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Self-consistency of the two-point energy measurement protocol

M. Hamed Mohammady *

RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84511, Slovakia

(Received 18 December 2020; revised 11 February 2021; accepted 19 March 2021; published 16 April 2021)

A thermally isolated quantum system undergoes unitary evolution by interacting with an external work source.
The two-point energy measurement (TPM) protocol defines the work exchanged between the system and the
work source by performing ideal energy measurements on the system before and after the unitary evolution.
However, the ideal energy measurements used in the TPM protocol ultimately result from a unitary coupling
with a measurement apparatus, which requires an interaction with an external work source. For the TPM protocol
to be self-consistent, we must be able to perform the TPM protocol on the compound of the system plus the
apparatus, thus revealing the total work distribution, such that when ignoring the apparatus degrees of freedom,
we recover the original TPM work distribution for the system of interest. In the present paper, we show that such
self-consistency is satisfied as long as the apparatus is initially prepared in an energy eigenstate. Moreover, we
demonstrate that if the apparatus Hamiltonian is equivalent to the “pointer observable,” then (i) the total work
distribution will satisfy the “unmeasured” first law of thermodynamics for all system states and system-only
unitary processes, and (ii) the total work distribution will be identical to the system-only work distribution for all
system states and system-only unitary processes if and only if the unmeasured work due to the unitary coupling
between the system and apparatus is zero for all system states.
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I. INTRODUCTION

The definition of work for quantum systems is one of
the most contentious issues in quantum thermodynamics and
continues to be a subject of heated debate [1–12]. The paradig-
matic scenario is the work done on a thermally isolated
system: a system which is only mechanically manipulated,
by means of inducing time dependence on its Hamiltonian,
and thus evolves unitarily. Such mechanical manipulation re-
sults from an interaction with an external work source and is
hence generally accompanied by an exchange of work. In the
limiting case where the system starts and ends in a classical
mixture of energy eigenstates, in any given realization the
work done on the system is well defined and is the difference
in energy eigenvalues. By performing ideal energy measure-
ments before and after the unitary evolution, one can therefore
observe which particular value of work is obtained in any
given realization without disturbing the system. Furthermore,
the average work done, given by the observed probability
distribution over work, will be equivalent to the difference
in average energies evaluated before and after the unitary
evolution; the “unmeasured” first law of thermodynamics is
satisfied. The two-point energy measurement (TPM) protocol
extends this procedure for determining the work distribu-
tion, namely, performing ideal energy measurements before
and after the unitary evolution, to general unitary processes
and general states [13,14]. However, in general, if the initial
state does not commute with the Hamiltonian, the unmea-
sured first law will be violated; the average work obtained
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by the TPM protocol will not coincide with the difference
in average energies. Indeed, as shown in Ref. [15], no mea-
surement procedure exists which simultaneously recovers the
work distribution for systems in a classical mixture of energy
eigenstates and recovers the average work as the unmeasured
work for all states and unitary processes.

That the TPM protocol cannot always satisfy the unmea-
sured first law ultimately rests on one of the central maxims
of quantum measurement theory: no information without dis-
turbance [16]. To be sure, ideal measurements are the least
disturbing measurements available [17,18], but only insofar
as there are some states that are undisturbed by such measure-
ments. This perceived failure of the TPM definition has led to
alternative formulations of work, such as defining work as the
unmeasured work simpliciter [19–21], and the Margenau-Hill
method and related approaches using quasiprobability distri-
butions [22–26].

Of course, there is another issue raised by the TPM proto-
col or, indeed, any method which uses measurement as part of
the definition for work: can such a method be self-consistent?
The ideal energy measurements used in the TPM protocol
must ultimately result from a physical interaction between the
system and a measurement apparatus. The quantum theory of
measurement allows for the measurement of any observable
to be physically modeled as a normal measurement scheme,
which involves a unitary interaction between the system and
a measurement apparatus which is initially prepared in a
fixed pure state—a condition which is possible to satisfy in
principle, thermodynamic limitations on preparing pure states
notwithstanding [27–30]—followed by measurement of the
apparatus by a sharp pointer observable [31]. Normal mea-
surement schemes have been used to “indirectly” measure
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work [5,32]. Of course, such unitary interactions between the
system and apparatus themselves result from mechanically
manipulating this compound system and hence are generally
accompanied by an exchange of work with an external work
source. If the TPM definition of work is valid for the system
of interest, it stands to reason that it is valid for the compound
of the system plus the apparatus; by performing ideal energy
measurements on both the system and apparatus before and
after the total unitary evolution of the compound system,
we thus obtain the total work distribution. We shall say that
a given measurement scheme for the TPM protocol is self-
consistent if the marginal work distribution for the system,
obtained when ignoring the apparatus degrees of freedom, is
identical to the original system-only TPM work distribution
for all system states and system-only unitary processes. This
idea is inspired by the theory of quantum incompatibility, in
which two observables are said to be compatible if there exists
a third observable, the marginals of which recover the original
observables in question [33]. In the present paper, we show
that such self-consistency is always achieved if the apparatus
is initially prepared in an energy eigenstate.

Interestingly, if we further restrict the measurement scheme
such that the apparatus Hamiltonian is equivalent to the
pointer observable used to measure the apparatus, then the
total work distribution will always satisfy the unmeasured
first law; the average total work will be the difference in
average energy given the total unitary evolution for all system
states and system-only unitary processes (i.e., excluding the
apparatus state and the unitary interaction between the system
and apparatus, which are fixed by the chosen measurement
scheme). This is a consequence of the strong repeatability
of ideal energy measurements [18], which implies that given
the unitary interaction between the system and apparatus,
followed by measurement of the apparatus by the pointer
observable, “directly” performing an ideal energy measure-
ment on the system is superfluous. Of course, this statement
should not be taken as a refutation of Ref. [15] since the
initial state of the apparatus is always fixed and commutes
with the Hamiltonian by construction. But this observation
does illustrate that it is possible for the TPM work distribution
to satisfy the unmeasured first law for a large class of initial
states that do not commute with the Hamiltonian.

