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Strong electron-electron interactions of a Tomonaga-Luttinger liquid
observed in InAs quantum wires
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We report strong electron-electron interactions in quantum wires etched from an InAs quantum well, a material
generally expected to have strong spin-orbit interactions. We find that the current through the wires as a function
of the bias voltage and temperature follows the universal scaling behavior of a Tomonaga-Luttinger liquid. Using
a universal scaling formula, we extract the interaction parameter and find strong electron-electron interactions,
increasing as the wires become more depleted. We establish theoretically that the spin-orbit interaction cause
only minor modifications of the interaction parameter in this regime, indicating that genuinely strong electron-
electron interactions are indeed achieved in the device. Our results suggest that etched InAs wires provide a
platform with both strong electron-electron interactions and the strong spin-orbit interaction.
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I. INTRODUCTION

A one-dimensional electron system displays the physics
of a Tomonaga-Luttinger liquid (TLL), which is strikingly
different to Fermi liquids in higher dimensions. A spinful TLL
is described by the Hamiltonian [1,2]

H =
∑
ν=c,s

∫
h̄dx

2π

{
uνgν[∂xθν (x)]2 + uν

gν

[∂xφν (x)]2

}
. (1)

Here, ν ∈ {c,s} labels the charge and spin sector, respectively,
while uν are the velocities, and θν and φν the bosonic fields,
describing the two elementary excitations [3]. The electron-
electron (e-e) interactions are parameterized by gc and gs,
which range between 0 and 1 [4]. The spin-charge separation,
meaning the independence of the charge and spin sectors
displayed by Eq. (1), appears as one of the key features of
a TLL.

The coupling of spin and charge degrees of freedom, in
various forms of the spin-orbit interaction (SOI), plays an
important role in semiconductors and spintronics [5,6]. The
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research on SOI has been further accelerated by predictions
of the emergence of Majorana fermions in an accessible setup
comprising a quantum wire with superconductivity, SOI, and a
magnetic field [7–10]. Unfortunately, the practical realization
is impeded by the incompatibility of a strong magnetic field
and superconductivity. Recently, it has been suggested that
wires with strong e-e interactions could solve this conflict
by disposing of the magnetic field [11,12]. More importantly,
strong e-e interactions allow a realization of parafermions
[11], more advanced topological particles than the Majorana
fermions [13,14]. They rely on Cooper pair splitting into two
quantum wires with high efficiency, which is achieved through
strong e-e interactions. We note that efficient Cooper pair
splitting [15,16] and a transparent interface with a supercon-
ductor has been recently demonstrated in self-assembled InAs
nanowires [17,18] and quantum wells [19]. With this outlook,
providing wires with both strong e-e interactions and strong
SOI seems beneficial.

Motivated by such prospects, there appeared several the-
oretical works concerned with a TLL in the presence of
SOI. The SOI mixes the spin and charge sectors and a rich
range of phenomena was predicted, from mild modifications
to a breakdown of the TLL phase [20–32]. Despite active
discussions in theory, there are only few experimental studies
of TLL physics in wires with strong SOI. Concerning InAs,
we note the self-assembled nanowires [33] and nanowire
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quantum point contacts [34] experiments. In the former, a
small interaction parameter was deduced, but it remained
unclear whether this was due to the SOI, intrinsically strong
e-e interactions, or even some other physics. The situation
contrasts to TLLs without SOI, with a number of reports, for
example on GaAs wires [35–38], carbon nanotubes [39–44],
all in which the SOI is negligible. Overall the effects of SOI in
TLLs have been considered in theory but have been explored
in few experimental studies.

II. SUMMARY OF THE MAIN RESULTS

Here we investigate the TLL behavior of quantum wires
fabricated in an InAs quantum well. Even though we do
not quantify its strength in this experiment, it is generally
expected that the SOI in InAs is strong [45–47]. We measure
the electric current through the wires as a function of the bias
voltage at various temperatures and find that the data falls onto
a single curve upon rescaling. Such universal scaling is con-
sistent with the TLL theory, allowing extraction of the value
of the interaction parameter gc in Eq. (1). The extracted values
reach as low as 0.16–0.28 (these minimal values are for wires
close to depletion), indicating a strong-interaction regime. In
addition to transport measurements, we provide theoretical
understanding of one-dimensional systems with strong e-e
interactions and SOI. Overall our results demonstrate that
InAs wires offer a platform fulfilling the requirements for the
realization of topological particles.

