will
be at least (a + b)/2, which is at least an inverse polynomial
above the lower bound a in the YES instances. Together
with (3), this means we have translated the original prob-
lem’s energy bounds to a′ = a and b′ = (a + b)/2, halving the
promise gap of the original pinned LH. �

Therefore, we have not really changed the complexity of
the general local Hamiltonian problem by the pinning require-
ment. However, the situation surprisingly changes when we
start thinking about Hamiltonians whose terms come from a
restricted class, as we will show in the following sections.

B. Pinned commuting local Hamiltonian

Pinning a qubit effectively projects into a subspace of the
entire Hilbert space. When the original Hamiltonian comes
with some restrictions, these may be lifted after this projec-
tion. Here and in the following sections, we investigate such
cases. First, we claim that pinning a qubit for a commuting
local Hamiltonian and asking about the lowest possible energy
of such a state is as difficult as asking about the ground-state
energy of a generic local Hamiltonian.

Note that the complexity of the original (unpinned) com-
muting local Hamiltonian problem is an open question. The
restriction to commuting terms suggests the problem is not
very different from classical. Schuch has showed that this
problem is in NP for plaquette (4-local) interaction terms on
a square lattice of qubits [18], i.e., there exist classical proofs
that such Hamiltonians have energy lower than some bound.
This result has been expanded and improved in work by
Aharonov et al. [17,28]. Importantly, though, the complexity
of the problem is unknown for generic graphs, larger locality,
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and larger local dimension terms. Importantly, already quite
simple commuting local Hamiltonians have ground states with
topological order (e.g., the toric code [29]), so the com-
plexity of finding the properties of their ground states could
be much harder. In particular, the commuting ground-state
connectivity problem about the structure of the ground state
is QCMA-complete. Note though, that this is likely lower
than QMA-completeness. This all motivates us to investigate
pinned commuting LH. We will now prove our first result:

Theorem 2. QMA-completeness of the pinned commuting
3-local Hamiltonian problem. The pinned commuting 3-local
Hamiltonian problem is QMA-complete.

The pinned commuting k-local Hamiltonian problem is
defined analogously to Definition 1, with an additional condi-
tion: The Hamiltonian’s terms commute with each other. Let
us prove it is QMA-complete.

Proof. First, note that the pinned commuting k-local Hamil-
tonian problem is in QMA, just as is pinned LH. The harder
direction is to show that commuting terms plus pinning can
result in complexity equal to the case of unrestricted local
Hamiltonians. Owing to Ref. [30], we know that the 2-local
Hamiltonian problem made from Z , X , ZZ , and XX terms is
QMA-complete. Let us take such a Hamiltonian and split it
into two groups, one made from ZZ and Z terms, and the other
made from XX and X terms. The terms within each group
commute with each other. Let H = ∑

i Ai + ∑
j B j be such a

noncommuting k-local Hamiltonian, where in the group A =∑
i Ai, all the Ai commute with each other, and in B = ∑

j B j ,
all the terms Bj commute with each other. Assume the local
Hamiltonian promise problem for this H has energy bounds b
and a. Let us now add another qubit to the system, and modify
the terms to

A′
i = Ai ⊗ 1

2 (I + X )n+1 = Ai ⊗ |+〉〈+|n+1,

B′
j = Bj ⊗ 1

2 (I − X )n+1 = Bj ⊗ |−〉〈−|n+1,
(14)

similarly to the approach taken in Ref. [19]. These terms form
a fully commuting, (k + 1)-local Hamiltonian H ′ = ∑

i A′
i +∑

j B′
j . How much power would we have if we could figure

out whether H ′ has a low-energy state vector of the form
|ψ〉|0〉? Observe on the one hand that when we pin the last
qubit to the state vector |0〉, the expectation values of the Ai’s
and Bj’s become

〈0|〈ψ |A′
i|ψ〉|0〉 = 1

2 〈ψ |Ai|ψ〉, (15)

〈0|〈ψ |B′
j |ψ〉|0〉 = 1

2 〈ψ |Bj |ψ〉. (16)

Thus, if the original k-local H has a ground-state vector |ψ〉
with energy a, the state vector |ψ〉|0〉 will have energy a/2
for the new commuting Hamiltonian H ′, as 〈0|〈ψ |H ′|ψ〉|0〉 =
1
2 〈ψ |H |ψ〉. On the other hand, if the energy of any state vector
|ψ〉 for the Hamiltonian H is at least b, the energy of any state
vector |ψ〉|0〉 for the new commuting Hamiltonian H ′ is at
least b/2.

Therefore, if one could solve a pinned commuting (k + 1)-
local Hamiltonian problem on n + 1 qubits, with promise
b
2 , a

2 , one could use this to solve a k-local Hamiltonian prob-
lem (made from two commuting groups of terms) on an
n-qubit systems, with promise bounds b, a. As the origi-
nal problem is QMA-hard for k = 2, we have thus proven

that 3-local pinned commuting local Hamiltonian is QMA-
complete. �

Note that our construction is not geometrically local, as
it requires interaction with the pinned qubit for all original
particles. We leave the possibility of geometric locality as an
open question.

C. Pinned stoquastic Local Hamiltonian

Let us look at another restricted class—stoquastic Hamil-
tonians with nonpositive off-diagonal terms. For such Hamil-
tonians an important obstacle to classical simulation via
quantum Monte Carlo—the sign problem—does not arise
[31]. The local Hamiltonian for stoquastic Hamiltonians de-
fines the complexity class StoqMA [23], which is believed to
be strictly smaller than QMA for the above reason. In partic-
ular, stoquastic Hamiltonians are not thought to be universal
for quantum computing. What happens when we pin some of
the qubits of such Hamiltonians? We show the following.

Theorem 3. QMA-completeness of the pinned stoquastic
3-local Hamiltonian problem. The pinned stoquastic 3-local
Hamiltonian problem is QMA-complete.

A different viewpoint on this problem is given in Ref. [20],
where the authors show universality of adiabatic evolution in
the highest excited state of a stoquastic Hamiltonian, and the
QMA hardness of lower bounding the highest energy of such
a Hamiltonian.

Proof. As in the proof of Theorem 2, we start with ob-
serving that pinned stoquastic k-local Hamiltonian is in QMA,
because pinned LH is in QMA. We will now show that looking
at the ground-state energy of a Hamiltonian with stoquastic
terms with pinning a qubit results is as hard as for a general
local Hamiltonian.

Let us start with an instance of the QMA-complete prob-
lem local Hamiltonian. For each such Hamiltonian H , we
can write another using only stoquastic terms, in order to
deal with possible positive off-diagonal elements in H . For
this, we will divide H = Ô + P̂ into local terms Ô which are
diagonal or have negative off-diagonal elements, and local
terms P̂ with positive off-diagonal elements. Let us replace
the latter with stoquastic terms as follows. First, add an extra
qubit q in a state vector |−〉 = (|0〉 − |1〉)/

√
2 to the system.

