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Quantum switch in the gravity of Earth
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We introduce a protocol for a quantum switch in the gravitational field of a spherical mass and determine the
time interval required for its realization in the gravity of Earth. One of the agents that performs operations with
indefinite order is a quantum system in a path-superposition state. Entanglement between its proper time and
position is explored as a resource for the implementation of the quantum switch. The realization of the proposed
protocol would probe the physical regime described by quantum mechanics on curved spacetimes, which has not
yet been explored experimentally.
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I. INTRODUCTION

The quantum switch [1] is a task in which two noncom-
muting operations are realized on a target quantum system,
resulting in a quantum superposition of the orders in which
they were applied. This task has already been implemented in
optical tables [2–5] and provides a variety of advantages for
quantum computation and communication [6–11], quantum
thermodynamics [12,13], and quantum metrology [14]. The
idea of the quantum switch is formalized in the process ma-
trix framework [15,16], a formulation of quantum mechanics
in which the existence of a classical background of causal
relations among events is not assumed [17]. One can testify
the indefinite order using a causal witness [3,4,18] and via
the Bell’s theorem for temporal order [19,20]. The quantum
switch is also employed in thought experiments in quantum
gravity phenomenology [19].

The quantum switch is achieved by means of a control
quantum system C, whose state is entangled with the order
of the operations (see reference [4]). Suppose that |0〉c and
|1〉c are orthogonal states of C, and A,B are noncommuting
operations that can be applied by agents A and B to the target
system. Let the composite system be such that if C is in the
state |0〉c, the operation A is applied before the operation B,

|0〉c |ψ〉 �→ |0〉c BA |ψ〉 , (1)

and if C is in the state |1〉c, the operations are applied in the
opposite order,

|1〉c |ψ〉 �→ |1〉c AB |ψ〉 . (2)
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Preparing the control system in the state (|0〉 + |1〉)/
√

2,
the target will evolve into a superposition of states obtained
through the application of the operations A and B in switched
orders,

(|0〉c + |1〉c)√
2

|ψ〉 �→ |0〉c BA |ψ〉 + |1〉c AB |ψ〉√
2

. (3)

The order of the operations is then said to be indefinite.
Apart from applications in quantum computation and

communication, processes with indefinite order appear in con-
nection with foundational questions in quantum gravity. The
hypothesis that the gravitational field can exist in a super-
position of classical configurations has been explored as a
possible path to quantum gravity phenomenology [19,21–27].
In particular, it was shown in [19] that if the gravitational field
of a mass in a superposition of distinct positions displays a
corresponding superposition of classical configurations, then
it can be used as the control of a quantum switch. Observation
of the quantum switch in this context would then testify that
the gravitational field is in a superposition state. A quantum
switch controlled by gravity is referred to as a gravitational
quantum switch. The relation between the gravitational quan-
tum switch and optical implementations in classical spacetime
was discussed in [28]. A proposal for simulating the gravita-
tional quantum switch using accelerated agents on Minkowski
spacetime was described in [29].

With the current technology, it is still a challenge to put a
massive body in superposition for enough time to realize the
gravitational quantum switch proposed in [19]. In the present
work, we introduce an alternative strategy for implementing
the quantum switch in a gravitational system. It was argued
in [30] that outcomes of a process where a localized system
interacts with another system in a superposition of positions
can be reproduced by a process where the first system is delo-
calized while the second is localized. Such a correspondence
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suggests that the gravitational quantum switch formulated in
[19] can be simulated in a new context where the mass is at a
definite position, while the agents and target are delocalized.
In this case, the quantum switch would be implemented by the
dynamics of quantum systems on a definite curved spacetime,
and could be explored as a tool for testing aspects of quantum
mechanics on curved spacetimes, which is our main interest
in this work.

We show that a protocol for a quantum switch analog to
that of [19] can indeed be formulated on the gravitational field
of a central mass. Instead of attempting a direct translation of
the protocol of [19], we present an alternative protocol that
allows for a more efficient implementation. One of the agents
is set in a superposition of positions on the curved classical
spacetime describing the gravitational field of a central mass.
We explore a setup in which the distances from the alternative
positions of the agent to the central mass change over time. In
contrast, static agents are considered in [19]. The proper times
along the alternative paths are distinct, allowing the evolved
state to display a superposition of proper times, which can be
explored for the implementation of a quantum switch. With
a careful choice of paths for the agent, the amount of time
required to perform the quantum switch can be considerably
decreased for a given experimental precision. Observation of
such a quantum switch would confirm the production of a
superposition of proper times by the distinct gravitational time
dilations along the alternative paths of the agent, providing a
test of quantum mechanics on curved spacetimes.

We first describe our general protocol and then compute its
minimum duration on Earth’s surface. Next we illustrate how
the protocol could be implemented using few-level systems
as agents. Then we discuss our results and their relation to
previous protocols for the quantum switch.

II. QUANTUM SWITCH WITH ENTANGLED AGENTS

Consider a spherical body with mass M and radius R.
The gravitational field outside the body is described by the
Schwarzschild metric,

ds2 = −
(

1 − RS

r

)
c2dt2 +

(
1 − RS

r

)−1

dr2 + r2d�2, (4)

where d�2 is the metric of the unit sphere and RS = 2GM/c2

is the Schwarzschild radius. Our protocol for the quantum
switch involves three quantum systems that can be manipu-
lated in the vicinity of its surface r = R, which we call the
agents A and B and the target system. By agents, we mean
systems that are able to interact with the target system and
thereby operate on its state. The three systems have nontrivial
internal structures, which we will discuss in detail later. In this
section, we first introduce the relevant features of quantum
mechanics on curved spacetimes required for the description
of the quantum agents in the Schwarzschild metric and then
present our proposed protocol for general noncommuting op-
erations A and B. A concrete implementation with a specific
choice of operations is described in the next section.

