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Quantum measurement is ultimately a physical process, resulting from an interaction between the measured
system and a measuring apparatus. Considering the physical process of measurement within a thermodynamic
context naturally raises the following question: How can the work and heat be interpreted? In the present paper
we model the measurement process for an arbitrary discrete observable as a measurement scheme. Here the
system to be measured is first unitarily coupled with an apparatus and subsequently the compound system is
objectified with respect to a pointer observable, thus producing definite measurement outcomes. The work can
therefore be interpreted as the change in internal energy of the compound system due to the unitary coupling.
By the first law of thermodynamics, the heat is the subsequent change in internal energy of this compound due
to pointer objectification. We argue that the apparatus serves as a stable record for the measurement outcomes
only if the pointer observable commutes with the Hamiltonian and show that such commutativity implies that
the uncertainty of heat will necessarily be classical.
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I. INTRODUCTION

Quantum measurements play a central role in quantum
thermodynamics: They are used in several formulations of
fluctuation relations [1–10] and they fuel quantum thermal
machines [11–21]. The thermodynamic properties of the mea-
surement process have also been a subject of investigation
[22–33], with the interpretation of the work and heat that
result from measurement being a hotly debated topic. The
quantity that is most commonly considered in this regard is the
energy that is dissipated to a thermal environment as a result
of erasing the record of measurement outcomes stored in
the measurement apparatus [34–36]. The lower bound to this
quantity is the Landauer erasure cost [37,38], determined only
by the entropy change of the apparatus and the temperature
of the surrounding thermal environment, which can also be
interpreted as the contribution from the apparatus to the total
nonrecoverable work of the measurement process [39].

However, erasure occurs after the measurement process is
completed and therefore, strictly speaking, is independent of
the measurement process as such. An interpretation of the
work and heat resulting from the measurement process itself,
and independent of the erasure process that takes place after
measurement, was recently given by Strasberg [40]. Here an
observable is indirectly measured by means of a measurement
scheme [41], where first the system to be measured is unitarily
coupled with a quantum probe and thereafter the probe is
measured by a pointer observable. The registered outcomes
of the pointer observable are in a one-to-one relation with
the outcomes of the system observable and are detected by
the same probability as if the system observable were mea-
sured directly. The work for such a measurement process was
identified as the change in internal energy of the compound

of the system plus probe due to their unitary evolution. By
the first law of thermodynamics, the heat was thus shown to
be the subsequent change in internal energy of the compound
when the measurement of the pointer observable registers a
given outcome. Such heat results from the state change that
accompanies quantum measurements and is thus an intrin-
sically stochastic quantity; indeed, this definition for heat is
similar to the so-called quantum heat introduced by Elouard
et al. [42], defined as the change in internal energy of only the
measured system given that a measurement outcome has been
observed.

An indirect measurement scheme implicitly assumes that
the external observer has access to a macroscopic measure-
ment apparatus used to measure the probe by the pointer
observable. Since the apparatus registers the definite mea-
surement outcomes, the probe may be discarded after the
measurement process has been completed. Therefore, the
state change of the probe caused by the measurement of the
pointer observable is unimportant insofar as the measure-
ment statistics of the system observable is concerned. In the
present paper, however, we consider measurement schemes
as a quantum-mechanical model for a direct measurement,
where the probe is treated as a quantum-mechanical represen-
tation of the apparatus itself. As with indirect measurement
schemes, we identify work with the initial unitary interaction
between the system and apparatus, a process referred to as
premeasurement. On the other hand, heat is identified with
the subsequent pointer objectification, that is, the process by
which the compound of the system plus apparatus is trans-
formed into a state for which the pointer observable takes
definite (objective) values, which can then be read by the
observer without causing further disturbance [43]. The pos-
sibility of objectification therefore demands that all effects
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of the pointer observable must have at least one eigenvector
with eigenvalue 1, with the objectified states of the compound
system having support only in these eigenvalue-1 eigenspaces.
While a sharp pointer observable trivially satisfies this re-
quirement, we will consider the more general case where the
pointer observable can be unsharp [44]. However, in order
for the apparatus to serve as a stable record of the measure-
ment outcomes, we demand that the pointer observable must
commute with the Hamiltonian; we refer to the commutation
between the pointer observable and the Hamiltonian as the
Yanase condition [45,46], which was first introduced in the
context of the Wigner-Araki-Yanase theorem [47–49].

The Yanase condition follows from the fact that if work
is to be fully identified with the initial unitary interaction
between the system and apparatus, the compound system must
be governed by a time-independent Hamiltonian during (and
after) pointer objectification. Such time independence of the
Hamiltonian implies that the only pointer observables that
can be measured are those that are invariant under time-
translation symmetry, i.e., observables that commute with
the Hamiltonian [50,51]. Indeed, if the pointer observable
does not commute with the Hamiltonian, then the outcome
revealed by the observer’s measurement of the pointer observ-
able after objectification will be time dependent; the record
of the measurement outcome will not be stable. We show
that for measurement schemes where the pointer observable
satisfies the Yanase condition, the uncertainty of the heat that
results from objectification will necessarily be classical. This
is because the objectified states of the system plus apparatus
will be pairwise orthogonal and, together with the Yanase
condition, such orthogonality guarantees that the quantum
contribution to the heat uncertainty, which is a function of
the Wigner-Yanase-Dyson skew information [52,53], entirely
vanishes. The classicality of the heat uncertainty may be in-
terpreted within information-theoretic terms as reflecting the
fact that the information content, of both the measurement
outcomes and the time elapsed from objectification, stored in
the objectified states of the system plus apparatus is perfectly
transmitted to the observer.

The paper is organized as follows. In Sec. II we review
the basic elements of the quantum theory of measurement.
In Sec. III we characterize measurement schemes as models
for direct measurement processes. In Sec. IV we evaluate the
work and heat that results from the measurement process. In
Sec. V we argue for the necessity of the Yanase condition and
in Sec. VI show that the Yanase condition ensures classicality
of the heat uncertainty. In Sec. VII we give a concrete example
where the system is measured by the Lüders instrument.

II. QUANTUM MEASUREMENT

In this section we give a brief but self-contained review of
the quantum theory of measurement. For further details, refer
to Refs. [54–60].

A. Basic concepts

We consider systems with a separable complex Hilbert
space H and denote by L(H) the algebra of bounded linear
operators on H. In addition, O and 1 will represent the null

and identity operators of L(H), respectively. We further define
by T (H) ⊆ L(H) the space of trace-class operators and by
S (H) ⊂ T (H) the space of positive unit-trace operators, i.e.,
states.

In the Schrödinger picture, physical transformations will
be represented by operations, that is, completely positive
trace-nonincreasing linear maps � : T (H) → T (K), where
H is the input space and K the output. Transformations
in the Heisenberg picture will be described by the dual
operations �∗ : L(K) → L(H), which are completely pos-
itive subunital linear maps, defined by the trace duality
tr[�∗(B)T ] = tr[B�(T )] for all B ∈ L(K) and T ∈ T (H).
The trace-preserving (or unital) operations will be referred to
as channels.

B. Discrete observables

At the coarsest level of description, an observable of a
system with Hilbert space H is represented by, and identi-
fied with, a normalized positive-operator-valued measure E :
� → L(H). Here � is the σ algebra of some value space X
and represents the possible measurement outcomes of E. For
any X ∈ �, the positive operator O � E(X ) � 1 is referred
to as the associated effect of E, and normalization implies
that E(X ) = 1. If the value space is a countable set X =
{x1, x2, . . . }, then E is referred to as a discrete observable.
Unless stated otherwise, we always assume that E is discrete,
in which case it can be identified by the set of effects as E :=
{Ex ≡ E({x}) : x ∈ X } such that

∑
x∈X Ex = 1 (converging

weakly). The probability of observing outcome x when the
observable E is measured in the state ρ is given by the Born
rule as

pE
ρ (x) := tr(Exρ).

An observable is called sharp if all the effects are projection
operators, i.e., if ExEy = δx,yEx. Sharp observables corre-
spond to self-adjoint operators by the spectral theorem. An
observable that is not sharp will be referred to as unsharp.
An observable admits objective values if for all x ∈ X there
exists a state ρ which is objectified with respect to E, i.e.,
tr(Exρ) = 1. This implies that all effects Ex must have at
least one eigenvector with eigenvalue 1, where ρ is objectified
with respect to E if ρ only has support in the eigenvalue-1
eigenspace of Ex. Sharp observables trivially satisfy this con-
dition, but so do certain unsharp observables.

