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Thermodynamic uncertainty relations express a trade-off between precision, defined as the noise-to-
signal ratio of a generic current, and the amount of associated entropy production. These results have deep
consequences for autonomous heat engines operating at steady state, imposing an upper bound for their
efficiency in terms of the power yield and its fluctuations. In the present Letter we analyze a different class
of heat engines, namely, those which are operating in the periodic slow-driving regime. We show that an
alternative TUR is satisfied, which is less restrictive than that of steady-state engines: it allows for engines
that produce finite power, with small power fluctuations, to operate close to reversibility. The bound further
incorporates the effect of quantum fluctuations, which reduces engine efficiency relative to the average
power and reliability. We finally illustrate our findings in the experimentally relevant model of a single-ion
heat engine.
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Introduction.—Much like their macroscopic counter-
parts, microscopic heat engines function by converting a
thermal energy current Jq from their surrounding environ-
ment into power Pw ≥ 0 [1–3]. In general, such engines can
be divided into two classes: steady-state heat engines
(SSHEs) and periodically driven heat engines (PDHEs).
SSHEs are comprised of a working substance that is placed
in weak contact with multiple reservoirs, so that the ensuing
Markovian dynamics results in the engine reaching a
nonequilibrium steady state in the long time limit, thereby
supporting a net constant power current [4]. On the other
hand, PDHEs are operated by periodically changing both
the mechanical parameters of the working substance, as
well as the temperature of its surrounding reservoir, thus
generating power by external driving [5,6]. In both cases,
for any engine operating between a hot and cold temper-
ature, Th > Tc, standard thermodynamic laws ensure that
the efficiency η ≔ Pw=Jq cannot exceed Carnot’s bound:
η ≤ ηC ≔ 1 − ðTc=ThÞ. In addition to this, microscopic
engines are significantly influenced by stochastic fluctua-
tions, which can be of thermal or quantum origin.
Understanding how these fluctuations impact the perfor-
mance of small-scale machines is a central goal of both
classical-stochastic [7], and quantum [8,9], thermodynam-
ics, as they determine the engine’s reliability.
Recently, Pietzonka and Seifert found that the efficiency

of SSHEs is constrained by a bound tighter than Carnot [10]:

η ≤
ηC

1þ 2TcPw=ΔPw
≕ ηPS: ð1Þ

This bound incorporates an additional dependence on the
engine’s time-averaged work fluctuationsΔPw. The quantity
ΔPw represents the so-called constancy of the engine [10],
which inversely quantifies the engine’s reliability in terms of
power output. The bound Eq. (1) tells us that in order to
increase the efficiency of any SSHE, one must either
sacrifice the power output Pw or the engine’s reliability.
This can be seen as a consequence of the thermodynamic
uncertainty relation (TUR) [11–13], which states that
entropy production constrains the noise-to-signal ratio of
any current in SSHEs. Extensions and generalizations of
Eq. (1) to autonomous quantum systems operating at steady
state have been investigated [14–18].
With regard to PDHEs, it is still currently debated

whether a similar universal trade-off is expected to hold:
on the one hand, it was found that both in the case of an
externally driven Brownian clock [19] and in driven cyclic
heat engines [20] one can achieve small fluctuations at
finite power output in a dissipationless manner. On the
other hand, TUR bounds for driven Langevin systems [21]
and dissipative two-level systems [22], as well as for
classical time-dependent driven engines [23] were found.
In general, TURs giving rise to Eq. (1) can be recovered for
protocols that are time symmetric [24], or modified in order
to account for time-asymmetry in the small-amplitude
regime [15]. Alternatively, other bounds have also been
derived with an additional dependence on hysteresis
[18,25] or driving frequency [26]. However, in all the
above cases a general quantum mechanical trade-off
between efficiency, average power, and its variance has
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not yet been achieved. Moreover, the impact of quantum
fluctuations on such a trade-off has yet to be established. In
this Letter, we provide these important missing pieces of
the puzzle, by deriving the following quantum version
of Eq. (1) for PDHEs operating in the slow driving,
Markovian regime