III. DEVICE

The data presented in this paper were measured on a single
device,1 shown in Fig. 1(a). It is composed of ten parallel
quantum wires, which were chemically etched from an InAs
quantum well. Ohmic contacts, created using Ti/Au [48], and
a Ti/Au top gate, deposited on top of a cross-linked PMMA
serving as an insulating layer, give electrical access and con-
trol. A single wire has a length of 20 μm and a nominal width
(estimated from the depth of the etching) of 100 nm. The stack
materials of the InAs quantum well are given in Fig. 1(b).
Prior to measurements of the wires, the two-dimensional
electron gas mobility of 7.2 × 104 cm/(Vs), electron density
of 3.4 × 1011 cm−2, and mean free path of 690 nm were
extracted from measurements on a Hall-bar device at 560 mK.
The electric current I flowing through the parallel wires upon
applying a bias voltage V is measured by the standard four-
terminal dc measurement. These measurements are performed
at temperature T in the range 2–4 K. Figure 1(c) shows I as
a function of the top gate voltage Vg for a fixed V = 1 mV.
The device shows a pinch-off at about Vg = −0.86 V. A small
current remaining below that voltage is most probably due
to a tunneling conductance through quantum dots formed in
the disorder potential of the wires. The parallel quantum wire

1We fabricated several devices with various lengths and numbers
of wires in search for characteristic features of TLL. These early
devices were plagued by typically large contact resistances and a
wafer-dependent voltage range of the few-channel regime. The next
generation of devices will build on this experience.

FIG. 1. (a) Microscope photographs of the parallel-wire device
before (left) and after (right) depositing a top gate above a cross-
linked PMMA layer. The wires are along [010]. (b) Schematic struc-
ture of the wafer, grown along [001]. (c) Gate voltage dependence
of the current through the wires measured at a constant source-drain
voltage as given in the figure caption. This measurement is performed
at 2.9 K.

structure reduces the total resistance such that the total current
is still within the measurable range. Though measuring many
parallel wires precludes observing conductance plateaus, it
also results in averaging out the potential fluctuations from
impurities and other disorder. We believe that such averaging
is crucial for observing the universal scaling we report.

IV. UNIVERSAL SCALING OF THE
CURRENT-VOLTAGE CURVE

Before presenting our main results, we first review the
transport properties predicted by the existing theory. It has
been established that, assuming the spin-charge separation,
a current through a single TLL with several tunnel barriers
(their number and positions are discussed below) displays
universal scaling [39,49]. Explicitly, the tunnel current is

I = I0T 1+α sinh

(
γ eV

2kBT

)∣∣∣∣	
(

1 + α

2
+ iγ eV

2πkBT

)∣∣∣∣
2

. (2)

Here, I0 is an unspecified overall scale dependent on a typical
barrier strength, 	(z) is the Gamma function, e is the positive
elementary charge, kB is the Boltzmann constant, and the
parameters α and γ depend on the number and character of
the barriers, or, more generally, source of resistance.2

2Below, we consider the current-voltage relation (alternatively, the
conductance) under more general conditions than that under which
Eq. (2) has been originally derived. In such general considerations,
we use the name “sources of resistance” without specifying whether
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FIG. 2. Current (I) flowing through the wires as a function of the
bias voltage (V ) for the top gate voltage Vg = −0.6 V.

The expression γV corresponds to a voltage drop across
the tunnel barrier. Thus, in Ref. [49], one has γ = 1. One
can generalize this result to several, say N , tunnel barriers;
assuming that they induce comparable resistances, a typical
voltage drop over a single one will be V/N . For this case,3

the inverse of γ therefore gives the number of tunnel barriers
[39,50].

The parameter α depends in an intricate way on the e-e
interaction strength parameters gc and gs, the SOI strength,
and the number and character of the sources of resistance.
The expressions for α for the case of zero SOI are already
known. For the case of finite SOI, we provide them here
and in Ref. [51]. Extracting this parameter from the data and
inferring from it the e-e interaction strength is the essence
of this paper. Let us first describe the former task, before
discussing the latter one.

The extraction of α is rather straightforward once the I-V
curve in Eq. (2) is plotted on a log-log scale. This exercise
reveals different slopes for γ eV much smaller and much larger
than kBT . For the (differential) conductance, G ≡ dI/dV , this
corresponds to power laws G ∝ T α and G ∝ V α , respectively.
The power law in the conductance, G ∝ T α , in the regime of
eV � kBT , was observed in numerous previous experiments
[38–43,50,52–57]. If the universal scaling curve is obtained
for a large enough range of its natural parameter, eV/kBT ,
such that the crossover is seen, one can extract both γ and α.

V. MEASUREMENT OF I-V CURVES AND FIT TO EQ. (2)

To extract both α and γ , we measure the current I as a
function of the bias voltage V at various temperatures. A set

tunnel barriers, weak impurities or other scatterers. We argue that
Eq. (2) is still valid in this more general situation, upon proper
interpretation of parameters I0, α, and γ .

