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Abstract
Based on the work of Vershik (J Sov Math 59(5):1029–1040, 1992), we introduce two
new combinatorial identities. We show how these identities can be used to prove a new
hook-content identity. The main motivation for deriving this identity was a particular
optimization problem in the field of quantum information processing.

Keywords Hook-content formula · Schur–Weyl duality · Symmetric group ·
Representation theory

1 Introduction

The representation theory of the symmetric group Sn and of the general linear group
GL(d) is related by the so-called Schur–Weyl duality [2]. This famous theorem proves
the decomposition

V⊗n =
⊕

λ�n
Vλ ⊗ Sλ V = C

d (1)

for the representation of GL(d) × Sn , where Vλ is either zero or a polynomial irre-
ducible representation of GL(d), Sλ is an irreducible representation of Sn and λ runs
over the partitions of n and is conveniently represented by Young diagram. Both the
symmetric group and GL(d) (and especially its compact subgroupsU (d) and SU (d))
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are of paramount importance in theoretical physics, especially in quantum mechan-
ics. For example, Sn is a fundamental symmetry of systems of identical particles and
unitary groups represent the set of reversible (finite-dimensional) transformations.
Therefore, it is not surprising that physics community keeps a steady interest in the
representation theory of these groups and in the Schur–Weyl duality, from the early
work of Weyl [3] up to the most recent applications in quantum computing and quan-
tum information processing. For example, Eq. (1) denotes a subsystem decomposition
(induced by the symmetry of the system–environment interaction) in which one can
identify error-free subsystems [4,5], or the relevant subsystems for quantum estima-
tion [6]. These are just a couple of examples of a much wider variety of applications
(see, for example, Ref. [7] for a review). In the light of this discussion, it is clear that
the dimensions of the irreducible spaces Vλ and Sλ are, more often than not, a crucial
piece of information. The value of dim(Sλ) and dim(Vλ) is given by the hook length
formula [8] and the hook-content formula [9], respectively. Those celebrated equa-
tions have a nice combinatorial interpretation and, since their discovery, they have
been generalized (see, for example, [10–12] and references therein) and applied in
different fields like algebraic geometry [13] and probability [14]. Closely related are
also the Littlewood–Richardson rules[15] in the expansion Sλ ⊗ Sμ = ⊕

ν S
⊗c(λ,μ,ν)
ν

and the branching rules for restricting Sλ to Sn−1 and inducing Sλ to Sn+1 [16].
Our work introduces a new identity, represented by Eq. (13) in Proposition 3.1,

which relates the dimensions dim(Sλ), dim(Vλ), dim(Sλ( j) ), and dim(Vλ( j) ) for any
Young diagram λ consisting of n boxes and diagrams λ( j) that can be obtained from
λ by adding a single box. The proof of our result relies on a couple of combinatorial
identities, Eqs. (5) and (6) in Proposition 2.2, which can be of independent interest.
Our approach is modelled after the seminal work [1] of A. Vershik, which provides
the essential tools used in this work.

The main motivation for the presented results originates in the problem we were
solving [17] within the field of quantum information processing.While trying to derive
optimal success probability for a problemwith an arbitrary number of uses of a unitary
transformation, n, and an arbitrary dimension of quantum systems, d, we observed
several identities involving n and d, which the optimality of the solution required.
By reducing the problem even further, we arrived at the necessity to prove the hook-
content identity (12) that forms the core of this paper, and the needed identities for our
original problem correspond to our final Proposition 3.1. After finishing the present
manuscript, Sanjaye Ramgoolam and Michal Sedlák gave a representation theoretic
proof [18] of the identities presented in this paper.

2 Basic identities

Let {ai }2si=1, s ≥ 1, be elements of an arbitrary field, and let the following coefficients
be well defined:
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q j
m,n :=

j∏

i=m+1

(
1 − a2i−1

a2i−1 + a2i + · · · + a2 j

)

n∏

i= j+1

(
1 − a2i

a2 j+1 + a2 j+2 + · · · + a2i

)

for 0 ≤ m ≤ j ≤ n ≤ s.

(2)

In Ref. [1], the following result is proved:

Proposition 2.1 (Vershik) Let q j
m,n be defined as in Eq. (2). Then, for any m, n, j ,

0 ≤ m ≤ j ≤ n ≤ s the following identities hold

Cm,n q
j
m,n =

j∑

k=m+1

a2k q
j
k,n +

n−1∑

l= j

a2l+1 q
j
m,l

Cm,n := a2m+1 + a2m+2 + · · · + a2n,

(3)

n∑

j=m

q j
m,n = 1. (4)

By rephrasing this result, we could say that q j
m,n are the solution of the recursion

relation (3). Proposition 2.1 is the main tool for the proof of the following result.

