
Vol. 137 (2020) ACTA PHYSICA POLONICA A No. 5

Proceedings of the 17th Czech and Slovak Conference on Magnetism, Košice, Slovakia, June 3–7, 2019

Area-Law Study of Quantum Spin System
on Hyperbolic Lattice Geometries
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Magnetic properties of the transverse-field Ising model on curved (hyperbolic) lattices are studied by a tensor
product variational formulation that we have generalized for this purpose. First we identify the quantum phase
transition for each hyperbolic lattice by calculating the magnetization. We study the entanglement entropy at
the phase transition in order to analyze the correlations of various subsystems located at the center with the
rest of the lattice. We confirm that the entanglement entropy satisfies the area law at the phase transition for
fixed coordination number, i.e., it scales linearly with increasing size of the subsystems. On the other hand, the
entanglement entropy decreases as power-law with respect to the increasing coordination number.

DOI: 10.12693/APhysPolA.137.589
PACS/topics: quantum magnetism in spin systems, phase transitions, tensor-network methods

1. Introduction

The tensor-product states have been intensively stud-
ied in various strongly correlated systems, focusing
mainly on their ground-state properties [1, 2]. They were
developed for treating two-dimensional quantum systems
and are of intensive interest in the recent decade. We
consider a simple spin model in order to study magnetic
properties on non-Euclidean lattices, which describe neg-
atively curved two-dimensional surfaces. Such spin lat-
tices are generally known as the hyperbolic lattices and
can also be understood as generalizations of the Bethe
lattices. These lattices can form so-called spin networks,
which are meant to describe anti-de Sitter (AdS; i.e. hy-
perbolic) spaces used in theory of quantum gravity [3].
By analyzing the magnetization and the entanglement
entropy on the hyperbolic lattices, we connect the solid-
state viewpoint with the correspondence between the
AdS and the conformal field theory (CFT), which is spec-
ified in quantum gravity.

Since the quantum spin systems on arbitrary hyper-
bolic lattices are not analytically solvable, we treat them
numerically by a generalized tensor-network algorithm,
tensor product variational formulation (TPVF). We have
successfully applied the TPVF method to the Heisen-
berg, XY, and the Ising models [4]. It is worth men-
tioning that the classical spin analogs have also been
intensively studied on the hyperbolic surfaces [5, 6], as
they exhibit many interesting features, which they have
in common with quantum spin systems. As the sim-
plest example, we consider the quantum Ising model
on infinitely large hyperbolic lattices in order to ob-
serve phase transitions after the spontaneous symmetry-
breaking occurs. The hyperbolic lattices are constructed
by regular tessellation of identical polygons with uniform
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coordination numbers. They form negatively curved sur-
faces with constant Gaussian curvatures and infinite
Hausdorff dimension.

2. Model and method

The main aim of this study is to revisit critical proper-
ties of the quantum spin systems with respect to under-
lying lattice surfaces. Let us consider the transverse-field
Ising model

H(p,q) = −J
∑

{i,j}(p,q)

Sz
i S

z
j − hx

∑
{i}(p,q)

Sx
i , (1)

where the Pauli matrices Sz
i and Sx

i are located on a site i
of particular hyperbolic lattice (p, q), which is character-
ized later. We consider ferromagnetic coupling J > 0
acting between nearest neighbors {i, j}, and constant
transversal magnetic fields hx ≥ 0. The summation runs
over all spin sites {i} on the negatively curved surfaces.
They represent a class of the uniform hyperbolic lat-
tices [6]. These hyperbolic lattices are usually classified
by a pair of two positive integers (p, q) and we consider
the case when p, q ≥ 4. The first integer describes a
regular polygon with p sides (e.g. p = 4, 5, 6, . . . cor-
respond to the square, pentagon, hexagon, etc.) while
the second integer is the coordination number q which
is kept uniform on the entire hyperbolic lattice. Hence,
(p ≥ 4, q ≥ 4) describes an infinite set of the hyper-
bolic lattices with the only exception: the (4, 4) geometry
refers to the flat square lattice. For instance, we depict
two hyperbolic lattices in Fig. 1 in the so-called Poincaré
disk representation [7]. The (6, 4) lattice is created by
the regular tessellation of identical hexagons, p = 6, with
the uniform coordination number q = 4, whereas the
dual (4, 6) lattice is made by tiling the regular squares,
p = 4, with q = 6.