Second, modify each term P̂ by attaching the operator Xq

and change its sign, generating a new, stoquastic Hamiltonian
H ′ = Ô ⊗ I − P̂ ⊗ Xq. When we then look at state vectors
of the form |φ〉|−〉, the expectation values of the modified
Hamiltonian will be

〈−|〈φ|H ′|φ〉|−〉q = 〈−|〈φ|Ô ⊗ I − P̂ ⊗ Xq|φ〉|−〉q

= 〈φ|Ô + P̂|φ〉 = 〈φ|H |φ〉. (17)

The expectation value of a pinned state vector |φ〉|−〉 for the
stoquastic H ′ is the same as for the state vector |φ〉 and the
original Hamiltonian H .

In more detail, let us start with the QMA-complete 2-local
Hamiltonian made from terms X , Z , X ⊗ X , Z ⊗ Z , and X ⊗
Z [30]. First, we will change each term of the X type with a
positive prefactor xa > 0 into

xaXa �→ −xaXa ⊗ Xq, (18)
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which is stoquastic. When we pin the qubit q in the state vector
|−〉q, the expectation value of the new term in the state vector
|φ〉|−〉q will be simply xa〈φ|Xa|φ〉, owing to 〈−|Xq|−〉 = −1.
We can deal with the terms of the type XX with a positive
prefactor just as easily. Next, we will look at the terms X ⊗ Z
in H , whose off-diagonal terms have a varying sign. Because
we can rewrite X ⊗ Z = X ⊗ |0〉〈0| − X ⊗ |1〉〈1|, assuming
xa,b > 0, the corresponding terms in H ′ will be

xa,bXa ⊗ Zb �→ −xa,bXa ⊗ (|0〉〈0|b ⊗ Xq + |1〉〈1| ⊗ Iq),

(19)

−xa,bXa ⊗ Zb �→ −xa,bXa ⊗ (|0〉〈0|b ⊗ Iq + |1〉〈1| ⊗ Xq ).

(20)

Observe that the modified terms are stoquastic, with only
negative off-diagonal elements.

Consider now the new stoquastic 3-local Hamiltonian H ′
and ask whether its low-energy vectors can have the form
|φ〉|−〉. On the one hand, if the original H has a ground-state
vector |φ〉 with energy a, the state vector |φ〉|−〉 will have
energy a for the new stoquastic Hamiltonian H ′. On the other
hand, if the energy of any state vector |φ〉 for the Hamiltonian
H is at least b, the energy of any state vector of the form
|φ〉|−〉 is at least b for the new commuting Hamiltonian H ′.
Therefore, we have turned a local Hamiltonian problem with
promise parameters a, b, into a pinned stoquastic local Hamil-
tonian with the same promise, with a doubled Hilbert space
(adding a qubit), and stoquastic terms that have a locality
increased by 1. Solving pinned stoquastic LH is thus at least
as hard as LH, and thus QMA-complete. �

Note that in the proof we provided, the type of the terms in
H ′ is different from H , as we were only interested in making
them stoquastic, not keeping their form. It remains open to
analyze what is the hardness of pinned stoquastic Hamiltonian
with restricted form (e.g., only XXX , ZZZ) or locality below
3. After showcasing the pinning technique in two examples,
we will continue exploring how far it takes us, applying it to
simpler and simpler original Hamiltonians.

D. Pinned permutation Hamiltonians

The possibilities opened in the previous sections motivate
us to go further and design a classically looking problem about
0/1 permutation matrices that will still be QMA-complete.
This is a further restriction on stoquastic Hamiltonians. We
claim the following.

Theorem 4. QMA-completeness of the pinned local permu-
tation Hamiltonian. The pinned local permutation Hamilto-
nian is QMA-complete, with a logarithmic number of pinned
qubits.

Note that (dynamical) universality for quantum compu-
tation with 0/1 matrices has been previously demonstrated,
for example, in the PromiseBQP-string-rewriting problem of
Wocjan and Janzing [32] (where BQP denotes bounded error,
quantum polynomial time), or the universal computation by
quantum walk construction of Childs et al. [33].

Proof. One direction of Theorem 4 is easy—the pinned
local permutation Hamiltonian is obviously in QMA. The
more difficult part is again to construct QMA-hard instances

of pinned 0/1 Hamiltonian. First, we will take a target
Hamiltonian made from Pauli matrices, and replace them
by 0/1 matrices on a larger Hilbert space, with a technique
similar to those of Ref. [20], where it has been used to build
QMA-hard instances of stochastic matrices. Second, we will
utilize pinning to generate the desired real-valued prefactors
for the permutation, and thus also the effective original Pauli
terms.

Consider an instance of the QMA-complete, 2-local
Hamiltonian problem with a Hamiltonian H made from X ,
Z , XX , and ZZ terms, as in Sec. II B, with real-valued pref-
actors. Let us deal with the Pauli terms first, and consider the
prefactors later. The X and XX terms already are permutation
matrices. For the Z and ZZ terms, we will add an auxiliary
qubit z, and transform the interactions as

Z �→|0〉〈0| ⊗ Iz + |1〉〈1| ⊗ Xz, (21)

Z ⊗ Z �→(|0, 0〉〈0, 0| + |1, 1〉〈1, 1|) ⊗ Iz

+ (|0, 1〉〈0, 1| + |1, 0〉〈1, 0|) ⊗ Xz, (22)

generating 2-local and 3-local permutation matrices, made
from 0/1 elements. This results in a permutation Hamiltonian
H ′. When we pin the auxiliary qubit z in the state vector |−〉,
we can effectively generate the original Z and ZZ (and of
course X and XX ) terms as we did for stoquastic Hamilto-
nians.

Second, we want to generate real-valued prefactors for the
effective Pauli terms using permutation Hamiltonians. This is
straightforward with the help of pinning, once we add and pin
several auxiliary systems. In the definition of the pinned local
Hamiltonian, we allow for pinning of up to a polynomial num-
ber of qubits. In the problems considered so far, we pinned a
single qubit. Here, we will use a logarithmic number of such
auxiliary systems.

Let us start with a system described by the Hamiltonian
H ′ = ∑

i Pi built in the previous step as a sum of permutation
matrices, with only 0,1 elements, with a single 1 in each
row and column. We will show how to add Q + 1 qubits
and interactions to form H ′′. Pinning the Q new auxiliary
systems to a specific product subspace S , will then allow us to
effectively investigate the target Hamiltonian H = �SH ′′�S
with the desired form, up to precision 2−Q for its terms. This
precision comes from the possibility of imprecisions of the
original local Hamiltonian problem. If the original problem
was given precisely, but with an inverse polynomial promise
gap, allowing for an inverse-polynomial imprecision in the
Hamiltonian’s elements simply shrinks the promise gap, if we
consider a large enough Q, which is however still logarithmic
in n.