A. Quantum systems with internal degrees of freedom
in a weak gravitational field

The dynamics of quantum systems with internal degrees of
freedom in a curved spacetime has been analyzed in several
works in the regime of weak gravitational fields and motions
that are slow in comparison with the speed of light (see [31]
and references therein). In particular, the case of a system
with internal degrees of freedom in a weak gravitational field
produced by a central mass is discussed in [19,32]. The metric
is then given by Eq. (4), with RS/r � 1, and is completely
characterized by the gravitational potential

� = −GM

r
. (5)

Consider a system with internal degrees of freedom de-
scribed in the absence of the gravitational potential by a
Hilbert space Hint. The same Hilbert space describes the in-
ternal degrees of system in the presence of the gravitational
potential �. The spatial configuration of the system is rep-
resented by a wave function ψ (x) ∈ Hext � L2(R3;C). The
full Hilbert space of the system is then H = Hint ⊗ Hext. The
Hamiltonian in the curved geometry can be written in terms of
the Hamiltonian Hint describing the system in the absence of
a gravitational potential and the gravitational potential �, as
discussed in [19,31,32]. It describes a modified Schrödinger
equation that includes corrections due to the effect of gravita-
tional time dilation in the evolution of the wave function and
of the internal states.

The evolution of the internal degrees of freedom has a
simple description when the wave function of the system
is well localized at all times. Let the support of ψ (t, x) be
restricted, for each t , to a finite region Vx(t ) around a point
x(t ), within which the variation of the potential is negligible,
[�(t, x′) − �(t, x)]/�[x(t )] � 1, ∀x′ ∈ Vx(t ). In this case, the
system has a well-defined position at each time and a well-
defined proper time along its evolution, which for a slow
motion is simply determined by

dτ

dt
=

√
1 − RS

r
. (6)

We define a path P as a worldline x(t ) in spacetime. A path
state |P〉 is a wave function ψ (t, x) ∈ Hext that is well lo-
calized at the event x(t ) of the path P for each instant of
time t . The state at a given time t is represented as |P; t〉.
For localized states, the explicit form of the wave packet is
not relevant for the evolution of the internal state |φ〉 ∈ Hint,
which is determined by

i
d

dτP
|φ〉P = Hint |φ〉P , (7)

where τP is the proper time along the path P, and Hint is the
Hamiltonian for the internal degrees of freedom in the absence
of a gravitational potential. The state evolves with respect to
the proper time as in the absence of the gravitational potential,
but the proper time τP and the coordinate time t are now
distinct, being related by a factor describing the gravitational
time dilation. Equivalently, the evolution can be written in
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terms of the coordinate time t by

i
d

dt
|φ〉P = H |φ〉P , (8)

with the Hamiltonian

H = dτ

dt

∣∣∣∣
P

Hint �
(

1 + �|P
c2

)
Hint, (9)

as presented in [19].
Consider a superposition of localized states of the form

|�〉 =
∑

i

|Pi〉 |φi〉 . (10)

For brevity, we call such states path-superposition states. For
each path Pi in the superposition, the corresponding inter-
nal state |φi〉 evolves according to Eq. (7) with respect to
the proper time along Pi. Suppose that the initial state is
separable, with |φi〉 = |φ〉 at t = t0. Time evolution will in
general produce entanglement with respect to the bipartition
H = Hint ⊗ Hext, as the internal state will evolve by distinct
amounts of proper time along the distinct paths. In this sense,
the proper times along the paths become entangled with the
paths. On the other hand, if the proper times along the paths
are the same at some instant of time t , then the time-evolved
state will be separable again at such a time t , if the initial state
is separable.

The dynamics of localized states in a curved spacetime
provides a simple context for the analysis of gravitational
effects in quantum systems. It is natural to expect the evolu-
tion of internal degrees of freedom to take place with respect
to the proper time along the path followed by the localized
state, as follows from the approach developed in [31,32].
For path-superposition states, the entanglement of the proper
times with the spatial localization of the paths leads to new
quantum effects that depend on the curvature of spacetime, as
for instance a drop of visibility in quantum interferometric ex-
periments [32,33] and a universal mechanism for decoherence
in the position of composite particles [34].

In addition, models explored in recent works for the formu-
lation of a phenomenology of the low-energy limit of quantum
gravity [19,23,24,26] also rely on the validity of the quan-
tum mechanics of nonrelativistic systems in curved spaces.
In order to describe the evolution of a quantum system in a
superposition of geometries, one must first be able to describe
its evolution in each of the geometries in the superposition.
In such works, it is assumed that an entanglement between
proper times and paths takes place for each geometry. In
the context of quantum gravity, the superposition of proper
times in each geometry is combined with effects due to the
superposition of geometries. The interferometric experiment
proposed in [23,24] constitutes an example of a model in-
volving superpositions of proper times in a superposition of
geometries, as discussed in [26], as well as the gravitational
quantum switch proposed in [19].

B. Protocol for the quantum switch

Let us now describe our protocol for the quantum switch.
The agents A and B and the target are quantum systems with
internal degrees of freedom in the Schwarzschild metric (4).
We restrict to the weak-field regime RS/r � 1. According to

the discussion in the previous section, the Hilbert space of the
agent A has the form Hext

A ⊗ Hint
A , where Hint

A describes its
internal state and Hext

A describes its position, and similarly for
the agent B and target.

