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We study theoretically how electron-phonon interaction affects the energies and level broadening (inverse
lifetime) of Majorana bound states (MBSs) in a clean topological nanowire at low temperatures. At zero
temperature, the energy splitting between the right and left MBSs remains exponentially small with increasing
nanowire length L. At finite temperatures, however, the absorption of thermal phonons leads to the broadening
of energy levels of the MBSs that does not decay with system length, and the coherent absorption/emission of
phonons at opposite ends of the nanowire results in MBSs energy splitting that decays only as an inverse power
law in L. Both effects remain exponential in temperature. In the case of quantized transverse motion of phonons,
the presence of Van Hove singularities in the phonon density of states causes additional resonant enhancement
of both the energy splitting and the level broadening of the MBSs. This is the most favorable case to observe the
phonon-induced energy splitting of MBSs as it becomes much larger than the broadening even if the topological
nanowire is much longer than the coherence length. We also calculate the charge and spin associated with the
energy splitting of the MBSs induced by phonons. We consider both a spinless low-energy continuum model,
which we evaluate analytically, as well as a spinful lattice model for a Rashba nanowire, which we evaluate
numerically.
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I. INTRODUCTION

Topological quantum computing [1–5] allows one to en-
code quantum information in degenerate many-body ground
states in such a way that it is virtually free of decoherence.
Such topologically protected ground states can be imple-
mented as zero-energy Majorana bound states (MBSs) in a
topological superconductor (TSC) [6–11]. In one-dimensional
(1D) topological superconductors, the MBSs localized at the
opposite ends of the system form a single fermionic state,
which is a highly nonlocal quantum state robust against local
perturbations. The MBS energy is zero (with respect to the
chemical potential of the system) in the thermodynamic limit
at zero temperature. For a finite system, it is exponentially
small in the system size [1], and at a finite temperature,
the thermal fluctuations are exponentially suppressed by the
superconducting gap [12–14]. Indications of the existence
of MBSs have been observed in iron atomic chains on the
surface of a superconductor [15–17]. One of the most promis-
ing systems are semiconducting Rashba nanowires (NWs) in
proximity with an s-wave superconductor and in the presence
of magnetic fields [18–41].

However, in a real world environment, MBSs are affected
by decoherence as soon as they become coupled with an
external system. In this case, the TSC may be driven out of
its ground state. This happens if manipulations with MBSs
are performed nonadiabatically [44,45] or if the TSC is
coupled to ungapped [42,43] or gapped [46,49] fermionic
baths as well as to fluctuating bosonic fields [46–48] (e.g.,
phonons [46,50], photons [51–54], thermal fluctuations of a

gate potential [55–57], and or electromagnetic environments
[50]). In particular, Rainis et al. [49] have shown that MBSs
have a finite lifetime due to quasiparticle poisoning, i.e., due
to a finite tunneling rate of superconducting quasiparticles
from the bulk superconductor to the wire. Budich et al. [42]
have demonstrated that another source of decoherence is the
tunneling to a nongapped fermionic bath, such as a quantum
dot or a metallic lead used as a gate or a tip to probe or to
perform operations on the wire. In these two cases, the finite
lifetime originates from the fact that external coupling explic-
itly breaks the parity of the fermionic ground state. However,
even if parity is preserved, decoherence can arise from the
coupling to a gapped fermionic bath through a bosonic field,
in the case that the fermionic and bosonic spectra overlap, as
shown by Goldstein et al. [46] This coupling can originate,
for example, if the wire is capacitatively coupled to a metallic
or semiconducting gate. In this case, the charge fluctuations
at the gates can induce decoherence at finite temperature, as
shown by Schmidt et al. [55] In all these cases, the MBS is
coupled with a fermionic bath that is external to the wire.

In this work, we consider the effect of electron-phonon
interactions on the MBS, as a fundamental and ubiquitous
ingredient of any condensed matter system or nanodevice.
Thus, this source of decoherence is intrinsically built-in in the
topological wire rather than provided by the external environ-
ment or an external physical device. In particular, we calculate
the energy splitting between the MBSs and the energy level
broadening caused by transitions from MBSs to delocalized
bulk states with absorbtion of thermal phonons. The level
broadening, expressed as rate, determines the lifetime of a
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quasiparticle occupying the levels formed by the two MBSs.
We consider also the case when the motion of phonons is
quantized in transverse direction to the nanowire (confined
phonons), focusing on the situation where the bottom of one
of the phonon branches is close to a quasiparticle gap of a 1D
TSC. We study how the presence of Van Hove singularities
(VHS) [59–61] at the bottom of the phonon spectrum affects
the energies of the MBSs. We consider first a spinless low-
energy continuum model which we can treat largely analyti-
cally, and then we also consider a spinful lattice Rashba model
numerically where we find very similar results.

The outline of the paper is as follows. In Sec. II, we
introduce a low energy model of a 1D topological nanowire.
In Sec. III, we discuss the effects of the electron-phonon
interaction for 1D acoustic phonons. In Sec. IV, we consider
how the interaction with confined phonons with VHS affects
the energies of the MBSs, as well as the charge and spin of the
perturbed MBSs. Finally we conclude with Sec. V. Technical
details are deferred to Appendixes A–E.

II. THE MODEL

We consider a clean topological nanowire of length L
aligned along the x axis and coupled to a phonon bath. In order
to model the electron subsystem, we consider 1D spinless
electrons described by the field operator �(x). We define the
fermionic fields �η with η = + (η = −) corresponding to the
right-(left-) moving electrons close to the Fermi points as

�(x) =
∑
η=±

�η(x)eiηkF x, (1)

where kF is the Fermi momentum. Here and below we set
h̄ = 1. The effective Hamiltonian describing the electrons in
the topological nanowire near the Fermi points reads [62]

He =
∫

dx
∑
η=±

�†
η (x)(−ivF η∂x )�η(x)

−
∫

dx �(i�†
+(x)�†

−(x) + H.c.), (2)

where vF is the Fermi velocity, � > 0 denotes the supercon-
ducting gap �(k) at k ≈ kF in the TSC, and the integrals over
x, here and also below, are over the domain x ∈ [0, L]. In the
following we assume that the length L is much greater than
the coherence length ξ = vF /�, L � ξ . The Bogolyubov-de
Gennes (BdG) equations corresponding to the Hamiltonian in
Eq. (2) can be written in the following form:

(−ivF ηz∂x + �ηyτx )�α = εα�α, (3)

where the index α labels the eigenstates, � =
(φ+, φ−, φ̄+, φ̄−)

T
is a spinor whose components

describe right- and left-moving electrons (φ+ and φ−,
respectively) and their hole counterparts (φ̄η), εα is the
corresponding eigenenergy. The Pauli matrices ηx,y,z and τx,y,z

act on the space of states with different chiralities and on
the particle-hole space, respectively. The field operators in
Heisenberg representation then satisfy

�(x, t ) =
∑
α,η

[
cαφη,α (x)eiηkF x−iεαt + c†

αφ̄η,α (x)e−iηkF x+iεαt
]
,

(4)

�η(x, t ) =
∑

α

[
cαφη,α (x)e−iεαt + c†

αφ̄−η,α (x)eiεαt
]
, (5)

where cα are fermionic quasiparticle annihilation operators.
The normalization condition for the spinor �α reads

1

2
|�|2 = 1

2

∑
η=±

∫
dx(|φη|2 + |φ̄η|2) = 1. (6)

We use vanishing boundary conditions for the field � at the
end points x = 0 and x = L:

�(x = 0) = �(x = L) = 0, (7)

which can be rewritten in terms of φη as∑
η=±

φη(x = 0) =
∑
η=±

φη(x = L)eiηkF L = 0 , (8)

∑
η=±

φ̄η(x = 0) =
∑
η=±

φ̄η(x = L)e−iηkF L = 0 . (9)