Recall our target effective Hamiltonian H has general real
prefactors for its Pauli terms. Let us consider the terms from
the permutation Hamiltonian H ′ from the first step. Imagine
we want the term Ô to have a prefactor 0 < x < 1. We will
decompose x into binary, up to some precision Q, as

x =
Q∑

j=1

x j

2 j
, (23)
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with x j ∈ {0, 1}. For each nonzero x j , we will pin an auxiliary
qubit q j to

|α j〉 = cos α j |0〉 + sin α j |1〉, sin 2α j = 1

2 j
, (24)

with a new term Ô ⊗ Xqj in H ′ for each nonzero x j , in or-
der that 〈ψ |〈α j |Ô ⊗ Xqj |ψ〉|α j〉 = 〈ψ |Ô|ψ〉/2 j . Pinning the
Q auxiliary qubits to their respective state vectors |α j〉, alto-
gether they become an effective Hamiltonian(

Q∑
j=1

x j

2 j

)
Ô (25)

on the n qubits of the system. Second, to generate effective
negative prefactors, we use the standard trick from before,
adding the auxiliary qubit q0 pinned in the state vector |−〉,
and an interaction of the form Ô ⊗ Xq0 to the desired terms.

Let us summarize. Our target Hamiltonian H acting on n
qubits has M Pauli terms with real prefactors and locality
at most 2. In step 1, we built an n + 1 qubit permutation
Hamiltonian H ′ with locality at most 3, which did not yet in-
clude the desired real prefactors. In step 2, we constructed the
final permutation Hamiltonian H ′′ which works on n + Q + 2
qubits, and has at most 2M × (Q + 1) terms, with locality at
most 5. We pinned the auxiliary qubits z and q0 into the state
vector |−〉, and the auxiliary qubits q1, . . . , qQ into the states
(24). Determining the lowest energy of the pinned 5-local
permutation Hamiltonian H ′′, with Q + 2 pinned qubits, is
thus QMA-hard, as it implies determining the ground-state
energy of the target local Hamiltonian H , an instance of the
QMA-complete problem local Hamiltonian. Therefore, the
pinned permutation Hamiltonian problem is QMA-hard, as
well as QMA-complete. �

III. A DYNAMICAL VIEW OF PINNING

In the previous section, we looked at how pinning can
contribute to the complexity of determining the static prop-
erties of local Hamiltonians—the bounds on the energies of
states from the pinned subspace. We now turn to a dynamical
question, asking what pinning can contribute when applied to
an evolution with a local, time-independent Hamiltonian with
a restricted set of interactions (or unitaries). We will consider
constantly measuring one qubit in a particular basis, pinning
it via the Zeno effect to a particular state. Note that this is
different from postselection. There, one is allowed to choose
a particular result of a measurement of a subsystem without
regard of the result’s (im)probability. This would give one
immense computational power [34], as postselected quantum
computation has the power of probabilistic polynomial time
(PP), much larger than NP. Pinning does not allow us to
choose a measurement result freely. Instead, we must rely on
the Zeno effect to give us a high probability of the desired
projection. Pinning is thus applicable in practice, unlike the
theoretical concept of postselection.

With frequent projective measurement, we effectively get
access to a specific state of a qubit, and thus a specific
subspace of the whole Hilbert space. We will show that the
dynamics of restricted Hamiltonians in this chosen subspace
can result in universal dynamics. In the circuit model, we

know that access to specific states can greatly enhance the
power of a restricted model. For example, a source of magic
states is enough to turn computation with Clifford gates into
a universal quantum computation [13]. Following a similar
strategy as in the previous section, we will now show how
to get universal quantum computation out of evolution with a
restricted set of (e.g., commuting) Hamiltonians together with
a fixed Pauli basis measurement of a single qubit.

A. Warmup: Evolution with pinned stoquastic Hamiltonians

We will start with a simple example of applying pinned
evolution to stoquastic Hamiltonians. We know that evolution
with stoquastic Hamiltonian is already universal for quantum
computation, as shown by Childs et al. [35]. However, our
pinned construction has its own merits, even over later de-
velopments [33], in terms of space and time requirements.
Moreover, it will be useful in Sec. IV A, where we will use
it for the proof of QCMA-hardness of the stoquastic GSCON
problem. Note also that Fujii has shown how adding local
measurements to adiabatic evolution with stoquastic Hamil-
tonians results in universality (for adaptive measurements) or
quantum advantage (if using nonadaptive measurements) [36].
Again, what we do here is more efficient, requires smaller
locality, and is easier to control.

Let us then look at a system with a stoquastic Hamiltonian

H ′ = A ⊗ Iq + B ⊗ Xq, (26)

made from two groups of local, stoquastic terms A and B, with
no positive off-diagonal entries. Furthermore, we demand B
to be entirely off-diagonal. The terms B ⊗ Xq include an in-
teraction with an auxiliary qubit q, similarly to (19). We can
now show that pinned evolution with time-independent, local
stoquastic Hamiltonians is universal for BQP as follows.

We initialize the auxiliary qubit q as |−〉, and measure it
in the X basis often enough. This likely pins the auxiliary
qubit to the state vector |−〉. Meanwhile, the system evolves
with H ′. This results in a particular effective evolution. Let
us cut the time evolution into small steps of size δ → 0. The
evolution can be approximated as alternating the evolution
e−iδH with a projection of the last qubit onto the state vector
|−〉. It will be helpful to express

〈−|e−iδH |ψ〉|−〉q ≈ 〈−|e−iδAe−iδB⊗Xq |ψ〉|−〉q

≈ 〈−|(1 − iδA − iδB ⊗ Xq)|ψ〉|−〉q

= 1 − iδ(A − B)|ψ〉 ≈ e−iδ(A−B)|ψ〉,
(27)

valid up to first order in δ. This allows us to effectively evolve
the state vector |ψ〉 with the general, nonstoquastic Hamilto-
nian H = A − B.

Moreover, because the last qubit is in an eigenstate of Xq,
it never gets flipped into the state vector |+〉. Thus, taking
δ = t/N , with N → ∞, we can confidently say that

|ψ (t )〉PE =
(

N∏
j=1

P−(e−iδ(A+B⊗X ) )

)
|ψ〉

= e−it (A−B)|ψ〉 + |δ〉, (28)
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where |δ〉 is an error state vector with norm of order at most
δ = t/N , i.e., going to zero as N → ∞. Therefore, we can
simulate evolution with a time-independent, nonstoquastic
local Hamiltonian using evolution according to a stoquastic
local Hamiltonian (with locality increased by 1) and pinning.
This is universal for quantum computation (BQP), when we
recall various standard constructions for universal quantum
computation by evolution with a time-independent, nonsto-
quastic local Hamiltonian, e.g., Ref. [8].