η ≤
ηC

1þ 2TcPwfðj PW
Pw

jÞ=ðΔPw − 2ΔIwÞ
≔ ηQ; ð2Þ

where PW denotes the adiabatic (also known as quasistatic
[27]) power; fðxÞ ≔ ð1 − xÞ2; and 0 ≤ 2ΔIw ≤ ΔPw is a
quantum correction term, which will be precisely defined
below. First, we see that Eq. (2) is structurally different
from Eq. (1) as it now depends on the ratio between actual
and adiabatic power. Depending on this ratio, the bound
may exceed or fall below the SSHE bound Eq. (1).
Furthermore, the term ΔIw represents a measure of
quantum fluctuations of the power as it depends purely
on quantum friction [28–31], and has recently been shown
to lead to a quantum correction to the standard fluctuation-
dissipation relation for work [32,33]. Crucially, ηQ is a
decreasing function with respect to ΔIw, meaning that
quantum fluctuations have a negative impact on the
performance of PDHEs in the slow driving regime, making
it impossible to achieve the optimal classical efficiency for
a given average power output and its variance.
Periodic quantum heat engines.—We consider engines

where the working medium is a driven quantum system,
weakly coupled to a heat bath. Setting ℏ ¼ kB ¼ 1, this is
described by a time-dependent adiabatic Lindblad master
equation of the form _ρt ¼ LλðtÞðρtÞ [34], where the time
dependence exhibited by the dynamical generator LλðtÞ is
protocol dependent, and is induced by the external
modulation of the bath temperature TðtÞ and control
mechanical parameters ΛðtÞ which determine the
Hamiltonian HΛðtÞ. An engine cycle of duration τ is then
represented by a closed curve in the control parameters
space λ∶ t ↦ λðtÞ ≔ fTðtÞ;ΛðtÞg, such that it satisfies
λð0Þ ¼ λðτÞ. In particular, following Refs. [5,35], we
parametrize the temperature modulation as

TðtÞ ≔ TcTh

Th þ ðTc − ThÞαðtÞ
; Tc ≤ Th; ð3Þ

with αðtÞ ∈ ½0; 1�, and αð0Þ ¼ αðτÞ ¼ 0. This implies that
at t ¼ 0; τ, the thermal bath that is in contact with the
system is at the cold temperature Tc, but approaches the hot
temperature Th in the middle of the cycle. From now on we
further assume that, for all t, the quantum detailed balance
condition [36,37] is satisfied, and that there exists a unique
stationary state πλðtÞ, such that LλðtÞðπλðtÞÞ ¼ 0, which is of
Gibbs form. This means that πλðtÞ ¼ e−βðtÞHΛðtÞ=ZλðtÞ, where
βðtÞ ≔ 1=TðtÞ is the inverse temperature and ZλðtÞ ≔
Trðe−βðtÞHΛðtÞ Þ is the partition function.

A central quantity of interest throughout our analysis is
the nonadiabatic entropy production rate, defined as

h _σi ≔ hσi
τ

¼ 1

τ

�
ΔS −

Z
τ

0

dtβðtÞh _qðtÞi
�

≥ 0; ð4Þ

where h _qðtÞi ≔ Trð_ρtHΛðtÞÞ is (in weak coupling) the rate
of heat entering the system and ΔS the increase in
information entropy. Equation (4) quantifies the dissipation
in terms of excess heat in order to drive a system out of
equilibrium, and can be directly related to the degree of
irreversibility of a process [38,39]. Using Eq. (3) and the
periodic boundary conditions, one can easily show that
Eq. (4) takes the form

h _σi ¼ 1

Tc
ðηCJq − PwÞ ≥ 0; ð5Þ

where we have introduced the time-average power and heat
flux supplied to the engine [5]:

Pw ≔ −
1

τ

Z
τ

0

dtTrð _HΛðtÞρtÞ; ð6Þ

Jq ≔
1

τ

Z
τ

0

dt αðtÞTrðHΛðtÞ _ρtÞ: ð7Þ

Naturally, this decomposition leads us to define the
efficiency as the ratio η ≔ Pw=Jq between power output
and heat flux entering the machine, which for an engine
(defined by the regime Pw ≥ 0) is bounded by the Carnot
efficiency η ≤ ηC ≔ 1 − Tc=Th due to the second law
Eq. (4). We note that αðtÞ plays the role of a weighting
function for the heat flux Eq. (7), with increasing weight
assigned to increasing temperatures. This generalizes the
traditional thermodynamic efficiency where the system
interacts with only two baths at distinct temperatures,
which is recovered by choosing αðtÞ to be a step function.
In this case, it is easy to see that Jq reduces to the heat flow
from the hot bath and the standard definition of efficiency is
recovered [5].
In this Letter we are finally concerned with engines that