We note that the model given by Hamiltonian He [see Eq. (2)],
with boundary conditions defined by Eqs. (8) and (9), can be
used both as an effective low-energy model for the Kitaev
chain [1] or for electrons in Rashba nanowire [18–41] in
the regime of spin-polarized electrons when Zeeman field is
much greater than the proximity-induced superconducting gap
[62] (we consider a more general lattice model for spinful
topological Rashba nanowires in Sec. IV B). The hallmark
of the 1D TSC is the presence of MBSs. The BdG equa-
tions defined in Eq. (3), with the boundary conditions given
by Eqs. (8) and (9), have two subgap solutions �±(x) =
[�L(x) ± i�R(x)]/

√
2 with exponentially small eigenener-

gies,

ε± = ±�e−L/ξ sin (kF L), (10)

and where �L(R)(x) is the spinor corresponding to the left
(right) Majorana mode (see Appendix A for details). The
wave functions corresponding to the MBSs have the following
form:

〈0|�(x)|±〉 =
∑
η=±

φη,±(x)eiηkF x

=
√

2

ξ
sin(kF x)e−x/ξ

±
√

2

ξ
sin[kF (L − x)]e−(L−x)/ξ , (11)

where |0〉 denotes the vacuum state of the topological
nanowire. For a finite length L, there are discrete bulk modes
�n(x) (labeled by the index n = ±1,±2, . . . ) with eigenen-
ergies εn. We note that particle-hole symmetry implies that
εn = −ε−n.

The Hamiltonian of the phonon bath reads

Hph =
∑

q

�qb†
qbq, (12)

where bq is the annihilation operator for a phonon with
momentum q, and �q is the phonon energy. For 1D acoustic
phonons, we assume �q = csq where cs is a speed of sound.
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FIG. 1. Feynman diagram for the self-energy ±± corresponding
to the process where a phonon (curly black line) promotes the system
from a bound state �± to a bulk state n (straight red line).

The electron-phonon interaction for 1D phonons can be de-
scribed by the following Hamiltonian [63,64]:

He−ph = g
∫

dx
∑
η=±

�†
η (x)�η(x)ϕ(x), (13)

where ϕ(x) =∑q (csq/2L)1/2(bqeiqx + b†
qe−iqx ) is the

phonon field [63], g is the electron-phonon coupling
strength, which can be estimated for acoustic phonons
as g � Cac/(cs

√
ρAa2) [59,64], where Cac is the acoustic

deformation potential coupling constant, ρA is the atomic
mass density, cs is the speed of sound, and a is the lattice
constant. For Cac = 5 eV, cs = 4.4 × 103 m/s, a = 5 Å,
and ρA = 5680 kg/m3, one can estimate g ≈ 100 meV nm.
We treat the electron-phonon interaction as a perturbation
using the Keldysh formalism [65,66] in first order in g2.
The absorbed virtual or thermal phonon can promote the
electron subsystem from the bound state �± to one of
the bulk states �n (see Fig. 1). This process shifts the
energies of the bound states, so that the new energies are
ε± + δε±. Particle-hole symmetry implies δε− = −δε+, and
the correction to the energy splitting between the MBSs is
|2δε+|. Since the electron stays in the bound state only for
a finite time τ0 before being promoted to a bulk state, the
energy levels of the MBSs are broadened, with the level
broadening γ being inverse proportional to τ0 according to
the uncertainty principle, γ = h̄/τ0. The shift in energy δε±
and the broadening γ of the MBS can be related to the real
and the imaginary parts of the retarded self-energy R

±±(ε):

δε± = Re R
±±(ε±), γ = ImR

±±(ε±), (14)

where the retarded self-energy (see Fig. 1) reads in leading
order [57],

R
±±(ε) =

∑
n

∫
dx1dx2 ρ±,n(x1)W R

n (x1, x2, ε)ρn,±(x2).

(15)

Here, the sum goes over both positive and negative
n, ρm,n(x) = �†

m(x)τz�n(x), and the effective interaction
W R

n (x1, x2, ε) is given by a convolution of electron and phonon
Green functions [57]:

W R
n (x1, x2, ε) = g2

∫
dω

2π

[
GR

n (ε − ω)DK (x1 − x2, ω)

+ GK
n (ε − ω)DA(x1 − x2, ω)

]
, (16)

where GR(A)
n (ε) = (ε − εn ± i0+)−1 are retarded (advanced)

Green functions for electrons in the eigenbasis, GK
n (ε) =

−2π iδ(ε − εn) tanh[εn/(2T )] is their Keldysh counterpart,

and DR(A),K denote the corresponding phonon Green func-
tions. We note that W R

n (x1, x2, ε) = W R
n (x1 − x2, ε), reflect-

ing the fact that we assumed translation invariance for the
phonon modes, i.e., we assume that the boundary effects
of the finite-sized nanowire on the phonons are negligible
(in contrast to the electron system). In the following, we
assume that electron and phonon subsystems are in thermal
equilibrium. However, a generalization to the case when tem-
peratures of electron and phonon subsystems are different can
be done straightforwardly. Finally, we note that the inverse of
the broadening, 1/γ , can be interpreted as the lifetime of the
states �±(x) formed by the MBSs, i.e., the characterstic time
it takes until these quasiparticle states change their occupation
due to the interaction with phonons.

We further note that particle-hole symmetry implies
that ρm,n(x) = ρ−n,−m(x), ρL,n(x) = ρ−n,L(x), and ρR,n(x) =
−ρ−n,R(x). It is convenient to rewrite Eq. (14) in the basis of
�L,R instead of �±:

δε+ =
∫

dxdx′i
∑

n

ρL,n(x)Re
[
W R

n (x − x′, ε ≈ 0)
]
ρn,R(x′).

(17)

Similarly, the broadening γ = R
++(ε ≈ 0) = R

−−(ε ≈ 0)
can be expressed as a sum of two contributions from the
opposite edges, γ = γL + γR, where

γL(R) =
∫

dxdx′∑
n

ρL(R),n(x)

× Im
[
W R

n (x − x′, ε ≈ 0)
]
ρn,L(R)(x

′). (18)

Here and below we disregard an exponentially small differ-
ence between the nonperturbed energies of the MBSs, ε±, and
for the calculation of both the self-energy R and the effective
interaction W R

n , the approximation ε ≈ 0 is used.

III. INTERACTION WITH 1D ACOUSTIC PHONONS

In this section, we consider effects of interaction between
electrons in topological nanowire and 1D acoustic phonons
with a linear spectrum �q = csq, where cs is a speed of sound.
The retarded (advanced) phonon Green function reads

DR(A)(x, ω) =
∫

dq

2π

�2
q

ω2 − �2
q ± i0+ eiqx. (19)

The Keldysh counterpart can be obtained using
fluctuation-dissipation theorem, DK (ω) = [DR(ω) − DA(ω)]
coth (ω/2T ).

Using Eq. (16) and performing integration over phonon fre-
quency ω, we obtain that the effective interaction W R can be
represented as a sum of two contributions (see Appendix C for
details): W R

v describing the processes including only virtual
transitions and W R

a those including absorption of phonons,
W R = W R

v + W R
a :

W R
v,n(x) = g2 πεnT 2

cs

∞∑
k=1

ke− 2πkT |x|
cs

ε2
n + 4k2π2T 2

, (20)

W R
a,n(x) = ig2 εn

4cs

[
tanh

( εn

2T

)
− coth

( εn

2T

)]
e−i |x|εn

cs . (21)
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The term W R
v,n contributes to the real part of the self-energy

determining the splitting of the MBSs, while W R
a,n contributes

both to the imaginary and the real part of the self-energy,
i.e., both to the splitting and to the broadening of the MBSs.
In the case when the electron and phonon subsystems are
equilibrated independently and are at different temperatures,
Te and Tph, respectively, the contribution from the virtual
processes is governed by the temperature of the phonon bath
Tph, while the absorption term takes the following form:

W R
a,n(x) = ig2 εn

4cs

[
tanh

(
εn

2Te

)
− coth

(
εn

2Tph

)]

× e−i |x|εn
cs . (22)

We note that if the temperature of the phonon bath is finite,
Tph > 0, the term W R

a,n does not vanish even for zero electron
temperature, Te = 0.

