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The entanglement entropy S is calculated on the system boundary of the square-lattice ±J Ising model by the time-
evolving block decimation (TEBD) method. The random average 〈S〉 is evaluated on the Nishimori line, through the
successive multiplications of transfer matrices, whose width N is up to 300. It is confirmed that 〈S〉 shows critical
singularity around the Nishimori point.

1. Introduction

The effect of randomness on magnetic phenomena has
been one of the issues in statistical physics. A well-
investigated system is the Edwards–Anderson model,1) which
was introduced for the analysis of the Mn–Cu alloy.2) A
special case is the �J Ising model, where neighboring
interactions choose �J < 0 or J > 0 randomly. In two
dimensions, the model exhibits either ferromagnetic or
paramagnetic states,3,4) when there are only short-range
interactions. The spin-glass state appears in higher dimen-
sions or in the presence of long-range interactions.5) The
analytic form of the internal energy can be obtained for the
�J Ising model, when the temperature T and the probability
p of finding a ferromagnetic bond satisfy the so-called
Nishimori condition,6,7) which is represented by a curve
known as the Nishimori line in the parameter space.

We consider the square-lattice �J Ising model on the
finite-size lattice of width N, and perform numerical analysis
using the transfer matrix formalism.8–12) Since the dimension
of the matrix increases exponentially with N, direct numerical
treatment is limited up to N � 30 at most. Merz and Chalker
introduced a fermionic representation and extended the size
up to N ¼ 256, while most of the numerical data were
collected up to N ¼ 64.11) To treat larger systems, we employ
the time-evolving block decimation (TEBD) method,13–15)

which is related to the imaginary-time density-matrix
renormalization group method.16) The TEBD method enables
us to access up to N ¼ 300. For the detection of the phase
boundary, the Pfaffian technique is efficient, with which
square-shaped systems up to 512 by 512 have been treated by
Thomas and Katzgraber.17)

In this article, we focus on the spin distribution function
on the system boundary. If one regards the function as a
quantum wave function, the concept of entanglement can
be introduced,18) in which the entanglement entropy S is a
typical measure.19) In uniform systems, S exhibits a singular
behavior at criticality.20,21) The presence of critical singularity
in S can also be expected in classical random systems. To
confirm this conjecture, we numerically calculate S of the
square-lattice �J Ising model. On the Nishimori line, the
averaged entanglement entropy hSi has a peak near the phase
boundary. By performing the finite size scaling (FSS),22,23)

we confirmed that the peak really reflects the critical

singularity. Note that Ohzeki and Jacobsen observed a
quantity that is related to the change in S upon the
modification of boundary conditions.24)

This article is structured as follows. In the next section, we
explain the transfer matrix formalism in the square-lattice �J
Ising model. The entanglement entropy S is defined through
the boundary distribution function. In Sect. 3, we show the
numerical results obtained by the TEBD method. Conclu-
sions are summarized in the last section.

2. Model and Entanglement Entropy

We consider the �J Ising model on the square lattice,
whose Hamiltonian is written as

H ¼
X
‘;m

½Im‘ �m
‘ �

mþ1
‘ þ Jm‘ �m

‘ �
m
‘þ1�; ð1Þ

where �m
‘ ¼ �1 denotes the Ising spin in the ‘-th column

and m-th row. The interactions in the vertical and horizontal
lattice directions are, respectively, denoted by Im‘ and Jm

‘ .
These parameters randomly take the values �J < 0 and
J > 0, respectively, with the probability p and 1 � p. We
assume that there is no external field. Figure 1 shows the
phase diagram of this model.3,4,10,17) There is a ferromagnetic
region when T is sufficiently low and p is close to unity. The
dashed curve denotes the Nishimori line, which is specified
by6,7)

tanh
J

kT
¼ 2p � 1; ð2Þ

where k denotes the Boltzmann constant. On the curve, the
thermal average of the bond energy can be exactly expressed
as6,7)

h"i ¼ �J tanh J

kT
: ð3Þ

The curve crosses the phase boundary at the Nishimori point
ðp; TÞ ¼ ðpc; TcÞ. Below the point, the phase transition
belongs to the percolation universality,25) and above the
point, it is the Ising universality. Note that h"i in Eq. (3)
shows no singularity in any temperature.

We represent the system as the random interaction-round-
a-face model, where each face surrounded by �m

‘ , �m
‘þ1,

�mþ1
‘ , and �mþ1

‘þ1 is considered as the unit of the system. The
corresponding local Boltzmann weight is given by
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Wm
‘ ¼ exp

�
� 1

2kT
ðIm‘ �m

‘ �
mþ1
‘ þ Im‘þ1�

m
‘þ1�

mþ1
‘þ1

þ Jm‘ �
m
‘ �

m
‘þ1 þ Jmþ1‘ �mþ1

‘ �mþ1
‘þ1 Þ

�
; ð4Þ

where the factor 1=2 indicates that each bond is shared by
two faces. In the following, we consider a rectangular system
of horizontal width N and height M. We impose open
boundary conditions for all the system boundaries. The
partition function of the system is then represented as