Finally, in the case where the apparatus is initially prepared
in an energy eigenstate and the apparatus Hamiltonian is
equivalent to the pointer observable, we show that the total
work distribution will be identical to the system-only work
distribution for all system states and system-only unitary pro-
cesses if and only if the subspace of the apparatus which is
involved in the measurement process corresponds to a single
degenerate subspace of the apparatus Hamiltonian. This con-
dition is further shown to be equivalent to the statement that
the unmeasured work, due to the unitary interaction between
the system and apparatus, vanishes for all system states.

II. TPM PROTOCOL

We consider systems with a separable Hilbert space H,
with L(H) being the algebra of bounded operators on H,
T (H) ⊆ L(H) being the space of trace-class operators, and
S (H) ⊂ T (H) being the space of positive unit-trace operators

(states). Moreover, we shall assume that the system is ther-
mally isolated, with a bounded, time-dependent Hamiltonian
H (t ) = H + HI (t ). Here, H is the system’s “bare” Hamilto-
nian, describing it when it is fully isolated, i.e., isolated both
thermally and mechanically. We assume this Hamiltonian has
a discrete spectrum and may thus write it as

H =
∑

m

εmPm. (1)

Here, εm are energy eigenvalues, and Pm � O are the corre-
sponding spectral projections such that PmPn = δm,nPm and∑

m Pm = 1. By the spectral theorem, the bare Hamiltonian
H is associated with a discrete, sharp observable P := {Pm},
where m are the measurement outcomes which, given a
state preparation ρ ∈ S (H), are observed with the probability
tr[Pmρ] [34].

The time dependence of H (t ) is entirely due to the term
HI (t ), which results from mechanically coupling the sys-
tem with an external work source. If we assume that the
system is coupled with the work source only for times t ∈
(t0, t1), such that HI (t ) = O for all t � t0 and t � t1, then
the system’s time evolution due to its interaction with the
work source will be described by the unitary operator V :=←−
T exp[−i

∫ t1
t0

dt H (t )], where we note that throughout this
paper we use h̄ = 1 [23]. Given an initial state preparation
ρ, the unmeasured work is thus

W := tr[(V †HV − H )ρ]. (2)

The TPM protocol for revealing the distribution of work
due to the interaction between the system and the work source
is given by the following sequence of operations:

(i) At time t = t0, perform an ideal measurement of the
bare Hamiltonian of the system, which is initially in an arbi-
trary state ρ. Given that outcome m is observed, the system
will be prepared in the (unnormalized) state

PmρPm. (3)

(ii) Between times t0 and t1, let the system evolve unitarily,
given its interaction with the external work source. The system
will thus be prepared in the (unnormalized) state

V PmρPmV †. (4)

(iii) At time t = t1, perform an ideal measurement of the
bare Hamiltonian on the system. Given that outcome n is
observed, the system will be prepared in the (unnormalized)
state

PnV PmρPmV †Pn. (5)

The sequence of energy measurement outcomes x :=
(m, n) thus corresponds to the work done w(x) := εn − εm,
and its probability is given by Born’s rule as the trace of the
final unnormalized state equation (5), which reads

pV
ρ (x) := tr[PmV †PnV Pmρ]. (6)

Therefore, the probability distribution for the work done w

given the initial state ρ and unitary operator V is

pV
ρ (w) :=

∑
x

δ[w − w(x)]pV
ρ (x), (7)
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where δ(a − b) = 1 if a = b and is zero otherwise. The aver-
age work can thus be computed to be

〈w〉V
ρ :=

∑
w

pV
ρ (w)w ≡

∑
x

pV
ρ (x)w(x)

= tr
{[
IL
M(V †HV ) − H

]
ρ
}

≡ tr
[
(V †HV − H )IL

M(ρ)
]
, (8)

where IL
M(·) := ∑

m Pm(·)Pm is the Lüders channel for the
bare Hamiltonian H . Given that for any A ∈ L(H), IL

M(A) =
A if and only if [H, A] = O [35], it follows that 〈w〉V

ρ =
tr[(V †HV − H )ρ] for all V (for all ρ) only if [H, ρ] = O

([H,V †HV ] = O). In other words, the unmeasured first law
(2) cannot be satisfied for all states and all unitary processes.

A. Introducing the measurement apparatus in the TPM protocol

As shown above, the TPM protocol relies on performing
ideal energy measurements on the system of interest both
before and after the unitary evolution V . Such measurements
are physically realized by an appropriate interaction between
the system of interest and a measurement apparatus. The
quantum theory of measurement allows all measurements on
the system of interest to be modeled as a normal measurement
scheme [31,36]. Here, the system of interest first interacts with
a quantum “probe” of a measurement apparatus, initially pre-
pared in a fixed pure state, by an appropriate unitary operator.
Subsequently, the probe is measured by an appropriate pointer
observable, and the measurement outcome observed indicates
that the corresponding outcome has been observed for the
desired system observable.