C. Instruments

A more detailed representation of observables is given by
instruments, or normalized-operation-valued measures, which
describe how a measured system is transformed [61]. A
discrete instrument I is fully characterized by the set of opera-
tions I := {Ix ≡ I ({x}) : x ∈ X }, where Ix : T (H) → T (H)
are the operations of I such that

∑
x∈X tr[Ix(T )] = tr(T ) for

all T ∈ T (H). We therefore identify IX (·) := ∑
x∈X Ix(·) as

the channel induced by I. An instrument I is identified with
a unique observable E via the relation I∗

x (1) = Ex for all
x ∈ X . This implies that for all states and outcomes, pE

ρ (x) :=
tr(Exρ) = tr[Ix(ρ)]. We refer to I as being compatible with
observable E, or an E instrument for short. Note that, while
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FIG. 1. A discrete observable E is measured by an instrument
I. A quantum system, prepared in an arbitrary state ρ, enters the
instrument, which registers outcome x with probability pE

ρ (x) :=
tr(Exρ ) = tr[Ix (ρ )], and transforms the system to the new state
ρx := Ix (ρ )/pE

ρ (x).

an instrument I is compatible with a unique observable E, an
observable admits many different instruments.

For an input state ρ ∈ S (H) and any outcome x such that
pE

ρ (x) > 0, the normalized conditional state prepared by I is
defined as

ρx := Ix(ρ)/pE
ρ (x). (1)

If pE
ρ (x) = 0, we define ρx := O. On the other hand, the un-

conditional state given a nonselective measurement is IX (ρ).
Figure 1 gives a schematic representation of an instrument.

An E instrument I is repeatable if for all x, y ∈ X and ρ ∈
S (H),

tr[EyIx(ρ)] = δx,ytr(Exρ), (2)

which may equivalently be written as

I∗
x (Ey) = δx,yEx ∀ x, y ∈ X . (3)

In other words, I is a repeatable E instrument if a second
measurement of E is guaranteed to produce the same outcome
as I. An observable E admits a repeatable instrument only
if it is discrete [41], and all of its effects have at least one
eigenvector with eigenvalue 1 [62].

We note that the repeatability condition (2) is equivalent
to tr[ExIx(ρ)] = tr(Exρ) for all x and ρ [63]. Therefore, by
Eq. (1), I is a repeatable E instrument if and only if for all
x ∈ X and ρ ∈ S (H) such that pE

ρ (x) > 0,

tr(Exρx ) = tr[ExIx(ρ)]

tr(Exρ)
= tr(Exρ)

tr(Exρ)
= 1.

Let us denote the projection onto the eigenvalue-1 eigenspace
of the effect Ex by Px, where we note that since

∑
x Ex = 1,

then PxPy = PxEy = δx,yPx. Since tr(Exρx ) = 1 if and only
if tr(Pxρx ) = 1, then we may infer that the instrument I is
repeatable if and only if for all input states ρ the output states
may be written as ρx = PxρxPx = Pxρx = ρxPx; the output
state ρx must only have support in the eigenvalue-1 eigenspace
of Ex. It is easily seen that if I is repeatable, then for all input
states ρ the output states will be pairwise orthogonal, since
ρxρy = ρxPxPyρy = O if x 	= y.

All discrete observables E can be implemented by a Lüders
instrument IL defined as

IL
x (T ) :=

√
ExT

√
Ex,

to hold for all x ∈ X and T ∈ T (H) [64]. A Lüders instrument
is repeatable if and only if E is sharp; noting that IL

x
∗ = IL

x ,
we see that IL

x
∗(Ex ) = E2

x , which satisfies Eq. (3) if and only

FIG. 2. The E instrument I is implemented by a measurement
scheme. The system, prepared in an arbitrary state ρ, and the ap-
paratus probe, prepared in the fixed state ξ , undergo a joint unitary
evolution U . Subsequently, the pointer observable Z is implemented
on the probe by a Z instrument J ; the probe enters this instrument,
which registers outcome x with probability pE

ρ (x) := tr(Exρ ) =
tr[Ix (ρ )] and transforms the probe to the new state ξx . The system
is thus transformed to the same state prepared by I, namely, ρx . If J
is a repeatable Z instrument then the measurement outcome x is also
recorded in the state ξx; a second measurement of Z on the probe will
produce outcome x with certainty.

if E2
x = Ex. However, for any observable E, all effects of

which have at least one eigenvector with eigenvalue 1, the
Lüders instrument implements an ideal measurement of E.
Ideal measurements only disturb the system to the extent that
is necessary for measurement; for all ρ and x, tr(Exρ) =
1 ⇒ IL

x (ρ) = ρ [65]. It follows that if ρx is a state prepared
by a repeatable E instrument I, then a subsequent Lüders
measurement of E will leave the state ρx undisturbed.

D. Measurement schemes

Let us now consider two systems S and A, with Hilbert
spaces HS and HA, respectively. The total system S + A
has the Hilbert space H := HS ⊗ HA. We consider S as the
system to be measured and A as a probe that facilitates an
indirect measurement of an observable E of S . An indirect
measurement scheme for an E instrument I on S may be
characterized by the tuple M := (HA, ξ ,U, Z). Here ξ ∈
S (HA) is the initial state of A, U is a unitary operator on the
composite system S + A which serves to couple the system
with the probe, and Z := {Zx : x ∈ X } is a pointer observable
of A, where X is chosen to be the same value space as that
of the system observable E. The operations of the instrument
implemented by M may be written as

Ix(T ) = trA[(1S ⊗ Zx )U (T ⊗ ξ )U †], (4)

where trA : T (H) → T (HS ) is the partial trace over A, de-
fined by the relation tr[B trA(T )] = tr[(B ⊗ 1A)T ] for all
B ∈ L(HS ) and T ∈ T (H). Every E instrument I admits a
normal measurement scheme M, where ξ is a pure state and
Z is a sharp observable [41]. However, we consider the more
general case where ξ can be a mixed state and Z can be
unsharp. As with the relationship between instruments and
observables, while a measurement scheme M corresponds to
a unique E instrument I, an instrument admits many different
measurement schemes. This reflects the fact that one may
construct different physical devices, all of which measure the
same observable. A schematic of a measurement scheme is
provided in Fig. 2.
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We note that the instrument I is independent of how Z is
measured. Consider an arbitrary Z instrument J and define
the identity channel on S as IS : T (HS ) → T (HS ), T �→ T .
We may therefore define the operation IS ⊗ Jx as satisfy-
ing IS ⊗ Jx(T1 ⊗ T2) = T1 ⊗ Jx(T2) for all T1 ∈ T (HS ) and
T2 ∈ T (HA). Such an operation can be extended to all of
T (H) by linearity. Let us now define the operations �x :
T (HS ) → T (HS ) as

�x(T ) := trA[IS ⊗ Jx(UT ⊗ ξU †)],

to hold for all x ∈ X and T ∈ T (HS ). However, for all x ∈ X ,
T ∈ T (HS ), and B ∈ L(HS ), we have the following:

tr[B�x(T )] = tr[(B ⊗ 1A)IS ⊗ Jx(UT ⊗ ξU †)]

= tr[I∗
S ⊗ J ∗

x (B ⊗ 1A)UT ⊗ ξU †]

= tr[(B ⊗ Zx )UT ⊗ ξU †]

= tr[BIx(T )]. (5)

Here we have used the definition of the partial trace in the first
line, the definition of the dual in the second line, the relation
I∗
S ⊗ J ∗

x (B ⊗ 1A) = B ⊗ Zx in the third line, and Eq. (4) in
the final line. Since the equality in Eq. (5) holds for all B
and T , it follows that �x = Ix for all x. That is to say, I is
independent of how the state of the probe changes as a result
of the measurement process.

III. MEASUREMENT SCHEMES AS A MODEL FOR THE
MEASUREMENT PROCESS

Ultimately, all measurements must result from a physical
interaction between the system being measured and a mea-
surement apparatus. We saw in the discussion above that it
is possible to model the measurement process, as a physical
interaction between a system S and a probe A, via an indirect
measurement scheme M := (HA, ξ ,U, Z). We now wish to
consider M as a quantum-mechanical model for a direct
measurement process, where A is interpreted as a quantum
probe of a macroscopic measurement apparatus. Given that
the boundary between the probe and the rest of the apparatus is
arbitrary, we may consider the probe as a quantum-mechanical
representation of the apparatus itself and will thus refer to A
as the apparatus for brevity.

We may decompose the measurement process into three
stages: preparation, premeasurement, and objectification [56].
During preparation the system, initially prepared in an ar-
bitrary state ρ, is brought in contact with the apparatus to
prepare the joint state ρ ⊗ ξ . During premeasurement, the
composite system is then evolved by the unitary operator
U , preparing the joint state U (ρ ⊗ ξ )U †. In general, such a
state cannot be understood as a classical mixture of states for
which the pointer observable Z ≡ {1S ⊗ Zx} has a definite
(objective) value x; this is the essential content of the quan-
tum measurement, or pointer objectification, problem [43,44].
Consequently, after premeasurement we must objectify the
state U (ρ ⊗ ξ )U † with respect to the pointer observable,
thereby preparing the state∑

x∈X
pE

ρ (x)σx,

where tr[(1S ⊗ Zx )σx] = 1 for all x. Such a state offers an
ignorance interpretation as a classical ensemble of states
{pE

ρ (x), σx} for which the pointer observable takes definite
values x with probabilities pE

ρ (x). In order for pointer objecti-
fication to be possible, we must restrict the pointer observable
so that all effects Zx have at least one eigenvector with eigen-
value 1 so that each σx only has support in the eigenvalue-1
eigenspace of 1S ⊗ Zx; this implies that the set of states {σx :
x ∈ X } will be pairwise orthogonal. Note that pointer objecti-
fication implies that it is possible for the observer to read the
measurement outcome without further disturbing the state of
the system plus apparatus; if the observer measures Z by the
Lüders instrument J L, with operations J L

x (·) := √
Zx(·)√Zx,

then we have IS ⊗ J L
x (σx ) = σx for all x.