operate in the slow-driving regime, which are characterized
by choosing the driving protocol λðtÞ as a slowly varying
periodic function, satisfying boundary conditions
_λð0Þ ¼ _λðτÞ ¼ f0; 0g. This ensures that the system occu-
pies the same equilibrium state πλð0Þ at the start and end of
the cycle, and remains close to the instantaneous steady
state at all times during the cycle, taking the form
ρt ≃ πλðtÞ þ δρt, where δρt is a traceless correction term
that vanishes linearly with the driving speed [32,40,41].
This regime is physically reached by setting the engine
cycle duration τ to be large relative to the intrinsic
relaxation timescale teq of the system [42]. In order to
evaluate the leading order terms of Eqs. (5) and (6) in the
slow-driving regime, let us first define a self-adjoint
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operator-valued function δAλ∶ ½0; τ� ∋ t ↦ δAλðtÞ, where
AλðtÞ can be any self-adjoint operator, and δ∶ A ↦ δA ≔
A − TrðAπλðtÞÞI is a “spectrum shift” that ensures
TrðδAλðtÞπλðtÞÞ ¼ 0 for all AλðtÞ. In the Supplemental

Material [43], we show that under the assumption of
detailed balance and uniqueness of the instantaneous steady
state [LλðtÞðπλðtÞÞ ¼ 0], the following is a valid inner
product for such operator-valued functions:

hhδAλ; δBλiiλ ≔
1

2τ

Z
τ

0

dt
Z

∞

0

dθ Tr

�
δAλðtÞðθÞJλðtÞðδBλðtÞÞ þ δBλðtÞðθÞJλðtÞðδAλðtÞÞ

�
; ð8Þ

where δAλðtÞðθÞ ≔ eθL
�
λðtÞ ðδAλðtÞÞ, with L�

λðtÞ the generator in
the Heisenberg picture, and JλðtÞð·Þ ≔

R
1
0 dsπ

s
λðtÞð·Þπ1−sλðtÞ .

The results of Refs. [32,40,41,49,50] provide a means of
Taylor expanding Eqs. (5) and (6) up to first order in teq=τ,
which can be shown in terms of the inner product Eq. (8) as

h _σi ¼ hhδ _Xλ; δ _Xλiiλ; Pw ¼ PW − hhδ _Hλ; δ _Xλiiλ; ð9Þ

where XλðtÞ ≔ βðtÞHΛðtÞ, while δ _HλðtÞ ≡ δ _HΛðtÞ. Moreover,
we have introduced the adiabatic power as

PW ≔ −
1

τ

Z
τ

0

dtTrð _HΛðtÞπλðtÞÞ; ð10Þ

which is the engine’s power assuming that the system is in
equilibrium at all times [compare with Eq. (6)], achieved in
the limit teq=τ → 0.
So far we have only considered ensemble averages of

thermodynamic quantities. For quantum-mechanical sys-
tems, the higher order statistics associated with work
become preponderant and fundamentally depend on the
measurement scheme used to monitor the system. In the
case of open quantum systems whose dynamics are
described by a time-dependent Lindblad master equation,
the fluctuating work can be determined at the stochastic
level by monitoring sequences of quantum jumps exhibited
by the system as it interacts with an environment [51–60].
Each time a jump occurs heat is exchanged between
engine and environment, and this can be experimentally
monitored through an external quantum detector [61–63].
Alternatively, one may determine the fluctuating work from
two-time global energy measurements, on both the system
and bath, at the beginning and end of the cycle [64,65]. In
the Markovian limit with weak coupling between system
and bath, both approaches allow one to arrive at a general
expression for the time-averaged work variance, dependent
only on the system degrees of freedom [32,66], which takes
the following form in the slow driving limit:

ΔPw ¼ 2ðΔIw þ hhδ _Hλ; δ _HλiiλÞ: ð11Þ

Here, we have identified a quantum correction term due to
the fluctuations,

ΔIw ≔
1

τ

Z
τ

0

dt τeqλðtÞIλðtÞð _HΛðtÞ; _HΛðtÞÞ; ð12Þ

where we introduce the skew covariance [67,68]