Since two energy measurements are performed on the sys-
tem during the TPM protocol, we can generally consider the
apparatus to be composed of two probes, with one interacting
with the system at time t = t0 and the other at time t = t1.
As such, for the ideal energy measurement performed at time
t j , we may mathematically describe the normal measurement
scheme by the tuple (H( j)

A , |ξ ( j)〉,U ( j), Z ( j) ), where H( j)
A is

the Hilbert space for the probe used, which is initially pre-
pared in the pure state |ξ ( j)〉; Z ( j) := {Z ( j)

m } is a sharp pointer
observable, which has the same outcomes as the system ob-
servable P := {Pm}; and U ( j) is a joint unitary operator on the
compound Hilbert space H ⊗ H( j)

A . This normal measurement
scheme will realize an ideal measurement of the bare Hamil-
tonian on the system of interest if, for all T ∈ T (H) and m,
we have

trH( j)
A

{(
1 ⊗ Z ( j)

m

)
U ( j)(T ⊗ P[ξ ( j)])U ( j)†

} = PmT Pm, (9)

where P[ξ ( j)] ≡ |ξ ( j)〉〈ξ ( j)| is a projection on the unit vector
|ξ ( j)〉 ∈ H( j)

A and trH( j)
A

: T (H ⊗ H( j)
A ) → T (H) is the partial

trace over the probe [37,38]. It is simple to verify that in order
for the unitary U ( j) to satisfy Eq. (9), it must satisfy

U ( j)(|ψ〉 ⊗ |ξ ( j)〉) =
∑

m

Pm|ψ〉 ⊗ ∣∣φ( j)
m

〉
(10)

for all |ψ〉 ∈ H, where |φ( j)
m 〉 are eigenvalue-1 eigenstates of

the projection operators Z ( j)
m , i.e., Z ( j)

n |φ( j)
m 〉 = δm,n|φ( j)

m 〉 [39].
The TPM protocol can now be performed as follows:

(i) At time t = t0, bring the system, initially prepared in an
arbitrary state ρ, in contact with probe H(0)

A . The state of the
compound system is thus ρ ⊗ P[ξ (0)]. Subsequently, let the
system interact with the probe by the unitary operator U (0),
which prepares the state

U (0)(ρ ⊗ P[ξ (0)])U (0)†

=
∑
m,m′

PmρPm′ ⊗ ∣∣φ(0)
m

〉〈
φ

(0)
m′

∣∣. (11)

Finally, perform a measurement of the probe by the pointer
observable Z (0). Given that outcome m is observed, the system
will be prepared in the (unnormalized) state

PmρPm. (12)

(ii) Between times t0 and t1, let the system evolve unitarily,
given its interaction with the external work source. The system
will thus be prepared in the (unnormalized) state

V PmρPmV †. (13)

(iii) At time t = t1, bring the system in contact with probe
H(1)

A . The (unnormalized) state of the compound system is
thus V PmρPmV † ⊗ P[ξ (1)]. Subsequently, let the system inter-
act with the probe by the unitary operator U (1), which prepares
the (unnormalized) state

U (1)(V PmρPmV † ⊗ P[ξ (1)])U (1)†

=
∑
n,n′

PnV PmρPmV †Pn′ ⊗ ∣∣φ(1)
n

〉〈
φ

(1)
n′

∣∣. (14)

Finally, perform a measurement of the probe by the pointer
observable Z (1). Given that outcome n is observed, the system
will be prepared in the (unnormalized) state

PnV PmρPmV †Pn. (15)

It is evident that the measurement scheme described above
is identical to the original TPM protocol involving direct
measurements on the system.

III. CONSISTENTLY APPLYING THE TPM PROTOCOL
TO BOTH THE SYSTEM AND APPARATUS

The measurement scheme introduced in Sec. II A does not
make any assumptions regarding the Hamiltonian of the appa-
ratus probes or the time it takes for the unitary operators U ( j)

to be generated; indeed, they were assumed to be implemented
instantaneously. However, for the unitary operator U ( j) on
H ⊗ H( j)

A to be physical, it must also result from mechanically
manipulating the Hamiltonian of this composite system and
thus requires an interaction with an external work source for
a finite duration [40]. Let us therefore write the total time-
dependent Hamiltonian as Htot (t ) = Htot + HI (t ) + H (0)

int (t ) +
H (1)

int (t ), where Htot = H + H (0)
A + H (1)

A is the additive, total
bare Hamiltonian of the system plus apparatus and HI (t ) is
the system-only interaction Hamiltonian introduced in Sec. II.
We shall denote the bare Hamiltonian of each probe in the
spectral form as

H ( j)
A =

∑
μ

λ( j)
μ Q( j)

μ , (16)
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where λ
( j)
μ are energy eigenvalues and Q( j)

μ are the spectral
projections. The interaction Hamiltonian for the composite
system H ⊗ H( j)

A , due to coupling with an external work
source, is denoted H ( j)

int (t ). Moreover, H (0)
int (t ) = O for all t �

t ′
0 and t � t0, and similarly, H (1)

int (t ) = O for all t � t1 and
t � t ′

1, where t ′
0 < t0 < t1 < t ′

1. In other words, the interaction
Hamiltonian H (0)

int (t ) is nonvanishing only for a finite duration
before the system undergoes its isolated unitary evolution V ,
and similarly, H (1)

int (t ) is nonvanishing only for a finite duration
after the system undergoes its isolated unitary evolution V .
Therefore, by choosing the interaction Hamiltonians H ( j)

int (t )
appropriately so that

←−
T exp

(
−i

∫ t0

t ′
0

dt
[
H + H (0)

A + H (0)
int (t )

]) = U (0),

←−
T exp

(
−i

∫ t ′
1

t1

dt
[
H + H (1)

A + H (1)
int (t )

]) = U (1), (17)

the total unitary operator which describes the compound sys-
tem’s evolution during the extended period t ∈ (t ′

0, t ′
1) will be

Vtot := ←−
T exp

(
−i

∫ t ′
1

t ′
0

dt Htot (t )