A. Zero temperature T = 0

In the limit T → 0, the contribution W R
a,n ∝ exp {−�/T }

due to absorption of real phonons vanishes, and the contribu-
tion from the exchange of virtual phonons (see Appendix C
for details) reduces to

W R
v,n(T = 0, x) = g2cs

4πεnx2
. (23)

Thus the imaginary part of the effective interaction vanishes at
zero temperature, so that the broadening γ tends to zero. The
correction to the energy of the MBS, δε+, takes the following
form:

δε+ = g2cs

4π�L2
F0(L), (24)

where F0(L) is given by

F0(L) =
∑

n

∫
dxdx′ ρL,n(x)

�L2

εn(x − x′)2
ρn,R(x′)

≈
∑

n

�

εn
PL,nPn,R. (25)

Here, PL,n = ∫ dx ρL,n(x) and Pn,R = ∫ dx [iρn,R(x)]. In the
last equality, we used the fact that ρL,n(x) and ρn,R(x) decay
exponentially when x � ξ and L − x � ξ , respectively, so that
the main contribution to the integral comes from x ≈ 0, x′ ≈
L. The summation over bulk states labeled by n results in an
exponential decay, δε+ ∝ exp (−L/ξ ) if L � ξ , as shown in
Fig. 2. This can be easily understood since the process shown
in Fig. 1 involves virtual transitions between the bound states
and the bulk states, and the corresponding lifetime of a virtual
excitation in the bulk band is finite, being of order h̄/�, and,
thus, cannot propagate further than h̄vF /� = ξ , the coherence
length.

B. Finite temperatures T > 0

At finite temperatures, the leading contribution to the sum
in Eq. (20) comes from k = 1, and the effective interaction
decays exponentially on the scale of the phonon thermal
length lph = h̄cs/(2πT ), i.e., W R

v,n ∝ exp (−|x|/lph). Thus, in

FIG. 2. Plot of the dimensionless function |F0(L)| defined in
Eq. (25) that describes the L dependence of the energy splitting δε+
of the MBSs [see Eq. (24)]. |F0(L)| shows oscillatory behavior with
a period determined by kF and an amplitude exponentially decaying
as exp(−L/ξ ). Here, we took kF = 10/ξ .

the following, we disregard the contribution from the virtual
phonons. The contribution from the processes involving ab-
sorptions of phonons [see Eq. (21)] gives rise to the splitting
of the MBSs given by

δε+ = g2

4h̄cs

∑
n

εn

sinh(εn/T )

×
∫

dxdx′ iρL,n(x)ρn,R(x′) sin

(
εn|x − x′|

cs

)

≈ g2

4h̄cs

∑
n

εn

sinh (εn/T )

∫
dxρL,n(x)e−iεnx/cs

×
∫

dx′ [iρn,R(x′)]eiεnx′/cs , (26)

and to the broadening γ = γL + γR given by

γL(R)(T ) = g2

4h̄cs

∑
n

εn

sinh(εn/T )

×
∫

dxdx′ ρL(R),n(x)ρn,L(R)(x
′) cos

(
εn(x − x′)

cs

)

= g2

4h̄cs

∑
n

εn

sinh (εn/T )

∣∣∣∣
∫

ρL(R),n(x)eiεnx/cs

∣∣∣∣
2

. (27)

The integration over x is performed in Appendix B.
The resulting dependencies of splitting and broadening on
the length L are shown in Fig. 3. If L � ξ , we find that the
broadening saturates at a finite value:

γ (L � ξ ) ∼ g2

ξ

cs

vF
e−�/T . (28)

The energy shift δε+ shows oscillations governed both by the
Fermi wavelength 2π/kF and phonon wavelength of order
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FIG. 3. Energy splitting 2δε+ (blue solid line) and broadening
γ (green line) of MBSs caused by interaction with 1D acoustic
phonons [see Eqs. (26) and (27)]. Dashed blue line shows analytical
estimation for 2δε+ given by Eq. (29). The broadening γ saturates
at a finite value as the length L of the nanowire grows, while the
energy splitting 2δε+ oscillates with a characteristic oscillation scale
governed by both Fermi wavelength 2π/kF and phonon wavelength
cs/�. The amplitude of 2δε+ decays as a power law ∝L−1/2 with
increasing length. We took (�, vF , cs,Cac, a) = (0.2 meV, 4.6 ×
104 m/s, 4.4 × 103 m/s, 5 eV, 5 Å), T = 0.1�, kF = 5/ξ for
numerical estimations.

cs/�. The amplitude decays as a power law in L:

δε+ ∝ g2

√
Lξ

cs

vF
e−�/T . (29)

This power-law behavior is a result of the coherent emission
and absorption of thermal phonons. At zero temperature, both
the energy shift δε+ and the broadening γ vanish in agreement
with the results of the previous section. For finite temperature,
we note that although the energy shift of the MBSs and, thus,
the splitting between the two MBSs scales as a power law
rather than exponentially with increasing L, an experimental
observation of the splitting can be challenging since 2δε+
remains always smaller than the broadening γ , which does
not scale with L.

The result that γ does not depend on L (for large L) is not
surprising and in line with earlier results [55]: the lifetime
of a fermion level formed by the left and right MBSs can
be affected by local couplings alone such that the right and
left MBS can contribute independently to the linewidth. In
stark contrast, the energy splitting δε+ of the MBSs (and thus
the lifting of the degeneracy) is possible only via nonlocal
couplings involving both the right and the left MBS simul-
taneously. Indeed, the two MBSs get hybridized because the
bulk quasiparticle that gets excited by absorbing a thermal
phonon around, say, the left MBS, can propagate over the
entire distance L to the right MBS before it decays again
by emitting a phonon. The remarkable consequence of this
phonon-induced correlation is that the splitting δε+ decays
only as a power law and not exponentially in L [67]. In this
sense, thermal phonons lift the topological protection of the

ground-state degeneracy of the TSC at any finite temperature.
This is still the case for vanishing electron-temperature of the
TSC, Te = 0, as long as the temperature of the phonon system
is finite, Tph > 0. The exponential (topological) protection of
the TSC is only established when the entire system, electrons
and phonons, is at strictly zero temperature, i.e., T = Te =
Tph = 0.

IV. INTERACTION WITH CONFINED PHONON
BRANCHES WITH VAN HOVE SINGULARITIES

Now we assume that the higher-dimensional phonons are
confined in transverse direction so that their motion in direc-
tion perpendicular to the nanowire is quantized, and the mo-
tion along the nanowire can still be described by a continuum
momentum q along the x axis. The phonon energy spectrum
reads

�2
q, j = c2

s q2 + �2
j , (30)

where j labels the transverse phonon branch, � j is the energy
of the bottom of the j-th branch. We note that in a realistic
setup the nanowire can be in contact with other materials such
as a dielectric layer. Typically, the sound velocities of the
two materials are different which leads to strong confinement
of acoustic phonons within the nanowire [72,73]. Thus, the
phonon spectrum with branches is mostly determined by the
nanowire confinement. There can be additional phonon effects
from the interface [73], which, however, we neglect here.

For simplicity we consider the two lowest branches, so
that the spectrum of phonons of the lowest branch is linear,
�0 = 0, �q,0 = csq, and the energy of the bottom of the
second branch �1 is close to the gap �, which is possible
if the phonons are confined in the transverse direction on the
scale of cs/�. The phonons are now described by the phonon
fields ϕ j (x), where j = 0, 1, and the Hamiltonian describing
the electron-phonon interaction can be written as

He−ph =
∑

j=0,1; η=±
g j

∫
dx �†

η (x)�η(x)ϕ j (x), (31)

where g j is the interaction strength between the electrons and
the jth phonon branch. In leading order of the perturbation
theory, both phonon branches contribute to the self-energy
independently. The contributions of the lowest branch with
j = 0 to the energy splitting and broadening of the MBSs are
similar to those considered in the previous section.

A. Effect of Van Hove singularity

Next we focus on the contribution from the phonon branch
with j = 1. First, we note that the density of states for
these phonons contains a Van Hove singularity (VHS) at
zero momentum since (d�q,1/dq)q=0 = 0 (see Appendix D
for discussion of VHSs in nanowires). In the following we
consider how this singularity affects the MBSs.