Our protocol involves a path-superposition state for the
agent A that includes two path states |PA≺B〉, |PB≺A〉 ∈ Hext

A ,
while B remains at a constant position at a height h above
the surface r = R of the massive body that produces the
gravitational field. The paths for A are represented in Fig. 1.
Both start from a common departure point at r = R with the
same angular position as that of agent B. Next, they separate
horizontally in a symmetric manner up to a distance d . For the
path PA≺B, A starts traveling up at the instant t0 until it reaches
a point XA≺B at r = R + h at time t1. Put �tv = t1 − t0. A
remains at this position afterwards. For PB≺A, A also travels
up to a point XB≺A at r = R + h in an interval �tv , but starting
at a later time t2 = t1 + �ts. The target system, traveling hor-
izontally, meets the point XA≺B at t3 and then travels towards
XB≺A in a time interval �tc. After that, the agent A is measured
in a diagonal basis, as we will discuss in more detail later.

We consider a path superposition of the form

|�A〉 = 1√
2

( |PA≺B〉 |φA〉PA≺B
+ |PB≺A〉 |φA〉PB≺A

)
, (11)

with

|φA; t0〉PA≺B
= |φA; t0〉PB≺A

, (12)

i.e., we assume that the internal state of A is the same for both
paths before they separate, in which case it remains the same
while the paths remain at a common height, and that both
paths are equally probable.

The agent A is configured to operate on the target at a
specific instant τ ∗ in its proper time as indicated by an internal
clock. This means that it is prepared in a state for which the
probability of interacting with the target is considerable at
τ ∗, but not at other times. The proper time of A must then
be equal to τ ∗ when the target meets it for the interaction to
take place. This must happen for both PA≺B and PB≺A for the
interaction to occur, regardless of the path taken. The agent
B can interact with the target when their worldlines intersect.
Under these conditions, the operations A and B are applied
in distinct orders for each component |PA≺B〉 or |PB≺A〉 in the
superposition of paths.

Let �τA≺B be the proper time along the path PA≺B from t0
to the moment the target reaches it at t3, and �τB≺A be the
proper time along the path PB≺A from t0 to the moment the
target reaches it at t4. Then the quantum switch will happen
only if

�τA≺B = �τB≺A = τ ∗. (13)

Put �tr ≡ �tv + �ts. The interval �τA≺B has contributions
from the time elapsed for A while it travels up and while it
remains at radius R + h,

�τA≺B = �τv +
√(

1 − RS

R + h

)
�tr, (14)

where �τv is the proper time elapsed for A while it travels up,
corresponding to the coordinate time �tv . The interval �τB≺A

includes contributions from the time elapsed for A while it
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FIG. 1. Superposition of paths. The vertical axis represents the radius r and the horizontal axis represents time. At t = t0, the agent A is
prepared in a superposition state (|PA≺B〉 + |PB≺A〉)/

√
2. For the path |PA≺B〉, A starts traveling up at t0 to a height h above the surface r = R.

For the path |PB≺A〉, it travels up in the same manner starting at t2. The target system, traveling horizontally at height h, crosses |PA≺B〉, meets
agent B, and then crosses |PB≺A〉.

stays at r = R, while it travels up, and while it waits the arrival
of the target at R + h,

�τB≺A = �τv +
√(

1 − RS

R

)
�tr + �τc, (15)

where �τc = √
1 − RS/(R + h) �tc and the proper time �τv

elapsed for the agent while it travels up is the same as in the
other path. Substituting Eqs. (14) and (15) into Eq. (13), we
find(√

1 − RS

R + h
−

√
1 − RS

R

)
�tr
�tc

=
√

1 − RS

R + h
. (16)

In the weak-field regime, characterized by RS � R, this equa-
tion reduces to

�tr = R

RS

(
2R

h
+ 2

)
�tc

=
(

c2

gh
− c2

2

R0101

g2

)
�tc, (17)

where g = GM/R2 and R0101 = −c2RS/R3 is a component of
the curvature tensor of the Schwarzschild metric (4). The sub-
leading term in the weak-field approximation is independent
of RS/R and the following terms are proportional to higher
powers of RS/R. The first term in Eq. (17) depends on the
acceleration of gravity at the radius where the experiment is
performed. The second term describes the effect of curvature.

The parameter �tr sets a timescale for the duration of the
experiment. The total time of the protocol is �texp ≡ t4 − t0.
For small d , such that �tc � t3 − t0, this is well approximated
by t3 − t0 = �tr + �tv . If the paths remain at distinct heights
for a large amount of time, �tv � �ts, then we have �texp �
�tr . On the other hand, if �ts = 0, then �texp � 2�tr . In
general, �texp ∼ �tr .

Near the surface of the spherical mass, we can take h �
R. The first term in Eq. (17) is then dominant. Considering
the target to be a photon, we have �tc � d/c. Under these
approximations,

�tr � cR2d

GMh
. (18)

We see that �tr depends on two fundamental constants, c
and G; two properties of the massive body, M and R; and
two variables d and h that can be adjusted in the experiment.
The duration of the experiment is minimized for the smallest
possible distance d between the paths and the largest possible
height h. The distance d in any implementation of the protocol
will be limited by possible interactions between the agents and
the precision of the clock. If the distance between the agents
is so small that they can interact, their operations on the target
will not be independent, as assumed. In addition, the clock
must be sufficiently precise to resolve the time of flight d/c
of the photon between the paths of A. The height h will be
limited by the experimental capability of transporting A along
its path-superposition state without decoherence.

Substituting the numerical values of c, G and the radius
R� and mass M� of the Earth in Eq. (16), we can estimate the
duration of the experiment near the surface of Earth,

�texp ∼ 3 × 107 d

h
s. (19)

For an atomic clock with a precision of 1015 Hz, for instance,
the time of flight of the photon can be resolved for a distance
of 0.3 μm. Setting d = 0.3 μm and h = 1 m, we find �texp ∼
9 s.