While remaining agnostic as to the precise physical pro-
cess by which objectification occurs—attempts of physically
modeling objectification include, for example, einselection by
the environment [66] and the spontaneous collapse model of
Ghirardi et al. [67]—we do demand that it be some physi-
cal process, that is, a completely positive trace-nonincreasing
map. As a conceptual tool, we will therefore consider ob-
jectification as a measurement of the pointer observable Z
by a Z instrument J . However, such an instrument must be
repeatable.

Given an arbitrary Z instrument J , conditional on produc-
ing outcome x, the compound of the system plus apparatus
will be prepared in the state

σx := 1

pE
ρ (x)

IS ⊗ Jx[U (ρ ⊗ ξ )U †], (6)

where, given Eq. (5), we have pE
ρ (x) := tr(Exρ) =

tr[Ix(ρ)] = tr{IS ⊗ Jx[U (ρ ⊗ ξ )U †]}. The reduced states of
the system and apparatus are thus

ρx = trA(σx ), ξx := trS (σx ), (7)

where ρx is precisely the same state given in Eq. (1) and trS :
T (H) → T (HA) is the partial trace over S . However, σx will
be objectified with respect to the pointer observable only if

tr[(1S ⊗ Zx )σx] = tr[1S ⊗ J ∗
x (Zx )U (ρ ⊗ ξ )U †]

tr[1S ⊗ ZxU (ρ ⊗ ξ )U †]
= 1.

To ensure this for all input states ρ and outcomes x, we must
have J ∗

x (Zx ) = Zx, which by Eq. (3) implies that J must be
a repeatable Z instrument. If J is a repeatable Z instrument,
which we will henceforth assume, we will refer to σx given in
Eq. (6) as the objectified state and

σ := IS ⊗ JX [U (ρ ⊗ ξ )U †] =
∑
x∈X

pE
ρ (x)σx (8)

as the average objectified state.

IV. INTERNAL ENERGY, WORK, AND HEAT

We now consider the change in internal energy, work,
and heat resulting from a measurement scheme M :=
(HA, ξ ,U, Z) for an arbitrary discrete observable E on a
system S and for an arbitrary system state ρ. This discus-
sion follows closely the framework of Ref. [40]. We assume
that the compound system S + A, with Hilbert space H :=
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HS ⊗ HA, has the bounded additive Hamiltonian H = HS ⊗
1A + 1S ⊗ HA, where HS ∈ L(HS ) and HA ∈ L(HA) are
the Hamiltonians of each individual system. We refer to H
as the bare Hamiltonian, which describes the compound when
both the system and apparatus are fully isolated. We define the
internal energy of S + A, for an arbitrary state � ∈ S (H), as
tr(H�). The internal energies of S and A are similarly defined.

The premeasurement stage of the measurement process
is implemented by introducing a time-dependent interaction
Hamiltonian HI (t ) ∈ L(H), which is nonvanishing only dur-
ing a finite interval t ∈ [t0, t1]. Such a time dependence of the
Hamiltonian generates the unitary U as

U = ←−
T exp

(
−i

∫ t1

t0

dt[H + HI (t )]

)
,

with
←−
T denoting the time-ordering operator. The introduc-

tion of the time-dependent interaction Hamiltonian HI (t ) is
understood to be a purely mechanical manipulation of the
compound system S + A, due to an interaction with an ex-
ternal macroscopic work source. Therefore, the increase in
internal energy of S + A during premeasurement will entirely
be identified as the premeasurement work extracted from the
macroscopic source [68,69] and will read

W := tr[(U †HU − H )ρ ⊗ ξ ]

≡ tr{H[U (ρ ⊗ ξ )U † − ρ ⊗ ξ ]}
= tr{HS [IX (ρ) − ρ]} + tr[HA(η − ξ )]. (9)

In the final line we use the additivity of H and the defini-
tion of the partial trace, where IX (ρ) = trA[U (ρ ⊗ ξ )U †]
and η := trS [U (ρ ⊗ ξ )U †]. Note that W is not defined as
an average over measurement outcomes, as is the case in the
two-point energy measurement protocol [70,71], and it can be
considered as the unmeasured work [72].

Recall that after objectification, conditional on producing
outcome x, the compound system is prepared in the joint
objectified state σx as defined in Eq. (6). Consequently, for
each outcome x such that pE

ρ (x) > 0, the change in internal
energy of the compound of the system plus apparatus for the
full measurement process may be quantified as


E (x) := tr[H (σx − ρ ⊗ ξ )]. (10)

By the additivity of H , we have 
E (x) = 
ES (x) + 
EA(x),
where 
ES (x) and 
EA(x) quantify the change in internal
energy of the system and apparatus, respectively, given as


ES (x) := tr[HS (ρx − ρ)],


EA(x) := tr[HA(ξx − ξ )], (11)

with ρx and ξx the reduced states of σx as defined in
Eq. (7). For any x such that pE

ρ (x) = 0, we define 
EA(x) =

ES (x) = 
E (x) := 0.

We may now consider the first law of thermodynamics.
For each outcome x such that pE

ρ (x) > 0, we may define the
heat as Q(x) := 
E (x) − W , which is easily obtained from
Eqs. (9) and (10) to be

Q(x) = tr{H[σx − U (ρ ⊗ ξ )U †]}. (12)

For any x such that pE
ρ (x) = 0, we define Q(x) := 0. This

heat is due to the transformation of the premeasured state
U (ρ ⊗ ξ )U † to the objectified states σx, i.e., due to objecti-
fication. We may therefore refer to Q(x) as the objectification
heat.

Note that the distribution of Q(x) is guaranteed to be
trivial, that is, Q(x) = 0 for all x, if (i) for the input state
ρ an outcome x of the system observable E is guaranteed
(with probability 1) to occur at the outset and (ii) the pointer
observable is sharp and pointer objectification is implemented
by the Lüders Z instrument J L (which is repeatable if and
only if Z is sharp). First, note that pE

ρ (x) = 1 if and only
if ρ only has support in the eigenvalue-1 eigenspace of Ex,
which trivially implies that ρ must commute with E. How-
ever, it can still be the case that ρ commutes with E, but
has support in the eigenspaces of more than one effect, in
which case no outcome is definite from the outset. Now,
given that M is a measurement scheme for E, pE

ρ (x) =
1 ⇒ tr[(1S ⊗ Zx )U (ρ ⊗ ξ )U †] = 1. However, recall that the
Lüders instrument is ideal, i.e., tr(Zx�) = 1 ⇒ J L

x (�) = �. It
follows that in such a case we have IS ⊗ J L

x [U (ρ ⊗ ξ )U †] =
U (ρ ⊗ ξ )U †, and hence σx = U (ρ ⊗ ξ )U †, which by Eq. (12)
trivially gives Q(x) = 0. If the pointer observable is sharp
and pointer objectification is implemented by the Lüders in-
strument, we can conclude that the heat distribution will be
nontrivial only if the measurement outcomes of the system
observable E in the input state ρ are indeterminate. However,
note that if pointer objectification is implemented by an ar-
bitrary repeatable instrument J , compatible with a possibly
unsharp observable Z, it may still be the case that pE

ρ (x) = 1,
but nonetheless we have σx 	= U (ρ ⊗ ξ )U †, and it will be
possible to have Q(x) 	= 0.

As an aside, let us note that 
E (x) defined in Eq. (10) is
not fully conditional on the measurement outcome x; while the
final energy tr(Hσx ) depends on x, the initial energy tr(Hρ ⊗
ξ ) does not. In Appendix D we compare the present approach
to that suggested in Ref. [39], where the initial energy is also
conditioned on the measurement outcome. This method moti-
vates a definition for the conditional work, whereby applying
the first law leads to a drastically different interpretation of
heat as a counterfactual quantity.