IλðtÞðA;BÞ ≔ −
1

2

Z
1

0

dsTrð½A; πsλðtÞ�½B; π1−sλðtÞ �Þ: ð13Þ

The skew information IλðtÞðA; AÞ ≥ 0 represents a measure
of quantum fluctuations in the sharp observable A ¼ A†

with respect to instantaneous equilibrium πλðtÞ [69–73]. In
particular, the skew information vanishes for ½A; πλðtÞ� ¼ 0,
reduces to the usual variance hA2i − hAi2 for pure states,
and is convex under classical mixing. In this context,
IλðtÞð _HΛðtÞ; _HΛðtÞÞ measures the degree of quantum power
fluctuations due to the generation of quantum friction
stemming from ½ _HΛðtÞ; HΛðtÞ� ≠ 0 [28–33]. Additionally,
these quantum fluctuations are weighted by an integral
relaxation timescale:

τeqλðtÞ ≔
Z

∞

0

dθ
I λðtÞ½ _HΛðtÞðθÞ; _HΛðtÞð0Þ�
I λðtÞ½ _HΛðtÞð0Þ; _HΛðtÞð0Þ�

≥ 0: ð14Þ

This quantifies the timescale over which the quantum
correlation function for the power decays to its equilibrium
value, and can be viewed as a quantum generalization of the
integral relaxation time employed in classical nonequili-
brium thermodynamics [27,74,75].
Quantum bound on efficiency.—We are now ready

to derive bounds on the performance of quantum
PDHEs. By noting that h _σi, Pw, and ðΔPw − 2ΔIwÞ can
all be expressed through the inner product introduced
in Eq. (8) we can apply the Cauchy-Schwarz inequality
hhAλ; AλiiλhhBλ; Bλiiλ ≥ jhhAλ; Bλiiλj2, thus obtaining our
central result:

ðΔPw − 2ΔIwÞh _σi ≥ 2f

�����PW

Pw

����
�
P2
w; ð15Þ

where fðxÞ ≔ ð1 − xÞ2. The above inequality is a quantum
generalization of the TUR for entropy production and
power in PDHEs. It demonstrates a trade-off between the
entropy production rate h _σi and the noise-to-signal ratio of
power,

ffiffiffiffiffiffiffiffiffiffi
ΔPw

p
=Pw. This TUR has an immediate conse-

quence for the achievable engine efficiency: a simple
rewriting of Eq. (5) as η ¼ ηCPw=ðTch _σi þ PwÞ, and
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combination with Eq. (15) produces the desired efficiency
bound Eq. (2).
When comparing Eq. (2) to the TUR bound for SSHEs

Eq. (1), we notice a modification stemming both from the
ratio between adiabatic and actual power jPW=Pwj, as well
as from the presence of ΔIw. We show in the Supplemental
Material [43] that this quantum correction satisfies
0 ≤ 2ΔIw ≤ ΔPw, which means that ηQ decreases mono-
tonically with increasing ΔIw. As a consequence, the
bound Eq. (2) is in fact more restrictive than the equivalent
classical engine bound with vanishing quantum fluctua-
tions, namely ηQ ≤ ηcl ≔ ηQ s.t. ΔIw ¼ 0. This demon-
strates the detrimental influence of quantum friction for
PDHEs close to equilibrium. Indeed, to saturate Eq. (2) we
require that, for all times t ∈ ½0; τ�, δ _HλðtÞ ∝ δ _XλðtÞ.
However, this necessarily implies a vanishing quantum
friction ½ _HΛðtÞ; HΛðtÞ� ¼ 0 for all t ∈ ½0; τ�, which is a
necessary and sufficient condition for ΔIw ¼ 0. Hence,
Eq. (2) is in fact a strict inequality for heat engines in the
presence of quantum friction. As expected and discussed in
Refs. [32,33], the quantum correction becomes most
relevant at low temperatures, which we will later illustrate
by an example.
The correction arising from jPW=Pwj affects engines

irrespectively of quantum friction, and can lead to large
deviations from Eq. (1). First, we note that for time-
symmetric protocols, where PW ¼ 0, we recover the
original bound, which is in agreement with Ref. [24].
Moving slightly away from this point, one may find a
regime where PW > 2Pw. In this case, fðjPW=PwjÞ > 1,
and the bound Eq. (2) becomes more restrictive than that of
SSHEs Eq. (1). However, in most operating regimes with
nonvanishing power output we expect fðjPW=PwjÞ ≪ 1, as
PW − Pw ¼ Oðteq=τÞ ≪ 1 in the slow driving regime, see
the expansion Eq. (9) (recall that teq is the characteristic
equilibration timescale). That is, the power-efficiency of
slowly driven PDHEs is less constrained by fluctuations
than that of SSHEs. To quantify this, one may expand
Eq. (2) in ϵ≡ teq=τ obtaining