The infinite size of the hyperbolic lattice geometries
(p, q) is necessary for studying the phase transitions.
The ferromagnetic Ising model exhibits a single second-
order (continuous) phase transition, which separates
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Fig. 1. Example of the hyperbolic lattice geometries
(a) (6, 4) and (b) (4, 6). The lattices are shown in the
Poincaré disk representation, which is a mapping of the
identical polygons onto the disc.

the ferromagnetically ordered phase from the disordered
phase at a certain quantum phase-transition field hxpt.
For instance, the Ising model has a phase transition at
hxpt = 3.0439 on the square (4, 4) lattice [8]. To find the
phase transition, we calculate the spontaneous magneti-
zation 〈Sz〉 = 〈Ψ0|Sz|Ψ0〉, as the relevant order parame-
ter. Here, the wave function |Ψ0〉 is the ground state cor-
responding to the lowest energy E0 of the Hamiltonian
H(p,q), which we have specified in Eq. (1). The transverse
magnetic field, at which the non-zero magnetization 〈Sz〉
tends to zero value, specifies the phase transition which
we denote by hxpt in the following.

There is another important quantity, which is also use-
ful in precise detection of the phase transition. It is the
entanglement entropy S(p,q) = −Tr (ρ log2 ρ), which gets
maximized at phase transitions. To calculate the entan-
glement entropy S(p,q), we need to obtain a reduced den-
sity matrix ρ = Tr′|Ψ0〉〈Ψ0| by partial tracing out the en-
vironment of the entire lattice system described by |Ψ0〉.
The entanglement entropy S(p,q) can represent a function
which quantifies the amount of quantum correlations of
a certain subsystem coupled to the rest of the system
(the reservoir). We consider such subsystems, which are
formed by regular polygons of p sides and are located in
the center of the hyperbolic lattice (deeply in the bulk).
The reservoir is the remaining part of the hyperbolic lat-
tice. When evaluating the entanglement entropy, all de-
grees of the freedom belonging to the reservoir are traced
out. To accomplish these calculations, we employ the
TPVF method. The method has been found reliable,
because it approximates the ground state |Ψ0〉 correctly
by means of the tensor product [4]. We use the method
to obtain the spontaneous magnetization 〈Sz〉 and the
entanglement entropy S(p,q).

3. Results

The quantum phase-transition field hxpt can be numer-
ically obtained for sufficiently large lattices after all ther-
modynamic functions have completely converged. This
is carried out iteratively within TPVF, which breaks
the spin symmetry resulting in a non-zero spontaneous

Fig. 2. (a) Magnetization 〈Sz〉 as the order parame-
ter with respect to the transversal magnetic field hx on
the hyperbolic lattices (p, 4). (b) Entanglement entropy
versus the transversal field hx. The maxima of S(p,4)

at phase-transition field hx
pt (the open circles) increase

with p at q = 4, whereas the inset shows that the max-
ima of S(4,q) decrease with q at fixed p = 4.

magnetization. The method produces a smooth depen-
dence of the magnetization on the transversal field hx

with the well-defined phase-transition field hxpt. The or-
dered phase with the non-zero magnetization 〈Sz〉 > 0
for hx < hxpt is separated from the disordered phase with
〈Sz〉 = 0 for hx ≥ hxpt. Figure 2a shows the magnetic-
field dependence of the magnetization for hyperbolic lat-
tices (p, 4) made of the regular polygons 5 ≤ p ≤ 10
with the coordination number q = 4. As p increases, the
hxpt rapidly converges to the value hxpt = 3.2922, which
corresponds to the Bethe lattice with q = 4.

The identical phase-transition fields hxpt can be repro-
duced when the maxima of the entanglement entropy
S(p,q) plotted in Fig. 2b are observed for the same set
of the hyperbolic lattices with 5 ≤ p ≤ 10 at q = 4. The
maxima of S(p,4) corresponds to identical phase transi-
tions hxpt. They are marked by the open circles, and hxpt
rapidly saturates as we have seen for 〈Sz〉. The scaling
of the maxima in S(p,4) is discussed below.