)

= U (1)(V ⊗ e−iθ0H (0)
A ⊗ e−iθ1H (1)

A )U (0)

≡ e−iθ0H (0)
A U (1)VU (0)e−iθ1H (1)

A . (18)

Here, e−iθ j H
( j)
A , where θ0 = t ′

1 − t0 and θ1 = t1 − t ′
0, describes

the contribution to the total unitary evolution from the bare
Hamiltonian of probe H( j)

A , i.e., for the time period where
the interaction Hamiltonian H ( j)

int (t ) vanishes. Note that the
final line of Eq. (18) is obtained because the unitary operators
e−iθ0H (0)

A and e−iθ1H (1)
A commute with U (1) and U (0), respec-

tively, since they act on different Hilbert spaces. Given an
initial state preparation ρ ∈ S (H), the total unmeasured work
will thus read

Wtot := tr{(V †
totHtotVtot − Htot )ρ ⊗ P[ξ ]}, (19)

where |ξ 〉 := |ξ (0)〉 ⊗ |ξ (1)〉 is the initial state of the apparatus
HA := H(0)

A ⊗ H(1)
A , composed of both probes.

Now we may perform the TPM protocol on the total com-
pound system to determine the total work distribution given
the total unitary operator in Eq. (18). For this to be consistent
with the original TPM protocol on the system alone, however,
we require that when averaging out the energy measurements
performed on the apparatus, we must obtain the probability
distribution given in Eq. (6) for all system states ρ ∈ S (H)
and system-only unitary operators V . In order for this con-
dition to be satisfied, we demand that |ξ ( j)〉 be an eigenstate
of the probe Hamiltonian H ( j)

A with eigenvalue λ
( j)
0 . This con-

straint will ensure that the initial ideal energy measurement of
the apparatus will not disturb it, so that the unitary interaction
between the system and apparatus by the unitary operators
U ( j) will result in the same state transformation as discussed
in Sec. II A.

Let us first note that, given the assumption that the appa-
ratus is initially prepared in an energy eigenstate and using

Eqs. (10) and (18), we can show that for all |ψ〉 ∈ H,

Vtot (|ψ〉 ⊗ |ξ 〉)

= e−iθ1λ
(1)
0

∑
m,n

PnV Pm|ψ〉 ⊗ e−iθ0H (0)
A

∣∣φ(0)
m

〉 ⊗ ∣∣φ(1)
n

〉
.

(20)

Here, we have used the fact that |ξ (1)〉 is an energy eigen-
state with eigenvalue λ

(1)
0 to infer that the component of Vtot

given by e−iθ1H (1)
A induces only a constant phase factor e−iθ1λ

(1)
0 ,

which is not physically observable. Using Eq. (20), we may
now examine the extended TPM protocol, which will be as
follows:

(i) At time t = t ′
0, perform an ideal energy measurement on

the compound system H ⊗ HA, initially prepared in the state
ρ ⊗ P[ξ ]. Since the probes H( j)

A are initially prepared in an
energy eigenstate with energy eigenvalue λ

( j)
0 , only outcomes

(m, 0, 0) are observed with nonzero probability, which result
in the compound system being prepared in the (unnormalized)
state

PmρPm ⊗ Q(0)
0 P[ξ (0)]Q(0)

0 ⊗ Q(1)
0 P[ξ (1)]Q(1)

0

= PmρPm ⊗ P[ξ (0)] ⊗ P[ξ (1)]. (21)

(ii) Between time t ′
0 and t ′

1, let the compound system evolve
according to the total unitary operator Vtot defined in Eqs. (18)
and (20). This prepares the (unnormalized) state

Vtot (PmρPm ⊗ P[ξ (0)] ⊗ P[ξ (1)])V †
tot

=
∑
n,n′

PnV PmρPmV †Pn′ ⊗ P̃
[
φ(0)

m

] ⊗ ∣∣φ(1)
n

〉〈
φ

(1)
n′

∣∣, (22)

where P̃[φ(0)
m ] := e−iθ0H (0)

A P[φ(0)
m ]eiθ0H (0)

A .
(iii) At time t = t ′

1, perform an ideal energy measure-
ment on the compound system H ⊗ HA. Given the outcomes
(n, μ, ν), this prepares the (unnormalized) state

PnV PmρPmV †Pn ⊗ Q(0)
μ P̃

[
φ(0)

m

]
Q(0)

μ ⊗ Q(1)
ν P

[
φ(1)

n

]
Q(1)

ν . (23)

The full sequence of measurement outcomes is thus
X := (x, (0, μ), (0, ν)), where x := (m, n) is the sequence
of outcomes for the system, while (0, μ) and (0, ν) are the
sequences of outcomes for probes H(0)

A and H(1)
A , respec-

tively. The sequence X corresponds to the total work done
W (X ) := w(x) + w

(0)
A (μ) + w

(1)
A (ν), where w(x) := εn − εm

is the contribution to the total work from the system, while
w

( j)
A (μ) := λ

( j)
μ − λ

( j)
0 is the contribution to the total work

from probe H( j)
A . The probability of observing sequence X ,

meanwhile, is given by the trace of the final unnormalized
state Eq. (23), which is

pVtot
ρ,ξ (X ) := pV

ρ (x)tr
(
Q(0)

μ P
[
φ(0)

m

])
tr
(
Q(1)

ν P
[
φ(1)

n

])
, (24)

where we recall that pV
ρ (x) is defined in Eq. (6). Note that here,

we have used the fact that Q(0)
μ is a spectral projection of H (0)

A
to infer that tr(Q(0)

μ P̃[φ(0)
m ]) = tr(Q(0)

μ e−iθ0H (0)
A P[φ(0)

m ]eiθ0H (0)
A ) =

tr(Q(0)
μ P[φ(0)

m ]).
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Given that
∑

μ Q(0)
μ = ∑

ν Q(1)
ν = 1, the marginal proba-

bility distribution for the system-only work will read∑
μ,ν

pVtot
ρ,ξ (X ) = pV

ρ (x)tr
(
P
[
φ(0)

m

])
tr
(
P
[
φ(1)

n

]) = pV
ρ (x), (25)

so the extended TPM protocol on the compound of the system
plus the apparatus is self-consistent.