3We stress that the connection between γ and the number of
barriers N is γ = 1/N only if all the barriers result in identical
resistances. Otherwise, γ counts only the barriers which dominate
the voltage drop. The typical (length) density of these dominating
barriers might have no direct relation to the transport mean free path
found for the 2DEG, as will be the case here.

FIG. 3. A rescaled current I/T 1+α as a function of eV/kBT from
the data points in Fig. 2. The black-solid curve is drawn using Eq. (2)
with the parameters (α, γ , I0) = (1.3, 0.38, 3.6×−10A/K2.3), which
were extracted by fitting the data in Fig. 2 to Eq. (2). We note that
the unit of I0 scales with α.

of such curves, for top-gate voltage of Vg = −0.6 V, is shown
in Fig. 2. One can see that the current generally decreases
with decreasing temperature T , and that for a fixed T different
slopes for the high-V and low-V regimes can be observed.
These features are qualitatively consistent with Eq. (2). For a
fixed top-gate voltage Vg, we fit the whole set of I-V curves to
Eq. (2) with I0, α, and γ as the fitting parameters. The rescaled
data, together with the fitted curve, is plotted in Fig. 3. We
observe that the rescaled data indeed collapses onto a single
curve, confirming the universal scaling behavior of a TLL.

After confirming that the universal scaling holds, and there-
fore the parameters α and γ are reasonably assigned by the fit,
we examine their dependence on the carrier density. As the
latter is tunable through the top gate voltage, we repeat the
above measurements and fittings for various Vg, and summa-
rize the results in Fig. 4 (Fig. 7 in Appendix A 3 shows three
more sets, for Vg = −0.2, −0.4, and −0.8 V, with both raw
and scaled I-V data from which the fittings are performed).
One can see that both parameters change with Vg, suggesting

FIG. 4. Fitted values of α as a function of the top gate voltage Vg

(red circle, left axis). The error bars of the fitting are smaller than the
markers. Fitted values of γ as a function of Vg are also plotted (blue
squares, right axis). For Vg > −0.25 V, the fitted values of γ are not
very reliable, as reflected by the larger error bars.
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that the e-e interaction strength varies with the carrier density.
To convert the extracted parameters to physical parameters
of the system is rather involved and will be addressed later.
Before that, we consider the observation of the fitted values of
γ collapsing to 1 for voltages Vg > −0.25 V. As we already
stated, the fitted value of γ is determined by the position of
the kink in the current-bias curve (for example, in Fig. 3,
the kink is at eV/kBT ≈ 10). However, the smaller the value
of α the smaller the variation in gradient between low- and
high-V regimes, complicating the determination of the kink
position. Our fits are less sensitive to γ for α � 0.5, where
the fit returns γ = 1. Though error bars become larger, the
value γ = 1 is consistent with the trend observed where γ

is accurately extracted for higher α. Nevertheless, the most
interesting part of this plot is on its left end, for large negative
values of the top gate Vg. Here, α is large which corresponds
to strong e-e interactions, as we will see. Also, in the same
region, γ is around 0.5, corresponding to two tunnel barriers.
We are primarily interested in extracting the strength of the
e-e interactions in this regime.

VI. DEDUCING THE STRENGTH OF
ELECTRON-ELECTRON INTERACTIONS

A. Description of the theoretical methods used

We now describe our theoretical analysis, which allows
us to extract the strength of the e-e interactions from the
observed α. Motivated by the expected strong SOI in InAs,
we model each of the wires as a TLL subject to SOI. To
this end, we incorporate the SOI-induced band distortion,
which is parametrized by the ratio δv/vF with δv the velocity
difference between the two branches of the distorted energy
bands [58] (see Appendix B for details). This band distortion
breaks the spin-charge separation of a TLL in Eq. (1) [20,21]
and leads to a coupling between the charge and spin sectors
[see Eq. (B1) in Appendix B]. In addition, the SOI can cause
the value of gs to depart from unity [22,30]. In deriving the
current-voltage characteristics, we include both the charge-
spin coupling in the Hamiltonian and a general value for the
gs parameter.

The theoretical analysis is complicated not only by the
presence of the SOI, but also by the fact that the conductance
depends on the characters and positions of the resistance
sources (strong or weak, and inside the wire or around its
boundary) and also on the value of α itself (larger or smaller
than 0.5). Including these features is what sets our work apart
from preceding studies. For the sake of brevity, we delegate
the full analysis to Ref. [51] and state the main results from
there in Appendix B. Here, in the main text, we distill that
results further, and only give and comment on the formulas
which are used to fit the experimental data.

We start with that, first, we observe γ roughly between 1
and 1/2, and, second, that we expect disorder to be generally
present in the wires.4 Correspondingly, we begin with consid-
ering the following types of resistance sources: a single tunnel

4As the wires are much longer than the bulk mean free path
of 690 nm, the disorder (perhaps, in the form of weak potential
modulation due to impurities) should play role in the wire resistance.

