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We investigate the Berezinskii-Kosterlitz-Thouless transitions for the square-lattice six-state clock model with
the corner-transfer matrix renormalization group (CTMRG). Scaling analyses for effective correlation length,
magnetization, and entanglement entropy with respect to the cutoff dimension m at the fixed point of the CTMRG
provide transition temperatures consistent with a variety of recent numerical studies. We also reveal that the
fixed-point spectrum of the corner-transfer matrix in the critical intermediate phase of the six-state clock model
is characterized by the scaling dimension consistent with the ¢ = 1 boundary conformal field theory associated

with the effective Zg dual sine-Gordon model.
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I. INTRODUCTION

The two-dimensional (2D) g-state clock models have been
providing interesting phase-transition physics competingly
induced by classical orders due to g-sided polygon-type
discretization and the Berezinskii-Kosterlitz-Thouless (BKT)
phase associated with the classical XY model [1,2]. For ¢ =
2 and 3, the second-order transitions of Ising universality
and three-state Potts universality are, respectively, confirmed.
The g = 4 clock model is equivalent to the two decoupled
Ising models. For ¢ > 5, meanwhile, the critical intermedi-
ate phase is expected between the ordered and disordered
phases, accompanying the BKT transitions at the boundaries
of the intermediate phase [3—16]. However, some studies of
Monte Carlo (MC) simulations are controversial [17,18]. This
is basically because the BKT transitions exhibit very weak
singularity near the transition points. Thus, numerical simula-
tions for finite-size systems often suffer from the logarithmic
dependence in the finite-size-scaling (FSS) analyses of bulk
physical quantities such as specific heat and order parameters.
Thus, precise verification of the BKT transitions for the clock
models has been a challenging problem in the context of
computational physics.

In this paper, we focus on the critical intermediate phase
and the BKT transitions of the six-state clock model, for
which a variety of numerical investigations were performed.
The current status of numerical estimations of the transition
points is summarized in Table I. MC simulations combined
with the FSS analysis for the correlation length, a ratio
of the spin-spin correlation function, helicity modulus, and
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roughness of the spin [19] provide a couple of estimations
for the BKT transitions: the lower and upper transition tem-
peratures are, respectively, located at T.; ~ 0.7 and T, ~ 0.9.
However, larger system sizes are still required for the precise
determination of the transition temperatures. Recently, tensor
network approaches were also tested in cooperation with
the scaling analysis for the entanglement entropy [12,13,16]
and Fisher zero [15]. However, some results for 7, seem to
slightly deviate from the recent MC results. Moreover, the
BKT-transition nature also makes it difficult to numerically
check the scaling dimensions associated with ¢ = 1 conformal
field theory (CFT), which is the effective field theory describ-
ing the critical intermediate phase.

For the six-state clock model, we therefore perform large-
scale corner-transfer matrix renormalization group (CTMRG)
calculations [20,21] up to the cutoff dimension m = 768,
with use of a parallelized solver of the matrix-eigenvalue
problem [22]. In particular, we employ the finite-m scaling
analysis for the fixed point of the CTMRG calculations with
various m, which has been successfully applied to second-
order transitions [23,24,31]. For the present case, based on the
m dependence of the effective correlation length, we practi-
cally estimate transition temperatures and scaling dimensions
for magnetization and “classical analog of entanglement en-
tropy,” simply referred to as “entanglement entropy” here-
after, with assuming the scaling form of the BKT transition.
The estimated transition temperatures are listed in Table I,
which are basically consistent with the recent MC and tensor
network results. We also address the scaling analysis for
the entanglement spectra determined by the corner-transfer
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TABLE I. List of the lower and upper transition temperatures, 7;; and T;,; Monte Carlo (MC), MC renormalization group (MCRG), the
tensor RG with higher-order singular value decompositions (HOTRG) and the variational uniform matrix product state (VUMPS). Numerical
values in parentheses in the columns of 7;; and T, represent estimation errors.

Method Lorm T T.»