Using Eq. (16) and integrating over the phonon frequency
ω and momentum q, we obtain the following contribution
to the effective interaction from the absorption of thermal
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phonons (see Appendix C for details):

W R
a,n(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g2
1

8cs

ε2
ne

−|x|
√

�2
1−ε2

n/cs

sinh (εn/T )
√

�2
1−ε2

n

, εn < �1,

−i g2
1

8cs

ε2
ne

−i|x|
√

ε2
n−�2

1/cs

sinh (εn/T )
√

ε2
n−�2

1

, εn > �1.

(32)

Here, we have disregarded contributions from virtual transitions since they are short-ranged in L, similarly to the previous
section. The singularity at the resonance condition εn = �1 is due to the VHS at the band bottom of the phonon branch. Finally,
we obtain the shift of the MBS energy δε+ = δε<

+ + δε>
+ and the broadening γ = γR + γL,

δε<
+ = g2

1

4h̄cs

∫
dxdx′ Re

⎧⎨
⎩
∑

n,εn<�1

iρL,n(x)ρn,R(x′)
ε2

n exp
[−|x′ − x|

√
�2

1 − ε2
n/cs

]
sinh (εn/T )

√
(�1 + i�)2 − ε2

n

⎫⎬
⎭, (33)

δε>
+ = g2

1

4h̄cs

∫
dxdx′ Re

⎧⎨
⎩
∑

n,εn>�1

iρL,n(x)ρn,R(x′)
ε2

n sin
[|x′ − x|

√
ε2

n − �2
1/cs

]
sinh (εn/T )

√
ε2

n − (�1 + i�)2

⎫⎬
⎭, (34)

γL(R) = g2
1

4h̄cs

∫
dxdx′ Re

⎧⎨
⎩
∑

n,εn>�1

ρL(R),n(x)ρn,L(R)(x
′)

ε2
n cos

[
(x − x′)

√
ε2

n − �2
1/cs

]
sinh (εn/T )

√
ε2

n − (�1 + i�)2

⎫⎬
⎭. (35)

In order to regularize the VHS singularities at εn = �1, we
introduced a phenomenological parameter �, which describes
finite broadening for the phonon energy induced by, e.g., an-
harmonic effects (giving rise to phonon-phonon interaction).
We note that the broadening � due to anharmonic effects
can be estimated as �(T ) ∼ �A{1 + 2/[exp (−�1/T ) − 1]},
where we use �A ∼ 0.01 μeV as an estimate [68–70]. In
principle, it is also reasonable to take into account the broad-
ening γ of the electron levels caused by the electron-phonon
interaction and include it into � self-consistently. However,
we checked that our results depend only weakly on the exact
value of � (see also below).

We note that the sums over n in Eqs. (33)–(35) cannot
be replaced by integrals since the summands contain rapidly
varying exponents and sine factors. Therefore, in order to
get finite results, we perform the summation numerically.
However, it is possible to get analytical estimates when �1

is close to one of the eigenvalues εn and the term with the
corresponding n dominates. The contribution δε<

+ originates
from transition to the quasiparticle bulk states with energies
εn less than the energy of the bottom of the phonon branch
�1 due to interaction via decaying phonon modes, while δε>

+
describes the splitting caused by transitions to quasiparticle
states with energies εn larger than �1 due to interaction with
propagating phonons with momentum

√
�2

1 − ε2
n/cs. For long

nanowires, the term with a specific eigenvalue εn close to
�1 gives the dominant contribution to δε<

+ . In case of such
a resonance, �1 − εn < c2

s /(2L2�1), one can estimate

δε<
+ ∼ g2

1

cs

�
3/2
1 e−�1/T

√
max{�,�1 − εn}

ξ

L
. (36)

If the bottom of the phonon branch �1 > � does not coincide
with any quasiparticle energy εn, then �1 − εn ∼ vF /L, and,
hence, the contribution δε<

+ vanishes subexponentially with
increasing length L:

δε<
+ ∼ g2

1

cs
�

3/2
1

√
vF ξ

L3/2
e−√

2�1LvF /cs−�1/T . (37)

Similarly, if �1 is close to εn, so that �1 < εn, εn − �1 <

c2
s /(2L2�1), the contribution γres to γL(R) from the resonant

term can be estimated as

γres ≈ g2
1

cs

�
3/2
1 e−�1/T

√
max{�, εn − �1}

ξ

L
. (38)

We note that, although the resonant contributions to splitting
and the broadening are of the same order, the resonance con-
dition for the splitting requires the bulk mode with energy εn

to be less than �1, εn � �1, whereas the resonance condition
for the broadening requires εn � �1.

The contribution γ0 = γL(R) − γres from the rest of the
quasiparticle states with εn > �1 can be estimated in the
thermodynamic limit L/ξ → ∞ (see Appendix E) as

γ0 = g2
1

∑
n; εn>�1

ε2
ne−εn/T

2�1 max{εn − �1, �}

×
∫

dx ρLn(x)ρnL(x). (39)

Also, in this limit, summation over n can be replaced by
integration, and one obtains the estimate (see Appendix E)

γ0 ∼ g2
1

πcs

�2√
�2

1 − �2
e−�1/T ln

(
T

�

)
. (40)

We note that the contribution to the splitting δε>
+ oscillates

with the period being governed by kF and cs/�. The ampli-
tude of oscillations remains smaller than the broadening, i.e.
|δε>

+| � γ (see Appendix E).
We plot the resulting energy splitting |2δε+| [see Eq. (33)–

(34)] and broadening γ [see Eq. (35)] as functions of the
length L (see Figs. 4 and 5), �1 (see Fig. 6), and kF (see
Fig. 7). If �1 is below the gap �, then the broadening and
splitting, which are caused by interaction with the second
phonon branch j = 1, remain of the same order of magnitude
as for the phonon lowest branch j = 0 (see Fig. 4). How-
ever, the absorption of phonons becomes strongly enhanced
as the VHS at energy �1 coincides with energies of bulk
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FIG. 4. Energy splitting 2δε+ (blue line) and broadening γ

(green line) [see Eqs. (33)–(35)] of the MBSs due to the second
branch of confined phonons in case when the band bottom of this
branch, �1, is less than the gap �, �1 = 0.9�. In this case, neither
the broadening γ , nor the energy splitting 2δε+ exhibit resonance
peaks. Comparing with Fig. 3 one can see that the dependence of γ

and 2δε+ on L is qualitatively the same as for purely 1D acoustic
phonons without VHS. We took g1 = g, and the phenomenological
relaxation rate � = 0.01 μeV. The other parameters are the same as
in Fig. 3.

quasiparticle states, resulting in pronounced resonance peaks
in δε+ and γ (see Fig. 5). If �1 becomes larger than the
gap �, the absorption of phonons decays exponentially in
temperature, yielding δε+, γ ∝ exp (−�1/T ) and manifest-
ing resonance peaks when �1 coincides with an energy of a
bulk quasiparticle mode εn (see Fig. 6).

FIG. 5. The same as Fig. 4 but for the case when �1 slightly
exceeds the gap �, �1 = 1.1�. If the nanowire length L is varied,
each time �1 coincides with energies of the bulk quasiparticle states,
both the broadening γ and splitting 2δε+ are enhanced, manifesting
resonance peaks. The splitting 2δε+ remains significant and of order
of γ even for L � ξ . The other parameters are the same as in Fig. 4.

FIG. 6. The same as Fig. 5 but as a function of the energy �1

of the band bottom of the phonon branch. If �1 < � the broadening
γ and the amplitude of the energy splitting δε+ depend weakly on
�1. The absorption of phonons and, thus, δε+ and γ , are enhanced
as �1 gets close to � due to the VHS in the phonon branch, and the
resonance peaks correspond to the case when �1 coincides with an
energy of a bulk quasiparticle mode εn. At increasing �1, both γ and
δε+ decay exponentially in temperature, δε+, γ ∝ exp {−�1/T }. We
took L = 20ξ . The other parameters are the same as in Fig. 5.