FIG. 5. (a) A schematic illustration of scenario A: there are
bulk barriers (crosses), each acting as a TLL-TLL junction, and
many weak impurities (not shown). (b) A schematic illustration of
scenario B: there are boundary barriers, each acting as a TLL-Fermi
liquid (FL) junction, and many weak impurities. In (a) and (b), for
illustration, we plot two barriers, motivated by the observed 1/γ � 2.
(c) Extracted values of the interaction parameter gc as a function
of the top gate voltage Vg for the two scenarios. The red-solid and
green-dashed curves are the fits to Eq. (6), with the fitting parameter
w (the wire transverse size) being 87 and 47 nm, respectively.

barrier located in the wire bulk, a single tunnel barrier located
near the wire boundary, and a disorder potential from many
weak impurities. We first calculate the corresponding resis-
tances separately, and then discuss the total wire resistance
when they coexist.

In the presence of a single bulk or boundary barrier, we
compute the tunnel current through it using the method of
Ref. [49], which allows one to obtain the full current-bias
curve. In addition, we use the renormalization-group (RG)
method of Refs. [59,60] to obtain the current power-law scal-
ing in the high-temperature and high-bias limits. We verify
that, in these limits, the two theoretical approaches give the
same exponent α and are therefore consistent.

For many weak impurities (that is, disorder potential), the
method of Ref. [49] is not applicable. Instead, we calculate
the exponent of the current power law in the high-temperature
and high-bias limits using the RG method of Refs. [59,60]. In
this case, we understand Eq. (2) as an interpolation formula,
with the parameter α replaced by the computed exponent of
the power law and with γ = 1 regardless of the number of
weak impurities.

With the above results, we consider the situation with
coexisting tunnel barriers and weak impurities. There are
following possible scenarios: (A) all barriers are in the wire
bulk, being TLL-TLL junctions, as illustrated in Fig. 5(a),
(B) all barriers are near the wire boundaries, being junc-
tions between a TLL and a Fermi-liquid lead; see Fig. 5(b),
(C) There are both bulk and boundary tunnel barriers. In each
case, in addition to the barriers, the disorder potential is also
present. Fortunately, as in the data we observe γ close to 1/2
or larger, we can restrict out treatment to considering up to
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two barriers in total. This assumption reduces scenario C to
a single case, with one bulk and one boundary barrier. We
can then exclude this case, as it would give different scaling
behavior in the high-bias and high-temperature regimes [50],
in contrast to what we observe.

Left with only scenarios A and B, the single barrier re-
sistance can be directly generalized to multiple barriers of
comparable strengths by replacing V → γV . To estimate the
total wire resistance, we assume that the contributions from
tunnel barriers and weak disorder are additive. To treat them in
the same way, we use the RG method to determine the power
law of the current-voltage dependence for both. Due to the
distinct power laws for these sources, we can identify a single
term which dominates the resistance (in the RG sense) for a
given strength of e-e interactions. In each scenario, keeping
only the dominant term, we conclude that the current-voltage
relation is described by Eq. (2), and obtain the expressions for
α in terms of the intrinsic interaction parameters gc and gs,
and the ratio δv/vF , as given below.

Finally, in order to convert the observed power α to the
value of gc, we need the values of the SOI-induced parameters,
δv/vF , and the departure of gs from 1. For parameters relevant
to our experiment, we estimate δv/vF � 0.1. As 1 − gs scales
with the same quantity, δv/vF [30], we find that the modifi-
cation in gs is similarly small [22]. Our quantitative analysis
presented in Appendix B 1 concludes that such small values
have negligible influence on the relation between α and gc,
meaning that to interpret the data of our device, we can use the
zero-SOI expressions for α.5 In addition, when the wires are
close to being depleted, which is the strong-interaction regime
of our primary interest, δv/vF becomes vanishingly small,
making our approximations even more accurate. We note
that, even with these approximations, the conversion from the
observed α to gc is still complicated due to various types of
resistance sources. In the following, we present the derived
expression of α and its approximated form for scenarios A
and B. We use the approximate form to extract the value of gc

from the value of α observed.

B. Conversion of α to gc in scenario A (bulk tunnel barriers
and weak disorder)

In scenario A, the tunnel current is given by Eq. (2) with α

given by (see Appendix B)

αbulk =
(

1

g′
c

+ 1

g′
s

)(
cos2 θ + g2

0 sin2 θ
) − 2 (3a)

≈ 1

gc
− 1, (3b)

where the approximation is valid for parameters relevant here.
In the above, θ is a small parameter characterizing the strength
of the SOI, and the explicit forms of g′

ν , g0, and θ are given in

5This conclusion also means that, even though the TLL is spin-orbit
coupled, the strength of the SOI cannot easily be extracted from the
quantities that we measure; for that purpose, different quantities or
experiments would have to be pursued.