B. Pinned evolution with commuting Hamiltonians

Let us now turn to our main result about pinned dynamics.
We will investigate what kind of evolution we can achieve
with pinned commuting local Hamiltonians. A similar ques-
tion has been posed in the context of Hamiltonian purification,
with an emphasis on obtaining a universal algebra [15]. Here,
we will show how to efficiently simulate evolution with a non-
commuting Hamiltonian H = A + B, made from two groups
of terms that commute within the group. For this, we will
construct a Hamiltonian

H ′ = 2A ⊗ |+〉〈+|q + 2B ⊗ |−〉〈−|q, (29)

all of whose terms commute, by adding an auxiliary qubit
q as in (14). Let us now analyze what happens when we
alternate computational basis measurements on the last qubit,
initialized as |0〉, with evolution according to H ′. We will
prove the following:

Theorem 5. Universality of commuting pinned evolution.
Pinned evolution with time-independent, local commuting
Hamiltonians is universal for BQP.

Proof. We can follow Facchi and Pascazio [37], Sec. 3,
considering the quantum Zeno effect in one Zeno subspace.
The resulting dynamics in time t is unitary, according to the
projection of H ′ onto the subspace with the extra qubit in
the state |0〉q, with probability 1, in the limit of N → ∞,
where we look at N repetitions of evolution over time δ = t/N
followed by projective measurement.

In our case, the projection of the Hamiltonian H ′ is
�0q H ′�0q = A + B. The Zeno dynamics is thus unitary
evolution with the Hamiltonian A + B = H , our desired
noncommuting Hamiltonian. Therefore, we can simulate evo-
lution with unrestricted (noncommuting) Hamiltonians using
commuting Hamiltonians and Zeno-style pinning. Starting
with a universal local Hamiltonian built from two groups
of commuting terms as in Sec. II B, this directly trans-
lates into the statement of the theorem: Pinned evolution
with commuting local Hamiltonians is universal for quantum
computation �

State preparation with a universal, 2-local, noncommuting
construction [8] that has O(L) gates in a circuit can thus be
efficiently simulated with low error by time O(L) evolution
with 3-local, commuting terms, and frequent measurement of
a single qubit.

IV. GROUND-STATE CONNECTIVITY

Our original motivation for exploring pinning was to
understand better the variants of Gharibian and Sikora’s
ground-state connectivity (GSCON) problem [21]. It asks
about the possibility of traversing the low-energy subspace

of a local Hamiltonian from one specific ground state to
another, using local unitary transformations. Gosset, Mehta,
and Vidick [19] have shown that the problem remains QCMA-
complete even if only commuting Hamiltonians are used. In
their proof, they use a trick similar to pinning—combining
the original Hamiltonian’s terms with projections on auxiliary
qubits to make the terms commute. Then they demand that the
initial and final ground states have a few qubits in a specific
state—which means that the original noncommuting Hamil-
tonian’s terms are effectively applied. Moreover, this has to
be combined with the impossibility of a simple flip of this
state without a computation being verified first. Nevertheless,
it helped us realize that the GSCON formulation allows one
to essentially fix some part of the ground state, adding extra
power to restricted forms of Hamiltonians.

Therefore, using techniques similar to Ref. [19], hardness
results for pinned local Hamiltonians should be translatable
to hardness of GSCON for similarly restricted Hamiltonians.
For example, we will be able to show QCMA-hardness of
GSCON for stoquastic Hamiltonians, building on Ref. [19]
and the construction from Sec. III A. Moreover, in this context
we will also provide some evidence into the free-fermionic
variant of GSCON, to be further developed in future work.

A. Stoquastic GSCON

First, we will show how to build on the proof that
the ground-state connectivity (GSCON) problem is QCMA-
complete for commuting Hamiltonians, as well as on the
universality of pinned stoquastic LH, and prove that stoquastic
GSCON is QCMA-complete. The statement of the problem is
identical to the commuting GSCON problem in Ref. [19], the
only difference being the replacement of the word “commut-
ing” by “stoquastic.” We thus have:

Definition 2. Stoquastic ground-state connectivity
(H, k, η1, η2, η3, η4,�, l, m,Uψ,Uφ ).

Input:
1. k-local Hamiltonian H = ∑

i Hi with stoquastic terms
(i.e., with no positive off-diagonal elements), satisfying
‖Hi‖ � 1.

2. η1, η2, η3, η4,� ∈ R, and integer m � 0, such that η2 −
η1 � � and η4 − η3 � �.

3. Polynomial size quantum circuits Uψ and Uφ generating
“starting” and “target” state vectors |ψ〉 and |φ〉 starting from
the |0〉⊗n state, respectively, satisfying 〈ψ |H |ψ〉 � η1 and
〈φ|H |φ〉 � η1.

Output:
1. There exists a sequence of l-local unitaries (Ui )m

i=1 ∈ U
such that

(a) (Intermediate states remain in low-energy
space) For all i ∈ [m] and intermediate states

|ψi〉 := Ui · · ·U2U1|ψ〉, one has 〈ψi|H |ψi〉 � η1, and
(b) (Final state close to target state)

‖Um · · ·U1|ψ〉 − |φ〉‖ � η3,
then output YES.
2. If for all l-local sequences of unitaries (Ui )m

i=1, either:
(a) (Intermediate state obtains high energy) There
exists i ∈ [m] and an intermediate state vector

|ψi〉 := Ui · · ·U2U1|ψ〉, such that 〈ψi|H |ψi〉 � η2, or
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(b) (Final state far from target state)
‖Um · · ·U1|ψ〉 − |φ〉‖ � η4,

then output NO.
There is not that much that we need change in the proof

of Theorem 6 in Ref. [19], when we want to build a generic
effective Hamiltonian from stoquastic instead of commuting
terms, using “pinning” owing to a restriction on the initial and
final states, as well as the form of the Hamiltonian that we
construct.

Theorem 6. QCMA-completeness of the stoquastic ground-
state connectivity problem. The stoquastic ground-state con-
nectivity problem is QCMA-complete.