Proposition 2.2 The following identities hold:

n∑

j=m

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠ q j
m,n = 0 (5)

n∑

j=m

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠
2

q j
m,n =

n∑

i=m+1

a2i

i∑

l=m+1

a2l−1 (6)

Proof of Eq. (5) The proof is by induction on n − m. Let us first consider the case
n − m = 1. If we fix an arbitrary m, we have n = m + 1, and Eq. (5) gives:

−a2m+2 q
m
m,m+1 + a2m+1 q

m+1
m,m+1 = −a2m+2

a2m+1

a2m+1 + a2m+2

+ a2m+1
a2m+2

a2m+1 + a2m+2
= 0.

Next, we fix arbitrary m and n with n−m > 1 and let us suppose that the thesis holds
for anym′, n′ such thatm′ ≤ n′ and n′ −m′ < n−m. By multiplying Eq. (5) by Cm,n

and by using the recursion formula (3), we obtain:
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Cm,n

n∑

j=m

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠ q j
m,n = Am,n + Bm,n

Am,n :=
n∑

j=m

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠
j∑

k=m+1

a2k q
j
k,n

Bm,n :=
n∑

j=m

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠
n−1∑

l= j

a2l+1 q
j
m,l

We start with the coefficient Am,n . Since the term with j = m is zero, we have

Am,n =
n∑

j=m+1

j∑

k=m+1

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠ a2k q
j
k,n

=
n∑

k=m+1

n∑

j=k

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠ a2k q
j
k,n

=
n∑

k=m+1

n∑

j=k

⎛

⎝
k∑

i=m+1

a2i−1 +
⎛

⎝
j∑

i=k+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠

⎞

⎠ a2k q
j
k,n

=
n∑

k=m+1

a2k

⎧
⎨

⎩

k∑

i=m+1

a2i−1

n∑

j=k

q j
k,n +

n∑

j=k

⎛

⎝
j∑

i=k+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠ q j
k,n

⎫
⎬

⎭

=
n∑

k=m+1

a2k

k∑

i=m+1

a2i−1.

where we used Eq. (4) and the inductive hypothesis in the last equality.
Now we evaluate the coefficient Bm,n . Since the term with j = n is zero, we have

Bm,n :=
n−1∑

j=m

n−1∑

l= j

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠ a2l+1q
j
m,l

=
n−1∑

l=m

l∑

j=m

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠ a2l+1 q
j
m,l

=
n−1∑

l=m

l∑

j=m

⎛

⎝

⎛

⎝
j∑

i=m+1

a2i−1 −
l∑

i= j+1

a2i

⎞

⎠ −
n∑

i=l+1

a2i

⎞

⎠ a2l+1 q
j
m,l
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=
n−1∑

l=m

a2l+1

⎧
⎨

⎩

l∑

j=m

⎛

⎝
j∑

i=m+1

a2i−1 −
l∑

i= j+1

a2i

⎞

⎠ q j
m,l −

l∑

j=m

q j
m,l

n∑

i=l+1

a2i

⎫
⎬

⎭

= −
n−1∑

l=m

a2l+1

n∑

i=l+1

a2i

Finally, we have

Am,n + Bm,n =
n∑

k=m+1

k∑

i=m+1

a2i−1a2k −
n−1∑

l=m

n∑

i=l+1

a2l+1a2i

=
n∑

k=m+1

k∑

i=m+1

a2i−1a2k −
n∑

l ′=m+1

n∑

i=l ′
a2l ′−1a2i

=
n∑

k=m+1

k∑

i=m+1

a2i−1a2k −
n∑

i=m+1

i∑

l ′=m+1

a2l ′−1a2i = 0

where we defined l ′ = l + 1. ��

Proof of Eq. (6) The proof is again by induction and is very similar to the proof of
Eq. (5). Let us first fix an arbitrary m and n = m + 1. Then, Eq. (6) becomes:

a22m+2 q
m
m,m+1 + a22m+1 q

m+1
m,m+1

= a22m+2
a2m+1

a2m+1 + a2m+2

+ a22m+1
a2m+2

a2m+1 + a2m+2
= a2m+2 a2m+1.