Appendix B. On the other hand, the interpolation formula for
weak impurities is given by Eq. (2), with γ = 1 and α being

αimp = 2 − cos2 θ (g′
c + g′

s) − g2
0 sin2 θ

(
1

g′
c

+ 1

g′
s

)
, (4a)

≈ 1 − gc, (4b)

where the second line again stems from the approximation
valid for our parameters. Importantly, for any repulsive inter-
action gc � 1, the approximated value is bounded αimp � 1,
allowing us to rule out the weak impurities as the source
of the observed value α > 1 in the low-Vg regime. Further,
for any gc < 1, one has 1/gc − 1 > 1 − gc, such that the
resistance from the bulk tunnel barriers dominates that from
weak impurities. We therefore assign the observed power law
to bulk barriers and use

αA = 1

gc
− 1, (5)

to extract the gc values from the data in Fig. 4. In Fig. 5(c),
we plot the extracted gc as a function of Vg. The lowest value
gc = 0.28 corresponds to very strong e-e interactions in a wire
with low electron density.

To further check the consistency of our procedure, we fit
the extracted gc to the formula [59,61]

gc =
[

1 + e2

π2εh̄vF
ln

(
D2

dw

)]−1/2

. (6)

In this equation, derived by estimating the compressibility of
the electron gas with the Coulomb interaction screened by a
conducting plane (the top gate), D is the distance between
the wire and the top gate, d is the quantum well thickness,
w is the wire width, and ε is the dielectric constant. For our
device, we have D = 300 nm, d = 7 nm, and ε = 15.15 ε0

[62]. Using w as a fitting parameter, we get the red curve in
Fig. 5(c), showing a good correspondence with gc fitted from
the data. Further, the fitted value w = 87 nm is consistent with
the nominal width of 100 nm. Given w, we estimate the wire
subbands level spacing h̄2

2m∗ ( 2π
w

)
2 ≈ 8.64 meV corresponding

to EF at Vg = −0.54 V.6 This estimate suggests that our device
is in the single-channel regime for Vg < −0.54 V, where an
approximately constant value of γ 
 1/2 is seen in Fig. 4.7

Given all these cross-checks, we conclude that scenario A
provides a consistent interpretation of the measured data.

6From the stacking structure of the wafer, we estimate the Fermi
energy EF = 1.13 × 102 × [Vg − (−0.86)]2 (meV) and the Fermi
velocity vF = 1.31 × 1013 × [Vg − (−0.86)]w (m/s) (see Appendix
A 2). Here, Vg is in units of V, w is in units of m.

7The level spacing is large enough that we can ignore higher
subbands at the temperatures of our measurements. In Ref. [77],
the subband level spacing in a 100-nm-diameter InAs nanowire with
isotropic cross-section as found to be approximately 8 meV, which is
similar to our estimate here.

155304-5



YOSUKE SATO et al. PHYSICAL REVIEW B 99, 155304 (2019)

TABLE I. Deduced interaction parameters (gc) of one-dimensional systems as reported in experiments, including the present work (shaded
row). The description of the entries is as follows. The first column gives the material(s) used in the listed references. The second column lists
the extracted α parameter (if available) from the observed quantity given in the sixth column. Based on the resistance sources attributed in the
references, the corresponding parameters αbulk, αend and αimp are given (we label those with unspecified sources with an unsubscripted α). The
third and fourth columns list the interaction parameter gc either quoted from the references (in black) or deduced from the α value (in red)
using Table II below. The third column includes the gc value deduced from αbulk or those with unknown sources. The fourth column includes
those from either αend or αimp. For α value with unknown resistance sources, we deduce gc values for all impurity types considered here. The
extracted γ value (if available) is given in the fifth column. The notations G, T , and R denote the conductance, temperature, and resistance,
respectively. The abbreviations NW, CNT, VG, and CE stand for nanowire, carbon nanotube, V groove, and cleaved edge, respectively.

