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Entanglement-Entropy Study of Phase Transitions
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The Berezinskii–Kosterlitz–Thouless transitions of the six-state clock model on the square lattice are investi-
gated by means of the corner-transfer matrix renormalization group method. A classical analog of the entanglement
entropy S(L, T ) is calculated for L×L square system up to L = 129, as a function of temperature T . The entropy
exhibits a peak at T = T ∗(L), where the temperature depends on both L and the boundary conditions. Applying
the finite-size scaling to T ∗(L) and assuming presence of the Berezinskii–Kosterlitz–Thouless transitions, the two
distinct phase-transition temperatures are estimated to be T1 = 0.70 and T2 = 0.88. The results are in agreement
with earlier studies. It should be noted that no thermodynamic functions have been used in this study.
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1. Introduction

The classical XY model on uniform planar lattices does
not exhibit the ‘standard type of order when the temper-
ature T is finite since the system possesses the contin-
uous O(2) symmetry [1]. The special type of the order
that does not break the symmetry can, however, exist
at finite temperature and is known as the topological or-
der [2, 3]. The phase transition between the topological
phase and the high-temperature paramagnetic (or dis-
ordered) phase is the so-called Berezinskii–Kosterlitz–
Thouless (BKT) phase transition.

Introduction of anisotropy or discreteness is relevant
to the thermodynamic properties of the system. The
q-state clock model is one of the well-known examples,
where on each lattice point there is a vector spin point-
ing to q different directions, which differ by the angle
2π/q. Since there is no continuous symmetry, existence
of the standard ferromagnetic order is allowed at low,
but finite, temperature. An early renormalization-group
(RG) study on such a system by José and Kadanoff sug-
gested existence of a critical area with a finite tempera-
ture width [4], which is separated from ordered and dis-
ordered phases by the BKT phase transition [2, 3]. It has
been known that such a phase structure exists for ferro-
magnetic q-state clock models when q ≥ 5. It is known
that within that temperature region T1 < T < T2 the
correlation function shows a power-law decay, and the
system is critical.

In this article we consider the ferromagnetic six-state
(q = 6) clock model on the square lattice, as a represen-
tative case, where the BKT transition can be observed.
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The Hamiltonian of the system is

H = −
∑
i,j

[cos (θi,j − θi+1,j) + cos (θi,j − θi,j+1)] ,

where θi,j = 2πk
q denotes a discrete angle variable for

k = 0, 1, 2, . . . , q − 1 on the lattice site with coordinates
i and j in the L × L square lattice. When the temper-
ature T is high enough, the thermal equilibrium state is
disordered, and each direction is chosen with equal prob-
ability. When T is low enough, the state is ordered, i.e.,
one of the six directions is spontaneously chosen in the
thermodynamic limit.

Entanglement entropy, which quantifies the bipartite
quantum entanglement, is one of the fundamental val-
ues in information physics, and has been used for anal-
yses of one-dimensional (1D) quantum systems [5–7].
Through the quantum-classical correspondence formu-
lated by means of discrete path-integral in imaginary
time, such as the Trotter–Suzuki decomposition [8, 9],
it is also possible to introduce a classical analog of the
entanglement entropy for two-dimensional (2D) classi-
cal lattice systems [10, 11]. A profit of using this clas-
sical analog is that it enables to detect thermal phase
transitions directly, without considering the type of the
order parameter or without taking derivatives of ther-
modynamic functions, including the free energy [12–14].
Universality of the phase transition can also be identi-
fied by estimating the central charge through the finite-
entanglement scaling [10, 12, 14].

In this article, the entanglement-entropy analysis is
used for the first time in attempt to identify the BKT
transition. We calculate the entanglement entropy
S(L, T ) of the six-state clock model on square lattice
of the linear sizes up to L = 129, and investigate the
phase transition by means of temperature dependence in
S(L, T ). For this purpose, we employ the corner transfer
matrix renormalization group (CTMRG) method [15].
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2. Numerical results

Figure 1a shows the temperature dependence of the
magnetization M(L, T ) = 〈cos(θc)〉 at the center of the
square-shaped system, here denoted by the suffix c. Sys-
tem is under the fixed boundary conditions. We have
chosen the lattice sizes L = 17, 27, 65, and 129. Having
analyzed the magnetization profiles, it is non-trivial to
determine the BKT transitions accurately. We, there-
fore, focus our attention on the form of the entanglement
entropy S(L, T ) in order to detect two effective tempera-
tures T ∗1 (L) and T ∗2 (L) for each lattice size L, which can
be further used to analyze the BKT transitions.