Tobochnik [4] (1982) MCRG L=32 0.6 1.3
Challa and Landau [5] (1986) MC L=172 0.68(2) 0.92(1)
Yamagata and Ono [6] (1991) MC 0.68 0.90
Tomita and Okabe [7] (2002) Probability-changing cluster MC L =512 0.7014(11) 0.9008(6)
Hwang [18] (2009) Wang-Landau MC L =28 0.632(2) 0.997(2)
Brito et al. [8] (2010) Heat-bath single spin flipping MC L =160 0.68(1) 0.90(1)
Baek et al. [9,10] (2010) Wolff MC L=512 0.9020(5)
Kumano et al. [11] (2013) Boundary-flip MC L =256 0.700(4) 0.904(5)
Krémdr et al. [12] (2016) CTMRG L =129 0.70 0.88
Chen et al. [13] (2017) HOTRG m=15 0.6658(5) 0.8804(2)
Surungan et al. [14] (2019) Swendsen-Wang MC L =512 0.701(5) 0.898(5)
Hong and Kim [15] (2019) HOTRG L =128 0.693 0.904
Li et al. [16] (2019) VUMPS m =250 0.6901(4) 0.9127(5)
This work CTMRG (Correlation length, etc.) m = 768 0.694(3) 0.908(3)

CTMRG (Entanglement spectrum) m = 768 0.693 0.900
matrix (CTM) in the intermediate phase, assuming the bound- with
ary CFT with the ¢ = 1 Gaussian universality. We then show G, = exp (—BHa), 3)

that the Tomonaga-Luttinger (TL) parameter extracted from
the entanglement spectra is consistent with the result of the
effective Zg dual sine-Gordon field model for the six-state
clock model [16,25].

The organization of the rest of this paper is as follows. In
the next section, we explain the setup of CTMRG and present
numerical results for the correlation length, entanglement
entropy, and magnetization. In Sec. III, we explain a BKT
version of the finite-m scaling. We also show the results of
finite-m scaling analysis with the phenomenological renor-
malization group (PRG) [26] to reduce subleading effects. In
Sec. IV, we show the scaling analysis for the entanglement
spectrum based on the boundary CFT and discuss the consis-
tency between the numerical results with the effective field
theory. In Sec. V, a summary and prospects of this study are
presented.

II. NUMERICAL CALCULATION
A. CTMRG

In this work, we use CTMRG to calculate the spontaneous
magnetization, correlation length, and entanglement entropy
for the six-state clock model on a square lattice. We write the
local Hamiltonian for the nearest-neighboring sites as

2
Hap = —J cos [7(a—b)i|, (1
with g = 6, where J denotes the exchange coupling, and the
indices a and b =1,2,...,6 specify clock angles. In the
following, we assume J = 1 for simplicity. Then, the local
Boltzmann weight of the six-state clock model is practically
represented as

Wahcd = Gathc ch Gda ’ (2)

which can be regarded as a local 4-leg vertex tensor on the 45°
rotated square lattice. Here, the bond weights G, are defined

where B = 1/T is the inverse temperature. Note that we have
assumed ky = 1.

In the CTM formulation, the partition function of the sys-
tem is represented as Z = Tr C*, where C denotes the renor-
malized CTM. Since Eq. (2) has the /2 rotation and parity
symmetries, the CTMs corresponding to the four quadrants
of the lattice are equivalent. In CTMRG, then, we recursively
update the CTM and the half row-to-row (column-to-column)
transfer matrices toward the bulk fixed point, using the trans-
formation matrix provided with diagonalization of the CTM.
Here, note that free or ferromagnetic boundary conditions can
be appropriately set up with initial transfer matrices. After
a sufficient number of iterations, we obtain the fixed-point
matrices and then evaluate the bulk magnetization M (T, m)
and the entanglement entropy Sg(7,m) = —Tr pln p, with
p = C*/Z. A typical number of iterations for the convergence
is of the order of 10* near the transition points for m = 768.
The numerical accuracy of M (T, m) and Sg(T', m) at the fixed
point is, of course, governed by the cutoff dimension m. The
truncation error due to the cutoff m is basically equivalent to
that of tensor-network algorithms based on the matrix product
state.

In order to evaluate the typical length scale of the fixed
point with a finite m, moreover, we can extract the effective
correlation length as

E.(T, m) = [In(¢,/e)] 7, “)

where ¢, and ¢,, respectively, denote the largest and second-
largest eigenvalues of the renormalized row-to-row transfer
matrix constructed from the renormalized half-row transfer
matrix at the fixed point. Note that £,(7', m) has a finite value
even in the critical phase since the finite-m effect gives rise
to an effective length scale. In the next section, this effective
correlation length &, plays an essential role in performing
the finite-m scaling analysis for M (T, m) and Sg(T', m).
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FIG. 1. Temperature dependence of the magnetization M (T, m)
form = 6,12, ..., 768 under the ferromagnetic boundary condition.
The vertical lines indicate the lower and upper transition points
estimated with the finite-m scaling analysis.