Extracted α gc deduceda gc deducedb Observed
Material [Ref] from experiment from αbulk from αend or αimp γ quantity

MoSe NW [50] αbulk = 0.61–6.6; αend = 0.94–5.2 0.13−0.62 0.09−0.35 (αend) 0.25c G ∝ T α

InAs NW α = 0.35–2.5 0.28−0.74 0.16−0.65 (both) 0.5–1.0 Eq. (2)
Multiwall CNT [41] αend = 0.36–0.95 – 0.21–0.41 (αend) 0.05–0.24 Gd

InAs NWe [33] – 0.23f – – Gmax ∝ T
1
g −2g

Single-wall CNT [40] αbulk = 1.4 0.26 – 0.6 c G ∝ T α

Multiwall CNT [42] αbulk = 1.24; αend = 0.6h 0.29 0.29 (αend) – G ∝ T α

Single-wall CNT [39] αend = 0.6 h – 0.29 (αend) 0.46–0.63 c G ∝ T α

NbSe3 NW [53] αbulk = 2.15–2.2 0.31−0.32 – 1
100 – 1

77
c R ∝ T −α

GaAs VG [37] – – 0.45–0.66 (αimp) – δG1
i

GaAs/AlGaAs CE [63] αimp = 0.5 – 0.50 (αimp) – δG1

GaAs VG [38] – 0.54–0.66 – – G ∝ T
1

gc
−1

Single-wall CNT [44] – 0.55 – – STM imaging
GaAs/AlGaAs [36] – 0.6 – – �Rbs

j

GaAs/AlGaAs [35] – – 0.65–0.7 (αimp) – δG1

GaAs/AlGaAs CE [64] – 0.66–0.82 – – 	i ∝ T
1

gc
−1k

GaAs NWl [43] α = 0.02–0.23 0.81−0.98 0.77−0.98 (αimp)m – G ∝ T α

Multiwall CNT [55] α = 0.02–0.05 0.91−0.96 0.90−0.96 (αimp)n – G ∝ T α

aHere we use αbulk = 1/gc − 1 for NWs and αbulk = (1/gc − 1)/2 for CNTs. Note that here we intentionally use the same notation gc for both
NWs and CNTs; see Table II for general expressions.
bHere we use αend = (1/gc − 1)/2 and αimp = 1 − gc for NWs, and αend = (1/gc − 1)/4 and αimp = (1 − gc )/2 for CNTs; see Table II for
details.
cIn this reference, while the universal scaling behavior was observed and thus the γ value was obtained, the value for α was extracted from the
power-law conductance rather than from the full current-voltage curve.
dOn top of the universal scaling conductance, additional phenomenological parameters are required for their fitting.
eIn this reference, the device forms a quantum dot.
fThis reference reported a small value 0.38 for the effective interaction parameter g = (1/2gc + 1/2gs )−1, which was attributed to gs < 1 due
to the SOI. In contrast, our work indicates that the effects of the SOI on the interaction parameter are negligible for relevant strength of the
SOI. With the assumption gs = 1, the value of gc in this reference becomes 0.23. We use the latter value for the table entry here.
gThe notation Gmax denotes the conductance value of the Coulomb peak.
hIn this reference, the tunnel conductance from a FL lead into the bulk of a TLL is also measured. It leads to a different power law, whose
exponent is, however, not discussed in our work.
iThe notation δG1 denotes the conductance correction of the first conductance plateau.
jThe notation �Rbs denotes the backscattering resistance due to Bragg reflection.
kThe notation 	i denotes the full width at half maximum of a Coulomb peak.
lIn this reference, a core-shell nanowire was used.
mAlternatively, assuming that disorder is absent within the wire, the gc value deduced from αend follows as 0.68–0.96.
nAlternatively, assuming that disorder is absent within the nanotube, the gc value deduced from αend follows as 0.83–0.93.

C. Conversion of α to gc in scenario B (boundary tunnel
barriers and weak disorder)

We now consider scenario B, in which the tunnel current
through the boundary barriers is given by Eq. (2) with (see
Appendix B)

αend = 1

2

(
1

g′
c

+ 1

g′
s

)(
cos2 θ + g2

0 sin2 θ
) − 1 (7a)

≈ 1

2gc
− 1

2
. (7b)

The contribution of weak impurities is the same as in
scenario A, characterized by γ = 1 and αimp ≈ 1 − gc. In
contrast to scenario A, weak impurities now become dominant
over boundary tunnel barriers for α < 0.5. The observed
parameter α is therefore related to the interaction parameter
gc through

αB ≈
{

1
2gc

− 1
2 , for α � 0.5 (barriers);

1 − gc, for α � 0.5 (impurities).
(8)
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The extracted gc is shown in Fig. 5(c) along with the fit to
Eq. (6). Here, the gc values are even smaller than in scenario
A and reach as low as 0.16.

Next, we discuss how additional features of the extracted
values for α and γ fit with the assumptions of scenario B.
Namely, as Vg decreases the extracted γ value decreases from
unity and approaches 0.5 around Vg = −0.4 V. At the same
voltage, α steps across 0.5, which is the transition point
between the two expressions in Eq. (8). Such a feature can
be well captured by scenario B, where γ should be unity
when weak impurities dominate and 1/2 when the boundary
tunnel barriers dominate. The fit to Eq. (6) gives a value w =
47 nm and the associated subband level spacing of 29.6 meV,
indicating that the wire is in the single-channel regime for
Vg < −0.23 V, where the extracted γ drops below 1. Thus
we conclude that scenario B is also in agreement with several
aspects of the data.