η ≤ ηC

�
1 − ϵ

2Tca2P
PWaΔP

�
þOðϵ2Þ; ð16Þ

where we have defined aP ≡ limϵ→0ðPw − PWÞ=ϵ and
aΔP ≡ limϵ→0ðΔPw − 2ΔIwÞ=ϵ, which are finite and can
be inferred from Eqs. (9) and (11).
In principle, one can approach Carnot efficiency at finite

power and zero work fluctuations, in the limit where teq

becomes vanishingly small and τ remains finite [recall that
work fluctuations are proportional to ϵ from Eq. (11)]. This
is in accordance with the results demonstrated in
Refs. [20,76]. Our bound Eq. (2) thus incorporates previous
results and furthermore gives the leading order correction to
Carnot’s bound for finite speed and equilibration timescale,
while clarifying that PDHEs also obey TUR relations.

Single ion heat engine.—To illustrate our bound Eq. (2)
we consider a model of a single ion PDHE, inspired by
recent experimental realizations using ion traps [77]. We
describe the engine using a master equation for the damped
harmonic oscillator:

_ρt ¼−iω½a†ωaω;ρt�þΓðNβþ1ÞDaω ½ρt�þΓDa†ω
½ρt�; ð17Þ

with DX½ρ� ¼ XρX† − 1
2
fX†X; ρg. Here the Hamiltonian is

Hω ¼ ωða†ωaω þ 1
2
Þ with ω the time-dependent frequency,

aω ¼ ffiffiffiffiffiffiffiffiffi
ω=2

p ðxþ ip=ωÞ is the creation operator with unit
mass, Γ is the damping rate (in the slow driving regime,
teq=τ ≪ 1 with teq ≡ Γ−1), and Nβ ¼ 1=ðeβω − 1Þ is the
Bose-Einstein distribution. We consider a cycle defined by
the slow modulation of the engine’s oscillator frequency
and bath temperature, λ∶ t ↦ λðtÞ ¼ fTðtÞ;ωðtÞg, accord-
ing to the periodic functions

ωðtÞ ¼ ω0

�
1þ 1

2
sin

�
2πt
τ

�
þ 1

4
sin

�
4πt
τ

þ π

��
;

TðtÞ ¼ TcTh

Th þ ðTc − ThÞ sin2ðπtτ Þ
; ð18Þ

where Tc < Th and ω0 > 0. Note that for the temperature,
we have simply assigned αðtÞ ¼ sin2ðπt=τÞ in Eq. (3). This
protocol is cyclic, ωð0Þ ¼ ωðτÞ ¼ ω0; Tð0Þ ¼ TðτÞ ¼ Tc,
and satisfies the slow-driving condition _ωðtÞ ¼ _TðtÞ ¼ 0
for t ¼ 0; τ. In the Supplemental Material [43] we calculate
the power and its fluctuations, as well as the efficiency and
its bounds, using Eqs. (5), (9), and (11). Notably, the power
operator _Hω ¼ _ωfω−1Hω þ ½ða†ωÞ2 þ a2ω�=2g does not
commute with the engine Hamiltonian, ½Hω; _Hω� ≠ 0,
meaning that quantum friction is present throughout the
cycle, and so the quantum correction term Eq. (12) is
strictly positive. To see this effect, we plot the ratio between
quantum and total power fluctuations, i.e., 2ΔIw=ΔPw, in
Fig. 1(a). It can be seen how the quantum fluctuations
become more relevant in the low temperature regime,
ω0=Tc ≫ 1, as expected. In this regime, the TUR
Eq. (15) might become substantially affected by quantum
fluctuations. Moreover, while the total power fluctuations
ΔPw vanish as teq=τ → 0 [see the inset of Fig. 1(b)], the
ratio of the quantum fluctuations 2ΔIw=ΔPw can be seen
to increase as teq=τ becomes smaller, showing that quantum
fluctuations becomes more relevant in the slow-driving
limit. Conversely, the correction term fðjPW=PwjÞ is large
when teq=τ is large, and vanishes in the limit teq=τ → 0.
This means that, as can be seen in Fig. 1(b), in the limit
teq=τ → 0 the engine produces finite power Pw ¼ PW,
while both the efficiency η, as well as the bound given
in Eq. (2), approaches Carnot. Finally, we see in Fig. 1(b)
that the bound in Eq. (1) does not apply to PDHEs; while
the efficiency η always obeys Eq. (2), it can violate Eq. (1)
for sufficiently small teq=τ, as this bound vanishes in the
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slow-driving limit, due to the fact that ΔPw becomes
vanishingly small.
Conclusions.—We have derived a bound on the optimal