We can also consider the case of a small mass. As in [19],
this example can be used to show that the effect does not
require any physical quantity to be at the Planck scale to be
observed. In this setting, it is natural to bring the departure
point for the paths of A as close as possible to the mass, and
we can take h � R � RS . The second term in Eq. (17) is then
dominant. In this regime,

�tr � cRd

GM
. (20)

A well-known protocol for a gravitational quantum switch
was previously formulated in the context of quantum gravity
in [19]. In that case, the agents and target move in a quan-
tum state of the gravitational field produced by a mass in
a superposition of positions. In [30], however, it is argued
on general grounds that outcomes of a process in which a
localized system interacts with a system in a superposition of
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positions can be reproduced by a process in which the first
system is delocalized while the second system is localized.
This suggests the possibility of simulating the gravitational
quantum switch proposed in [19] with delocalized quantum
agents in the classical gravitational field of a central mass
at a definite position. Our work was motivated by this corre-
spondence, but it was not our purpose to exactly simulate the
protocol of [19]. Instead, we aimed to reproduce its relevant
features using quantum agents in the Schwarzschild metric in
order to obtain an efficient implementation of the quantum
switch in this context, as a possible test of quantum mechanics
on curved spacetimes. We can now compare the duration of
our protocol with that expected for the protocol of [19] under
the correspondence proposed in [30], as a means of testing its
efficiency.

In the protocol of [19], for a small distance d � R between
the agents, the minimum proper time elapsed for the agents for
the quantum switch to occur is τ ∗ = 2r2

bc/GM, where rb is the
distance from the agents to the mass. Setting rb = R�, we find
that τ ∗ is of the order of a year. This result can be compared
with Eq. (19). The duration of the experiment is suppressed
by a factor of d/h using dynamical agents as described here.

For the small mass limit, a mass of M = 0.1 μg was con-
sidered in [19], with one agent at a distance of 1 fm and the
other at a distance of 0.1 μm from the mass. The protocol for
the Bell test using static agents explored in [19] would then
take around 10 h. Setting R = 1 fm in Eq. (20) and assuming
d = R, we obtain �texp ∼ 5 × 10−2 s. In general, the duration
of our protocol is of the order of one second if Rd ∼ 10−28 m2,
and grows linearly with Rd .

III. A MODEL FOR THE OPERATIONS

We discussed the spacetime features required for the real-
ization of the quantum switch in a Schwarzschild spacetime.
We now explore possibilities for the operations performed by
the agents. For concreteness, we consider a model involving a
particular choice of quantum systems as agents and target. The
relevant features of the model are not restricted to this specific
quantum system, however, which provides an illustration of a
procedure that can be adapted to other systems of interest.

A. Operations with indefinite order

The internal Hilbert space of agent A has a subsystem
H which we call the trigger. It also includes a subsystem

HA with six energy levels |Ai〉, i = 0, . . . , 5. That is, Hint
A =

H ⊗ HA. The trigger system will play the role of an internal
clock for the agent A. The agent B is a system with internal
degrees of freedom described by a Hilbert space Hint

B = HB

with five energy levels |Bi〉, i = 1, . . . , 5. The energy level
diagrams for HA and HB are represented in Fig. 2. The labels
e0, e1, etc. are energy differences between pairs of levels for
the allowed transitions. We assume that the transitions are
induced by the absorption and emission of photons.

The trigger is coupled to the six-level system HA. The time
evolution of internal degrees of freedom of a quantum system
following a path P in a curved spacetime is generated by an
internal Hamiltonian Hint evolving with respect to the proper
time τP along P [19,31,34], as described by Eq. (7). For the

FIG. 2. Energy levels of the agents A and B.

agent A, in particular,

i
d

dτP
|φA〉P = Hint |φA〉P , (21)

where |φA〉P ∈ H ⊗ HA. For a path-superposition state, the
evolution of the internal state is described by Eq. (21) for each
path in the superposition. A complete description of the state
|�A〉 of A also includes its spatial location,

|�A〉 = 1√
2

( |PA≺B〉 |φA〉PA≺B
+ |PB≺A〉 |φA〉PB≺A

)
. (22)

At the beginning of the experiment, HA is prepared in the
state |A0〉, which is stable in the absence of the trigger. The
trigger is prepared in a state | ; τ = 0〉. We assume that a
sharp transition from |A0〉 to |A1〉 is induced by the trigger
after a proper time τ ∗ has elapsed for A since t0, with τ ∗
given by Eq. (13). Denoting the unitary evolution under Hint

by U (τ ∗, 0) and putting

|�A; 0〉 ≡ | ; τ = 0〉 |A0〉 , (23)

we require that

U (τ, 0) |�A; 0〉 �
{| ; τ 〉 |A0〉 for τ < τ ∗ − ε

| ; τ ∗〉 |A1〉 for τ = τ ∗.
(24)

We provide a concrete example of a unitary evolution satisfy-
ing the above properties in the Appendix, as an illustration of
how such a trigger could be implemented.

The trigger plays the role of a clock that at τ ∗ changes the
state of A into a new state that can interact with the target.
In other words, the instrument of A, represented by HA, is
switched on by the trigger at τ ∗. It is, in fact, sufficient that
the trigger generates a nonzero projection on |A1〉. The agent
B is prepared in the state |B1〉 at the time t3 + d/2c. As B
remains at a fixed position, an external clock can be used to
prepare it in the required state at the scheduled time.