A. Satisfying the unmeasured first law for the total work

Since the apparatus is initially prepared in an energy eigen-
state, the average total work for the total unitary process
discussed in the previous section clearly satisfies

〈W〉Vtot
ρ,ξ :=

∑
X

pVtot
ρ,ξ (X )W (X )

= tr{(V †
totHtotVtot − Htot )IL

M(ρ) ⊗ P[ξ ]}. (26)

To see this result, simply compare with Eq. (8). As before,
if ρ does not commute with the Hamiltonian H , the total
work is not guaranteed to satisfy the unmeasured first law;
that is, it is possible for some ρ and V to have Eq. (26) differ
from Eq. (19) (note that both the apparatus state |ξ 〉 and the
contribution to Vtot from the system-apparatus coupling, i.e.,
the unitaries U ( j), are always fixed). However, as we shall
show below, if, additionally, the probe Hamiltonians H ( j)

A are
equivalent to the pointer observables Z ( j), i.e., if we have

H ( j)
A =

∑
m

λ( j)
m Z ( j)

m , (27)

the unmeasured first law is guaranteed to be satisfied for the
total work.

Let us reexamine the TPM protocol on the compound of
the system plus the apparatus once more in detail, this time
assuming that Eq. (27) holds:

(i) At time t = t ′
0 perform an ideal energy measurement

on the compound system H ⊗ HA, initially prepared in state
ρ ⊗ P[ξ ]. As before, we assume that |ξ ( j)〉 are energy eigen-
states with eigenvalues λ

( j)
0 , and hence, only the outcomes

(m, 0, 0) are observed with nonzero probability, resulting in
the compound system being prepared in the (unnormalized)
state

PmρPm ⊗ Z (0)
0 P[ξ (0)]Z (0)

0 ⊗ Z (1)
0 P[ξ (1)]Z (1)

0

= PmρPm ⊗ P[ξ (0)] ⊗ P[ξ (1)]. (28)

(ii) Between times t ′
0 and t ′

1, let the compound system
evolve according to the total unitary operator Vtot defined in
Eqs. (18) and (20). This prepares the (unnormalized) state

Vtot (PmρPm ⊗ P[ξ (0)] ⊗ P[ξ (1)])V †
tot

=
∑
n,n′

PnV PmρPmV †Pn′ ⊗ P[φ(0)
m ] ⊗ |φ(1)

n 〉〈φ(1)
n′ |. (29)

Note that since |φ(0)
m 〉 are eigenvalue-1 eigenstates of the

projection operators Z (0)
m , which clearly commute with the

Hamiltonian, it follows that e−iθ0H (0)
A P[φ(0)

m ]eiθ0H (0)
A = P[φ(0)

m ].
(iii) At time t = t ′

1, perform an ideal energy measure-
ment on the compound system H ⊗ HA. Given outcomes

(n, n′, n′′), this prepares the (unnormalized) state

PnV PmρPmV †Pn ⊗ Z (0)
n′ P

[
φ(0)

m

]
Z (0)

n′ ⊗ Z (1)
n′′ P

[
φ(1)

n

]
Z (1)

n′′

= δm,n′δn,n′′PnV PmρPmV †Pn ⊗ P
[
φ(0)

m

] ⊗ P
[
φ(1)

n

]
, (30)

where the final line follows from the fact that Z ( j)
n |φ( j)

m 〉 =
δm,n|φ( j)

m 〉.
Equation (30) implies that the only sequences of energy

measurement outcomes that are observed with nonzero prob-
ability are X := (x, (0, m), (0, n)), where we recall that x :=
(m, n). In other words, the energy transitions of the apparatus
fully determine the energy transitions of the system and vice
versa. As such, let us remove some of the redundancy and
write X := ((0, 0), x), where (0,0) denotes the energy mea-
surement outcomes of the apparatus at time t ′

0 and x = (m, n)
denotes both the energy measurement outcomes of the ap-
paratus at time t ′

1 and the sequence of energy measurement
outcomes of the system at times t ′

0, t ′
1. The total work done

given the sequence X is thus W (X ) := w(x) + w
(0)
A (m) +

w
(1)
A (n), where w

( j)
A (m) := λ

( j)
m − λ

( j)
0 , with the probability

pVtot
ρ,ξ (X ) = pV

ρ (x). (31)

Note that this is equivalent to Eq. (24) when we replace Q( j)
μ

with Z ( j)
m , which gives tr(Z ( j)

m P[φ( j)
m ]) = 1.