Wenow fix arbitrarym and n with n−m > 1 and let us suppose that the thesis holds
for any m′, n′ such that m′ ≤ n′ and n′ − m′ < n − m. By multiplying the left-hand
side of Eq. (6) by Cm,n and by inserting the recursion formula (3), we obtain:

Cm,n

n∑

j=m

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠
2

q j
m,n = αm,n + βm,n

αm,n :=
n∑

j=m

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠
2

j∑

k=m+1

a2k q
j
k,n

βm,n :=
n∑

j=m

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠
2
n−1∑

l= j

a2l+1 q
j
m,l
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Next we rewrite coefficient αm,n . Since the term with j = m is zero, we have

αm,n =
n∑

j=m+1

j∑

k=m+1

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠
2

a2k q
j
k,n

=
n∑

k=m+1

n∑

j=k

a2k

⎛

⎝
k∑

i=m+1

a2i−1 +
⎛

⎝
j∑

i=k+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠

⎞

⎠
2

q j
k,n

=
n∑

k=m+1

n∑

j=k

a2k

⎛

⎜⎝

(
k∑

i=m+1

a2i−1

)2

+
⎛

⎝
j∑

i=k+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠
2

+ 2

(
k∑

i=m+1

a2i−1

)⎛

⎝
j∑

i=k+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠

⎞

⎠ q j
k,n

=
n∑

k=m+1

a2k

⎛

⎝
(

k∑

i=m+1

a2i−1

)2

+
n∑

i=k+1

i∑

l=k+1

a2l−1 a2i

⎞

⎠

where we used the inductive hypothesis, Eqs. (4) and (5) that was previously proved.
Similarly, we rewrite the coefficient βm,n . Since the term with j = n is zero, we have

βm,n =
n−1∑

j=m

n−1∑

l= j

⎛

⎝
j∑

i=m+1

a2i−1 −
n∑

i= j+1

a2i

⎞

⎠
2

a2l+1 q
j
m,l

=
n−1∑

l=m

l∑

j=m

⎛

⎝

⎛

⎝
j∑

i=m+1

a2i−1 −
l∑

i= j+1

a2i

⎞

⎠ −
n∑

i=l+1

a2i

⎞

⎠
2

a2l+1 q
j
m,l

=
n−1∑

l=m

a2l+1

l∑

j=m

⎛

⎜⎝

⎛

⎝
j∑

i=m+1

a2i−1 −
l∑

i= j+1

a2i

⎞

⎠
2

− 2

(
n∑

i=l+1

a2i

)⎛

⎝
j∑

i=m+1

a2i−1 −
l∑

i= j+1

a2i

⎞

⎠

+
(

n∑

i=l+1

a2i

)2
⎞

⎠ q j
m,l =

n−1∑

l=m

a2l+1

⎛

⎝
l∑

i=m+1

i∑

k=m+1

a2k−1 a2i +
(

n∑

i=l+1

a2i

)2
⎞

⎠ ,

where we have used the inductive hypothesis, Eqs. (4) and (5). Let us inspect the
product of the right-hand side of Eq. (6) and Cm,n . We obtain

Cm,n

(
n∑

i=m+1

a2i

i∑

l=m+1

a2l−1

)
= γ (1)

m,n + γ (2)
m,n, (7)

γ (1)
m,n :=

n∑

i=m+1

i∑

l=m+1

n∑

k=m+1

a2i a2l−1a2k−1, γ
(2)
m,n :=

n∑

i=m+1

i∑

l=m+1

n∑

k=m+1

a2i a2l−1a2k .

(8)
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Let us define

α(1)
m,n :=

n∑

k=m+1

k∑

i=m+1

k∑

j=m+1

a2i−1 a2 j−1 a2k , β(1)
m,n :=

n−1∑

l=m

l∑

i=m+1

i∑

k=m+1

a2k−1a2i a2l+1,

α(2)
m,n :=

n∑

k=m+1

n∑

i=k+1

i∑

l=k+1

a2l−1 a2i a2k , β(2)
m,n :=

n−1∑

l=m

n∑

i=l+1

n∑

j=l+1

a2i a2 j a2l+1

αm,n = α(1)
m,n + α(2)

m,n βm,n = β(1)
m,n + β(2)

m,n .

We then have

γ (1)
m,n − β(1)

m,n =
n−1∑

l=m

n∑

i=m+1

i∑

k=m+1

a2l+1a2i a2k−1 −
n−1∑

l=m

l∑

i=m+1

i∑

k=m+1

a2k−1a2i a2l+1

=
n−1∑

l=m

n∑

i=l+1

i∑

k=m+1

a2k−1a2i a2l+1 =
n∑

l=m+1

n∑

i=l

i∑

k=m+1

a2k−1a2i a2l−1

=
n∑

i=m+1

i∑

l=m+1

i∑

k=m+1

a2k−1a2i a2l−1 = α(1)
m,n

In a similar way, we have

α(2)
m,n + β(2)

m,n =
n∑

j=m+1

n∑

i= j+1

i∑

l= j+1

a2 j a2i a2l−1 +
n∑

l=m+1

n∑

i=l

n∑

j=l

a2l−1a2i a2 j

=
n∑

j=m+1

n∑

l= j+1

n∑

i=l

a2 j a2l−1a2i +
n∑

i=m+1

i∑

l=m+1

n∑

j=l

a2i a2l−1a2 j

=
n∑

i=m+1

n∑

l=m+1

n∑

j=l

a2i a2l−1a2 j =
n∑

i=m+1

n∑

j=m+1

j∑

l=m+1

a2i a2l−1a2 j = γ (2)
m,n .