Z ¼
X
conf:

YM�1

m¼1

YN�1
‘¼1

Wm
‘ ; ð5Þ

where the spin configuration sum is taken over. The
interaction on the system boundary is �J=2 by definition of
Wm

‘ . Let us express the row of spins �m
1 ; �

m
2 ; . . . , and �m

N by
the notation f�mg, and define the transfer matrix

Umðf�mþ1gjf�mgÞ ¼
YN�1
‘¼1

Wm
‘ ; ð6Þ

whose structure is shown in Fig. 2. We can then express Z as
a contraction of the product of transfer matrices

Z ¼
X
f�Mg

X
f�1g

UM�1UM�2 � � �U2U1: ð7Þ

Skipping the summation for f�Mg, we obtain the partial sum

Vðf�MgÞ ¼
X
f�1g

UM�1UM�2 � � �U2U1; ð8Þ

which is dependent on the spin configuration f�Mg at the
top of the system. This is the (unnormalized) distribution
function that we mentioned in the previous section, where
the normalized probability of observing a particular spin
configuration on this boundary can be written as the ratio

Pðf�MgÞ ¼ 1

Z
Vðf�MgÞ: ð9Þ

We interpret the partial sum V in Eq. (8) as an
unnormalized wave function of a hypothetical one-dimen-
sional spin system. For later convenience, let us introduce the
normalized wave function

�ðf�MgÞ ¼ 1ffiffiffiffi
N

p Vðf�MgÞ; ð10Þ

where N ¼ P
f�Mg½Vðf�MgÞ�2 is the square of the norm. The

concept of quantum entanglement can be introduced to an
arbitrary quantum state. Let us divide f�Mg into the left half
f�Lg � �M

1 ; . . . ; �M
N=2 and the right half f�Rg � �M

N=2þ1; . . . ;
�M
N . By applying the singular value decomposition

�ðf�Lg; f�RgÞ ¼
X
�

�� A�ðf�LgÞB�ðf�RgÞ; ð11Þ

where A and B are orthogonal matrices, we obtain the
singular value ��, which satisfies the normalizationP

� �
2
� ¼ 1. The bipartite entanglement entropy

S ¼ �
X
�

�2� ln �
2
� ð12Þ

is a good measure of the entanglement.19)

In uniform systems, S is asymptotically proportional to
the logarithm of the correlation length.20,21) Because of the
randomness, S of the �J Ising model is dependent on the
spatial distribution of positive and negative bonds. Instead of
taking a random average directly, we successively obtain an
ensemble of V by increasing the system height M. Using the
self-averaging property26) in the �J Ising model, we evaluate
the average hSi numerically.

3. Calculated Results

The partial sum V in Eq. (8) can be obtained with high
numerical precision by the TEBD method,13–15) where V is
represented in the form of the canonical matrix product.27–29)

The multiplication of the transfer matrix V 0 ¼ UMV is
performed by applying each WM

‘ to V and taking the
configuration sum locally. Note that each WM

‘ does not
represent local unitary evolution; therefore, the obtained V 0

is not represented as the canonical matrix product.29) We
transform V 0 into the canonical matrix product before we
evaluate S. Singular values �� are obtained naturally in the
numerical calculation by the TEBD method. We treat the
system size up to N ¼ 300. The system size limitation is
chiefly due to the computational time required for the random
average, while the memory=storage requirement is not
severe. Most of the numerical calculations are performed
on the K-computer.

We choose the parameter J as the unit of energy, and set
k ¼ 1. All the calculations are performed on the Nishimori
line, to analyze the singularity in hSi at the Nishimori point.
The necessary matrix dimension χ in the TEBD method is
dependent on N. We checked the convergence in hSi with
respect to χ for the worst case, when N ¼ 300 and at the
Nishimori point. From the trial calculations up to � ¼ 28, it is
confirmed that the χ-dependence is negligible when � � 22.
Thus, we choose � ¼ 24 in the following calculations. The
number of samples of the partial sum V is chosen from
D ¼ 5 	 104 to 2:5 	 106, depending on the system size N.
In the critical region, the effective number of independent
samples is estimated as D=N. Thus, we divide the D numbers

W

+11 N
σm σmσm σm

+11 N
σm+1σm+1σm+1 σm+1

Fig. 2. Structure of the transfer matrix Um.

1/2
p
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Fig. 1. Phase diagram of the �J Ising model on the square lattice.3,4,10,17)
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of calculated S into bins, each containing 1000 steps, and
calculate the subaverages in each bin. Assuming the Gaussian
distribution, we estimate the standard deviation σ in hSi,30)
and 2� is considered as the error.