On the contrary, the entanglement entropy shows
a substantially different dependence if q varies and p is
fixed. In particular, the polygons describe the squares
(p = 4) while the coordination number q grows, as
shown in the inset of Fig. 2b. The maxima of the
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Fig. 3. The entanglement entropy S(4,q) with respect
to 4 ≤ q ≤ 70 in the log–log scale follows the power-law
behavior S(4,q) ≈ 1.01(3)/q0.85(1). Inset: linear depen-
dence of S(p,4) ∝ p.

entanglement entropy S(4,q) are again associated with the
phase-transition fields hxpt (marked by the open circles).
Here, however, the maxima of S(4,q) decrease as q in-
creases. By taking the limit q →∞ for p = 4, we obtain
hxpt = 4 after extrapolation (not shown). The suppres-
sion of the entropy S(4,q), while increasing the coordi-
nation number q, suggests that the correlations on the
hyperbolic lattices with large q can significantly weaken
down to zero even at phase transition.

Thus, the (p, q) dependence of the entanglement en-
tropy S(p,q) at the phase transitions hxpt suggests the two
above-mentioned scenarios. The hyperbolic lattices (p, q)
can be analytically described by the (negative) Gaussian
curvature [6], which decreases if both p and q increase (we
remark here that the q-dependence affects the curvature
stronger than the p-dependence).

Figure 3 shows the linear decrease of the entanglement
entropy with respect to q = 4, 5, . . . , 70 in the log–log
scale, i.e., the power-law dependence of the entropy
obtained by the least-square fitting yields S(4,q) ≈ q−0.85.
(The square lattice (4, 4) data were eliminated from the
fitting.) If the coordination number q = 4, the increase of
the polygon sides p = 4, 5, 6, . . . leads to linearity of the
entanglement entropy S(p,4) ≈ p, see the inset of Fig. 3.

This linearity supports the validity of the area law for
the hyperbolic lattices. The area law states that the en-
tanglement entropy scales with the surface size of the
subsystem (not as the volume of the subsystem) [9] and
has not been studied for the non-Euclidean systems yet.

4. Conclusions

We analyzed the entanglement-entropy scaling for the
transverse-field Ising model at its phase transition with
respect to small subsystem sizes parametrized by p and
q. We conjecture that the entaglement entropy decreases
algebraically with respect to q (for fixed p = 4), whereas
the area-law scaling, S ∼ p, is preserved only for fixed
coordination number (we used q = 4), which can be con-
sidered as being one of the building blocks within the
AdS–CFT correspondence.

Acknowledgments

I would like to express my thanks to Michal Daniška.
The projects APVV-16-0186 (EXSES), VEGA grant No.
2/0123/19, and JTF QISS are greatly acknowledged.

References

[1] R. Orus, Ann. Phys. 349, 117 (2014).

[2] R. Krčmár, J. Genzor, Y. Lee, H. Čenčariková,
T. Nishino, A. Gendiar, Phys. Rev. E 98, 062114
(2018).

[3] J. Maldacena, Adv. Theor. Math. Phys. 2, 231
(1998).

[4] M. Daniška, A. Gendiar, J. Phys. A Math. Theor.
48, 435002 (2015).

[5] A. Gendiar, R. Krčmár, S. Andergassen, M. Daniška,
T. Nishino, Phys. Rev. E 86, 021105 (2012).

[6] M. Serina, J. Genzor, Y. Lee, A. Gendiar, Phys. Rev.
E 93, 042123 (2016).

[7] J.W. Anderson, Hyperbolic Geometry, 2nd ed.,
Springer, 2005.

[8] Z.Y. Xie, J. Chen, M.P. Qin, J.W. Zhu, L.P. Yang,
T. Xiang, Phys. Rev. B 86, 045139 (2012).

[9] J. Eisert, M. Cramer, M.B. Plenio, Rev. Mod. Phys.
82, 277 (2010).

http://dx.doi.org/10.1016/j.aop.2014.06.013
http://dx.doi.org/10.1103/PhysRevE.98.062114
http://dx.doi.org/10.1103/PhysRevE.98.062114
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.1088/1751-8113/48/43/435002
http://dx.doi.org/10.1088/1751-8113/48/43/435002
http://dx.doi.org/10.1103/PhysRevE.86.021105
http://dx.doi.org/10.1103/PhysRevE.93.042123
http://dx.doi.org/10.1103/PhysRevE.93.042123
http://dx.doi.org/10.1103/PhysRevB.86.045139
http://dx.doi.org/10.1103/RevModPhys.82.277
http://dx.doi.org/10.1103/RevModPhys.82.277