As shown in Appendix A, the average total work will now
read

〈W〉Vtot
ρ,ξ :=

∑
X

pVtot
ρ,ξ (X )W (X )

= tr{(V †
totHtotVtot − Htot )(ρ ⊗ P[ξ ])} (32)

for all ρ ∈ S (H) and V . As such, comparing (32) with
Eq. (19), we see that as long as the apparatus is initially
prepared in an energy eigenstate and Eq. (27) is satisfied,
then not only will the TPM protocol for the total work be
self-consistent, but the total work will always satisfy the un-
measured first law, even for initial system states ρ that do not
commute with the Hamiltonian. As a final observation, note
that Eq. (26) must be equivalent to Eq. (32) when Eq. (27) is
satisfied. Consequently, in such a case the following equality
holds:

tr{(V †
totHtotVtot − Htot )(ρ ⊗ P[ξ ])}

= tr
[
(V †

totHtotVtot − Htot )
{
IL
M(ρ) ⊗ P[ξ ]

}]
(33)

for all ρ ∈ S (H) and V . This equality is a consequence of
the strong repeatability of ideal energy measurements [18],
which implies that directly performing ideal energy measure-
ments on the system is redundant; the structure of the unitary
operators U ( j), together with the fact that we measure the
probes by the pointer observables Z ( j), ensures that the system
automatically undergoes an ideal energy measurement.

B. Necessary and sufficient conditions for the total work
distribution to be equal to the system-only work distribution

If the apparatus is initially prepared in an energy eigenstate
and the apparatus probe Hamiltonians are equivalent to the
pointer observable, the probability distribution for the total
work W , given an initial total state ρ ⊗ P[ξ ] and total unitary
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operator Vtot, is

pVtot
ρ,ξ (W ) :=

∑
X

δ[W − W (X )]pVtot
ρ,ξ (X )

≡
∑

x

δ{W − [w(x) + wA(x)]}pV
ρ (x), (34)

where we have used Eq. (31), together with the definition
wA(x) := w

(0)
A (m) + w

(1)
A (n).

It is simple to see that, in general, the total work proba-
bility distribution (34) is different from the system-only work
probability distribution (7). In order for these distributions to
be the same, for all system states ρ and system-only unitary
operators V , we must have wA(x) = 0 for all x such that
pV

ρ (x) > 0 for some ρ and V . This ensures that for all ρ and
V , ∑

x

δ[w − w(x)]pV
ρ (x) =

∑
x

δ[w − W (X )]pV
ρ (x). (35)

Recall that w
( j)
A (m) := λ

( j)
m − λ

( j)
0 , where λ

( j)
0 is a fixed

energy eigenvalue, and that pV
ρ (x) := tr[PmV †PnV Pmρ]. Con-

sequently, the condition wA(x) = 0 for all x such that pV
ρ (x) >

0 for some ρ and V is equivalent to the condition λ
( j)
m = λ

( j)
0

for all m such that Pm > O, i.e., if only a single degenerate
energy subspace of the probe is involved during the measure-
ment process. Interestingly, we shall see that this condition is
equivalent to the statement that the unmeasured work given
the unitary operator U ( j) vanishes for all system states.

The unmeasured work, given the measurement unitary cou-
pling between the system and probe H( j)

A , is given as

W ( j)
meas := tr

{(
U ( j)†H ( j)

tot U ( j) − H ( j)
tot

)
ρ ⊗ P[ξ ( j)]

}
, (36)

where we define H ( j)
tot := H + H ( j)

A as the additive Hamilto-
nian of the composite system H ⊗ H( j)

A . This can equivalently
be written as

W ( j)
meas = tr

[
�ξ ( j)

(
U ( j)†H ( j)

tot U ( j) − H ( j)
tot

)
ρ
]
, (37)

where �ξ ( j) : L(H ⊗ H( j)
A ) → L(H) is the restriction map

for |ξ ( j)〉, defined by the identity tr[�ξ ( j) (B)T ] = tr{B(T ⊗
P[ξ ( j)])} for all B ∈ L(H ⊗ H( j)

A ) and T ∈ T (H) [41]. Re-
calling that the unitary operator U ( j) always satisfies Eq. (10),
we thus have

�ξ ( j)

(
U ( j)†H ( j)

tot U ( j) − H ( j)
tot

) =
∑

m

w
( j)
A (m)Pm. (38)

For a detailed proof, refer to Appendix B. The right-hand
side of Eq. (38) vanishes if for each m, either Pm = O or
w

( j)
A (m) = 0. Consequently, w

( j)
A (m) = 0 for all m such that

Pm > O is necessary and sufficient for the left-hand side of
Eq. (38) to vanish. But by Eq. (37) this implies that W ( j)

meas = 0
for all ρ ∈ S (H); given that the apparatus is in the state |ξ ( j)〉,
then irrespective of what state the system is prepared in, the
unmeasured work given the unitary operator U ( j) will vanish.
We refer to this as U ( j) satisfying “weak” energy conservation,
which is a weaker condition than full energy conservation, i.e.,
[H ( j)

tot ,U ( j)] = O, which implies that W ( j)
meas = 0 for all choices

of the apparatus state |ξ ( j)〉.

We note that while a fully degenerate probe Hamilto-
nian, H ( j)

A = λ
( j)
0 1, or a fully energy conserving unitary,

[H ( j)
tot ,U ( j)] = O, is a sufficient condition for the total work

distribution (34) to equal the system-only work distribution
(7), they are not necessary.

To illustrate the first point, consider the system Hamil-
tonian H = ε1P1 + ε2P2, where P1, P2 > O. However, this
is equivalent to H = ε1P1 + ε2P2 + ε3P3, such that P3 = O.
Therefore, the ideal measurement of H can be realized by the
normal measurement scheme (HA, |ξ 〉,U, Z ), with the three-
valued pointer observable Z := {Z1, Z2, Z3}, Zm > O, and the
unitary operator U , which satisfies

U (|ψ〉 ⊗ |ξ 〉) =
3∑

m=1

Pm|ψ〉 ⊗ |φm〉 (39)

for all |ψ〉 ∈ H, where |φm〉 are eigenvalue-1 eigenstates of
Zm. Note that the term for m = 3 vanishes since P3|ψ〉 =
O|ψ〉 = 0 for all |ψ〉; the apparatus is never taken to state
|φ3〉. Let the apparatus have the Hamiltonian HA = λ(Z1 +
Z2) + λ′Z3, where λ �= λ′, so that HA is not fully degenerate.
Such non-degeneracy notwithstanding, if |ξ 〉 is in the support
of Z1 + Z2, we still have wA(m) = 0 for m = 1, 2, i.e., for
all m corresponding to Pm > O. As stated previously, it is
only necessary that a single degenerate energy subspace of
the apparatus be “involved” during the measurement process;
for all measurement outcomes that are observed, the state of
the apparatus starts and ends in the support of Z1 + Z2.