D. Conclusion on the considered scenarios

Both scenarios A and B are reasonable and capture salient
features of the experimental data such that it is difficult to
exclude one or the other. Scenario A gives somewhat better
agreement with Eq. (6); however, we do not deem a quantita-
tive discrepancy to such a simple theory as very informative.
Arguably, the weak point of scenario A is the observation
that each wire contains two tunnel barriers in its interior.8

On the contrary, in scenario B, the tunnel barriers are formed
near the wire ends and having two per wire is more natural.
Nevertheless, we emphasize that regardless of which scenario
is realized, both support our main conclusion that strong and
gate-tunable e-e interactions are present in the wires.

VII. COMPARISON TO E-E INTERACTION STRENGTHS
REPORTED IN LITERATURE

Before concluding, we compare the e-e interaction strength
found here with previous experiments. To make sensible
comparison of numerous references, we convert—whenever
possible—to unified parameters, being gc and α in the notation
of this paper. We include one-dimensional systems regardless
of materials or measurement types and arrive at Table I, with
entries ordered by the lowest value of gc achieved in a given
reference. In general, systems with well-defined single chan-
nels (e.g., single-wall carbon nanotubes) tend to have smaller
values of gc (stronger interactions9) due to suppression of
scattering and stronger spatial confinement. A smaller mass

8If they originate in random disorder, there is no reason for such
uniformity. On the other hand, one could argue that disorder averaged
over many parallel wires might result in a scaling curve with some
effective number of tunnel barriers, being here close to 2. However,
performing such type of fitting would require the adoption of some
ad hoc assumptions about the statistical distributions of the strength
and position of the tunnel barriers. We, therefore, do not follow this
method of analysis.

9In the TLL model that we work with here, the constants g are the
only parameters defining the strength of the electron-electron inter-
actions. The value of the Fermi velocity, indicating the relation of the
kinetic to interaction energies, would also need to be considered to

of InAs compared to GaAs is also beneficial for a smaller gc,
giving a larger level spacing and a well-defined single channel.

VIII. CONCLUSIONS

To conclude, we investigate quantum wires etched from
an InAs quantum well and find that they possess strong e-e
interactions. This finding is based on observation of universal
scaling of the current as a function of the bias voltage and
temperature, from which the TLL interaction parameter can
be fitted. The fitting requires a theory for the conversion of
the observed exponent α of the power-law dependence of the
conductance to the e-e interaction strength parameter gc in the
TLL Hamiltonian. The relation between α and gc depends on
the character and positions of the sources of resistance. For the
case of finite SOI, we provide the main results of such theory
here. Its most important conclusion is that for strong e-e
interactions, the effects of the SOI on the relation between α

and gc are negligible. This reassures us that the large values of
α that we observe are due to genuinely strong e-e interactions,
and not, for example, an artifact of strong SOI. All together,
our work demonstrates that an etched InAs quantum wire is a
promising platform offering a quasi one-dimensional channel
with strong and gate-tunable e-e interactions.
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judge the “strength” of the interactions in a broader context. Here,
we do not consider such implications and when we discuss the e-e
interaction strength we are solely making statements on the value of
constants g.
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FIG. 6. SEM images of quantum wires chemically etched out
from the wafer grown along [001] direction. The wires are along
(a) [11̄0], (b) [110], and (c) [010] direction, respectively. The scale
bar in each figure indicates the length of 500 nm. From the brightness
of the edges compared to dots surrounding the wires, each wire’s
cross-section is inferred as a trapezium, a reverse trapezium and a
rectangle, respectively.

APPENDIX A: EXPERIMENTAL DETAILS

1. Chemical etching and crystal axis

To form our Hall-bar and quantum-wire devices, we use
chemical etching by diluted H2O2 and H2SO4. It is well
known that the rates of etching speed depend on the crystal
axis of the samples, consequently so do the edge shapes of
the devices. We tested the etching process on a trial wafer
and confirmed such dependency by SEM. Figure 6 shows
SEM images of wires formed in (a) [11̄0], (b) [110], and
(c) [010] direction. The SEM image reflects the slope of
edges, and therefore it enables us to identify cross-sections

of these wires as a trapezium, a reverse trapezium and a
rectangle, respectively. Based on these findings, we choose
to measure on wires formed along [010] direction so that we
can determine the width of the quantum wires more precisely,
being the same as the width of their top-surface.