B. Results

In Fig. 1, we first present the temperature dependence of
the magnetization M (T, m) for the ferromagnetic boundary
condition. In the low-temperature region (7' < 0.7), the fact
that M (T, m) has no m dependence gives clear evidence of
the spontaneous breaking of the Zg symmetry. In contrast, the
high-temperature region (7' 2 1.0) is in the disordered phase.
Moreover, we find that the shoulder structure of M(T, m)
accompanying the strong m dependence appears between
0.7 < T < 1.0, suggesting that the critical intermediate phase
is actually the case for the six-state clock model. This is be-
cause the finite-m effect and the symmetry breaking boundary
condition may induce a finite M (T, m) even in the critical
regime. Note that in Fig. 1, we also show the lower and upper
transition temperatures 7., = 0.694 and T, = 0.908 as the
vertical lines in advance, which will be estimated with the
scaling analysis in the next section.

In order to analyze the critical intermediate phase, behav-
iors of the correlation length are essential. In Fig. 2(a), we next
show the correlation length &,(7, m) for the ferromagnetic
boundary condition, where &,(T, m) exhibits the plateaulike
behavior in the intermediate region. As m increases, &, in-
creases with a power-law behavior, which also suggests the
critical intermediate phase consistent with the magnetization
result. In Fig. 2(b), we finally show the entanglement en-
tropy S (T, m) for the free-boundary condition. For the free-
boundary case, the fixed-point CTM in the ordered phase
equivalently includes the contributions from the six broken-
symmetry states, implying that the eigenvalue spectrum of
CTM has the sixfold degeneracy. Thus, Sg(T, m) in the low-
temperature limit is Sg =1In6 = 1.79. In the intermediate
temperature region, Sg also exhibits a diverging behavior with
respect to m. According to a CFT, the bipartition entanglement
entropy in the critical regime can be described as

Sp ~ % In € + const, )

where ¢ denotes the central charge, and ¢ is the length of
the system part [27,28]. Replacing £ — &,(T, m) in Eq. (5),
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FIG. 2. (a) Temperature dependence of the correlation length
&,(T, m) for the ferromagnetic boundary, and (b) the entanglement
entropy Sg(7T, m) for the free boundary. The curves with sym-
bols represent the CTMRG results with cutoff dimensions m =
6,12, ...,768, from bottom to top.

then, we can basically understand the behavior of Si (7', m) in
Fig. 2(b), except for the contribution from the nonuniversal
constant. Nevertheless, a finite-m scaling analysis is required
for extracting precise critical behaviors in the intermediate
region and the BKT phase boundaries in Figs. 1 and 2.

II1. FINITE-m SCALING AND BKT PHASE TRANSITIONS

For the BKT transition, the correlation length diverges with
£ ~ exp(const x t~!/?) toward the transition point T, where
t = |T /T, — 1] denotes the normalized temperature. However,
the conventional scaling hypothesis based on the divergence
of & often encounters difficulty in a precise determination of
the transition point since the essential singularity of £ induces
very weak anomaly in bulk observables such as specific heat
and magnetization.

In order to perform a stable scaling analysis for the
CTMRG data with finite m, we phenomenologically assume
the scaling form for a certain quantity A (A € M or Sg) with
the scaling dimension x4 as

Z 2
A0 = 07 |:t (m ;) } ©)

where ¢ denotes a characteristic length of the system particu-
larly in numerical simulations, € is a cutoff scale, and f4(y) is
a scaling function. This scaling form of Eq. (6) was originally
proposed for the helicity modulus of the 2D XY model in
Ref. [29], based on the renormalization group (RG) flow for
the effective sine-Gordon model, and later was applied to the
magnetization of the clock models in Ref. [30].

In the critical phase, the effective length scale at the
CTMRG fixed point with a cutoff dimension m is given
by Eq. (4). Then, an essential point is that the asymptotic
behavior of £, with respect to m is also described by the power
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FIG. 3. Critical exponent « extracted with finite-m scalings for
the effective correlation length &, ~ m*.
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law [31],
& ~m", (N

where k denotes an exponent characteristic to the matrix-
product-state description of the eigenvector of the row-to-row
transfer matrix. We can perform fitting of Eq. (7) for the
CTMRG results of &, in Fig. 2, using the data in m ~ 48-768.
We then extrapolate the fitting result to m — oo based on
the phenomenological renormalization group (PRG) [26] and
obtain k ~ 1.17 in the critical phase (Fig. 3). An important
point for this result is that the value of « is basically invariant
in the intermediate critical phase, which is often observed for
¢ =1 CFTs. Indeed, k ~ 1.16 and ¢ ~ 0.985 were reported
for such a quantum spin system as a chiral ladder in the critical
regime [32], which is consistent with the present result for
the clock model. This result is also supported by a general
discussion based on the matrix product state [33] implying
that k¥ depends only on ¢ through

6
T T2 + 1)

although « ~ 1.17 slightly deviates from the value of Eq. (8)
forc=1.