To illustrate that full energy conservation by the unitary
is also not necessary, we consider the simple case where
H 
 C2, with orthonormal basis {|0〉, |1〉} and Hamiltonian
H = ε|1〉〈1|, ε > 0. A normal measurement scheme for an
ideal measurement of H can be given as (HA, |0〉,U, Z ),
where HA 
 C2, Z := {|0〉〈0|, |1〉〈1|}, and

U :

{|m, 0〉 �→ |m, m〉,
|m, 1〉 �→ |m ⊕2 1, m〉, (40)

where m = 0, 1 and ⊕2 denotes addition modulo 2. Note
that only the transformation |m, 0〉 �→ |m, m〉 is ever uti-
lized since the apparatus is initially prepared in state
|0〉. If the apparatus Hamiltonian is fully degenerate,
HA = λ1, then U will satisfy weak energy conservation;
given Htot = H + HA, for any |ψ〉 = α|0〉 + β|1〉, we have
〈ψ, 0|U †HtotU |ψ, 0〉 = |β|2ε + λ = 〈ψ, 0|Htot|ψ, 0〉. How-
ever, [U, Htot] �= O since U |1, 1〉 = |0, 1〉, and hence,
〈1, 1|U †HtotU |1, 1〉 = λ �= 〈1, 1|Htot|1, 1〉 = ε + λ.

IV. CONCLUSIONS

A definition for work which relies on measurements is
self-consistent if it can account for the contribution to work
by the measurement process itself, at least in principle. More
precisely, for self-consistency we demand that the marginal
of the total work distribution for the system and measure-
ment apparatus, obtained by ignoring the apparatus degrees
of freedom, recover the original work distribution for the
system alone. In the case of the two-point energy measure-
ment protocol, we have shown that this is possible as long
as the measurement apparatus is initially prepared in an en-
ergy eigenstate. Furthermore, if the apparatus Hamiltonian is
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chosen to be equivalent to the pointer observable, then the
total work distribution will always satisfy the unmeasured first
law; the average total work will equal the change in average
energy given the total unitary evolution. This is a consequence
of the strong repeatability of ideal energy measurements,
which implies that directly performing energy measurements
on the system is redundant. Finally, we have shown that the to-
tal work distribution will be identical to the system-only work
distribution if and only if the unmeasured work, given the uni-
tary interaction between system and apparatus, vanishes for all

system states. Extending the present framework of analysis to
other definitions of work remains an open question for further
research.
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APPENDIX A: PROOF OF EQUATION (32)

Let us introduce the operation (completely positive and trace nonincreasing map) Jx′,x : T (H ⊗ HA) → T (H ⊗ HA),
defined as

Jx′,x(·) := (1 ⊗ Zx )Vtot (1 ⊗ Zx′ )(·)(1 ⊗ Zx′ )V †
tot (1 ⊗ Zx ). (A1)

Here, x := (m, n), and x′ := (m′, n′), so that Zx := Z (0)
m ⊗ Z (1)

n , and Zx′ := Z (0)
m′ ⊗ Z (1)

n′ , and Vtot is defined in Eq. (18). First, let
us show that the state transformation given the TPM protocol can be fully described by the operation Jx′,x. Denoting (0, 0) ≡ 0,
we find that for any T ∈ T (H), P[ξ ] := P[ξ (0)] ⊗ P[ξ (1)], and x,

J0,x(T ⊗ P[ξ ]) = (1 ⊗ Zx )Vtot (1 ⊗ Z0)(T ⊗ P[ξ ])(1 ⊗ Z0)V †
tot (1 ⊗ Zx )

= (1 ⊗ Zx )Vtot (T ⊗ P[ξ ])V †
tot (1 ⊗ Zx )

=
∑

m′,m′′,n′,n′′
(1 ⊗ Zx )

(
Pn′V Pm′T Pm′′V †Pn′′ ⊗ ∣∣φ(0)

m′
〉〈
φ

(0)
m′′

∣∣ ⊗ ∣∣φ(1)
n′

〉〈
φ

(1)
n′′

∣∣)(1 ⊗ Zx )

= PnV PmT PmV †Pn ⊗ P
[
φ(0)

m

] ⊗ P
[
φ(1)

n

]
. (A2)

In the second line, we have used the fact that |ξ 〉 is an eigenvalue-1 eigenstate of Z0 = Z (0)
0 ⊗ Z (1)

0 . In the third line, we have used
Eqs. (18) and (20). In the final line, we have used the fact that |φ( j)

m 〉 are eigenvalue-1 eigenstates of Z ( j)
m . Similarly, it is easy to

show that Jx′,x(T ⊗ P[ξ ]) = O for all x′ �= (0, 0).
Recall that, given the sequence X := (0, x), the TPM work done is

W (X ) := w(x) + w
(0)
A (m) + w

(1)
A (n),= (

εn + λ(0)
m + λ(1)

n

) − (
εm + λ

(0)
0 + λ

(1)
0

)
. (A3)

Using Eq. (A2), recalling that Htot = H + H (0)
A + H (1)