We require the levels |A1〉 and |B1〉 to have a small decay
time satisfying �τ1 � d/c and ε � �τ1. A can then absorb
a photon of energy e1 or e4 and get excited to the level |A2〉
or |A4〉 only if the photon arrives at τ ∗, within a time window
of approximately �τ1. If no photon reaches the system at this
time, it decays to the level |A5〉 by emitting a photon of energy
e6, which testifies that A has not absorbed an incoming photon
during the process. Similarly, the system HB can be excited
only at the coordinate time t3 + d/2c. If no photon reaches
the system at this time, it decays to the level |A5〉 by emitting
a photon of energy e6.

The experiment is designed so that for |PA≺B〉, a photon
of energy e1 meets A at t3. If this photon is absorbed, A
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is excited to the level |A2〉 and then rapidly decays to |A3〉,
emitting a photon of energy e2. We represent such interac-
tion as A(|A1〉 |e1〉) = |A3〉 |e2〉. This step is understood as an
operation Atarg on the photon state, i.e., Atarg|e1〉 = |e2〉. The
emitted photon can be absorbed by B. When this does not
happen, B decays to its ground state |B5〉, emitting a photon of
energy e7 that testifies that the experiment was not completed.
If the photon is absorbed, B is excited to the level |B4〉 and
quickly decays to |B5〉 by emitting a photon of energy e3.
We represent such interaction as B(|B1〉 |e2〉) = |B5〉 |e3〉. The
operation Btarg on the photon state is Btarg|e2〉 = |e3〉. The
operations are performed in the order BA. Defining

|A ≺ B〉 = |PA≺B〉 | 〉A≺B , (25)

where | 〉A≺B is the final state of the trigger, and introducing

|ψ1〉 = |A1〉 |B1〉 |e1〉 , (26)

the final joint state of the agents and photon is

|A ≺ B〉BA |ψ1〉 = |A ≺ B〉 |A3〉 |B5〉 |e3〉 . (27)

For the path |PB≺A〉, the sequence of events pro-
ceeds analogously, implementing operations B(|B1〉 |e1〉) =
|B3〉 |e4〉, with an action Btarg|e1〉 = |e4〉 on the target, and
A(|A1〉 |e4〉) = |A5〉 |e5〉, with an action Atarg|e4〉 = |e5〉 on the
target, performed now in the switched order AB. In this case,
the final joint state is

|B ≺ A〉AB |ψ1〉 = |B ≺ A〉 |A5〉 |B3〉 |e5〉 , (28)

where

|B ≺ A〉 = |PB≺A〉 | 〉B≺A . (29)

We assume the amplitude transitions for the processes in
which the target interacts with both agents to be the same in
the two paths. Then the final state of the system is

|A ≺ B〉BA |ψ1〉 + |B ≺ A〉AB |ψ1〉√
2

. (30)

A quantum switch is thus implemented, with the two alter-
native paths of the agent A playing the role of the control
of the switch. As the agents are quantum systems, their in-
teractions with the target are described by operators acting
on HA ⊗ HB ⊗ Htarg, where Htarg is the Hilbert space of the
target, spanned by states |ei〉. When the agents are classical,
their operations are represented by operators on Htarg.

Measuring the agents in a diagonal basis, the superposition
of orders can be encoded in a superposition of target states.
We define

|FA≺B〉 = |A ≺ B〉 |A3〉 |B5〉 , |FB≺A〉 = |B ≺ A〉 |A5〉 |B3〉 .

(31)

Measuring the agents in the basis |FA≺B〉 ± |FB≺A〉 takes the
photon to the state

BtargAtarg|e1〉 ± AtargBtarg|e1〉√
2

= |e3〉 ± |e5〉√
2

, (32)

and we obtain a superposition of the orders of the operations
Atarg and Btarg on the target. The superposition of orders can
then be verified by performing observations on the target
system.

The measurement on the basis |FA≺B〉 ± |FB≺A〉 includes
the measurement of the clock. This can be avoided by
resynchronizing the clock states after the application of the
operations, which would disentangle the clock from the rest of
the system, allowing the measurement on the basis |FA≺B〉 ±
|FB≺A〉 to be performed only on the path and few-level sys-
tems. This could be done by making A follow the paths of the
protocol in a reversed way, similarly as done in [19]. Another
possibility is to artificially synchronize the clock states by
directly manipulating them, as done, for instance, in [35].

We described the result of the operations of the agents A
and B on an incoming photon of energy e1, selecting runs of
the experiment in which both agents absorbed some photon in
the process. In this case, the operations AB and BA produce
outgoing photon states of different energies, and the superpo-
sition of orders in the quantum switch leads to a superposition
of final energies for the photon after a measurement in a diag-
onal basis, as described by Eq. (32). As discussed in Sec. II B,
this can happen only if there is a superposition of distinct
proper times along the alternative paths of A, allowing the
photon to cross the path PA≺B at t3 and the path PB≺A at t4 at the
same proper time τ ∗ of A, as required for the operation A to be
applied for both paths. Hence, the verification of the operation
of the quantum switch for an incoming photon of energy e1, as
described by Eq. (32), testifies to the superposition of proper
times along the alternative paths.