Proof. It is straightforward to see that the stoquastic
GSCON is in QCMA, with a witness encoding the sequence of
unitaries, verifiable by a quantum computation. For the other
direction, we are directly inspired by the proof of QCMA-
completeness of commuting GSCON [19]. There, the authors
split a target generic (noncommuting) local Hamiltonian G =
A + B into two groups of local commuting terms, add two
3-qubit auxiliary registers, and set up the commuting Hamil-
tonian

A ⊗ �S ⊗ �+ + B ⊗ �S ⊗ �− + I ⊗ I ⊗ �S , (30)

where �S projects onto S = span{|0, 0, 0〉, |1, 1, 1〉}, and �±
are projectors onto (|0, 0, 0〉 ± |1, 1, 1〉)/

√
2. The QCMA-

hard GSCON question concerns the possible low-energy
traversal from the state vector |0〉⊗n|1〉⊗3|0〉⊗3 to the state vec-
tor |0〉⊗n|0〉⊗3|0〉⊗3 by 2-local operations. This is possible by
using the first n-qubit register to prepare a low-energy witness
for the Hamiltonian G = A + B. This effectively “turns off”
the first two terms in (30), allowing one to flip the middle reg-
ister to |1, 1, 1〉 by 2-local operations without a high-energy
cost. Finally, one uncomputes the first register. Meanwhile,
the last register stays “pinned” in |0, 0, 0〉, making sure both
groups of terms A and B are in play and contribute signif-
icantly to the energy of the intermediate states. For more
details, see the proof of Theorem 6 of Ref. [19].

Let us then work out the stoquastic version of this. We start
with an n-qubit register, and the target generic, nonstoquastic,
2-local, n-qubit Hamiltonian H made from ZZ , ZX , XX , Z ,
and X terms. The local Hamiltonian problem for this variant
of H is QMA-complete. The GSCON problem based on H is
thus QCMA-complete.

We will construct a stoquastic GSCON Hamiltonian H ′′
similarly to (30), with a few important differences. First, let
us define two operators,

Q = 1
3

(
Xq1 + Xq2 + Xq3

)
, (31)

an analog of Xq from Sec. II C, effectively flipping the sign
when the auxiliary register is in the state vector |−〉⊗3, and

R3 = 3
4 I − 1

4

(
Xq1 Xq2 + Xq2 Xq2 + Xq1 Xq3

)
, (32)

a 2-local, stoquastic operator equivalent to the projector onto
the space orthogonal to the span of |−〉⊗3 and |+〉⊗3.

Second, let us add a 3-qubit auxiliary register and com-
bine the original Hamiltonian H with the operator R3 as
H ′ = H ⊗ R3. Similarly to Sec. II C, we can split this local
Hamiltonian H ′ acting on n + 3 qubits into groups of local
terms H ′ = Ô′ + P̂′, with nonpositive off-diagonal terms Ô′

and a group of strictly off-diagonal local terms with positive
elements P̂′.

Finally, we combine the group P̂′ with the operator Q on
the final auxiliary register, in order to ensure that −P̂′ ⊗ Q
is stoquastic, with strictly negative off-diagonal elements,
as P̂′ ⊗ Q is a tensor product of two operators which each
have strictly positive off-diagonal elements and no diagonal
elements. Altogether, we arrive at the local, stoquastic Hamil-
tonian

H ′′ = Ô′ ⊗ I − P̂′ ⊗ Q + I ⊗ R3. (33)

Observe that for the state vectors of the form |ψ〉|−〉⊗3|−〉⊗3

and |ψ〉|+〉⊗3|−〉⊗3, the expectation value of H ′′ is zero.
Meanwhile, when the middle register is in an X -basis state
vector |x1, x2, x3〉 other than |−〉⊗3 or |+〉⊗3, and the last
register remains in |−〉⊗3, the expectation value

〈ψ |〈x1, x2, x3|〈−|⊗3H ′′|ψ〉|x1, x2, x3〉|−〉⊗3

= 〈ψ |〈x1, x2, x3|Ô′ + P̂′|ψ〉|x1, x2, x3〉 (34)

= 〈ψ |〈x1, x2, x3|H ⊗ R3|ψ〉|x1, x2, x3〉 = 〈ψ |H |ψ〉 (35)

is equivalent to the expectation value of the original nonsto-
quastic Hamiltonian H acting on |ψ〉, owing to

〈x1, x2, x3|R3|x1, x2, x3〉 = 1. (36)

The hard ground space traversal question we ask is then:
Decide, if starting in the state vector |0〉⊗n|−〉⊗3|−〉⊗3, one
can traverse the low-energy subspace of H ′′ without energy
above α (where this bound comes from the QCMA-complete
LH problem with energy bounds α and β) and at most η3 far
from the state |0〉⊗n|+〉⊗3|−〉⊗3, using a sequence of 2-local
unitaries of length polynomial in n, or whether one must end
at least η4 far from the final state, or some of the intermediate
states have energy at least η2?

Showing completeness is straightforward with the follow-
ing sequence of transformations. Note the third register stays
in |−〉⊗3 throughout the process. First, we prepare the low-
energy witness for H in the first register. The energy is zero
during this process. Second, we flip the second register from
|−〉⊗3 to |+〉⊗3, qubit by qubit. In this process, the energy of
the states is at most α, owing to (35). Finally, we uncompute
the first register, keeping the energy zero.

For soundness, one can directly follow [19] to show that
no sequence of 2-local unitaries will satisfy well enough the
two conditions—end near enough the final state and stay low
enough in energy throughout the sequence. The lower bound
on the energy of the intermediate states if one is to end up
close to the final state is in this case η2 = �(β2/m6), just as
in the proof of soundness of Theorem 10 in Ref. [19], where
〈ψ |H |ψ〉 � β is the bound in the NO case of the original LH
problem and m is the number of unitaries in the sequence. One
has only to replace

P0 = |0, 0, 0〉〈0, 0, 0| �→ |−〉〈−|⊗3, (37)

P1 = |1, 1, 1〉〈1, 1, 1| �→ |+〉〈+|⊗3, (38)

and follow the proof. �
Observe that in the NO case, to obtain soundness, an

efficient (polylength) sequence of 2-local transformations
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keeping the energy of intermediate states low enough simply
could not exist, and this was guaranteed by the lower bound
from the small projection Lemma 8 [19]. Would this be also
true in other settings besides history state preparation con-
nected to QCMA-complete problems? We ask this question
about quantum memories, e.g., based on the toric code, in
forthcoming work.

B. Ground-state connectivity for free fermions

In the context of studies of Majorana fermionic quantum
memories, variants of GSCON for free fermions are partic-
ularly interesting [38,39]. Here, we provide insights that we
expect to be helpful in tackling this version of the problem
relevant when assessing Majorana fermionic quantum memo-
ries: We provide evidence that between any pair of low-energy
free-fermionic states, there exists a local free-fermionic circuit
that interpolates between them within the low-energy sub-
space. Before we get there, let us define the free-fermionic
ground-state connectivity problem, though. Note also that our
discussion of the free-fermionic problem does not rely on
pinning, but complements our understanding of GSCON in
a practically relevant setting.

Definition 3. Free-fermionic ground-state connectivity
(H, k, η1, η2, η3, η4,�, l, m,Uψ,Uφ ).