Therefore, α(1)
m,n + α

(2)
m,n + β

(1)
m,n + β

(2)
m,n = γ

(1)
m,n + γ

(2)
m,n which finally proves the thesis.

��

3 Hook-content identities andGL(n)

For a natural number n, we denotewith λ = (λ1, λ2, . . . , λk) λi ∈ Z, λ1 ≥ λ2 ≥ · · · ≥
λk > 0,

∑k
i=1 λi = n a partition of n and we write λ � n. Any partition corresponds

to a Young diagram, which is an array of boxes, in the plane, left-justified, with λi
cells in the i-th row from the top (English convention). A Greek letter λ denotes both
the partition and the corresponding Young diagram. A box b ∈ λ of a Young diagram
can be labelled by a pair of integer numbers b = (i, j) where i denotes the row and
j denotes the column. We denote with h(b) the hook length of the box b = (i, j), i.e.
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the number of boxes b′ = (i ′, j ′) such that i = i ′ and j ′ ≥ j or j = j ′ and i ′ ≥ i . For
example, if λ = (4, 3, 1) and b = (1, 2), we have h(b) = 4. The content of the box
b = (i, j) is defined as c(b) := j − i . A Young tableau of shape λ is a Young diagram
λ in which each box is filled with an integer number. A semistandard Young tableau
of parameters (d, λ) is a Young tableau of shape λ such that the entries are positive
integers no greater that d and they weakly increase along rows and strictly increase
along columns. For example, the following tableau

1 2 2 3
2 3
4

,

is a semistandard Young tableau of parameters (4, (4, 2, 1)). The Stanley’s hook-
content formula [9] gives the number of semistandard Young tableaux of parameters
(λ, d) (denoted with SSYT (λ, d)), namely

SSYT (λ, d) =
∏

b∈λ

d + c(b)

h(b)
. (9)

The number SSYT (λ, d) is the dimension dim(Vλ) of the vector space Vλ, which is
the irreducible polynomial representation of GL(d) labelled by the partition λ.

A standard Young tableau of shape λ � n is semistandard Young tableau of param-
eters (n, λ) such that the filling is a bijective assignment of 1, 2..., n. For example, the
following tableau

1 2 5 7
3 4
6

,

is a standard Young tableau of shape (4, 2, 1). The number of standard Young tableaux
of shape λ � n (denoted with SYT (λ)) is given by the hook length formula [8]

SYT (λ) =
∏

b∈λ

n!
h(b)

. (10)

The number SYT (λ) is the dimension dim(Sλ) of the Specht module Sλ, i.e. the
irreducible representation of the symmetric group Sn labelled by the partition λ.

We now introduce the step coordinates for a Young diagram λ. First, let us define
the following notation for a partition λ = ((λ′

1, k
′
1), (λ

′
2, k

′
2), . . . , (λ

′
s, k

′
s)), where k

′
i

denotes the multiplicity of the number λ′
i and λ′

1 > λ′
2 > · · · > λ′

s . For example,
we have (4, 4, 4, 3, 3, 1, 1, 1, ) = ((4, 3), (3, 2), (1, 3)). Then, we define p1 = λ′

s ,
pi := λ′

s−i+1 − λ′
s−i+2 for i = 2, . . . s and ki := k′

s−i+1 for i = 1, . . . , s. The
numbers (p1, k1, p2, k2, . . . , ps, ks) are the step coordinates of the Young diagram λ;
the reason for this notation is clear by looking at the example in Fig. 1.
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Fig. 1 The Young diagram
λ = (8, 8, 4, 4, 1, 1, 1) has step
coordinates (1, 3, 3, 2, 4, 2)

k1

k2

k3

p3

p2

p1

For a given Young diagram λ, we denote with λ( j) the Young diagram that can be
obtained from λ by the addition of the box b( j), for example, if λ = (3, 3, 2, 2) we
have

λ = λ(0) =

b(0)

λ(1) =
b(1)

λ(2) =
b(2)

.