The case of incoming photons of definite energies e �= e1

can be analyzed similarly. If the incoming photon has an
energy e �= e1, then at most one agent can operate on it non-
trivially. As a result, the final state of the system formed by
the target and the few-level systems is the same for both paths
after the application of the operations, making the switch
of the order of operations trivial. For instance, an incoming
photon with energy e4 can interact nontrivially only with A, in
which case the operation on the target is given by Atarg |e4〉 =
|e5〉. For the interaction with B, we have Btarg |e4〉 = |e4〉 and
Btarg |e5〉 = |e5〉. If A does not absorb the incoming photon,
then it decays to its ground state, emitting a photon of energy
e6 that testifies that the interaction did not take place, and we
can discard this run of the experiment. The final state for the
path PA≺B is

|A ≺ B〉 |A5〉 |B5〉 |e5〉 , (33)

while the final state for PA≺B is obtained by replacing A ≺
B with B ≺ A in the expression above. The final state of the
system is

(|A ≺ B〉 + |B ≺ A〉)√
2

|A5〉 |B5〉 |e5〉 . (34)

The target is already disentangled from the rest of the system,
and its final state is simply

BtargAtarg|e4〉 + AtargBtarg|e4〉√
2

= |e5〉 . (35)

In this case, as for any state with definite energy e �= e1, it
is not necessary to perform a measurement of the states of
the agents before the measurement of the target, as the target
disentangles from the rest of the system. The quantum switch
is trivial, with both orders of operations producing the same
result.
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B. Quantum switch for arbitrary input states

In order to conceptually clarify the nature of the quantum
switch implemented by the protocol, let us now discuss the
case of a generic target state. As the quantum switch is non-
trivial only for an incoming photon with initial energy e1, our
main purpose in analyzing the case of an arbitrary input target
space is to discuss the general features of our proposal and
clarify its relation to other implementations of the quantum
switch.

In the examples previously considered, runs of the exper-
iment were selected according to whether or not photons of
energies e6 or e7 were produced. Accordingly, the formula-
tion of the quantum switch for a generic input state involves
a postselection of runs of the experiment, referring to the
presence or not of the photons e6, e7. In addition, as the
agents are quantum systems, each operation corresponds to
an interaction between the target and the agent. In contrast, in
implementations of the quantum switch with classical agents,
the operations are represented directly on Htarg.

Let the target system be described by the Hilbert space
Htarg spanned by the states {|ei〉 ; i = 1, . . . , 5}. This is suf-
ficient for our purposes since it includes all states involved
in nontrivial interactions with the agents. The photons of
energies |e6〉 and |e7〉 indicate whether or not each agent
has absorbed some photon. Let HA

d be the Hilbert space
with basis {|0〉A , |1〉A}, where the states |0〉A , |1〉A describe
configurations in which the photon |e6〉 is absent or present,
respectively. The Hilbert space HB

d with basis {|0〉B , |1〉B} is
defined analogously. Such photons are used to select runs
of the experiment. There are four possible postselections,
which we denote by ζ = 0, 1, 2, 3 and which correspond to
the situations where both photons, only e6, only e7, or none
was emitted, respectively. We call the systems HA

d and HB
d the

detectors of A and B.
Let us first consider the case of the path PA≺B, for which

the target first interacts with agent A and then with B. An
incoming photon |ei〉 can be absorbed or not by A. Let the
amplitudes for these processes be

ciA if absorbed by A,

diA = eiδiA
√

|1 − ciA|2 if not absorbed by A. (36)

The amplitudes ciA are nonzero only for i = 1, 4. The incom-
ing photon may not be absorbed by A, but then be absorbed by
B. The interaction of the incoming photon with B is described
similarly in terms of amplitudes ciB, which are nonzero for
i = 1, 2. The photon can also interact nontrivially with both
agents. This is possible only for an incoming photon of energy
e1. Let fBA be the amplitude for an incoming photon with
energy e1 that was scattered by A with energy e2 to also be
scattered by B, and the amplitude for the second scattering not
to occur be gBA = eiγBA

√
1 − | fBA|2. The amplitude for double

scattering is then fBAc1A. This exhausts all possible processes
for PA≺B.

By computing the state that results from the interactions of
A and B successively with a generic input state of the form

|ψ〉 = |A1〉 |B1〉
5∑

i=1

αi |ei〉 , (37)

we find

UBUA(|0〉A|0〉B|ψ〉)=|0〉A|0〉B|ψBA〉 + |0〉A|1〉B|ψ0A〉
+ |1〉A|0〉B|ψB0〉+|1〉A|1〉B|ψ00〉, (38)

where

|ψBA〉 = α1c1A fBA|A3〉|B5〉|e3〉,
|ψ0A〉 = α1c1AgBA|A3〉|B5〉|e2〉 + α4c4A|A5〉|B5〉|e5〉,
|ψB0〉 = α1d1Ac1B|A5〉|B3〉|e4〉 + α2c2B|A5〉|B5〉|e3〉,
|ψ00〉 =

∑
i

αidiAdiB|A5〉|B5〉|ei〉. (39)

Let us now consider the path PB≺A. Let fAB be the ampli-
tude for an incoming photon with energy e1 that was scattered
by B with energy e4 to be also scattered by A, and gAB =
eiγAB

√
1 − | fAB|2 be the amplitude for the second scattering

not to occur. The amplitude for double scattering is then
fABc1B. After the application of both operations,

UAUB(|0〉A|0〉B|ψ〉)

= |0〉A|0〉B|ψAB〉 + |0〉A|1〉B|ψA0〉
+|1〉A|0〉B|ψ0B〉 + |1〉A|1〉B|ψ00〉, (40)

where

|ψBA〉 = α1c1B fAB|A5〉|B3〉|e5〉,
|ψ0B〉 = α1c1BgAB|A5〉|B3〉|e4〉 + α2c2B|A5〉|B5〉|e3〉,
|ψA0〉 = α1d1Bc1A|A3〉|B5〉|e2〉 + α4c4A|A5〉|B5〉|e5〉, (41)

and |ψ00〉 is given in Eq. (39).
When the agent A is in the path superposition state (22),

the final state is given by

|A ≺ B〉UBUA + |B ≺ A〉UAUB√
2

(|0〉A|0〉B|ψ〉). (42)

The final state is a superposition of the states resulting from
the interactions of agents A and B with the target in switched
orders. This describes a quantum switch in an extended tar-
get space that includes the states of the detectors and of the
few-level systems. As the agents are quantum systems in our
protocol, it is natural that their actions are described in a
Hilbert space that includes the few-level systems. On the other
hand, the detectors play a distinct role, allowing us to distin-
guish runs of the experiment where the target was scattered
or not by the five- and six-level systems. We are interested in
the case where the state of the detectors is measured after the
interactions between the target and the agents.