Taking account of the divergence of the effective corre-
lation length, we may substitute £ ~ &, ~ m"* into Eq. (6).
For the magnetization, we then write the scaling ansatz in the
vicinity of the BKT transition point as

®)

M(t,m) = m_"”/sz[t(ln ?)2], )

where fM is a scaling function satisfying fM(y) ~ const for
y « 1, and the cutoff scale € was redefined. Note that (=
—2xp) is the anomalous dimension, which is consistent with
the scaling relations used in Refs. [5,30,34].

The entanglement entropy is not a directly observable
quantity. However, Eq. (5) suggests that a scaling dimension
of ¢% may be regarded as c/6. Thus, plugging £ ~ m* into

Eq. (6) with x4 = ¢/6, we assume the scaling form for e as

2
£SEm) el g|:t () } (10)
€

where g is a scaling function.

Using the scaling forms of Eqgs. (9) and (10), we perform
finite-m scalings with the use of the Bayesian inference algo-
rithm [35], respectively, for M and &S of m = 46, 96, 192,
384, and 768. Note that for T.;, M and Sg with the ferro-
magnetic boundary condition are used, and the temperature
range for the fitting is 7 = [0.65, 0.75]. Meanwhile, for 7,,
those with the free boundary condition are used with the
fitting window T = [0.85, 0.95]. The results of the finite-m
scaling plots are shown in Fig. 4, where the data for various
m are basically collapsed on scaling functions. The estimated
transition points are 7,; = 0.695(2) and T, = 0.913(3) for
the entanglement entropy and 7;; = 0.691(2) for the mag-
netization. Also, we obtain ck = 1.21(2) and kn = 0.112(6)
for T.1, and ck = 1.14(3) for T.,. However, we should note
that these transition points and exponents still contain weak
m dependencies, which suggest that corrections to Egs. (9)
and (10) may not be negligible.

In order to extrapolate the transition points and exponents
in the m — oo limit, we employ the PRG [26]. In the PRG, we
first estimate O € {T,, ck, nk, T.»} with Egs. (9) and (10) for
my and my (7% my) and interpolate O* at m* = (m; + my)/2.
We next plot O* as functions of 1/m* and then perform the
polynomial fitting for O* with respect to 1/m* to extrapolate
lim,«— oo O*. Figure 5 shows T* as functions of 1/m*. In
Fig. 5(a), for example, m* dependencies of T; for M and
5 tend to converge in the limit of m* — oo. Thus, we
extrapolate T} for 1/m* < 0.007 including the upper and
lower boundaries of the error bars, which are depicted as
guidelines in the figure, and obtain 7;; = 0.694(3) at m* —
oo. For the upper transition point, the similar analysis also
yields T, = 0.908(3). These transition points of T.; and T,
are consistent with the results of recent works listed in Table 1.
Moreover, we also obtain ¢ = 0.97(3) and n = 0.09(1) for
M at T, which are basically consistent with the theoretical
values,c = landn =1/9 =0.11... [3,25].

IV. ENTANGLEMENT SPECTRUM AND TL PARAMETER

In order to reveal the nature of the intermediate criti-
cal phase and the BKT transitions, we further investigate
the finite-m dependence of the entanglement spectrum. In
connection to CFT for the CTM geometry, we define the
entanglement Hamiltonian as

o =exp (—2nHg), (1

where p is the reduced density matrix defined by a product
of four CTMs. Then, the conformal mapping of the boundary
CFT on the upper half plane into that for the CTM geometry
(=~ the annulus with an infinitesimal inner radius) leads us to

T <L ¢ ) + const (12)
= R — const,
Inr/e\ " 24

where L, denotes the Virasoro generator of the holonomic
part, and r and €, respectively, correspond to the system size
of the CTM and a cutoff scale [36,37]. For the ¢ = 1 CFT,

He
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FIG. 4. Finite-m scaling plots for the BKT transition points of the
six-state clock model: (a) entanglement entropy, (b) magnetization
for T;;, and (c) entanglement entropy for T;,.

the spectrum of Ly is given by x; , + N, where x;, , indicates
possible conformal weights compatible with the boundary
conditions, and N is a non-negative integer corresponding to
descendants [38]. Then, x;, , is explicitly written as

2
1{ /K It 1
= —n],
2\V2 V2
where (h, n) are integer quantum numbers (n corresponds

to the winding number), and K denotes the TL parameter
representing the effect of the renormalized cosine terms in