Figure 3 shows the calculated hSi on the Nishimori line.
Each plot is obtained from D ¼ 5 	 104 samples. When the
temperature T is sufficiently large and p is close to 1=2, hSi is
a decreasing function of T. In the low-temperature limit
ðp; TÞ ¼ ð1; 0Þ, the corresponding state is the superposition
of all-up and all-down states, which is the Greenberger–
Horne–Zeilinger (GHZ) state,31) and hSi is equal to ln 2.
When the system size is relatively large, a peak appears in the
neighborhood of T � 1:0, where the peak height increases
with N. To observe the peak structure of hSi in detail, we
calculate it within the temperature window 0:92 
 T 
 0:98
as shown in Fig. 4, where D ¼ 1:5 	 106 samples are taken
for the cases N ¼ 150 and 200, and D ¼ 2:5 	 106 for N ¼
300. The error bars become visible at this magnification.

We perform FSS for the plots shown in Fig. 4 for the cases
N ¼ 150, 200, and 300, assuming the scaling form

ehSi ¼ Nc=6 f½ðT � TcÞN1=��; ð13Þ
and determine the critical temperature Tc in the thermody-
namic limit N ! 1. We employ the Bayesian inference
method by Harada,32) which has also been applied to random
systems.33,34) The temperature region 0:92 
 T 
 0:98 is
considered for the cases N ¼ 150 and 200, and 0:93 

T 
 0:98 is considered for N ¼ 300. Figure 5 shows the
obtained scaling plot. From this best fit, the critical temper-
ature is estimated as Tc ¼ 0:9564ð3Þ, where the correspond-

ing probability is pc ¼ 0:89004ð6Þ, which is slightly smaller
than the previously reported ones, pc ¼ 0:8906{
0:8908.4,12,35,36) As the estimation of the critical exponent,
� ¼ 1:59ð4Þ is obtained, which is larger than � ¼ 1:33
reported by Picco et al.12) for the bulk part. The central
charge is estimated as c ¼ 0:397ð2Þ. The estimated ν contains
a relatively large error, since it is affected by the slight change
in the temperature window 0:92 
 T 
 0:98, whereas the
estimations for Tc and c are insensitive.

We perform an additional calculation at the estimated
Tc ¼ 0:9564ð3Þ, collecting D ¼ 1:5 	 106 samples for N ¼
80, 120, 160, 240, and 320. Figure 6 shows the obtained hSi
with respect to lnN. The linear dependence hSi / lnN is
clearly observed. This is in accordance with the conformal
invariance at criticality, where the leading term of the entropy
is given by c

6
lnN. We obtain c ¼ 0:404ð3Þ if we use all the

plotted data in Fig. 6, and c ¼ 0:395ð4Þ if we consider the
cases N ¼ 160, 240, and 320 only. The latter estimate is
consistent with c ¼ 0:397ð2Þ obtained from the FSS in
Fig. 5. Our estimated c, which is obtained from the
observation on the system boundary, is smaller than c ¼
0:464 estimated by Picco et al.12) and c ¼ 0:463 estimated
by de Queiroz et al.35) that are observed in the bulk. The
discrepancy might arise from the difference between
boundary and bulk critical phenomena.

4. Discussion and Conclusions

The averaged entanglement entropy hSi of the square-
lattice �J Ising model is analyzed through the observation
of the distribution function on the system boundary by the

Fig. 3. Entanglement entropy hSi on the Nishimori line.

Fig. 4. Entanglement entropy hSi around T � 0:95.

Fig. 5. Scaling plot of entanglement entropy.

Fig. 6. Value of hSi at T ¼ 0:9564 on the Nishimori line.
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transfer matrix formalism combined with the TEBD method.
From the FSS analysis applied to the calculated hSi on the
Nishimori line, the presence of a singular behavior in hSi is
confirmed around the Nishimori point.

The behavior of hSi on the phase boundary apart from
the Nishimori point is a remaining point of interest. We
performed small-scale trial calculations. On the phase
boundary between the Nishimori point and the transition
point of the pure Ising model with p ¼ 1, the calculated result
agrees with the Ising universality. The numerical analysis
below the Nishimori point is not straightforward, since the
spontaneous symmetry breaking easily occurs when the
ferromagnetic bonds are accidentally concentrated. Stabiliza-
tion should be introduced to the TEBD calculation in this
case.

Another point of interest is in the spatial structure of the
entanglement on the system boundary. Analysis of such a
structure has been carried out for one-dimensional random-
bond quantum spin chains, which have a layered structure in
entangled pairs.37,38) In the case of the square-lattice �J Ising
model, the randomness is present in both horizontal and
vertical directions of the lattice. A method of treating such
disorder is the use of the tensor renormalization group
(TRG),39,40) which was once applied to the �J Ising
model.41,42) From the viewpoint of the modern tensor
network renormalization (TNR) formalisms,43–45) capturing
the entanglement structure contained in the system is
essential for numerical renormalization-group transforma-
tions. What would be the appropriate, or adaptive, tensor-
network structure under such randomness?

The �J Ising model on the square lattice does not possess
the spin glass phase; therefore, it is not possible to observe
singular behaviors of the entanglement entropy around the
spin-glass transition. Such a study can be performed on the
cubic lattice, whereas the application of the TEBD method
would require extensive computation, which could be
undertaken by the next generation of high-performance
computers.
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