It turns out that for each possible outcome for the mea-
surement of the detectors, the final state in HA ⊗ HB ⊗ Htarg

is a superposition of states obtained by the application of the
operations of A and B in switched orders, projected into the
subspace associated with such an outcome. Concretely, let |ζ 〉
be the state of the detectors associated with the postselection
ζ and P(ζ ) be the orthogonal projection on |ζ 〉. For instance,
|ζ = 0〉 = |1〉A|1〉B and P(0) = |1〉A〈1|A ⊗ |1〉B〈1|B, and simi-
larly for the other postselections. Let us introduce

P(ζ )[UBUA(|0〉A|0〉B|ψ〉)] ≡ |ζ 〉B(ζ )A(ζ )|ψ〉,
P(ζ )[UAUB(|0〉A|0〉B|ψ〉)] ≡ |ζ 〉A(ζ )B(ζ )|ψ〉. (43)
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The explicit form of the states B(ζ )A(ζ )|ψ〉 and A(ζ )B(ζ )|ψ〉
can be directly extracted from Eqs. (38) and (40) using the
definitions (43). We find that for each postselection, the final
state of the system formed by the few-level systems and target
assumes the form

|A ≺ B〉B(ζ )A(ζ )|ψ〉 + |B ≺ A〉A(ζ )B(ζ )|ψ〉. (44)

The result is a quantum switch in HA ⊗ HB ⊗ Htarg controlled
by the path of A. If the input target state has a vanishing
projection in the state |e1〉, i.e., α1 = 0, both orders of oper-
ations produce the same result and the switch is trivial. The
postselection ζ = 3, for which no detector clicked, selects
states with α1 �= 0, and the final state is independent of the
other components αi, i = 2, . . . , 5, of the input state. After
normalization, it is then always given by Eq. (30). This post-
selection thus allows us to restrict to the nontrivial part of the
quantum switch.

For any input target state, a measurement in the diagonal
basis |A ≺ B〉 ± |B ≺ A〉 can be performed on the final state
(44) in order to transfer the superposition of orders into a
superposition of states in HA ⊗ HB ⊗ Htarg, resulting in a
state of the form

B(ζ )A(ζ )|ψ〉 ± A(ζ )B(ζ )|ψ〉. (45)

In special cases, one can alternatively perform a measurement
in a diagonal basis that includes the states of the few-level
systems in order to transfer the superposition of orders into
a superposition of target states, as in the cases previously
discussed where the input state is a basis vector |ei〉. This
is convenient, in particular, for the most relevant case, to our
purposes, of an input state |e1〉.

IV. DISCUSSION

We have introduced a protocol for the implementation of a
quantum switch in a gravitational system. Instead of consider-
ing classical agents A and B operating on a target moving on
a superposition state of the gravitational field, we allowed the
agents to be quantum systems, with A in a path superposition
state, on a fixed curved background geometry produced by
a central mass. Proper times along distinct paths are then
entangled with the paths. With a careful choice of paths, we
constructed a protocol that mirrors the relevant features of
the protocol for a gravitational quantum switch proposed in
[19]. A test of Bell’s inequality for temporal order can be
implemented with two entangled copies of the agents and
target.

In our protocol, the order of the operations is not entangled
with the spacetime metric, which is classical, but with paths
of a quantum system in this fixed curved background. Its
realization would then consist of a test of quantum mechan-
ics on curved spacetimes [34,36,37], the limit of quantum
field theory on curved spacetimes with negligible particle cre-
ation or annihilation and nonrelativistic speeds. This physical
regime has not yet been probed experimentally, and our results
provide a tool for testing the frequently adopted formulation
of time evolution on a curved spacetime leading to Eq. (22).

The quantum switch has been realized experimentally in
nongravitational systems [38]. In such experiments, one does
not keep track of the proper times at which agents perform

their operations. If A is applied at distinct proper times of
A for the orders AB or BA, then measuring the time of
the operation would, in fact, destroy the superposition of the
order of operations. In our case, one agent is assumed to be
equipped with an internal clock and apply its operation only at
a prescribed time. This ensures that the influence of gravity on
proper times along the distinct paths is the underlying effect
allowing for the superposition of orders to occur.

Experiments that attest quantum phenomena due to the
gravity of Earth in the Newtonian regime have already been
made [39,40]. Time dilation is a dominant general relativistic
correction to Newtonian gravity and can be observed even for
a height difference of 1 m [41]. A natural next step would be
the exploration of superposition and entanglement of quan-
tum clocks taking time dilation into account, an issue that
has been theoretically explored [32,33,42–45] and simulated
with magnetic fields [35], but for which an experimental test
with the gravitational field is still missing. With the progress
in techniques for manipulating path-superposition states at
macroscopic scales [46–48], such tests might provide a path
for the observation of quantum effects in gravitational sys-
tems, and our results include the quantum switch in a list of
possible experiments aimed in this direction.
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APPENDIX: A MODEL FOR THE TRIGGER

Let us describe a concrete implementation of a trigger
satisfying the condition (24) discussed in the main text. We
model the trigger as a harmonic oscillator. H = L2(R), with
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free Hamiltonian

H0 = − h̄2

2m
p2 + mω2

2
q2 (A1)

and period

T = 2π

ω
= 4τ ∗. (A2)

In the proposed protocol, the trigger plays the role of a clock
that is programmed to change the state of the six-level system
HA of the agent A from |A0〉 to |A1〉 at a time τ ∗. We store the
information about the predetermined time τ ∗ in the period T
of the oscillator through Eq. (A2).