Finally, upon averaging over all measurement outcomes we
obtain

〈
E〉 :=
∑
x∈X

pE
ρ (x)
E (x) = tr[H (σ − ρ ⊗ ξ )],

〈Q〉 :=
∑
x∈X

pE
ρ (x)Q(x) = tr{H[σ − U (ρ ⊗ ξ )U †]}, (13)

where σ is the average objectified state defined in Eq. (8).
Combining these with the work, we thus obtain the average
first law as

〈
E〉 = W + 〈Q〉. (14)

Note that trA(σ) = trA[U (ρ ⊗ ξ )U †] = IX (ρ) always holds.
As such, the average heat will only depend on the apparatus
degrees of freedom and can be equivalently expressed as
〈Q〉 = tr{HA[JX (η) − η]}, where JX (η) ≡ ∑

x pE
ρ (x)ξx.
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V. NECESSITY OF THE YANASE CONDITION

In the preceding section we identified work with the pre-
measurement stage of the measurement process: the work
exchanged with an external source as a result of inducing
a time dependence on the compound system’s Hamiltonian
so as to generate the unitary evolution U . However, once
the premeasurement stage is complete the compound of
the system plus apparatus is once again governed by the
time-independent bare Hamiltonian H = HS ⊗ 1A + 1S ⊗
HA and no work is exchanged with an external source there-
after. Indeed, this is a crucial assumption for the energetic
changes during objectification to be fully identified as heat.
Since after premeasurement the compound system S + A
has the time-independent bare Hamiltonian H , it follows that
S + A will be governed by time-translation symmetry. Here
the (compact, Abelian) symmetry group is G = R, with the
strongly continuous unitary representation in H := HS ⊗ HA
generated by the Hamiltonian as V : G � g �→ V (g) := e−igH .
By additivity of H , we may also write V (g) = VS (g) ⊗ VA(g),
where VS (g) := e−igHS and VA(g) := e−igHA . Below we will
provide two arguments as to why time-translation symme-
try demands that the pointer observable must commute with
the Hamiltonian: (i) The time at which objectification takes
place should not make a physically observable difference and
(ii) the record of the measurement outcomes produced by
objectification should be time independent. We refer to the
commutation of the pointer observable with the Hamiltonian
as the Yanase condition [45,46], first introduced in the context
of the Wigner-Araki-Yanase theorem [47–49].

Let us first consider (i). This can be justified heuristically
by considering that the observer has no way of knowing pre-
cisely at what time after premeasurement objectification takes
place. Specifically, the observer cannot distinguish between
the following states of affairs: (a) The pointer observable is
immediately objectified after premeasurement and then the
compound system evolves for some time g and (b) the com-
pound system evolves for some time g after premeasurement
and then the pointer observable is objectified. Such indiscerni-
bility implies that the operations of the Z instrument J must
be time-translation covariant,

IS ⊗ Jx[V (g) · V (g)†] = V (g)IS ⊗ Jx(·)V (g)†,

⇒ Jx[VA(g) · VA(g)†] = VA(g)Jx(·)VA(g)†,

to hold for all x ∈ X and g ∈ G, where the second line fol-
lows from the additivity of H . Noting that Zx = J ∗

x (1A) by
definition and that covariance in the Schrödinger picture is
equivalent to covariance in the Heisenberg picture, we have
for all x ∈ X and g ∈ G the following:

Zx = J ∗
x [VA(g)†1AVA(g)] = VA(g)†I∗

x (1A)VA(g)

= VA(g)†ZxVA(g).

In other words, the Heisenberg evolved pointer observ-
able Z(g) := {Zx(g) ≡ VA(g)†ZxVA(g) : x ∈ X } must equal
the pointer observable Z for all g; time-translation covariance
of J implies that Z must be time-translation invariant. Indeed,
as argued by Loveridge et al. in Ref. [50], the only observ-
able quantities of a system governed by a symmetry group
G are those that are invariant under its action. By computing

the differential of both sides of the equality Zx(g) = Zx with
respect to g, we obtain [Zx(g), HA] = O. By evaluating this
commutator as g → 0, we see that [Zx, HA] = O must hold
for all x, which we will denote by the shorthand [Z, HA] = O.

Now let us consider (ii). Even if we are to assume that
pointer objectification can occur with a noninvariant pointer
observable, the Yanase condition can be argued for a fortiori
on the basis of the stability of the measurement outcomes.
Let us assume that the compound system is objectified with
respect to an arbitrary pointer observable Z immediately after
premeasurement, producing outcome x and thus preparing the
objectified state σx, defined in Eq. (6), which only has support
in the eigenvalue-1 eigenspace of Zx. Now assume that the
external observer chooses to read the measurement outcome
by measuring Z at some time g after objectification. It follows
that the observer will detect outcome x with the probability

tr[1S ⊗ Zx(g)σx] = tr{1S ⊗ J ∗
x [Zx(g)]U (ρ ⊗ ξ )U †}

tr[1S ⊗ ZxU (ρ ⊗ ξ )U †]
. (15)

The record of the measurement outcome is stable (or time
independent) if and only if for all ρ ∈ S (HS ), x ∈ X , and
g ∈ G, Eq. (15) equals 1. It is easy to see that this will be
satisfied only if Zx(g) = Zx for all x and g, so by repeatability
of J we obtain J ∗

x [Zx(g)] = J ∗
x (Zx ) = Zx. Once again, the

Yanase condition must hold.

VI. UNCERTAINTY OF THE OBJECTIFICATION HEAT

In the previous sections we defined the heat Q that results
as the compound of the system to be measured and the mea-
surement apparatus is objectified with respect to the pointer
observable. However, using symmetry principles and the re-
quirement that the objectified values be stable across time,
we argued that the pointer observable must commute with the
Hamiltonian, that is, the Yanase condition must be fulfilled.
Now we wish to consider what implications the Yanase con-
dition will have for the statistics of the objectification heat.

First, let us note that if the Hamiltonian of the apparatus
is a fixed point of the Z channel J ∗

X , i.e., J ∗
X (HA) = HA,

then the average objectification heat will vanish for all input
states ρ. In Appendix A we show that in the case where the
pointer observable is sharp and satisfies the Yanase condition
and either (i) objectification is implemented by the Lüders
instrument J L or (ii) the Hamiltonian can be written as HA =∑

x εxZx, then J ∗
X (HA) = HA will always hold. However, we

provide a simple counterexample where even if the Yanase
condition is fulfilled, it still holds that J ∗

X (HA) 	= HA, and so
it will be possible for some input states to have 〈Q〉 	= 0. Of
course, the average heat is not the only quantity of interest.
The fluctuation, or uncertainty, of the heat is also informative.
As we show below, the Yanase condition guarantees that the
uncertainty of the objectification heat is fully classical.

The uncertainty of the objectification heat Q is defined
as the variance Var(Q) := 〈Q2〉 − 〈Q〉2 which, as shown in
Appendix B, can always be written as

Var(Q) = var(H, σ ) −
∑
x∈X

pE
ρ (x)var(H, σx ). (16)

Here σx and σ := ∑
x pE

ρ (x)σx are the states defined in Eqs. (6)
and (8), respectively, while for any self-adjoint A ∈ L(H) and
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� ∈ S (H), the variance of A in � is defined as var(A, �) :=
tr(A2�) − tr(A�)2.

To disambiguate the classical and quantum contributions to
Var(Q), let us first note that the variance var(A, �) can be split
into a classical and quantum component as

var(A, �) = varqu(A, �) + varcl(A, �),

varqu(A, �) := tr(A2�) − tr(A�αA�1−α ),

varcl(A, �) := tr(A�αA�1−α ) − tr(A�)2, (17)

where α ∈ (0, 1) and, for a state with spectral decomposition
� = ∑

i piPi, we define �α := ∑
i pα

i Pi. Here varqu(A, �) is
the Wigner-Yanase-Dyson skew information [52,53] which
(i) is non-negative and bounded by the variance 0 �
varqu(A, �) � var(A, �), (ii) reduces to var(A, �) if � is a pure
state and vanishes if [A, �] = O, and (iii) is convex under
classical mixing, i.e.,

∑
i pivarqu(A, �i ) � varqu(A,

∑
i pi�i).

Conditions (i)–(iii) satisfy the definition for a measure
of quantum uncertainty proposed in Ref. [73], and hence
varqu(A, �) can be understood as quantifying the quantum
uncertainty of A in �. On the other hand, varcl(A, �) may be
interpreted as quantifying the remaining classical uncertainty
of A in � and it (i) is non-negative and bounded by the
variance 0 � varcl(A, �) � var(A, �), (ii) reduces to var(A, �)
if [A, �] = O and vanishes if � is a pure state, and (iii)
is concave under classical mixing, i.e.,

∑
i pivarcl(A, �i ) �

varcl(A,
∑

i pi�i ).
The uncertainty of energy in the average objectified state

and the objectified states can be split into a quantum and
classical component defined in Eq. (17) as var(H, σ ) =
varqu(H, σ ) + varcl(H, σ ) and var(H, σx ) = varqu(H, σx ) +
varcl(H, σx ), respectively. Therefore, we may now write the
uncertainty of heat shown in Eq. (16) as

Var(Q) = 
varcl − 
varqu, (18)

where we define


varqu :=
∑
x∈X

pE
ρ (x)varqu(H, σx ) − varqu(H, σ ) � 0,


varcl := varcl(H, σ ) −
∑
x∈X

pE
ρ (x)varcl(H, σx ) � 0, (19)

with positivity ensured by Lieb’s concavity theorem [53].
Here 
varqu quantifies the decrease in quantum uncertainty
of energy when the objectified states σx are classically mixed.
Conversely, 
varcl quantifies the increase in classical uncer-
tainty of energy when the objectified states are classically
mixed. Note that Var(Q) � 0 implies that 
varcl � 
varqu

always holds.
The expressions presented thus far hold for all pointer

observables Z and all implementations J . Now let us assume
that the Z instrument J is repeatable, which is necessary for
pointer objectification. Repeatability of J implies that {σx :
x ∈ X } are pairwise orthogonal, with each σx only having
support in the eigenvalue-1 eigenspace of the effects 1S ⊗ Zx.
Repeatability thus implies that σ and {σx : x ∈ X } have a
common set of spectral projections, and so for any α we may
write σα = ∑

x pE
ρ (x)ασα

x . Consequently, by using Eqs. (17)
and (19) and noting that

∑
x pE

ρ (x)tr(H2σx ) = tr(H2σ), we

may rewrite 
varqu as


varqu = tr(HσαHσ1−α )