efficiency of quantum periodically driven heat engines
(PDHEs) in terms of their average power and constancy,
valid in the slow-driving, Markovian regime. In the first
instance, we see that PDHEs are subject to a bound that
differs from steady-state heat engines (SSHEs) through an
additional dependence on the ratio between adiabatic and
actual power. Nonetheless, Eq. (2) still imposes a universal
constraint on engine efficiency for a given power and
constancy, thus providing a finite time correction to the
Carnot bound at leading order in driving speed. The bound
further incorporates the effect of quantum friction stemming
from possibly noncommuting Hamiltonian driving. This
represents the first thermodynamic uncertainty relation for
PDHEs that explicitly shows the role of quantum effects.
It has recently been shown that quantum friction reduces

the maximum power achievable in slow driving PDHEs
[41,50,78,79]. Our results demonstrate that in this opera-
tional regime, quantum friction limits the efficiency relative
to the subsequent reliability and power. More specifically,
when optimizing any one of the trio ϕ ∈ fη; Pw; 1=ΔPwg
while fixing the other two variables, quantum friction
inevitably leads to a reduction in the maximum value
ϕmax that can be attained. Given that enhancements with a
quantum origin have been identified in other thermo-
dynamic contexts, such as Otto-like engines [80–82] or
refrigerators [83], a full understanding of the role of
quantum effects in PDHEs beyond the slow-driving and
weak-coupling regime remain as open questions.
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[73] I. Frérot and T. Roscilde, Phys. Rev. B 94, 075121 (2016).
[74] T. Feldmann, B. Andresen, A. Qi, and P. Salamon, J. Chem.

Phys. 83, 5849 (1985).
[75] D. A. Sivak and G. E. Crooks, Phys. Rev. Lett. 108, 190602

(2012).
[76] T. Denzler and E. Lutz, arXiv:2007.01034.
[77] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz,

F. Schmidt-Kaler, and K. Singer, Science 352, 325 (2016).
[78] K. Brandner, M. Bauer, and U. Seifert, Phys. Rev. Lett. 119,

170602 (2017).
[79] P. Abiuso, H. J. D. Miller, M. Perarnau-Llobet, and M.

Scandi, Entropy 22, 1076 (2020).
[80] R. Uzdin, A. Levy, and R. Kosloff, Phys. Rev. X 5, 031044

(2015).
[81] J. Klatzow, J. N. Becker, P. M. Ledingham, C. Weinzetl,

K. T. Kaczmarek, D. J. Saunders, J. Nunn, I. A. Walmsley, R.
Uzdin, and E. Poem, Phys. Rev. Lett. 122, 110601 (2019).

[82] M. Lostaglio, Phys. Rev. Lett. 125, 230603 (2020).
[83] N. Brunner, M. Huber, N. Linden, S. Popescu, R. Silva, and

P. Skrzypczyk, Phys. Rev. E 89, 032115 (2014).

PHYSICAL REVIEW LETTERS 126, 210603 (2021)