It is important to note that the interaction of the
quasiparticles with the phonon lowest branch j = 0 results in
a splitting 2δε+ that is significantly less than the broadening
γ (see Fig. 3). However, the interaction with a second phonon
branch that has a VHS at zero momentum results in splittings
2δε+ close to γ . Moreover, close to the resonances, when the
contribution δε<

+ dominates, the energy shift δε+ can be by
an order of magnitude larger than the broadening (see Fig. 7),
so that the energy splitting between the MBSs becomes
observable. However, in this case a fine-tuning may be
required. It is also important to point out that the dependence
of the results on the exact value of the phenomenological
regularization parameter � is logarithmically weak [see
Fig. 7(b)]. We also note that if the bottom of the second
phonon branch is close to the gap, �1 ≈ �, the absorption
processes for this mode dominate over those for the phonon
lowest branch j = 0. For example, if both interaction
strengths are taken the same, g1 = g2, the broadening and
splitting for the higher phonon band j = 1 can be by a factor
of 102 (or even 104 close to the resonance) larger than those
due to interaction with the phonon lowest branch j = 0.

We finally remark that in realistic settings it is difficult to
avoid such resonances between one of the bulk states and the
VHS singularities. For example, if one of the MBS is shifted
by changing the length of the topological section (i.e., the
length L) with the help of voltage gates, one unavoidably
hits such a resonance, see Fig. 5. Generally, even keeping L
constant, the bulk levels could themselves fluctuate due to
various external, even local, perturbations resulting in reso-
nances with �1. We also note that our model could be easily
generalized to the case of several phonon branches, each of
which is characterized by its own VHS energy �n. Each of
these branches results in enhanced MBS energy splitting and
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(a) (b)

FIG. 7. (a) The energy splitting 2δε+ (blue line) and broadening γ (green line) of the MBSs and (b) the ratio δε+/γ as a function of kF for
� = 0.01 μeV (blue solid line) and � = 1 μeV (red dashed line). By tuning kF (for example, by gates) one can achieve a resonance when the
band bottom of the phonon branch �1 coincides with an energy of one of the quasiparticle bulk modes. The resonant absorption of phonons
boosts both δε+ and γ . Around the resonance, the energy splitting δε+ can largely exceed the broadening γ . Thus a fine-tuning of kF makes
it possible to observe the phonon-induced energy splitting of the MBSs. The height of the resonance peaks is determined by the value of �,
however, this dependence is logarithmically weak. We took L = 20ξ . The other parameters are the same as in Fig. 5.

broadening when one of the bulk levels of the TSC happens to
get into resonance with one of the VHS �n.

B. Spinful lattice model for topological Rashba nanowires

The low-energy continuum model for spinless electrons
defined by Eq. (2) is justified if the Fermi energy μ is much
larger than the quasiparticle gap � and temperature T . In
order to complement our considerations, we consider a more
realistic model describing a topological Rashba nanowire.
Namely, we consider a spinful single-band nanowire with
a proximity-induced superconducting gap �sc. The Rashba
spin-orbit interaction (SOI) of strength αR sets the spin
quantization axis to be perpendicular to the nanowire and
corresponds to the SOI energy Eso = m0α

2
R/(2h̄2), where m0

is the effective electron mass. A magnetic field (corresponding
to the Zeeman energy �Z ) is applied along the nanowire. The
tight-binding Hamiltonian describing the nanowire reads [71]

H =
∑
j,s′,s

c†
s′, j+1

[
−tδs′s − i

2a0
αRσ

y
s′s

]
cs, j + H.c.

+
∑
j,s,′s

c†
s′, j

[
2tδs′s − μδs′s + �Zσ x

s′s
]
cs, j

+
∑

j

�sc(c†
↑, jc

†
↓, j + H.c.), (41)

where t = h̄2/(2m0a2
0) is the hopping amplitude, a0 is the

lattice constant of the tight-binding model, cs, j annihilates an
electron with spin s at site j with coordinate x j , μ is a uniform
chemical potential (we assume that μ = 0 corresponds to the
energy Eso measured from the bottom of the band), and σ x,y

are the Pauli matrices. In the following, we assume that the
Zeeman energy is larger than the superconducting proximity
gap, �Z >

√
�2

sc + μ2, which brings the system into the
topological phase with one MBS localized at each end of the
chain [71]. The electron-phonon interactions can be described
by the following Hamiltonian similar to the one defined in
Eq. (31):

He-ph =
∑

j=0,1; s=↑↓
g ja0

∑
i

c†
s,ics,iϕ j (xi ), (42)

where we assumed that the phonon fields ϕ j (x) coupled to
the electron operators can be taken at the lattice sites x j . This
assumption can be justified if the phonon field varies slowly
on the scale of a0, i.e., the characteristic phonon wavelengths
∼cs/

√
�2

1 − �2 is longer than the lattice constant a0 of the
tight binding model.

The energy splitting and level broadening of the MBSs
due to interaction with a phonon mode with VHS can be
calculated by using expressions similar to Eqs. (33)–(35) with
integrations over the coordinate x replaced by summations
over sites x j :

δε<
+ = g2

1

4cs
a2

0

∑
j, j′

Re

⎧⎨
⎩
∑

n,εn<�1

iρL,n(x j )ρn,R(x j′ )
ε2

n exp
[−|x j′ − x j |

√
�2

1 − ε2
n/cs

]
sinh (εn/T )

√
(�1 + i�)2 − ε2

n

⎫⎬
⎭, (43)

δε>
+ = g2

1

4cs
a2

0

∑
j, j′

Re

⎧⎨
⎩
∑

n,εn>�1

iρL,n(x j )ρn,R(x j′ )
ε2

n sin
[|x j′ − x j |

√
ε2

n − �2
1/cs

]
sinh (εn/T )

√
ε2

n − (�1 + i�)2

⎫⎬
⎭, (44)
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γL(R) = g2
1

4cs
a2

0

∑
j, j′

Re

⎧⎨
⎩
∑

n,εn>�1

ρL(R),n(x j )ρn,L(R)(x j′ )
ε2

n cos
[
(x j − x j′ )

√
ε2

n − �2
1/cs

]
sinh (εn/T )

√
ε2

n − (�1 + i�)2

⎫⎬
⎭, (45)

where ρL(R),n(x) = �
†
L(R)(x)τz�n(x) and �n (�L,R) is the

eigenspinor of H [see Eq. (41)] written in the basis
(c↑ j, c↓ j, c†

↑ j, c†
↓ j ).

The resulting splitting |2δε+| and level broadening γ are
plotted as functions of number of sites N , bottom of the
phonon branch �1, and chemical potential μ for the spinful
lattice model [see Eq. (41)] in Figs. 8 and 9. Comparing
with the corresponding plots obtained for the low-energy
continuum model (see Figs. 4–6), we conclude that the results
obtained in these two models are qualitatively very similar.
Thus the same remarks made above (see end of Sec. IV A)
regarding hitting accidentally such resonances when changing
N during manipulations of the MBSs apply here as well.