A and that |ξ 〉 and |φ( j)
m 〉 are eigenstates of H (0)

A + H (1)
A , we may verify

that

tr{HtotJ0,x(ρ ⊗ P[ξ ])} = (εn + λ(0)
m + λ(1)

n )tr{J0,x(ρ ⊗ P[ξ ])},
tr{J0,x(Htot (ρ ⊗ P[ξ ]))} = (εm + λ

(0)
0 + λ

(1)
0 )tr{J0,x(ρ ⊗ P[ξ ])]}. (A4)

Consequently, we may express Eq. (A3) as

W (X ) = tr{HtotJ0,x(ρ ⊗ P[ξ ])}
tr{J0,x(ρ ⊗ P[ξ ])} − tr{J0,x(Htotρ ⊗ P[ξ ])}

tr{J0,x(ρ ⊗ P[ξ ])} . (A5)

Recalling that pVtot
ρ,ξ (X ) = tr{J0,x(ρ ⊗ P[ξ ])}, we may therefore write the average work as

〈W〉Vtot
ρ,ξ :=

∑
X

pVtot
ρ,ξ (X )W (X ) =

∑
x′,x

tr{HtotJx′,x(ρ ⊗ P[ξ ])} −
∑
x′,x

tr{Jx′,x(Htotρ ⊗ P[ξ ])}. (A6)

Noting that
∑

x′,x Jx′,x is a trace-preserving operation, it follows that∑
x′,x

tr{Jx′,x(Htotρ ⊗ P[ξ ])} = tr{Htot (ρ ⊗ P[ξ ])}. (A7)

Similarly, noting that
∑

x′ Zx′HtotZx′ = Htot, while
∑

x ZxP[ξ ]Zx = P[ξ ], we have∑
x′,x

tr{HtotJx′,x(ρ ⊗ P[ξ ])} = tr{HtotVtot (ρ ⊗ P[ξ ])V †
tot}. (A8)
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Therefore, the average total work reads

〈W〉Vtot
ρ,ξ = tr{(V †

totHtotVtot − Htot )(ρ ⊗ P[ξ ])} (A9)

for all ρ ∈ S (H) and V .

APPENDIX B: PROOF OF EQUATION (38)

Let H = ∑
m εmPm be the Hamiltonian of system H and HA = ∑

m λmZm be the Hamiltonian of system HA, such that
Htot = H + HA is the total, additive Hamiltonian of the compound system H ⊗ HA. Moreover, let |ξ 〉 ∈ H be a unit vector
which is an eigenstate of HA with eigenvalue λ0. Finally, let U be a unitary operator on H ⊗ HA such that, for all |ψ〉 ∈ H,

|U (ψ ⊗ ξ )〉 =
∑

m

|Pmψ ⊗ φm〉, (B1)

where |ψ ⊗ ξ〉 ≡ |ψ〉 ⊗ |ξ 〉, |Pmψ〉 ≡ Pm|ψ〉, and |φm〉 are eigenstates of HA with eigenvalue λm. It follows that for all |ψ〉 ∈ H,
we have

〈ψ ⊗ ξ |Htot|ψ ⊗ ξ 〉 = 〈ψ |H |ψ〉〈ξ |ξ 〉 + 〈ψ |ψ〉〈ξ |HA|ξ 〉
= 〈ψ |H |ψ〉 + 〈ψ |ψ〉λ0

= 〈ψ |(H + λ01
)|ψ〉. (B2)

In the first line we use the additivity of Htot, in the second line we use the fact that 〈ξ |ξ 〉 = 1 and 〈ξ |HA|ξ 〉 = λ0, and in the final
line we use the fact that 〈ψ |ψ〉λ0 = 〈ψ |λ01|ψ〉. Similarly, for all |ψ〉 ∈ H we have

〈ψ ⊗ ξ |U †HtotU |ψ ⊗ ξ 〉 = 〈U (ψ ⊗ ξ )|Htot|U (ψ ⊗ ξ )〉
=

∑
m,n

〈Pmψ ⊗ φm|Htot|Pnψ ⊗ φn〉

=
∑
m,n

〈ψ |PmHPn|ψ〉〈φm|φn〉 + 〈ψ |PmPn|ψ〉〈φm|HA|φn〉

=
∑

m

〈ψ |PmHPm|ψ〉 + 〈ψ |Pm|ψ〉λm

= 〈ψ |
(

H +
∑

m

λmPm

)
|ψ〉. (B3)

In the first line we use the definition of the adjoint of a unitary operator U ; in the second line we use Eq. (B1). In the third line
we use the additivity of Htot and the fact that the projection operators Pm are self-adjoint. In the fourth line we use 〈φm|φn〉 = δm,n

together with PmPn = δm,nPm and 〈φm|HA|φm〉 = λm, and in the final line we use the fact that
∑

m PmHPm = H .
Combining Eq. (B2) with Eq. (B3) implies that, for all |ψ〉 ∈ H, we have

〈ψ ⊗ ξ |(U †HtotU − Htot )|ψ ⊗ ξ 〉 = 〈ψ |
(∑

m

λmPm − λ01

)
|ψ〉 = 〈ψ |

(∑
m

(λm − λ0)Pm

)
|ψ〉, (B4)

where in the final line we use the fact that
∑

m Pm = 1. From the above equation, it follows that

�ξ (U †HtotU − Htot ) =
∑

m

(λm − λ0)Pm, (B5)

where �ξ : L(H ⊗ HA) → L(H) is the restriction map for |ξ 〉 ∈ HA defined as tr[�ξ (B)T ] = tr{B(T ⊗ P[ξ ])} for all B ∈
L(H ⊗ HA) and T ∈ T (H).
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