210603-6

https://doi.org/10.1103/PhysRevLett.121.120601
https://doi.org/10.1103/PhysRevLett.121.120601
https://doi.org/10.1103/PhysRevResearch.2.013060
https://doi.org/10.1103/PhysRevResearch.2.013060
https://doi.org/10.1103/PhysRevB.102.165418
https://doi.org/10.1103/PhysRevLett.125.260604
https://doi.org/10.1103/PhysRevLett.125.260604
https://doi.org/10.1209/0295-5075/119/20001
https://doi.org/10.1209/0295-5075/119/20001
https://doi.org/10.1088/1742-5468/ab14da
https://doi.org/10.1088/1742-5468/ab14da
https://doi.org/10.1103/PhysRevLett.122.230601
https://doi.org/10.1103/PhysRevLett.122.230601
https://doi.org/10.1088/1742-5468/2016/06/063204
https://doi.org/10.1103/PhysRevE.68.016101
https://doi.org/10.1103/PhysRevLett.113.260601
https://doi.org/10.1103/PhysRevLett.113.260601
https://doi.org/10.1103/PhysRevE.99.042105
https://doi.org/10.1103/PhysRevE.99.042105
https://doi.org/10.1088/1367-2630/ab6876
https://doi.org/10.1103/PhysRevLett.123.230603
https://doi.org/10.1103/PhysRevResearch.2.023377
https://doi.org/10.1088/1367-2630/14/12/123016
https://doi.org/10.1088/1367-2630/14/12/123016
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1103/PhysRevX.5.031019
https://doi.org/10.1016/0034-4877(76)90046-X
https://doi.org/10.1103/PhysRevLett.104.090601
https://doi.org/10.1103/PhysRevLett.104.090601
https://doi.org/10.1103/PhysRevE.82.011143
https://doi.org/10.1103/PhysRevE.82.011143
https://doi.org/10.1103/PhysRevLett.119.050601
https://doi.org/10.1103/PhysRevLett.119.050601
https://doi.org/10.1103/PhysRevLett.124.040602
https://doi.org/10.1103/PhysRevLett.124.040602
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210603
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210603
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210603
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210603
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210603
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210603
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.210603
https://doi.org/10.1142/S0219025707002762
https://doi.org/10.1142/S0219025707002762
https://doi.org/10.1063/1.4985199
https://doi.org/10.1063/1.4985199
https://doi.org/10.1142/S0219025705002116
https://doi.org/10.1142/S0219025705002116
https://doi.org/10.22331/q-2019-10-24-197
https://doi.org/10.1103/PhysRevLett.124.110606
https://doi.org/10.1103/PhysRevLett.124.110606
https://doi.org/10.1103/PhysRevE.85.031110
https://doi.org/10.1088/1367-2630/15/8/085028
https://doi.org/10.1088/1367-2630/15/8/085028
https://doi.org/10.1007/s10955-014-0991-1
https://doi.org/10.1103/PhysRevE.92.032129
https://doi.org/10.1103/PhysRevE.92.032129
https://doi.org/10.1103/PhysRevE.93.012127
https://doi.org/10.1103/PhysRevE.94.062133
https://doi.org/10.1103/PhysRevX.8.031037
https://doi.org/10.1103/PhysRevX.8.031037
https://doi.org/10.1038/s42005-020-0356-9
https://doi.org/10.1038/s42005-020-0356-9
https://doi.org/10.1103/PhysRevResearch.2.033449
https://doi.org/10.1103/PhysRevResearch.2.033449
https://doi.org/10.1038/nature12539
https://doi.org/10.1038/nature12539
https://doi.org/10.1088/1367-2630/15/11/115006
https://doi.org/10.1088/1367-2630/15/11/115006
https://doi.org/10.1103/PhysRevLett.124.110604
https://doi.org/10.1103/PhysRevLett.124.110604
https://doi.org/10.1103/PhysRevE.75.050102
https://doi.org/10.1103/PhysRevE.75.050102
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1103/RevModPhys.81.1665
https://doi.org/10.1103/PhysRevE.103.052138
https://doi.org/10.1142/S0129167X09005832
https://doi.org/10.1073/pnas.0803323105
https://doi.org/10.1073/pnas.49.6.910
https://doi.org/10.1073/pnas.49.6.910
https://doi.org/10.1103/PhysRevA.73.022324
https://doi.org/10.1038/ncomms4821
https://doi.org/10.1038/ncomms4821
https://doi.org/10.1103/PhysRevA.94.062316
https://doi.org/10.1103/PhysRevB.94.075121
https://doi.org/10.1063/1.449666
https://doi.org/10.1063/1.449666
https://doi.org/10.1103/PhysRevLett.108.190602
https://doi.org/10.1103/PhysRevLett.108.190602
https://arXiv.org/abs/2007.01034
https://doi.org/10.1126/science.aad6320
https://doi.org/10.1103/PhysRevLett.119.170602
https://doi.org/10.1103/PhysRevLett.119.170602
https://doi.org/10.3390/e22101076
https://doi.org/10.1103/PhysRevX.5.031044
https://doi.org/10.1103/PhysRevX.5.031044
https://doi.org/10.1103/PhysRevLett.122.110601
https://doi.org/10.1103/PhysRevLett.125.230603
https://doi.org/10.1103/PhysRevE.89.032115