The interaction of the oscillator with the system HA is
described by a Hamiltonian Hint that is nonzero only on the
subspace generated by the relevant states |A0〉, |A1〉 ∈ HA. Let
σx be the first Pauli matrix on this subspace,

σx =
(

0 1
1 0

)
. (A3)

The interaction Hamiltonian is defined as

Hint = P� ⊗ V0 σx, V0 > 0, (A4)

where P� is the orthogonal projection onto the region x ∈
[0,�], which acts on the wave function φ(x) of the oscillator
according to

P�φ(x) =
{
φ(x) if x ∈ [0,�]
0 else. (A5)

The interaction is nontrivial only when the oscillator is in the
region [0,�], which we call the interaction zone. The full
Hamiltonian of the system is

H = H0 ⊗ 1 + Hint. (A6)

Let |±〉 be the eigenvectors of σx with eigenvalues ±1,

σx|±〉 = ±|±〉. (A7)

Then,

(H0 ⊗ 1 + Hint )(|φ〉|+〉) = [(H0 + V0P�)|φ〉]|+〉,
(H0 ⊗ 1 + Hint )(|φ〉|−〉) = [(H0 − V0P�)|φ〉]|−〉.

Hence, for |±〉, the wave function evolves under a Hamilto-
nian

H0 + V ±
� , V ±

� =
{±V0 if x ∈ [0,�]

0 else.

For |+〉, the oscillator encounters a potential barrier; for |−〉,
it encounters a potential well. The general case is a superpo-
sition of these situations.

Let |α〉 be a coherent state of the trigger, a|α〉 = α|α〉,
where a is the annihilation operator of the harmonic oscillator.
The trigger is prepared in a coherent state | ; τ = 0〉 = |α0〉,
where

α0 = A√
2σ

, σ =
√

h̄

mω
, A = 2�V0

π h̄ω
. (A8)

The parameter σ is the width of the wave packet. The coherent
state describes a configuration of maximum positive displace-
ment for an oscillation of amplitude A. The system HA is

prepared in the state |A0〉 at τ = 0. The state of the composite
system will be represented by |�(τ )〉.

We assume that A � � � σ . The inequality � � σ

means that the width of the wave packet is much smaller than
the width of the interaction region, i.e., that the state of the
oscillator is well localized with respect to the potential step.
The condition A � � means that the oscillator is initially far
away from the interaction zone. Its evolution is thus initially
determined by the free Hamiltonian H0. As a result, it remains
a coherent state | ; τ 〉 = |α(τ )〉, where α(τ ) = α0e−iωτ , until
it reaches the interaction zone. As the average position of such
a coherent state is simply

〈x〉 = A cos ωt, (A9)

the wave packet reaches the boundary of the interaction zone
at x = � with a speed v ∼ ωA after a time �τ � τ ∗ − ε,
where ε ∼ �/v. From A,� � σ , and Eq. (A8), we also find
that the energy of the wave packet satisfies

mω2A2

2
� V0, (A10)

i.e., the energy of the wave packet is much larger than the
potential step V0. We can then neglect the reflection of the
wave packet by the potential step and adopt the approximation
of perfect transmission.

For τ < τ ∗ − ε, the interaction Hamiltonian is negligible
since the wave packet is outside the interaction zone,

Hint (|α(t )〉|χ〉) = 0 for τ < τ ∗ − ε,

for any |χ〉 ∈ HA. Therefore, the six-level system remains at
the initial state |A0〉 for τ < τ ∗ − ε, and the first condition in
Eq. (24) is satisfied. The wave packet then enters the inter-
action zone and crosses it in a time interval �τ � �/v = ε.
During this time, we have P�| ; τ 〉 � | ; τ 〉, so that

H |�〉 = (1 ⊗ H0 + Hint )|�〉
� (1 ⊗ H0 + V0 σx ⊗ 1)|�〉 for τ ∈ [τ ∗ − ε, τ ∗].

The time evolution generated by this Hamiltonian can be in-
tegrated exactly. We find that for τ ∈ [τ ∗ − ε, τ ∗], the system
evolves according to

|�(τ )〉 = {
e−iV0σx[τ−(τ ∗−ε)]/h̄|A0〉

}|α(τ )〉. (A11)

At τ = τ ∗, when the wave packet reaches the opposite bound-
ary of the interaction zone at x = 0, we have

|�(τ ∗)〉 = |A1〉|α(τ ∗)〉, (A12)

and the second condition in Eq. (24) is also satisfied, showing
that the model described in this Appendix satisfies the proper-
ties required of the trigger.

Let us note that the scattering of a Gaussian wave packet
by a potential step is studied in [49,50] in the regime where
the wave packet has a small width in comparison with the
step. The evolution of the wave packet in this regime, which
is usually not discussed in basic textbooks, can be described
as a process involving multiple instantaneous scatterings with
the boundaries of the potential step. The incident wave packet
branches into two wave packets when it meets the potential
step, with one branch corresponding to the transmitted wave
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and the other describing the reflected component. The trans-
mitted wave packet branches again into two new wave packets
when it meets the opposite boundary of the potential step, and
so on. The initial wave packet evolves in this manner into an
infinite train of successive wave packets, both reflected and
transmitted, of progressively smaller amplitudes, as described
in [49]. We adopted the approximation of perfect transmis-

sion, valid for large energies, for the calculations above, so
that the wave packet crosses the interaction zone without
branching into a superposition of localized states. While it
crosses the potential V0σx in the interaction zone [0,�], it
induces a rotation of the state of HA, and the parameters of
the model can be adjusted so that the initial state |A0〉 evolves
into the state |A1〉, as required.
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