This is clearly equivalent to say that, for a Young diagram λ � n, λ( j) is a partition of
n+ 1 such that the Young diagram of λ fits inside that of λ( j), and we write λ( j) ← λ.

The connection between combinatorial identities studied in Section 2 and the rep-
resentation theory is provided by the following observation. Let us now consider an
arbitrary Young diagram λ with step coordinates (p1, k1, p2, k2, . . . , ps, ks), and let
us apply Eq. (2) to the sequence a2i−1 := pi , a2i := ki i = 1, . . . , s. Then, using the
definition of hook length, we have1

q j
0,s =

∏
b∈λ h(b)∏

b∈λ( j) h(b)
for j = 0, . . . , s, (11)

1 This observation appears in the work of Vershik [1] (see Eq. (17) therein), with different notations for the
step coordinates.
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for any Young diagram λ � n, and λ( j) � n + 1, λ( j) ← λ. Applying this observation
to combinatorial identities (5) and (6) and realizing that

j∑

i=1

a2i−1 −
s∑

i= j+1

a2i =
j∑

i=1

pi −
s∑

i= j+1

ki = c(b( j))

s∑

i=1

a2i

i∑

l=1

a2l−1 =
s∑

i=1

ki

i∑

l=1

pl = n ,

we obtain:

Fk :=
∑

λ( j)←λ

(c(b( j)))k
∏

b∈λ h(b)∏
b∈λ( j) h(b)

, F0 = 1, F1 = 0, F2 = n, (12)

where the identity F0 = 1 is Vershik’s original result (4). As a consequence of
Eq. (12), we also have:

Proposition 3.1 For any Young diagram λ � n, and λ( j) � n + 1, λ( j) ← λ, we have

∑

λ( j)←λ

(
SSYT (λ( j), d)

SSYT (λ, d)

)2
SYT (λ)

SYT (λ( j))
= n + d2

n + 1
(13)

Proof By expanding Eq. (13), we obtain

(n + 1)
∑

λ( j)←λ

(
SSYT (λ( j), d)

(SSYT (λ, d)

)2
SYT (λ)

SYT (λ( j))
=

∑

λ( j)←λ

(d + c(b( j)))2
∏

b∈λ h(b)∏
b∈λ( j) h(b)

=
∑

λ( j)←λ

(
d2 + 2dc(b( j)) + (c(b( j)))2

) ∏
b∈λ h(b)∏

b∈λ( j) h(b)
= d2 + n ,

where the last equality follows from Eqs. (4), (11), and (12). ��
We conclude this section by noticing that the identity F1 = 0 of Eq. (12) can be

alternatively provedbycombining thehook-content formula (9) and easy consideration
of representation theory. Indeed, let us consider the trivial identity

d dim(Vλ) =
∑

λ( j)←λ

dim(Vλ( j) ) (14)

where Vλ is an irreducible polynomial representation of GL(d), V is the fundamen-
tal (or defining) representation of GL(d), and Vλ( j) are the irreducible inequivalent
polynomial representations in the decomposition Vλ ⊗ V = ∑

λ( j)←λ Vλ( j) . From the
hook-content formula, Eq. (14) becomes

d =
∑

λ( j)←λ

dim(Vλ( j) )

dim(Vλ)
= ∑

λ( j)←λ(d + c(b( j)))

∏
b∈λ h(b)∏

b∈λ( j) h(b) �⇒ ∑
λ( j)←λ c(b

( j))

∏
b∈λ h(b)∏

b∈λ( j) h(b) = 0
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where we used Eqs. (11) and (4) in the final step. Alternatively, a combinatorial proof
of the same identity follows by applying the Robinson–Schensted–Knuth correspon-
dence.

4 Conclusion

In this paper, we proved some new combinatorial identities, Eqs. (5) and (6), which
can be proved following the techniques of Ref.[1]. These identities lead to a couple of
hook-content identities (Eq. (12)). The F1 = 0 identity can be proved with arguments
from representation theory, and our approach provides an alternative proof. On the
other hand, the F2 = n identity and Eq. (13) are new. As possible generalization of
this result, one could consider the quantities Fn for n greater than 2. A preliminary
analysis suggests that Fn could be a homogeneous polynomial of degree n for any n.
We leave this conjecture as an open problem.

The representation theory of the symmetric group and of the general linear group
plays a significant role in many areas of quantum information, as discussed, for exam-
ple, in Ref. [19]. In particular, Eq. (13) is directly linked to the optimal solution of the
perfect probabilistic storage and retrieval of an unknown unitary transformation [17],
which was the problem that led us to prove the presented hook-content identities.
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