−
∑
x∈X

pE
ρ (x)tr

(
Hσα

x Hσ 1−α
x

)

=
∑
x 	=y

pE
ρ (x)α pE

ρ (y)1−αtr
(
Hσα

x Hσ 1−α
y

)
. (20)

Now let us also assume that Z satisfies the Yanase condi-
tion [Z, HA] = O which, by additivity of H , is equivalent to
[1S ⊗ Z, H] = O. We recall that repeatability of J implies
the identities σα

x = σα
x (1S ⊗ Px ) = (1S ⊗ Px )σα

x for all x and
α, where Px denotes the projection onto the eigenvalue-1
eigenspace of Zx. Consequently, we will have for all x 	= y
the following:

σα
x Hσ 1−α

y = σα
x (1S ⊗ Px )H (1S ⊗ Py)σ 1−α

y

= σα
x H (1S ⊗ PxPy)σ 1−α

y

= O.

Here, in the second line we have used the Yanase condition
which, since Px is a spectral projection of Zx, implies that
[1S ⊗ Px, H] = O, and in the final line we have used the fact
that PxPy = O if x 	= y. We see by Eq. (20) that 
varqu = 0,
and so Eq. (18) reduces to

Var(Q) = 
varcl. (21)

The uncertainty in objectification heat is entirely identified
with 
varcl, which quantifies the increase in classical uncer-
tainty of energy by classically mixing the objectified states σx

to prepare the mixture σ. While the quantum uncertainty of
energy in the states σ and {σx : x ∈ X } need not vanish indi-
vidually, such uncertainty will play no role in the magnitude
of Var(Q). As such, we may interpret the uncertainty of the
objectification heat Q as being entirely classical.

We note that the same arguments as above will apply,
mutatis mutandis, for the uncertainty of 
EA as defined in
Eq. (11), that is, the uncertainty of the change in internal
energy of the measurement apparatus. Repeatability of the Z
instrument J will mean that the conditional apparatus states
{ξx : x ∈ X } will be pairwise orthogonal, with each ξx only
having support in the eigenvalue-1 eigenspace of Zx. The
Yanase condition will thus imply that the quantum contribu-
tion to Var(
EA) := 〈
E2

A〉 − 〈
EA〉2 will be strictly zero.

A. Measurement, heat, and information transfer

To interpret the classicality of the heat uncertainty in
information-theoretic terms, let us conceive the objectifica-
tion process as resulting from a measurement of the pointer
observable by a fictitious agent which we will refer to as a
daimon, from the Greek δαιμων, the root of which means to
divide. At first, the daimon measures the pointer observable Z
by a repeatable Z instrument, thereby encoding the informa-
tion regarding the measurement outcome x in the objectified
state σx defined in Eq. (6). Such information can be perfectly
transmitted to the observer, since a second measurement of
the pointer observable by the observer will recover outcome
x on the state σx with certainty. However, the daimon may
also choose to encode time information in the objectified
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states, by allowing them to evolve according to their isolated
Hamiltonian evolution, with such time evolution being depen-
dent on the outcome x observed. As we will see below, the
Yanase condition will ensure perfect transfer of both types
of information to the observer, with the perfect information
transfer regarding time being concomitant with the classical
uncertainty of heat.

In order to describe the process of information transfer, let
us first assign a Hilbert space HD to the daimon’s memory
D and denote by {|x〉} an orthonormal basis of HD, with
each |x〉 indicating that the daimon has observed outcome
x of the pointer observable Z (and hence of the system ob-
servable E). We will also assign a Hamiltonian HD to the
daimon’s memory, and since such memory should be time
independent, then {|x〉} are also eigenstates of HD. Since
the memory of the daimon is perfectly correlated with the
measurement outcomes, then conditional on observing out-
come x, the compound system D + S + A will be prepared
in the state |x〉〈x| ⊗ σx. Conditional on observing outcome x,
the daimon may then allow the compound system S + A to
evolve for time gx, where gx = gy ⇐⇒ x = y. The daimon
thus prepares the joint state |x〉〈x| ⊗ σx(gx ), where σx(gx ) :=
e−igxH (σx )eigxH , with H = HS ⊗ 1A + 1S ⊗ HA the additive
Hamiltonian of the compound system S + A. The average
joint state of the daimon’s memory and the compound of the
system plus apparatus can thus be represented as

� :=
∑

x

pE
ρ (x)|x〉〈x| ⊗ σx(gx ), (22)

where pE
ρ (x) := tr(Exρ) = tr[(1S ⊗ Zx )U (ρ ⊗ ξ )U †]. The

process of information transfer from the daimon to the ob-
server is described by the partial trace channel trD : T (HD ⊗
H) → T (H) so that the observer receives the compound
of the system plus apparatus in the state trD(�) = σ(g) :=∑

x pE
ρ (x)σx(gx ).

For any state ρ, the von Neumann entropy is defined
as S(ρ) := −tr[ρ ln(ρ)]. We may quantify the information
content of � defined in Eq. (22) pertaining to the measure-
ment outcomes x by the von Neumann entropy S(�). Note
that for any collection of pairwise orthogonal states {ρi},
we always have S(

∑
i piρi ) = H + ∑

i piS(ρi ), where H ≡
H ({pi}) := −∑

i pi ln(pi ) is the Shannon entropy of the
probability distribution {pi}. Since the states |x〉〈x| ⊗ σx(gx )
are pairwise orthogonal while |x〉〈x| are pure states and the
von Neumann entropy is invariant under unitary evolution, we
have S(�) = ∑

x pE
ρ (x)S(σx ) + H , with H ≡ H ({pE

ρ (x)})
the Shannon entropy of the measurement probability distri-
bution. It follows that

S(σ(g)) − S(�) = X − H � 0, (23)

where X := S(σ(g)) − ∑
x pE

ρ (x)S(σx ) � H is the Holevo
information [74], which quantifies the maximum amount of
classical information pertaining to the random variable x that
can be transmitted given the ensemble {pE

ρ (x), σx(gx )}. By the
inequality in Eq. (23), we see that the information received
by the observer cannot be greater than that obtained by the
daimon. However, recall that the daimon implements Z by
a repeatable instrument J , which is required by objectifi-
cation, and that Z satisfies the Yanase condition [Z, HA] =

[1S ⊗ Z, H] = O, which is required for the objectified val-
ues to be stable. Repeatability guarantees that {σx} will be
pairwise orthogonal, with each σx only having support in
the eigenvalue-1 eigenspace of 1S ⊗ Zx. Since the Yanase
condition implies that [1S ⊗ Px, H] = O for all x, where Px

is the projection onto the eigenvalue-1 eigenspace of Zx, it
follows that {σx(gx )} are also pairwise orthogonal, since

σx(gx ) = e−igxH (1S ⊗ Px )σx(1S ⊗ Px )eigxH

= (1S ⊗ Px )e−igxHσxeigxH (1S ⊗ Px )

= (1S ⊗ Px )σx(gx )(1S ⊗ Px ).

Note that orthogonality of {σx(gx )} is guaranteed by re-
peatability alone if gx = g for all x, since σx(g)σy(g) =
e−igxHσxeigxH e−igyHσyeigyH = O if x 	= y and gx = gy. How-
ever, we assume that gx are distinct, and so eigxH e−igyH =
ei(gx−gy )H 	= 1. The orthogonality of the states {σx(gx )} im-
plies that S(σ(g)) = ∑

x pE
ρ (x)S(σx ) + H , and hence X =

H , so that the upper bound of Eq. (23) is saturated; the
observer’s measurement of the pointer observable Z on the ap-
paratus will recover outcomes x by the probability distribution
pE

ρ (x), and so none of the classical information regarding the
measurement outcomes is lost as such information is trans-
mitted to the observer. However, if the collection of states
{σx(gx )} is not pairwise orthogonal, implying that either J
is not repeatable, meaning that the pointer observable was
not objectified, or the Yanase condition is violated, meaning
that the objectified values are not stable, it is known that
X � κH , where κ < 1 quantifies the maximum trace dis-
tance between the states σx(gx ) [75]. In such a case Eq. (23)
becomes a strict inequality, indicating a nonvanishing loss of
information.