C. Charge and spin of the MBSs induced by phonons

In the absence of electron-phonon interactions, the energies
of the MBSs are exponentially small in system size. Moreover,
particle-hole symmetry implies that both MBSs carry zero
charge (up to exponentially small corrections). This is one
of the attractive features of MBSs for the purpose of qubits
since this keeps them insensitive to any fluctuations of effec-
tive electromagnetic fields in the surroundings. However, in
the presence of electron-phonon interactions a finite energy
splitting |2δε+| gives rise to a finite charge of the MBSs
which is still less than e since each MBS is a superposition
of electron and hole states. In this section, we calculate the
charge density δρ±(x) = e〈±|�†(x)�(x)|±〉 and the overall
charge δQ± = ∫ dx δρ±(x) of the MBSs induced by the
electron-phonon interaction in the presence of VHS in the

phonon density of states. We note that electrons and holes
contribute to the charge with opposite signs, which is taken
into account here since the operator �(x) is a superposition
of electron and hole quasiparticle operators [see Eq. (4)].
The effective Hamiltonian, in which the phonon degrees of
freedom are integrated out, has the following form:

Heff =
∑

α

(εα + δεα )c̃†
α c̃α, (46)

where in the leading order of perturbation theory δεα ≈
Re R

αα (εα ), and fermionic operators c̃α (t ) in Heisenberg
representation can be related to the unperturbed quasiparticle
operators cα (t ) as [66]

cα (t ) = c̃α (t ) +
∑
β �=α

∫
dt ′dt ′′GR

α (t − t ′)R
αβ (t ′ − t ′′)c̃β (t ′′),

(47)

which is convenient to rewrite in energy representation as

cα (ε) = c̃α (ε) + 1

ε − εα + i0+
∑
β �=α

R
αβ (ε)c̃β (ε). (48)

Here, cα (ε) = ∫ dt cα (t )eiεt , c̃α (ε) = ∫ dt c̃α (t )eiεt is the
Fourier transform of the operator in Heisenberg representa-
tion. Combining Eq. (48) with Eqs. (4) and (5), we obtain the
spinors corresponding to the perturbed fermion states �̃α =

FIG. 8. Energy splitting 2δε+ (blue line) and broadening γ (green line) of the MBSs as functions of (a) number of sites N and
(b) bottom of phonon branch �1 for the spinful lattice model [see Eq. (41)] of a topological Rashba nanowire. A higher mode of confined
phonons interacts with electrons causing the splitting and broadening of the MBSs. The behavior is qualitatively similar to the case of
the low-energy continuum model (see Figs. 5 and 6). If the length L = Na0 of the 1D TSC is fine-tuned so that �1 coincides with one
of the energy levels of the bulk quasiparticle states, both the broadening γ and the energy splitting 2δε+ show pronounced resonance
peaks. Importantly, the energy shift ε+ remains significant and of order of γ even in long samples, L � ξ . The parameters chosen are
(Eso, �sc, �Z , �1, μ) = (0.6, 0.2, 0.4, 0.22, 0) meV, corresponding to t = 10 meV and coherence length ξ = 50a0. The rest of the parameters
are the same as for Fig. 5.
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FIG. 9. Energy splitting 2δε+ (blue line) and broadening γ (green line) of the MBSs as functions of chemical potential μ for VHS energies
(a) �1 = 1.1�sc and (b) �1 = 0.9�sc calculated numerically for the spinful lattice model of a topological Rashba nanowire, see Eq. (41). By
tuning μ, one can achieve the resonance as the bottom of the phonon band coincides with an energy of one of the quasiparticle bulk eigenstates.
The resonant absorption of phonons results in the growth of both δε+ and γ by several orders of magnitude. (b) If �1 < |�Z − �sc|, the
quasiparticle gap is larger than �1 for small values of chemical potential |μ| (shaded yellow region). Thus, the broadening γ does not depend
on μ, while the splitting |2δε+| remains smaller than the broadening γ . As |μ| increases, the topological gap � = |�Z −√�2

sc − μ2| decreases.
At some point, �1 becomes greater than �, and both broadening γ and energy splitting |2δε+| show resonant behavior, such that, depending
on μ, the energy splitting can become comparable to the broadening, and, thus, can be observed experimentally. We took L = 20ξ , the rest of
parameters are the same as for Fig. 8.

�α + δ�α:

δ�α =
∑
β �=α

�β

R
βα (εα )

εα − εβ

. (49)

Thus the electron-phonon interaction hybridizes the MBSs
with bulk quasiparticle states. The charge density carried by
the perturbed fermionic subgap states corresponding to c̃± can
be calculated as

δρ±(x) = e
∑
mn

∫
dx1dx2

× ρ±m(x)ρmn(x1)Re
{
W R

n (x1 − x2)
}
ρn±(x2)

ε± − εm
. (50)

We note that particle-hole symmetry implies δρ+(x) =
−δρ−(x). For the spinful model considered in Sec. IV B, the
charge and spin of the MBSs induced by electron-phonon
interaction can be calculated similarly to Eq. (50):

δρ±(x j )

= e
∑
mn

∑
j1, j2

a2
0

ρ±m(x j )ρmn(x j1 )Re
{
W R

n (x j1 − x j2 )
}
ρn±(x j2 )

ε±−εm
,

(51)

δQ± =
∑

j

ρ±(x j ), (52)

FIG. 10. (a) Charge δQ+ as well as components of the spin (b) δSx
+ along the x and (c) δSy

+ along y axis of the MBSs induced by
electron-phonon interaction as a function of number of sites N found numerically in the spinful Rashba lattice model. The z component
of the spin, Sz

±, remains zero due to a symmetry of the system [58]. A finite energy splitting |2δε+| (blue solid line [see also Fig. 8(a)]) gives
rise to a finite charge and spin of the MBSs. Both charge and spin oscillate with increasing the system length N , showing resonant enhancement
similar to the energy splitting [cf. Figs. 5 and 8(a)]. The parameters chosen are (Eso, �sc, �Z , �1) = (0.6, 0.2, 0.4, 0.22) meV, corresponding
to t = 10 meV, coherence length ξ = 50a0. The rest of the parameters are the same as for Fig. 5.
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FIG. 11. Charge density δρ+(x) of the MBSs induced by the electron-phonon interaction as a function of lattice site j (a) close to the
resonance, N = 640 [see Fig. 10(a)], and (b) away from the resonance, N = 500. While in the nonresonant case (b), the charge density
changes its sign and oscillates on the characteristic scale cs/� corresponding to the phonon wavelength, in case of the resonance (a), the total
charge on the negatively charged sites (for the given values of parameters) is larger than the one on the positively charged site such that the
overall charge carried by the MBSs is nonzero. The parameters chosen are the same as for Fig. 10.

δSk
± =

∑
mn

∑
j1, j2, j3

a3
0

× sk
±m(x j1 )ρmn(x j2 )Re

{
W R

n (x j2 − x j3 )
}
ρn±(x j3 )

ε± − εm
, (53)

where sk
±m(x j ) = (h̄/2)�†(x j )σ kτz�(x j ), with k = x, y, z.

We calculate the overall charge δQ± induced by the
electron-phonon interaction numerically using the spinful lat-
tice Rashba model. The total MBS charge δQ± as a function
of number of sites N is shown in Fig. 10(a). The charge
density δρ+(x) as a function of position is shown in Fig. 11.
Similarly, we calculate numerically the spin of the perturbed
fermionic states |±〉 for the spinful lattice Rashba model [see
Figs. 10(b) and 10(c)] using Eq. (51). Thus electron-phonon
interaction induces both a finite charge δQ± and spin δSx,y

±
for the spinful model. We note that the z component of the
spin, δSz

± (along the direction set by the Rashba spin-orbit
interaction), remains zero due to the symmetry of the system
[58]. Both charge and spin oscillate with increasing system
size showing resonant enhancement similar to the energy
splitting. It is important to note that nonzero charge and spin
induced by the electron-phonon interaction makes it possible
to detect the splitting via charge and spin measurements. On
the other hand, the finite charge and spin couple the hybrized
MBSs to external electrical and magnetic noise sources which
will affect the decoherence properties of topological qubits
formed from such MBSs.

V. CONCLUSIONS

In this work, we studied the effect of electron-phonon
interactions on MBSs in topological nanowires. We have
shown that at zero temperature such perturbations do not lift
the ground state degeneracy and do not induce a finite level
broadening. However, at finite temperatures, absorption of
thermal phonons makes it possible to promote the electron
system from the ground state to a delocalized state with
energy above the quasiparticle gap �. The level broadening

(inverse lifetime) decays exponentially with the inverse of the
temperature. This source of decay is an intrinsic many-body
effect rather than due to the presence of an externally coupled
environment. The lifetime the system stays in the ground state
is estimated to be of order 10 μs for temperatures of order
0.1 K and quasiparticle gap of order 1 K. Furthermore, the
coherent absorption/emission of phonons at the ends of the
topological nanowire results in lifting of the degeneracy of
the ground state at finite temperatures. The resulting energy
splitting between MBSs decays as a power law rather than
exponentially with increasing system size. However, experi-
mental observation of this splitting can be complicated since
it remains less than the level broadening of the MBSs. As
a consequence of the splitting induced by the phonons, the
MBSs acquire a finite charge and spin which we calculated as
a function of position as well as of the system size. This opens
up the possibility to detect the splitting via charge and spin
measurements. On the other hand, it also exposes the MBSs to
external electrical and magnetic noise sources that will affect
the decoherence properties of topological qubits formed from
such MBSs. It will be interesting to investigate this problem
further in future work.