The temperature dependence of the S(L, T ) is shown
in Fig. 1b and c for various sizes of the square lattice
with L = 17, 27, 65, and 129. We consider two different
boundary conditions. The upper part shows S(L, T ) for
the free boundary conditions. The entropy has a peak
(maximum) at T ∗1 (L), which increases with L. Above

Fig. 1. (a) Temperature dependence of magnetization
M(L, T ) = 〈cos(θc)〉 measured at the center of the
square shape system for L = 17, 27, 65, and 129 with
fixed boundary conditions and entanglement entropy
S(L, T ) calculated with (b) the free boundary condi-
tions and (c) the fixed boundary conditions. The hor-
izontal dotted line in (b) is the asymptotic value of
S(L, 0) = ln 6. The two vertical dot-dashed lines at
T1 = 0.70 and T2 = 0.88 show the estimated tran-
sition temperatures by means of finite-size scaling, as
discussed bellow. The sizes of the square lattice are
specified by the type of the lines; L = 17 (full thin line),
L = 27 (dashed thin line), L = 65 (full thick line), and
L = 129 (dashed thick line).

T ∗1 (L) the entropy decreases with T , where there
is a shoulder on the higher-temperature side, which
carry an unclear signature of T ∗2 (L). (Notice that
S(L, T = 0) = ln 6). If the fixed boundary conditions are
imposed, shown in the lower part (b), there is a shoulder
for each L in the lower-temperature side and a new peak
at T ∗2 (L), which is a decreasing function of L. (Notice
that S(L, 0) = 0.)

The BKT transition temperatures T1 and T2 can be
obtained by applying the finite-size scaling for T ∗1 (L, T )
and T ∗2 (L, T ), respectively, toward the thermodynamic
limit L → ∞. Now, we check this conjecture. It
has been accepted that the correlation length ξ around
the BKT phase-transition temperature TC is asymptoti-
cally (L→∞) expressed to be ξ ∝ exp

(
const

√
TC√
|T−TC|

)
.

If the system size L is smaller than exp
(
const

√
TC√
|T−TC|

)
,

the correlation length ξ is effectively suppressed down to
L. Under such a geometrical constraint, it is possible
to introduce an effective temperature T ∗(L) that satis-
fies L ∝ exp

(
const

√
TC√

|T∗(L)−TC|

)
. Solving this relation

with respect to T ∗(L), we obtain T ∗(L) = TC + α
[ln(βL)]2

,
where α and β are appropriate constants. Since
the entanglement entropy is almost proportional to
the logarithm of the correlation length, an analogous
consideration is applied to the entanglement entropy
in the following.

Fig. 2. (a) finite-size scaling for the peak position
T ∗
1 (L) with respect to t, which draws T ∗

1 (∞) = 0.70.
(b) finite-size scaling for T ∗

2 (L) with respect to t, which
draws T2 = 0.88.



600 R. Krčmár, A. Gendiar, T. Nishino

Figure 2 shows T ∗1 (L) and T ∗2 (L) with respect to
t = 1

[ln(βL)]2
(as well as with respect to L in the loga-

rithmic scale). In Fig. 2a, T ∗1 (L) is plotted for β = 1.62,
which was determined to reach linearity for low values
of t and the slope corresponds to α = −2.58. Un-
der this parametrization of α and β, we estimated the
lower-temperature BKT transition to be T ∗1 (∞) = 0.70.
Figure 2b shows the analogous analysis for T ∗2 with
respect to t, where the parameters were found to be
α = 4.68 and β = 2.88. Finally, the higher-temperature
BKT transition is determined by the extrapolation to be
T2(∞) = 0.88.

3. Conclusions

We have studied the six-state clock model by means
of the CTMRG method and observed the temperature
dependence of the entanglement entropy S(L, T ) with L
being the size of the square lattice. If imposing the free
boundary conditions, the entanglement entropy exhibits
the peak at T ∗1 (L), which is an increasing function of L.
On the other hand, the fixed boundary conditions results
in the other peak of the entanglement entropy at T ∗2 (L),
which is the decreasing function of L. According to the
BKT form of the finite-size correction, the scalings ap-
plied to T ∗1 (L) and T ∗2 (L) draw the final results of the
lower-temperature BKT transition T ∗1 (∞) = 0.70 and
the higher-temperature BKT transition T ∗2 (∞) = 0.88.
These values agree with the transition temperatures re-
ported so far [16–18]. For comparison, the most recent
Monte Carlo result by Kumano et al., gives T1 = 0.700(4)
and T2 = 0.904(5), which is based on the response to
twist boundary conditions up to the size L = 256 [18].
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