1. Input parameters:
(a) k-local free fermionic Hamiltonian H = ∑

i Hi acting
on n fermionic modes with each Hi being supported on no
more than k modes, satisfying ‖Hi‖ � 1.

(b) η1, η2, η3, η4,� ∈ R, and integer m � 0, such that
η2 − η1 � � and η4 − η3 � �.

(c) Polynomial size fermionic Gaussian quantum cir-
cuits Uψ and Uφ generating “starting” and “target” fermionic
Gaussian state vectors |ψ〉 and |φ〉 (starting from the
fermionic vacuum), respectively, satisfying 〈ψ |H |ψ〉 � η1

and 〈φ|H |φ〉 � η1.
2. Output:
(a) If there exists a sequence of l-local unitaries (Ui )m

i=1 ∈
U supported on m modes each such that

i. (Intermediate states remain in low-energy
space) For all i ∈ [m] and intermediate states +
|ψi〉 := Ui · · ·U2U1|ψ〉, one has 〈ψi|H |ψi〉 � η1, and

ii. (Final state close to target state)
‖Um · · ·U1|ψ〉 − |φ〉‖ � η3,
then output YES.
(b) If for all l-local sequences of unitaries (Ui )m

i=1, either:
i. (Intermediate state obtains high energy) There

exists i ∈ [m] and an intermediate state vector
|ψi〉 := Ui · · ·U2U1|ψ〉, such that 〈ψi|H |ψi〉 � η2, or

ii. (Final state far from target state)
‖Um · · ·U1|ψ〉 − |φ〉‖ � η4,
then output NO.
Here, we do not assess the hardness of the free-fermionic

GSCON problem. We conjecture that in contrast to the general
case, in free fermions there will always exist a local low-
energy path between any pair of low-energy quantum states.

Conjecture 1. Free-fermionic ground-state connectivity. For
any free-fermionic Hamiltonian H and any pair of low-energy
Gaussian fermionic states |ψ〉, |φ〉 there exists a 2-local finite
Gaussian fermionic circuit interpolating between them such
that all intermediate states satisfy the energy constraint.

We here provide evidence in favor of this conjecture. Let us
denote the fermionic covariance matrix of the initial state vec-
tor |ψ〉 with γ (in the conventions of Ref. [40]), and with ω the
covariance matrix of the final state vector |φ〉. For n modes,
this is a real 2n × 2n matrix satisfying γ = −γ T (as is the
case for any covariance matrix) and γ T γ = I (reflecting pu-
rity). The application of Gaussian fermionic gates to achieve
|ψi〉 = Ui · · ·U2U1|ψ〉 corresponds to a transformation

γi := Oi · · · O2O1γ OT
1 OT

2 · · · OT
i , (39)

with Oi ∈ SO(2n) for all i, on the level of covariance matrices.
In the free-fermionic ground-state connectivity problem, the
initial covariance matrix can be written as

γ = Oγ0OT , (40)

with O ∈ SO(2n) and either

γ0 =
n⊕

j=1

[
0 1

−1 0

]
(41)

or

γ0 =
([

0 −1
1 0

]
⊕

n−1⊕
j=1

[
0 1

−1 0

])
(42)

depending on having even or odd parity. Turning to Hamilto-
nians, energy expectation values are computed as

〈ψ |H |ψ〉 = tr(γ h), (43)

with h = −hT . For a local Hamiltonian H = ∑
i Hi, each

of the terms Hi will correspond to a matrix hi = −hT
i with

‖hi‖ � 1 that is a zero matrix except a 2k × 2k block, since
each hi acts on k modes only. The Hamiltonian matrix h
can without loss of generality be assumed to be 2 × 2 block
diagonal, as any special orthogonal transformation to bring it
into this form can be absorbed in the O of the initial covariance
matrix. The attainable energy expectations can be computed
from the reachable set

{P(Oγ0OT ) : O ∈ SO(2n)}, (44)

where P is the projection onto 2 × 2 block-diagonal form.
By virtue of the analog of the Schur-Horn theorem for skew-
symmetric matrices [41], it becomes clear that within both
the even- and the odd-parity sectors, the reachable set are
all 2 × 2 skew-symmetric real block-diagonal matrices for
even and odd parity, respectively. As a consequence of that,
there is a parametrized curve t �→ O(t ) for t ∈ [0, 1] with
O(t ) ∈ SO(2n) for all t so that

γ = O(0)γ0O(0)T (45)

and

ω = O(1)γ0O(1)T (46)

so that

tr[O(t )γ0O(t )T h] = (1 − t )tr(γ h) + t tr(ωh). (47)

That is to say, one can linearly interpolate between the ini-
tial and final energy values. One can then chop the linear
interpolation into a finite number N steps, each of which is
characterized by an orthogonal matrix in SO(2n) close in
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operator norm to the identity. What is more, following the
special orthogonal fermionic analog of the decomposition of
Ref. [42], this transformation can be exactly decomposed into
an O(n2) sized circuit of 2-local fermionic Gaussian quan-
tum gates that are also close to the identity. The so obtained
discrete local fermionic circuit

∏O(n2 )N
i=1 Oi therefore remains

close to the continuous curve O(t ) for all t ∈ [0, 1]. This
implies that the energy along this circuit cannot deviate too
much from the initial and final value. By increasing the value
of N we can push this deviation down arbitrarily far so as to
satisfy the energy constraint throughout the path, providing
evidence for our conjecture. We leave the details of this inter-
esting problem relevant for practical quantum memories with
Majorana fermions for future work.

V. DISCUSSION

Pinning exemplifies the mathematical question of Hamil-
tonian purification [16], which we looked at here in a variety
of contexts (commuting, stoquastic, permutation, and other
restricted classes of Hamiltonians). We have presented several
results in Hamiltonian complexity, raising questions about the
static (complexity) and dynamical (evolution and universality)
implications of a special type of control on a small subsystem.
Let us now discuss a few observations.