We also found that if the motion of phonons is quantized
in the transverse direction of the nanowire, the presence of
Van Hove singularities at the bottom of the phonon modes
enhances the absorption of phonons if the singularity energy
is close to the quasiparticle gap. In this case the lifetime is
estimated to be less than nanoseconds for the same values
of temperature and the gap as above. The energy splitting
and broadening of the MBSs show resonant peaks at energies
where a VHS coincides with the energy of a bulk quasiparticle
state. Close to the resonance, the energy splitting of the
MBSs becomes comparable to the broadening (or even larger)
and, therefore, can be observed experimentally. The results
obtained analytically for the low-energy continuous model are
also confirmed numerically for a spinful lattice Rashba model.

Our analysis indicates that one should avoid van Hove
singularities for optimal protection of the MBSs. In this
respect, quantum wires, e.g., defined by gates in InAs 2DEGs
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(embedded in a bulk heterostructure) [74,75] will be better
candidates than nanowires since the gate confinement of such
wires only quantum confines the electrons but not the phonons
(thus phonon subbands with harmful van Hove singularities
would be avoided by design).

Finally, we remark that the pronounced resonances for
level splitting and broadening found in this work are a unique
manifestation of the presence of MBSs and thus can serve
as further experimental signatures in the search of MBSs in
topological nanowires.
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APPENDIX A: SOLUTIONS OF BDG EQUATIONS

In this section, we solve the BdG equation [see Eq. (3)]
subjected to boundary conditions (BCs), see Eqs. (8) and
(9). In order to simplify the calculations, we exploit the fact
that the system has inversion symmetry. More specifically,
the BdG equation and BCs are invariant under the symmetry
operator Î that acts on the spinors � in the following way:

Î

⎛
⎜⎜⎜⎝

φ+(x)

φ−(x)

φ̄+(x)

φ̄−(x)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

φ−(L − x)e−ikF L

φ+(L − x)eikF L

−φ̄−(L − x)eikF L

−φ̄+(L − x)e−ikF L

⎞
⎟⎟⎟⎠. (A1)

Since Î2 = 1, the solutions of the BdG equations are either
even or odd under inversion.

1. Bound states

A general solution of Eq. (3) with energy below the gap,
|ε| < �, has the form

�(x) = A
(
�+,−e−κx ± �−,−eikF L−κ (L−x)

)
+ B

(
�−,+e−κx ± �+,+e−ikF L−κ (L−x)

)
, (A2)

where the upper (lower) sign corresponds to an
(even) odd solution with respect to Î , �+,± =
(−i, 0, 0, (ε ± ivF κ )/�)T , �−,± = (0, −i, −(ε ±
ivF κ )/�, 0)T , and the decay parameter κ = √

�2 − ε2/vF ,
A and B are coefficients which are chosen to satisfy the BCs.
The BCs [see Eq. (8) and (9)] result in the following equations
for A and B:

A(1 ± eikF Le−κL ) + B(1 ± e−ikF Le−κL ) = 0, (A3)

A(ε − iκvF )(1 ∓ eikF Le−κL
) + B(ε + iκvF )

× (−1 ± e−ikF Le−κL ) = 0. (A4)

Solving the linear system defined by Eqs. (A3) and (A4),
we obtain that an even (odd) solution with energy below the

gap, |ε| < �, is of the form �±(x) = [�L(x) ± i�R(x)]/
√

2,
where

�L(x) = 1√
ξ

⎛
⎜⎝

−i
i
i

−i

⎞
⎟⎠e−x/ξ , (A5)

�R(x) = 1√
ξ

⎛
⎜⎜⎝

e−ikF L

−eikF L

eikF L

−e−ikF L

⎞
⎟⎟⎠e−(L−x)/ξ , (A6)

and the energies satisfy Eq. (10).

2. Bulk states

A general solution of Eq. (3) with energy above the gap,
|εn| > �, has the form

�n(x) = An
[
�n,+,−eiknx ± �n,−,−eikF L+ikn(L−x)]

+ Bn
[
�n,−,+eiknx ± �n,+,+e−ikF Leikn (L−x)], (A7)

where the upper (lower) sign corresponds to an even
(odd) solution with respect to Î , �n,+,± = (−i, 0, 0, (εn ±
ζn)/�)T , �n,−,± = (0, −i, −(εn ± ζn)/�, 0)T , ζn =√

ε2
n − �2, and kn = ζn/vF . The BCs defined by Eqs. (8) and

(9) result in the following equations for An, Bn:

An
(
1 ± ei(kF +kn )L

) = −Bn
(
1 ± e−i(kF −kn )L

)
, (A8)

An
εn − ζn

εn + ζn

1 ∓ ei(kF +kn )L

1 ∓ e−i(kF −kn )L
= Bn. (A9)

Solving this linear system of equations, we obtain that the en-
ergies of the bulk eigenstates satisfy the following condition:

sin (knL) = ± ζn

εn
sin (kF L), (A10)

where the upper (lower) sign corresponds to even (odd) solu-
tions with respect to Î , which themselves are of the form:

�n = 1

Nn�
√

8L

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

−i�(1 ± ei(kn−kF )L )

i�(1 ± ei(kF +kn )L )

(εn + ζn)(1 ± ei(kF +kn )L )

(εn − ζn)(1 ± ei(kn−kF )L )

⎞
⎟⎟⎟⎠eiknx

+

⎛
⎜⎜⎜⎝

i�(±eikF L + eiknL )

−i�(±eikF L + eiknL )

−(εn − ζn)(±eikF L + eiknL )

−(εn + ζn)(±e−ikF l + eiknL )

⎞
⎟⎟⎟⎠eikn (L−x)

⎤
⎥⎥⎥⎦,

(A11)

where the normalization factor is given by

Nn =
√

ε2
n

�2
[1 ± cos (kF L) cos (knL)] − ζ 2

n

�2
sin2 (kF L).

(A12)
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APPENDIX B: OVERLAP INTEGRALS

The matrix elements PL,n = ∫ ρL,n(x)dx can be calculated
straightforwardly:

PL,n =
√

8vF [ζ cos (knL) ± ζ cos (kF L) − � sin (knL)]

Nnε2
n

√
ξL

× ei(knL+ π
2 ), (B1)

where the upper (lower) sign corresponds to even (odd) bulk
modes n with respect to the inversion symmetry Î . The overlap
integrals containing exponentials from the phonon fields can
be similarly found as∫

dx ρL,n(x)eiqx = PL,n
ε2

n[1 − iqvF /(2�)]

ε2
n − q2v2

F − iqvF �
. (B2)

We note that inversion symmetry implies that Pn,R = ±PL,n

and
∫

dx iρn,R(x)eiq(L−x) = ± ∫ dx ρL,n(x)eiqx. Therefore we
calculate∫

dxdx′ iρL,n(x) sin[q(x′ − x)]ρn,R(x′)

= ±Im

{[∫
dxρL,n(x)e−iqx

]2

e−iqL

}

= ±|PL,n|2ε4
n Im

{[
1 + iqvF /(2�)

ε2
n − q2v2

F − iqvF �

]2

e−iqL

}
, (B3)

where the upper (lower) sign corresponds to the even (odd)
bulk modes n. For q ∼ �/cs � εn/vF , we obtain a simple
approximate expression,∫

dxdx′ ρL,n(x) sin[q(x′ − x)]ρn,R(x′)

≈ ±|PL,n|2 ε4
n

4�2q2v2
F

sin (qL). (B4)

Similarly, we calculate∫
dxdx′ρL,n(x) cos[q(x′ − x)]ρn,L(x′)

= |PL,n|2ε4
n

1 + q2v2
F /(4�2)(

ε2
n − q2v2

F

)2 + q2v2
F �2

. (B5)

For q ∼ �/cs � εn/vF , the expression given by Eq. (B5)
simplifies to∫

dxdx′ρL,n(x) cos[q(x′ − x)]ρn,L(x′) ≈ |PL,n|2 ε4
n

4�2q2v2
F

.