13)
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FIG. 6. Entanglement spectrum at 7 = 0.8 as a function of
1/1n&,. The broken lines are quadratic fits with respect to 1/1In&,.
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FIG. 7. Temperature dependence of the TL parameter K, which
is extracted from the first excited energy of the entanglement spec-
trum with the quadratic fit of 1/In&,.

effective correlation length, r ~ &,, where the free-boundary
condition can be assumed since the outer region of the CTM
beyond &, is basically decoupled from the central region of the
CTMs [39]. Thus, the entanglement spectrum measured from
the ground state can be represented as

T

AEI' = E,‘ — EO =
In&, /e

(Xnn +N), (14)

with i =0,1,2,3,... (AEy = 0 corresponds to the ground
state). Note that this relation is also numerically tested for 1D
critical quantum systems [39,40].

Figure 6 shows the entanglement spectrum AE; at T = 0.8
as a function of 1/1n&,. The degeneracy of the spectrum
is 1,2,2,1,2,..., from bottom to top, for which we can
confirm the asymptotic behavior as in Eq. (13) in the region
of small 1/In&,. Moreover, we can read AE,/AE; >~ 4 in
Fig. 6, which suggests N = 0 for consistency with Eq. (13).
Taking account of the first excited state doubly degenerating,
we may assume that the first and second excited states are,
respectively, characterized by xp 11 and xo 1.

In order to determine the TL parameter K in the conformal
weight, we perform the fitting of AE; with a quadratic func-
tion of 1/1Iné&, for 1/In&, < 0.2 and extract the coefficient of
the leading term of 1/1In&,. Assuming xo ; for AE;, we obtain
the temperature dependence of K in Fig. 7, which is in good
agreement with the effective Zg dual sine-Gordon theory; in
particular, K >~ 9 and K =~ 4 can be confirmed at 7., = 0.693
and T, = 0.900, respectively. Note that these values of the
transition points are consistent with the finite-m scaling results
in the previous section.

In addition, the TL parameter at the self-dual point for the
Zg dual sine-Gordon model is given by K = 6. We evaluate K
for various T and then find that K = 6 is realized at Tsp =
0.803, which is consistent with the recent tensor network
study combined with a ratio of partition functions for Klein
bottles [16]. Moreover, we find that the relation TSZD =TuT-
is numerically satisfied with 7,; = 0.693, T., = 0.900, and

Tsp = 0.803 up to three digits, although the six-state clock
model is not self-dual with respect to the Kramers-Wannier
duality transformation [41]. Whether this relation could be
exact or an approximation in the effective field theory level
is an interesting future problem.

V. CONCLUSIONS AND DISCUSSIONS

We have investigated the critical phenomena of the six-
state clock model on a square lattice. We have calculated
the effective correlation length, magnetization, and entangle-
ment entropy and entanglement spectrum, using the paral-
lelized CTMRG. We have then performed the finite-m scaling
analysis, which revealed that the critical intermediate phase
actually emerges, accompanying the BKT phase transitions
at the phase boundaries, 7.y = 0.694(3) and T., = 0.908(3).
These transition temperatures are consistent with those of
recent MC and tensor network simulations listed in Table 1.
Also, our estimation of the central charge ¢ and the exponent
n for the magnetization at T = T, are basically consistent
with the analytical values. Moreover, we have shown that
the low-energy behavior of the entanglement spectrum is in
good agreement with the conformal dimension of the ¢ = 1
boundary CFT associated with the Zg dual sine-Gordon model
and the resulting temperature dependence of the TL parameter
is also consistent with the theoretical values [3,25] and the
recent tensor network analysis [16].

However, we should note that « = 1.17(1) for the
effective correlation length in the intermediate phase
slightly deviates from & ~ 1.34 that is expected from
Eq. (8) with ¢=1. Similar discrepancies are interest-
ingly reported for a one-dimensional chiral ladder, (x, c) =
(1.16,0.985) [32], and a deconfined quantum critical point,
(x, c) =[1.18(3), 0.99] [42]. A possible reason for this could
be that the effective correlation length based on Eq. (4) is not
appropriate. As pointed out in [43], for example, the exact
correlation length of the XYZ chain is given by integrating
over the entire band of complex next-largest eigenvalues of
the row-to-row transfer matrix, not by the ratio of the largest
and next-largest eigenvalues. In order to settle this problem of
K, further investigations of the finite-m scaling analysis for the
BKT transition will be needed. Finally, we note that it is also
an interesting problem to clarify how the phase transitions of
the clock model can be connected to the critical property of
the icosahedron and dodecahedron models [22,24].
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