First, quantum perturbation gadgets that have been used in
Hamiltonian complexity for a long time ever since [7], are
also based on a form of pinning—effectively fixing part of a
system into a subspace by providing a large energy penalty
to the orthogonal subspace. They can result in an effective
Hamiltonian with multiplicatively combined, higher-locality
terms, owing to the form of the perturbative expansion of
the Hamiltonian’s self-energy. On the other hand, pinning
as we view it here, is a geometrical restriction on a part
of a system. First of all, it is not perturbative, and second,
it can effectively generate only linear and not multiplicative
combinations of operators. Therefore, it does not allow one to
combine operators to increase the effective locality of terms,
which perturbative gadgets are designed to do. On the con-
trary, we need k + 1 local terms in a pinned Hamiltonian to
get an effective k-local Hamiltonian. In particular, to show
that pinned commuting 3-LH is QMA complete in Sec. II B,
we have turned a 2-local Hamiltonian problem with promise
b, a, into a pinned version with a doubled Hilbert space by
adding a qubit. Moreover, the newly formed up to 3-local and
commuting terms have the form Z , X , ZX , XX , ZZ , ZZX ,
or XXX . However, is the increase in locality essential? The
complexity of the pinned 2-local commuting Hamiltonian re-
mains open. Straightforward attempts mimicking perturbation
gadgets to generate effective interactions with higher locality
do not work. Similarly, we have shown in Sec. II C that the
pinned stoquastic 3-LH is QMA-complete. However, it re-
mains open to figure out how hard the pinned stoquastic 2-LH
problem is. One way to go could be to show that 2-LH with
±ZZ,−XX,±X,±Z terms is QMA-complete.

Second, our reason for investigating pinning was its appli-
cation to Hamiltonians with a restricted form. Could pinning
be “forced” with such restricted terms? Sometimes, as in the
application to GSCON, there exist operators with the desired

form, which energetically penalize a subspace. For example,
in Sec. IV A, we wrote down the stoquastic operator (32) that
works as a projector onto the complement of |−〉⊗3 and |+〉⊗3,
or in Ref. [19], where a 3-local projector has the required
form commuting with the rest of the Hamiltonian. However,
in other situations we cannot do this. For example, we cannot
energetically prefer the state vector |−〉 of a qubit by sto-
quastic terms, as that would imply QMA-completeness of the
stoquastic LH problem, which is considered unlikely. Thus,
we require pinning as an external condition in the pinned sto-
quastic LH problem. Similarly, we added dynamical pinning
based on repeated measurements in Sec. III as an external
resource, and not directly as a part of the Hamiltonian. Third,
it would be interesting to see whether pinning for some re-
stricted models could result in intermediate complexity (e.g.,
completeness for transverse Ising models), as classified in
Ref. [3].

Fourth, as pinning fixes a particular value of a certain
subsystem, one naturally asks about its relationship to postse-
lection. What we propose in Sec. III is far from postselection.
In our Zeno-effect constructions, the probability of even
many successful projections tends to 1. Our results say that
universality can arise even from this small degree of practi-
cal control. On the other hand, postselection is about being
able to postselect (“choose” the value of measurement re-
sults regardless of the low probability of the outcome). It is
known that this incredibly powerful ability would increase
the computational power immensely—e.g., postselected BQP
becomes PP [34].

Fifth, we hope that our investigation will shed light on and
motivate further inquiries into the complexity of the variants
of the original local Hamiltonian problems—stoquastic, com-
muting, or with other restrictions.

Finally, we hope that dynamical pinning based on extra
control (repeated measurements) of a single qubit, described
in Sec. III, with a fixed interaction Hamiltonian of a restricted
form, could be readily implemented in today’s experimen-
tal settings. It is also our hope that the present work can
substantially contribute to the growing body of solutions to
problems in Hamiltonian complexity beyond assessing the
computational complexity of approximating ground-state en-
ergies, signifying the richness of the field.

ACKNOWLEDGEMENTS

We thank an anonymous referee for valuable comments
on the early version of this paper, especially on universal
evolution with stoquastic Hamiltonians. D.N. has received
funding from the People Programme (Marie Curie Actions)
EU’s 7th Framework Programme under REA Grant Agree-
ment No. 609427. His research has been further co-funded by
the Slovak Academy of Sciences, the Slovak Research and
Development Agency Grant APVV-18-0518 (OPTIQUTE),
and the QuantERA network project HIPHOP (731473). D.H.
and J.E. have been supported by the ERC (TAQ), the Tem-
pleton Foundation, and the DFG (EI 519/14-1, EI 519/15-1,
EI 519/21-1, CRC 183). M.S. thanks the Alexander-von-
Humboldt Foundation for support.

012604-10



PINNED QUANTUM MERLIN-ARTHUR: THE POWER OF … PHYSICAL REVIEW A 103, 012604 (2021)

[1] S. Gharibian, Y. Huang, Z. Landau, and S. W. Shin, Quantum
Hamiltonian complexity, Found. Trends Theor. Comput. Sci.
10, 159 (2015).

[2] T. J. Osborne, Hamiltonian complexity, Rep. Prog. Phys. 75,
022001 (2012).

[3] T. S. Cubitt, A. Montanaro, and S. Piddock, Universal quan-
tum Hamiltonians, Proc. Natl. Acad. Sci. USA 115, 9497
(2018).

[4] S. Bravyi and M. Hastings, On complexity of the quantum Ising
model, Commun. Math. Phys. 349, 1 (2017).

[5] B. M. Terhal and D. P. DiVincenzo, Classical simulation of
noninteracting-fermion quantum circuits, Phys. Rev. A 65,
032325 (2002).

[6] D. Gosset, B. M. Terhal, and A. Vershynina, Universal
Adiabatic Quantum Computation Via the Space-Time Circuit-
to-Hamiltonian Construction, Phys. Rev. Lett. 114, 140501
(2015).

[7] J. Kempe, A. Kitaev, and O. Regev, The complexity of
the local Hamiltonian problem, SIAM J. Comput. 35, 1070
(2006).

[8] D. Nagaj, Universal two-body-Hamiltonian quantum comput-
ing, Phys. Rev. A 85, 032330 (2012).

[9] D. Nagaj and P. Wocjan, Hamiltonian quantum cellular au-
tomata in one dimension, Phys. Rev. A 78, 032311 (2008).

[10] R. I. Oliveira and B. M. Terhal, The complexity of quantum
spin systems on a two-dimensional square lattice, Quantum Inf.
Comput. 8, 0900 (2008).

[11] E. Knill and R. Laflamme, Power of One Bit of Quantum
Information, Phys. Rev. Lett. 81, 5672 (1998).

[12] T. Morimae, Hardness of classically sampling one clean qubit
model with constant total variation distance error, Phys. Rev. A
96, 040302(R) (2017).

[13] S. Bravyi and A. Kitaev, Universal quantum computation with
ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316
(2005).

[14] S. P. Jordan and E. Farhi, Perturbative gadgets at arbitrary
orders, Phys. Rev. A 77, 062329 (2008).

[15] D. K. Burgarth, P. Facchi, V. Giovannetti, H. Nakazato,
S. Pascazio, and K. Yuasa, Exponential rise of dynamical
complexity in quantum computing through projections, Nat.
Commun. 5, 5173 (2014).

[16] D. Orsucci, D. K. Burgarth, P. Facchi, H. Nakazato, S. Pascazio,
K. Yuasa, and V. Giovannetti, Hamiltonian purification, J. Math.
Phys. 56, 122104 (2015).