(B6)

We also calculate the overlap integrals containing decaying
exponentials from the phonon fields:∫

dx ρL,n(x)e−Qx = PL,n
ε2

n[1 + QvF /(2�)]

ε2
n + Q2v2

F + QvF �
, (B7)∫

dxdx′ iρL,n(x)ρn,R(x′)e−Q|x−x′|

= ±e−QL|PL,n|2ε4
n

[
1 − QvF /(2�)

ε2
n + Q2v2

F − QvF �

]2

. (B8)

Again, the upper (lower) signs correspond to even (odd) bulk
modes n.

APPENDIX C: EFFECTIVE INTERACTION

The effective interaction W R
n (x, ε) is defined in Eq. (16),

where, again, we neglect boundary effects for the phonons
and assume that the phonon system is translationally invariant
(in contrast to the TSC). Integrating over the phonon fre-
quency ω, we obtain W R

n (x, ε) = ∫ W R
n (q, ε)eiqxdq/(2π ) for

1D phonons in infinite space, where the Fourier transform
Wn(q, ε) is given by

W R
n (q, ε) = 1

2

�q(ε − εn)

(ε − εn + i0+)2 − �2
q

coth

(
�q

2T

)

+ 1

2

�2
q

(ε − εn + i0+)2 − �2
q

tanh
( εn

2T

)
. (C1)

In the following, we take ε = 0. In case of a linear phonon
spectrum, �q = csq, the integration over q can be performed
straightforwardly using contour integration: the expression in
Eq. (C1) has the following poles in the upper half plane:
q0 = −εn/cs + i0+ and qk = 2π ikT , where k ∈ N. The pole
q0 vanishes at T = 0, and the contribution from this pole,
W R

a,n, given by Eq. (21), corresponds to absorption of a thermal
phonon with energy εn and momentum q0. The remaining
poles qk give the contribution W R

v,n, see Eq. (20), describing
the effective interaction due to exchange of virtual phonons.
In the limit T = 0, one can estimate this contribution as

W R
v,n(x, ε = 0) ≈ g2

∞∑
k=1

T

2εn

2πkT

cs
exp

(
−2πkT |x|

cs

)

= g2cs

4πεnx2
. (C2)

We note that W R
v,n results from the integration of the first term

in Eq. (C1) containing the phonon distribution function, and,
hence, the exponential decay is determined by the temperature
of the phonon bath. The contribution W R

a,n given by Eq. (21)
depends both on electron and phonon distributions.

In the case when the spectrum �2
q = �2

1 + c2
s q2 describes

a higher phonon mode, the expressions �q coth(�q/2T ) and
�2

q are still single-valued analytic functions of q, and the ab-
sorption of thermal phonons is described by the contribution
from the pole q = −

√
(εn − i0+)2 − �2/cs for εn > �1 and

q = i
√

�2
1 − ε2

n /cs for |εn| < �1, resulting in the expression
W R

a,n given in Eq. (32).

APPENDIX D: VAN HOVE SINGULARITY IN NANOWIRES

In order to evaluate the effect of VHSs in a realistic
system, we consider longitudinal phonons of a homogeneous
nanowire of radius R with clamped surface boundary con-
ditions [59–61]. In the continuum limit, the dispersion re-
lation for nontorsional longitudinal phonons is given by the
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FIG. 12. Phonon density of states (DOS) corresponding to the
phonon dispersion in Eq. (D1) with ct/cl = 0.5 at fixed energy
� = 1 meV (a) as a function of the nanowire radius R and (b) as
a function the phonon energy h̄� and R. The pronounced peaks
correspond to VHSs, which have energies inversely proportional to
R. The bottom of phonon branch h̄� = 0.2 meV (dashed horizontal
line) corresponds to R = 100a = 50 nm.

Pochhammer-Chree frequency equation, which reads

(
b2

t − q2
)2

J0(blR)J1(bt R) + 4q2blbt J1(blR)J0(bt R)

= 2(bl/R)
(
b2

t + q2
)
J1(blR)J1(bt R), (D1)

where Jn(x) are the Bessel functions of the first kind, and b2
l =

�2
q/c2

s − q2, b2
t = �2

q/c2
t − q2 with c2

s = λ + 2μ and c2
t = μ

the longitudinal and shear speed of sound, respectively, given
in terms of the Lamé parameters λ and μ. Generally, Eq. (D1)
is a good approximation for longitudinal phonon modes in a
nanowire at small momenta. For each momentum q, the above
equation is satisfied by multiple values of the frequency �q.
Therefore the phonon dispersion exhibits multiple branches
�q, j : this is a physical consequence of the confinement of
the phonon modes in the transverse direction. The average
energy spacing between the phonon branches at q = 0 is of
the order of h̄cl/R. We consider the phonon dispersion at small
momenta calculated numerically from Eq. (D1) using ct/cl =
0.5 as a function of R/a. The resulting phonon dispersion
exhibits multiple VHSs at energies � j , as one can see from the
peaks in the phonon density of states in Fig. 12: the energies
� j decrease and the spacing between them shrinks as the wire
radius increases.

APPENDIX E: SPLITTING AND BROADENING
IN THE PRESENCE OF VHS

1. Broadening

We rewrite Eq. (35) using expressions for overlap integrals
we found earlier, Eq. (B5),

γL = g2
1

4cs

∑
n

|PLn|2 ε6
n

sinh(εn/T )
√

ε2
n − �2

1

× 1 + Q2
nv

2
F /(4�2)(

ε2
n − Q2

nv
2
F

)2 + Q2
nv

2
F �2

, (E1)

where Qn =
√

ε2
n − �2

1/cs. In the limit of long nanowire
L/ξ → ∞, one can estimate contribution from the nonreso-
nant modes by replacing the sum over n by an integral, and
then changing the integration variable from n to εn ≡ ε,

dn =
∣∣∣∣dεn

dn

∣∣∣∣
−1

dε ≈ L

πvF

ε dε√
ε2 − �2

. (E2)

Thus, since the matrix element |PL,n|2 ∼ ξ/L for εn ∼ �1 ≈
�, we can estimate

γL ∼ g2
1vF

cs�L

+∞∫
�1

Lεdε

πvF

√
ε2 − �2

e−ε/T ε6
n

sinh(εn/T )
√

ε2 − �2
1

× 1 + (ε2 − �2
1

)
(vF /cs)2/(4�2)[

ε2
n − (ε2 − �2

1

)
(vF /cs)2

]2 + (ε2 − �2
1

)
(vF /cs)2�2

≈ g2
1

πcs

�2√
�2

1 − �2
e−�1/T ln

(
T

�

)
. (E3)

2. Energy splitting

Here we show that the energy splitting δε>
+ remains smaller

than the broadening γL(R). Using Eq. (B4), the contribution
δε+,> can be written as

δε>
+ = g2

1

4cs

∑
n,εn>�1

(−1)n|PL,n|2ε6
n

sinh(εn/T )
√

ε2
n − �2

1

× Im

{[
1 + iQnvF /(2�)

ε2
n − Q2

nv
2
F − iQnvF �

]2

eiQnL

}

= g2
1

4cs

∑
n,εn>�1

|PLn|2 ε6
n

sinh(εn/T )
√

ε2
n − �2

1

× 1 + Q2
nv

2
F /(4�2)(

ε2
n − Q2

nv
2
F

)2 + Q2
nv

2
F �2

sin χn, (E4)

where the phase χn is defined as

χn = πn + QnL + 2 arctan

(
QnvF

2�

)

− 2 arctan

(
QnvF �

ε2
n − Q2

nv
2
F

)
. (E5)

Comparing Eq. (E4) with Eq. (E1), one can see that |δε+| �
γL,R.
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