Now let us turn to the other type of information transfer,
that is, information regarding time. For a system governed by
a Hamiltonian H , the asymmetry of a state ρ with reference
to H may be quantified by the Wigner-Yanase-Dyson skew
information varqu(H, ρ) defined in Eq. (17). If ρ commutes
with H so that varqu(H, ρ) = 0, then e−igHρeigH = ρ for all
g and so ρ does not contain any information regarding g.
On the other hand, if ρ does not commute with H so that
varqu(H, ρ) is large, then the orbit of states {e−igHρeigH : g}
will also be large, in which case ρ serves as a better en-
coding of g [76]. We may therefore quantify the information
regarding time (the random variables {gx}), encoded in the
state �, by the skew information as varqu(Htot, �), where
Htot := HD ⊗ 1 + 1D ⊗ H is the total additive Hamiltonian
of the compound system D + S + A. Since the skew infor-
mation never increases under channels that are covariant with
respect to time-translation symmetry and the partial trace
channel is always time-translation covariant [77], we thus
have varqu(Htot, �) � varqu(H, σ(g)). However, given that |x〉
are orthogonal eigenstates of HD, as shown in Appendix C,
we always have varqu(Htot, �) = ∑

x pE
ρ (x)varqu(H, σx (gx )) =∑

x pE
ρ (x)varqu(H, σx ), where the second equality follows

from the fact that the skew information is invariant under
unitary evolutions generated by H . It follows that

varqu(H, σ(g)) − varqu(Htot, �)

= varqu(H, σ(g)) −
∑

x

pE
ρ (x)varqu(H, σx ) � 0. (24)
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Once again, by the arguments preceding Eq. (21), re-
peatability and the Yanase condition will guarantee that
varqu(H, σ(g)) = ∑

x pE
ρ (x)varqu(H, σx ) holds, in which case

the upper bound of Eq. (24) is saturated, meaning that none of
the information regarding time has been lost as the objectified
states are received by the observer. However, this is precisely
what it means for the uncertainty of the objectification heat
to be entirely classical, as the quantum contribution to such
uncertainty is exactly identified with the loss of time informa-
tion, or asymmetry, as the objectified states σx are classically
mixed.

VII. CASE STUDY: NORMAL MEASUREMENT SCHEME
FOR THE LÜDERS INSTRUMENT

We will now provide a simple example to illustrate the gen-
eral observations made above. Consider an arbitrary discrete
observable E of the system S , with M := (HA, |ϕ〉,U, Z)
a normal measurement scheme for the Lüders E instrument
IL, with the operations IL

x (·) = √
Ex(·)√Ex. Here the appa-

ratus is initially prepared in the pure state ξ = |ϕ〉〈ϕ| and
the pointer observable is sharp. As before we assume that
the compound system has the total additive Hamiltonian H =
HS ⊗ 1A + 1S ⊗ HA and that the pointer observable satisfies
the Yanase condition [Z, HA] = O. Without loss of generality,
we may characterize the action of U as

U : |ψ〉 ⊗ |ϕ〉 �→
∑
x∈X

√
Ex|ψ〉 ⊗ |φx〉,

to hold for all |ψ〉 ∈ HS . Here |φx〉 ∈ HA are pairwise or-
thogonal unit vectors satisfying the relation Zx|φy〉 = δx,y|φx〉,
that is, |φx〉 are eigenvalue-1 eigenstates of the projection
operators Zx. Note that the Yanase condition implies that |φx〉
are also eigenstates of HA. It is simple to verify that after
premeasurement, for an arbitrary input state ρ we prepare the
joint state

U (ρ ⊗ |ϕ〉〈ϕ|)U † =
∑

x,y∈X

√
Exρ

√
Ey ⊗ |φx〉〈φy|. (25)

The reduced states of the system and apparatus, after premea-
surement, are

trA[U (ρ ⊗ |ϕ〉〈ϕ|)U †] =
∑
x∈X

√
Exρ

√
Ex = IL

X (ρ),

trS [U (ρ ⊗ |ϕ〉〈ϕ|)U †] =
∑

x,y∈X
tr[

√
Ey

√
Exρ]|φx〉〈φy| =: η.

(26)

For simplicity, let us also model objectification by the Lüders
instrument compatible with Z, which is repeatable as Z is
sharp. For all outcomes x that are obtained with a nonvan-
ishing probability, we thus have the objectified states

σx := IS ⊗ J L
x [U (ρ ⊗ |ϕ〉〈ϕ|)U †]

tr[(1S ⊗ Zx )U (ρ ⊗ |ϕ〉〈ϕ|)U †]

= ρx ⊗ |φx〉〈φx|, (27)

where we define ρx := IL
x (ρ)/pE

ρ (x) ≡ √
Exρ

√
Ex/tr(Exρ),

with the reduced states

trA(σx ) = ρx,

trS (σx ) = |φx〉〈φx|. (28)

Similarly, the average objectified state is

σ := IS ⊗ J L
X [U (ρ ⊗ |ϕ〉〈ϕ|)U †]

=
∑
x∈X

pE
ρ (x)ρx ⊗ |φx〉〈φx|, (29)

with the reduced states

trA(σ) = IL
X (ρ),

trS (σ) =
∑
x∈X

pE
ρ (x)|φx〉〈φx| = J L

X (η). (30)

From Eqs. (9), (25), and (26) the work done during premea-
surement will read

W := tr[(U ∗HU − H )ρ ⊗ |ϕ〉〈ϕ|]
= tr{HS [IL

X (ρ) − ρ]} + tr{HA[J L
X (η) − |ϕ〉〈ϕ|]},

where in the second line we use the fact that since Z commutes
with HA, then tr(HAη) = tr[J L

X
∗(HA)η] = tr[HAJ L

X (η)]. If
E commutes with HS , we also have tr{HS [IL

X (ρ) − ρ]} =
tr{[IL

X
∗(HS ) − HS ]ρ} = 0, and in such a case the work will

be entirely determined by the change in average internal
energy of the apparatus. From Eqs. (12) and (27)–(30) the
objectification heat will read

Q(x) = tr{H[σx − U (ρ ⊗ |ϕ〉〈ϕ|)U †]}
= tr(Hσx ) − tr{HIS ⊗ J L

X [U (ρ ⊗ |ϕ〉〈ϕ|)U †]}
= tr[H (σx − σ)]

= tr{HS [ρx − IL
X (ρ)]} + tr{HA[|φx〉〈φx| − J L

X (η)]}.
In the second line we use the fact that Z satisfies the
Yanase condition and that objectification is implemented by
the Lüders instrument, which gives HA = J L

X
∗(HA) ⇒ H =

IS ⊗ J L
X

∗(H ). In other words, the heat is simply the differ-
ence between the expected energy of the objectified state σx

and the average objectified state σ. Assuming that HS and HA
have a fully nondegenerate spectrum, then it is simple to see
that the heat distribution will be trivial, i.e., Q(x) = 0 for all
x, if and only if the measurement outcome is certain from the
outset. If only one outcome x is obtained with probability 1,
then σ = σx, and so Q(x) = 0. However, if more than one out-
come x is obtained, then ρx 	= IL

X (ρ) and |φx〉〈φx| 	= J L
X (η),

and nondegeneracy of the spectrum of HS and HA implies that
Q(x) must be nonvanishing for at least one outcome x that is
observed. It is trivial to see that the average objectification
heat always vanishes, i.e., 〈Q〉 = 0 for all ρ and E. As for the
quantum contribution to the uncertainty in Q, from Eq. (19)
we have


varqu =
∑
x∈X

pE
ρ (x)varqu(H, σx ) − varqu(H, σ ).

That the above quantity vanishes follows immediately from
Eqs. (27) and (29) and the fact that |φx〉 are orthogonal eigen-
states of HA. As shown in Appendix C, this implies that
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varqu(H, σ ) = ∑
x∈X pE

ρ (x)varqu(HS , ρx ) and varqu(H, σx ) =
varqu(HS , ρx ).

VIII. CONCLUSION

We have considered the physical implementation of a gen-
eral discrete observable as a measurement scheme, which is
decomposed into three stages: (i) preparation, where the sys-
tem to be measured is brought in contact with a measurement
apparatus initially prepared in a fixed state; (ii) premeasure-
ment, involving a unitary interaction between the system
and apparatus; and (iii) pointer objectification, whereby the
compound of the system plus apparatus is transformed to a
state for which the pointer observable assumes definite values,
which can then be read by the observer without causing fur-
ther disturbance. We identified the work with premeasurement
and the heat with objectification. In order for the apparatus
to serve as a stable record for the measurement outcomes of
the system observable, we demanded that the pointer observ-
able commute with the Hamiltonian, i.e., satisfy the Yanase
condition. We showed that the Yanase condition ensures that
the uncertainty of the heat resulting from objectification is
entirely classical and identified such classicality as being con-
comitant with perfect information transfer to the observer.
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APPENDIX A: SUFFICIENT CONDITIONS FOR A
VANISHING AVERAGE HEAT

We may rewrite the average heat, shown in Eq. (13), as

〈Q〉 = tr{HA[JX (η) − η]} = tr{[J ∗
X (HA) − HA]η}.

Here η := trS [U (ρ ⊗ ξ )U †] is the reduced state of the appa-
ratus after premeasurement and JX is the channel induced
by the Z instrument J . In order to guarantee that 〈Q〉 = 0
for all η (and hence all ρ), HA must be a fixed point of
the dual channel J ∗

X , i.e., we must have J ∗
X (HA) = HA.