[17] D. Aharonov, O. Kenneth, and I. Vigdorovich, On the
complexity of two dimensional commuting local Hamil-
tonians, in 13th Conference on the Theory of Quan-
tum Computation, Communication and Cryptography (TQC
2018), edited by S. Jeffrey, Leibniz International Proceed-
ings in Informatics (LIPIcs) Vol. 111 (Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2018),
pp. 2:1–2:21.

[18] N. Schuch, Complexity of commuting Hamiltonians on a square
lattice of qubits, Quantum Inf. Comput. 11, 901 (2011).

[19] D. Gosset, J. C. Mehta, and T. Vidick, QCMA hardness
of ground space connectivity for commuting Hamiltonians,
Quantum 1, 16 (2017).

[20] S. P. Jordan, D. Gosset, and P. J. Love, Quantum-Merlin-
Arthur–complete problems for stoquastic Hamiltonians and
Markov matrices, Phys. Rev. A 81, 032331 (2010).

[21] S. Gharibian and J. Sikora, Ground state connectivity of
local Hamiltonians, in Automata, Languages, and Pro-
gramming, edited by M. M. Halldórsson, K. Iwama, N.
Kobayashi, and B. Speckmann (Springer, Berlin, 2015),
pp. 617–628.

[22] D. Janzing and P. Wocjan, BQP-complete problems concerning
mixing properties of classical random walks on sparse graphs,
arXiv:quant-ph/0610235.

[23] S. Bravyi, D. P. DiVincenzo, R. I. Oliveira, and B. M. Terhal,
The complexity of stoquastic local Hamiltonian problems,
Quantum Inf. Comput. 8, 0361 (2008).

[24] S. Bravyi and B. M. Terhal, Complexity of stoquastic
frustration-free Hamiltonians, SIAM J. Comput. 39, 1462
(2009).

[25] D. Hangleiter, I. Roth, D. Nagaj, and J. Eisert, Easing the Monte
Carlo sign problem, Sci. Adv. 6, eabb8341 (2020).

[26] J. Klassen, M. Marvian, S. Piddock, M. Ioannou, I. Hen, and
B. Terhal, Hardness and ease of curing the sign problem for
two-Local qubit Hamiltonians, arXiv:1906.08800.

[27] M. Marvian, D. A. Lidar, and I. Hen, On the computa-
tional complexity of curing non-stoquastic Hamiltonians, Nat.
Commun. 10, 1571 (2019).

[28] D. Aharonov and L. Eldar, On the complexity of commuting
local Hamiltonians, and tight conditions for topological order
in such systems, in Proceedings of the 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Science, FOCS ’11
(IEEE Computer Society, Washington, DC, 2011), pp. 334–343.

[29] A. Y. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. 303, 2 (2003).

[30] J. D. Biamonte and P. J. Love, Realizable Hamiltonians for uni-
versal adiabatic quantum computers, Phys. Rev. A 78, 012352
(2008).

[31] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J.
Scalapino, and R. L. Sugar, Sign problem in the numerical
simulation of many-electron systems, Phys. Rev. B 41, 9301
(1990).

[32] D. Janzing and P. Wocjan, A promiseBQP-complete
string rewriting problem, Quantum Inf. Comput. 10, 234
(2010).

[33] A. M. Childs, D. Gosset, and Z. Webb, Universal computation
by multiparticle quantum walk, Science 339, 791 (2013).

[34] S. Aaronson, Quantum computing, postselection, and proba-
bilistic polynomial-time, Proc. R. Soc. London A 461, 3473
(2005).

[35] A. M. Childs, Universal Computation by Quantum Walk, Phys.
Rev. Lett. 102, 180501 (2009).

[36] K. Fujii, Quantum speedup in stoquastic adiabatic quantum
computation, arXiv:1803.09954.

[37] P. Facchi and S. Pascazio, Quantum Zeno dynamics: Mathemat-
ical and physical aspects, J. Phys. A: Math. Theor. 41, 493001
(2008).

[38] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey,
T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen,
Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O’Malley, P.
Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N.
Cleland, and J. M. Martinis, Superconducting quantum cir-
cuits at the surface code threshold for fault tolerance, Nature
(London) 508, 500 (2014).

[39] D. Litinski, M. S. Kesselring, J. Eisert, and F. V. Oppen,
Combining Topological Hardware and Topological

012604-11

https://doi.org/10.1561/0400000066
https://doi.org/10.1088/0034-4885/75/2/022001
https://doi.org/10.1073/pnas.1804949115
https://doi.org/10.1007/s00220-016-2787-4
https://doi.org/10.1103/PhysRevA.65.032325
https://doi.org/10.1103/PhysRevLett.114.140501
https://doi.org/10.1137/S0097539704445226
https://doi.org/10.1103/PhysRevA.85.032330
https://doi.org/10.1103/PhysRevA.78.032311
https://doi.org/10.1103/PhysRevLett.81.5672
https://doi.org/10.1103/PhysRevA.96.040302
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.77.062329
https://doi.org/10.1038/ncomms6173
https://doi.org/10.1063/1.4936311
https://doi.org/10.22331/q-2017-07-14-16
https://doi.org/10.1103/PhysRevA.81.032331
http://arxiv.org/abs/arXiv:quant-ph/0610235
https://doi.org/10.1137/08072689X
https://doi.org/10.1126/sciadv.abb8341
http://arxiv.org/abs/arXiv:1906.08800
https://doi.org/10.1038/s41467-019-09501-6
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevA.78.012352
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1126/science.1229957
https://doi.org/10.1098/rspa.2005.1546
https://doi.org/10.1103/PhysRevLett.102.180501
http://arxiv.org/abs/arXiv:1803.09954
https://doi.org/10.1088/1751-8113/41/49/493001
https://doi.org/10.1038/nature13171


NAGAJ, HANGLEITER, EISERT, AND SCHWARZ PHYSICAL REVIEW A 103, 012604 (2021)

Software: Color-Code Quantum Computing with Topological
Superconductor Networks, Phys. Rev. X 7, 031048
(2017).

[40] J. Eisert, V. Eisler, and Z. Zimborás, Entanglement negativity
bounds for fermionic Gaussian states, Phys. Rev. B 97, 165123
(2018).

[41] R. S. Leite, T. R. W. Richa, and C. Tomei, Geometric proofs of
some theorems of Schur-Horn type, Linear Algebra Appl. 286,
149 (1999).

[42] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, Experi-
mental Realization of any Discrete Unitary Operator, Phys. Rev.
Lett. 73, 58 (1994).

012604-12

https://doi.org/10.1103/PhysRevX.7.031048
https://doi.org/10.1103/PhysRevB.97.165123
https://doi.org/10.1016/S0024-3795(98)10169-6
https://doi.org/10.1103/PhysRevLett.73.58