Throughout what follows, we will assume that Z is a sharp
observable that satisfies the Yanase condition, i.e., commutes
with HA. Now assume that Z is implemented by the Lüders
instrument J L

x (·) ≡ J L
x

∗(·) = Zx(·)Zx (which is repeatable if
and only if Z is sharp). It trivially follows that 〈Q〉 = 0, since
J L
X

∗(HA) = ∑
x ZxHAZx = ∑

x ZxHA = HA. If Z is instead
implemented by an arbitrary repeatable Z instrument J , then
a sufficient condition for a vanishing average heat is HA =∑

x εxZx. To see this, note from Eq. (3) that repeatability of
J implies that J ∗

y (Zx ) = δx,yZx. However, this implies that
J ∗
X (Zx ) = Zx. Therefore, we have

J ∗
X (HA) =

∑
x∈X

εxJ ∗
X (Zx ) =

∑
x∈X

εxZx = HA.

To see that repeatability and the Yanase condition alone
do not guarantee that 〈Q〉 = 0, let us consider the following

simple example where HA � C2N is finite dimensional,
where we identify the value space of Z as X = {1, . . . , N}
and where the Hamiltonian can be written in a diagonal
form HA = ∑

i εiPi, with {Pi} an orthocomplete set of rank-1
projection operators. Assume that for each x ∈ X we have
Zx = P2x−1 + P2x. Clearly, Zx commutes with HA. Now note
that for discrete sharp observables Z, all Z instruments J can
be constructed as a sequential operation

Jx(T ) = �(ZxT Zx ), J ∗
x (B) = Zx�

∗(B)Zx, (A1)

to hold for all x ∈ X , T ∈ T (HA), and B ∈ L(HA), where
� : T (HA) → T (HA) is an arbitrary channel [78]. Now let
us also assume that �∗ acts as a depolarizing channel on each
eigenvalue-1 eigenspace of Zx, that is,

�∗(B) =
∑
x∈X

tr(BZx )

2
Zx (A2)

for all B ∈ L(HA). To verify that Eq. (A2) satisfies the re-
peatability condition, we use Eq. (A1) to compute

J ∗
x (Zy) = Zx�

∗(Zy)Zx = tr(ZyZx )

2
Zx = δx,yZx.

However, we now have

J ∗
X (HA) =

∑
x∈X

Zx�
∗(HA)Zx =

∑
x∈X

tr(HAZx )

2
Zx

=
∑
x∈X

1

2
(ε2x−1 + ε2x )Zx,

which equals HA only if ε2x−1 = ε2x for all x ∈ X .

APPENDIX B: VARIANCE OF HEAT

As shown in Eq. (12), the measurement scheme M :=
(HA, ξ ,U, Z) for the E instrument I produces the heat

Q(x) := 
E (x) − W = tr[H (σx − �′)]

for all input states ρ ∈ S (HS ) and outcomes x ∈ X which
occur with probability pE

ρ (x) := tr(Exρ) > 0. Here we define
�′ := U (ρ ⊗ ξ )U † as the joint premeasured state of the sys-
tem and apparatus and σx as the normalized conditional state
of the composite system defined in Eq. (6). The average heat
is thus

〈Q〉 :=
∑
x∈X

pE
ρ (x)Q(x) = tr[H (σ − �′)],

where σ := ∑
x∈X pE

ρ (x)σx, as defined in Eq. (8). The vari-
ance of heat is Var(Q) := 〈Q2〉 − 〈Q〉2, where 〈Q2〉 :=∑

x∈X pE
ρ (x)Q(x)2. Each term reads

〈Q〉2 = tr(Hσ )2 − 2 tr(Hσ )tr(H�′) + tr(H�′)2,

〈Q2〉 =
∑
x∈X

pE
ρ (x)[tr(Hσx )2 − 2 tr(Hσx )tr(H�′) + tr(H�′)2]

=
( ∑

x∈X
pE

ρ (x)tr(Hσx )2

)
−2 tr(Hσ )tr(H�′)+tr(H�′)2.
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Here, in the final line we have used the fact that∑
x pE

ρ (x)tr(Hσx )tr(H�′) = tr(Hσ )tr(H�′). Therefore, the
variance of heat will be

Var(Q) : = 〈Q2〉 − 〈Q〉2 =
( ∑

x∈X
pE

ρ (x)tr(Hσx )2

)
−tr(Hσ )2

=
( ∑

x∈X
pE

ρ (x)tr(Hσx )2

)
− tr(Hσ )2 ± tr(H2σ )

= var(H, σ ) −
∑
x∈X

pE
ρ (x)var(H, σx ),

where again we note that
∑

x pE
ρ (x)tr(H2σx ) = tr(H2σ ) and

we recall that for any self-adjoint A ∈ L(H) and � ∈
S (H), var(A, �) := tr(A2�) − tr(A�)2 is the variance of A
in �.

APPENDIX C: SKEW INFORMATION IDENTITY

Let us consider a compound system H1 ⊗ H2, with the additive Hamiltonian H = H1 ⊗ 12 + 11 ⊗ H2, prepared in the state

� :=
∑

i

piPi ⊗ σi,

where pi is a probability distribution, {|i〉} is an orthonormal basis of H1 with Pi ≡ |i〉〈i|, and σi ∈ S (H2) are arbitrary states.
We define τ := ∑

i piPi ≡ tr2(�) and σ := ∑
i piσi ≡ tr1(�). The Wigner-Yanase-Dyson skew information of �, with reference

to H , is varqu(H, �) := tr(H2�) − tr(H�αH�1−αH ), with α ∈ (0, 1). The first term reads

tr(H2�) =
∑

i

pitr
[(

H2
1 ⊗ 12 + 11 ⊗ H2

2 + 2H1 ⊗ H2
)
Pi ⊗ σx

]
= tr

(
H2

1 τ
) + tr

(
H2

2 σ
) + 2

∑
i

pitr(H1Pi )tr(H2σi ). (C1)

Here we use the definition of the partial trace, together with the fact that tr(T1 ⊗ T2) = tr(T1)tr(T2) for all T1 ∈ T (H1) and
T2 ∈ T (H2).

Now let us assume that |i〉 are eigenstates of H1 so that [Pi, H1] = O. Given that {Pi ⊗ σi} are pairwise orthogonal, we have
�α = ∑

i pα
i Pi ⊗ σα

i for all α ∈ (0, 1). Therefore, we may write

tr
(
H�αH�1−α

) =
∑
i, j

pα
i p1−α

j tr
[
(H1 ⊗ 12 + 11 ⊗ H2)Pi ⊗ σα

i (H1 ⊗ 12 + 11 ⊗ H2)Pj ⊗ σ 1−α
j

]

=
∑

i

pitr
[
(H1 ⊗ 12)Pi ⊗ σα

i (H1 ⊗ 12)Pi ⊗ σ 1−α
i

]
+

∑
i

pitr
[
(11 ⊗ H2)Pi ⊗ σα

i (11 ⊗ H2)Pi ⊗ σ 1−α
i

]
+

∑
i

pitr
[
(H1 ⊗ 12)Pi ⊗ σα

i (11 ⊗ H2)Pi ⊗ σ 1−α
i

]
+

∑
i

pitr
[
(11 ⊗ H2)Pi ⊗ σα

i (H1 ⊗ 12)Pi ⊗ σ 1−α
i

]
=

∑
i

pitr
(
H2

1 Pi ⊗ σi
) +

∑
i

pitr
(
Pi ⊗ H2σ

α
i H2σ

1−α
i

) + 2
∑

i

pitr
(
H1Pi ⊗ σα

i H2σ
1−α
i

)
= tr

(
H2

1 τ
) +

∑
i

pitr
(
H2σ

α
i H2σ

1−α
i

) + 2
∑

i

pitr(H1Pi )tr(H2σi ). (C2)

Here, in the second line we have used the fact that the Pi commute with H1, which implies that the trace vanishes if i 	= j. By
combining Eqs. (C1) and (C2), we thus observe that

varqu
(
H, �

) = tr(H2
2 σ) −

∑
i

pitr
(
H2σ

α
i H2σ

1−α
i

)
=

∑
i

pi
[
tr
(
H2

2 σi
) − tr

(
H2σ

α
i H2σ

1−α
i

)] =
∑

i

pivarqu(H2, σi ),

where in the second line we use tr(H2
2 σ) = ∑

i pitr(H2
2 σi ).

APPENDIX D: RELATION TO CONDITIONAL CHANGE IN ENERGY

In the main text we did not discuss the interpretation of the quantum state ρ ∈ S (HS ), in terms of which work and heat have
been defined. Let us assume that such a state is to be understood as a classical ensemble {pk, ρk}, where the ρk are different state

062202-11



M. HAMED MOHAMMADY PHYSICAL REVIEW A 104, 062202 (2021)

preparations that are sampled by the probability distribution pk such that ρ = ∑
k pkρk . The premeasurement work W , defined

in Eq. (9), can thus be understood as the average W = ∑
k pkWk , with Wk the work for the preparation ρk . However, such an

interpretation is not afforded for the change in internal energy as defined in Eqs. (10) and (11). That is, 
E (x), 
ES (x), and

EA(x) are not, in general, the average change in internal energy for the different state preparations. The reason for this is that
while the final energies are conditional on the measurement outcome x, the initial energies are not.

To illustrate this, let us only consider the energy change of the measured system S . We first define p(x|k) ≡ pE
ρk

(x) := tr(Exρk )
as the conditional probability of observing outcome x given state preparation ρk . Given that the total probability of observing
outcome x, for all preparations ρk , is p(x) := ∑

k pk p(x|k) = ∑
k pktr(Exρk ) = tr(Exρ) ≡ pE

ρ (x), we may use Bayes’ theorem to
obtain the probability of state preparation k given observation of outcome x as p(k|x) = pk p(x|k)/p(x) ≡ pktr(Exρk )/tr(Exρ).
Now let us define by ρ(x|k) := Ix(ρk )/p(x|k) the conditional postmeasurement state of the system, given the initial preparation ρk ,
such that p(x|k) > 0. The change in internal energy, given outcome x for preparation k, will thus be 
ES (x|k) := tr[HS (ρ(x|k) −
ρk )]. On the other hand, the weighted average of 
ES (x|k), over the initial preparations ρk , will be

∑
k

p(k|x)
ES (x|k) =
∑

k

pktr(Exρk )

tr(Exρ)

(
tr[HSIx(ρk )]

tr(Exρk )
− tr(HSρk )

)

= tr[HSIx(ρ)]

tr(Exρ)
−

∑
k

pk tr(Exρk )

tr(Exρ)
tr(HSρk )

= tr

[
HS

(
ρx −

∑
k tr(Exρk )pkρk

tr(Exρ)

)]
. (D1)

However, this does not recover 
ES (x) = tr[HS (ρx − ρ)] in general, except when for all k, (i) ρk = ρ, (ii) tr(Exρk ) = tr(Exρ),
or (iii) tr(HSρk ) = tr(HSρ).

Consequently, we are left with three options. We must (a) restrict our analysis only to ensembles that satisfy one of (i)–(iii)
above, (b) use an alternative to Bayesian probability theory to take weighted averages of 
ES (x|k), or (c) modify the definition
of 
ES so that it is fully conditional on the measurement outcome x. In the present paper we choose option (a) [(i)], namely,
we do not consider ρ as an ensemble, but rather as an irreducible state defined by a given preparation procedure. However, in
Ref. [39] we took option (c) and defined the fully conditional change in internal energy of the system, given that outcome x is
observed with nonzero probability, as


ẼS (x) := tr[HSIx(ρ)]

pE
ρ (x)

−
1
2 tr[Ix(HSρ + ρHS )]

pE
ρ (x)

≡ tr[HSIx(ρ)]

pE
ρ (x)

−
1
2 tr[Ex(HSρ + ρHS )]

pE
ρ (x)

= tr(HSρx ) −
1
2 tr[Ex(HSρ + ρHS )]

pE
ρ (x)

. (D2)

As before, for any x and ρ such that pE
ρ (x) = 0, we define 
ẼS (x) := 0. The equality in the first line follows from the fact that

for any T ∈ T (HS ), tr[Ix(T )] = tr[I∗
x (1S )T ] = tr(ExT ). Here the second term is the real component of the generalized weak

value of HS , given state ρ, and postselected by outcome x of the observable E [79]; the second term is the initial energy of the
system, conditioned on subsequently observing outcome x. It can easily be verified that

∑
k p(k|x)
ẼS (x|k) = 
ẼS (x) for all

possible ensembles {pk, ρk} such that
∑

k pkρk = ρ.
For a measurement scheme M := (HA, ξ ,U, Z), we may use the definition in Eq. (D2) to write the total conditional change

in energy of the composite system H := HS ⊗ HA, with the additive Hamiltonian H := HS ⊗ 1A + 1S ⊗ HA, as


Ẽ (x) := tr[H�x(ρ ⊗ ξ )]

pE
ρ (x)

−
1
2 tr[�x(Hρ ⊗ ξ + ρ ⊗ ξH )]

pE
ρ (x)

≡ tr[H�x(ρ ⊗ ξ )]

pE
ρ (x)

−
1
2 tr[Zx(Hρ ⊗ ξ + ρ ⊗ ξH )]

pE
ρ (x)

≡ tr(Hσx ) −
1
2 tr[Zx(Hρ ⊗ ξ + ρ ⊗ ξH )]

pE
ρ (x)

. (D3)

Here we define the operation �x : T (H) → T (H), T �→ IS ⊗ Jx(UTU †), where IS denotes the identity channel acting on
HS and J is a Z instrument on HA. Therefore, σx = �x(ρ ⊗ ξ )/pE

ρ (x). We also define Zx := U †(1S ⊗ Zx )U ≡ �∗
x (1) as the

Heisenberg evolved pointer observable.
As discussed in the main text, pointer objectification requires that Z be implemented by a repeatable instrument J and

stability of the objectified values demands that the pointer observable satisfies the Yanase condition [Z, H] = [Z, HA] = O. We
will make these assumptions, together with sharpness of Z, throughout what follows.

Let us assume that Z is implemented by the Lüders instrument J L
x (·) := Zx(·)Zx, which is repeatable due to the sharpness of

Z. We accordingly define the operations �L
x (T ) := IS ⊗ J L

x (UTU †). Note that
∑

x 1S ⊗ Zx = ∑
x Zx = 1, the sharpness of Z

and the Yanase condition implies �L
x
∗(H ) = U †H (1S ⊗ Zx )U ≡ U †(1S ⊗ Zx )HU , and tr(AB) = tr(BA). Therefore, denoting
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the conditional change in energy in such a case by 
ẼL(x) and taking the average with respect to pE
ρ (x), we obtain

〈
ẼL〉 :=
∑
x∈X

pE
ρ (x)
ẼL(x)

=
∑
x∈X

{tr[H�L
x (ρ ⊗ ξ )] − 1

2 tr[Zx(Hρ ⊗ ξ + ρ ⊗ ξH )]}

=
(∑

x∈X
tr[�L

x
∗
(H )ρ ⊗ ξ ]

)
− tr(Hρ ⊗ ξ )

=
(∑

x∈X
tr[U †H (1S ⊗ Zx )Uρ ⊗ ξ ]

)
− tr(Hρ ⊗ ξ )

= tr[(U †HU − H )ρ ⊗ ξ ] = W . (D4)

Therefore, we see that Eq. (D4) is equivalent to the average first law shown in Eq. (14); recall that when Z is sharp, satisfies the
Yanase condition, and is implemented by a Lüders instrument, 〈Q〉 = 0. Indeed, in Ref. [39] this first law equality was used to
identify the conditional work with 
ẼL(x):

W̃ (x) := tr[H�L
x (ρ ⊗ ξ )]

pE
ρ (x)

−
1
2 tr[�L

x (Hρ ⊗ ξ + ρ ⊗ ξH )]

pE
ρ (x)

≡ tr[H�L
x (ρ ⊗ ξ )]

pE
ρ (x)

−
1
2 tr[Zx(Hρ ⊗ ξ + ρ ⊗ ξH )]

pE
ρ (x)

. (D5)

If [U, H] = O, then we have �L
x
∗(H ) = HZx = ZxH , and so W̃ (x) = 0 for all ρ ∈ S (HS ) and x ∈ X ; not only will the average

conditional work 〈W̃〉 (or the unmeasured work W) vanish, but so too will the conditional work.
While the heat was not considered in Ref. [39], we may examine it here: Let us assume that Z is implemented by a general

(not necessarily Lüders) repeatable instrument J . Using Eqs. (D3) and (D5), we may define the conditional heat as Q̃(x) :=

Ẽ (x) − W̃ (x). However, it becomes clear that Q̃(x) will no longer offer the same interpretation as objectification heat; the
conditional heat reads

Q̃(x) = tr[H�x(ρ ⊗ ξ )]

pE
ρ (x)

− tr[H�L
x (ρ ⊗ ξ )]

pE
ρ (x)

= tr[H (σx − σ ′
x )] = tr[HA(ξx − ξ ′

x )], (D6)

where σx := �x(ρ ⊗ ξ )/pE
ρ (x) and σ ′

x := �L
x (ρ ⊗ ξ )/pE

ρ (x), while ξx := trS [σx] and ξ ′
x := trS [σ ′

x]. The final equality follows
from the fact that the reduced state of the system is independent of how Z is implemented [see Eq. (5)]. We see that, contrary
to the objectification heat, which is the change in energy due to objectification U (ρ ⊗ ξ )U † �→ σx, the conditional heat is now a
counterfactual quantity, that is, it is given as the difference between the expected energy of the actual objectified state ξx and the
expected energy of the counterfactual objectified state ξ ′

x, obtained if Z were implemented by a Lüders instrument; implementing
Z by a Lüders instrument implies a vanishing conditional heat.
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