2. Estimation of the gate dependence of
electronic density in wires

From the stacking structure of the quantum well and 260-
nm-thick cross-linked polymethyl methacrylate (PMMA), we
estimate the top gate capacitance of 2.71 × 10−16 F. We
take the dielectric constants of PMMA and InAlAs to be 4
and 13.59, respectively [65,66]. With this we estimate the
Fermi energy EF = 1.13 × 102 × [Vg − (−0.86)]2 (meV) and
the carrier density n = 8.31 × 105 × [Vg − (−0.86)] (cm−1),
respectively. Owing to the high mobility of the quantum well,
longer uniform quantum wires can be realized compared to
self-assembled nanowires [33].

3. Current-bias data for various Vg

Here, we show additional plots of current as a function of
bias voltage, for various Vg (Fig. 7). All the sets of raw data in
Figs. 7(a)–7(c) show good universal scaling, as evidenced in
Figs. 7(d)–7(f).

(a) (b) (c)

(d) (e) (f)

FIG. 7. Current as a function of bias voltage with various Vg. The first row is the raw data and the second is fitted and scaled data. We
evaluate (α, γ , I0) = (0.42, 1.0, 2.9 × 10−9 A/K1.42), (0.51, 0.61, 2.2 × 10−9 A/K1.51), and (2.5, 0.38, 7.7 × 10−13 A/K3.5) for Vg =
−0.2, −0.4 and −0.8 V, respectively.
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APPENDIX B: THEORETICAL ANALYSIS

In this Appendix, we present the main results of our
theoretical analysis. We first discuss the effects of the
spin-orbit interaction (SOI). We then provide formulas
which we use to extract the interaction parameters in various
scenarios. In addition, we summarize the expressions of the
exponent α for various Tomonaga–Luttinger liquid (TLL)
systems in existing literature.

1. Effects of SOI

In this section, we discuss the effects of SOI on the power-
law conductance and current-voltage curve of a TLL. The mo-
tivation for this calculation is to examine how the SOI affects
the observed parameter α. Namely, whereas the observed uni-
versal scaling behavior in the current-voltage characteristics
unambiguously establishes the TLL behavior of our quantum
wires, it remains to be clarified whether the rather large α

value (implying small gc) in the low-density regime is not an
illusion owing to the expected strong SOI in InAs.

First of all, we remark that it is known that in the absence
of a magnetic field, the SOI can be gauged away in strictly
one-dimensional system, thereby having no influence on ob-
servable quantities [30,67,68]. In a quasi-one-dimensional
geometry such as the etched quantum wires in our experiment,
however, the interplay between the SOI and the transverse
confinement potential that defines a finite width of the quan-
tum wire can modify the band structure, leading to different
velocities for different branches in the spectrum [58,68].
It was shown that such an effect destroys the spin-charge

separation [20,21], leading to a coupling between the spin and
charge sectors in Eq. (1) in the main text.

To investigate whether such a coupling alters the ob-
served α value, we theoretically analyze its effects on the
current-voltage characteristics. In the following, we first out-
line our calculation based on the TLL formalism, and then
give our results on various types of resistance sources. To
be specific, we consider impurities which are either strong or
weak (acting as tunnel barriers or potential disorder), and for
the former type we further consider whether they locate in the
bulk or at the boundaries (ends) of the wires.

Before continuing, let us comment on possible origins of
the tunnel barriers at the boundaries of the wire. We first
clarify that these “boundary barriers” may be located close to,
but not exactly at the physical boundary between the wire and
a lead. As discussed in Ref. [49], a barrier can be considered
a boundary one if its distance from the wire boundary is
shorter than the scales h̄vF /(kBT ) and h̄vF /(eV ). Since for
our experiments these length scales are typically of order
O(100 nm)–O(1 μm), observing boundary tunnel barriers is
plausible.

To proceed, we follow Refs. [20,21] and add the following
term to Eq. (1) of the main text:

Hso = δv

∫
h̄dx

2π
{[∂xφc(x)][∂xθs(x)] + [∂xφs(x)][∂xθc(x)]}.

(B1)
It reflects the presence of SOI as a velocity difference δv

between the two branches of the energy spectrum. Since the
full Hamiltonian H + Hso is still quadratic in the bosonic
fields, we can diagonalize it to get

H ′ ≡ H + Hso =
∑
ν=c,s

∫
h̄dx

2π

{
u′

νg′
ν[∂rθ

′
ν (x)]2 + u′

ν

g′
ν

[∂xφ
′
ν (x)]2

}
, (B2a)

where the modified TLL parameters and velocities are given by

g′
c = gcg0

gs

[(
g2

0 + g2
s

) + (
g2

s − g2
0

)
cos(2θ ) + g0g2

s
δv
vF

sin(2θ )(
g2

0 + g2
c

) + (
g2

0 − g2
c

)
cos(2θ ) + g0g2

c
δv
vF

sin(2θ )

]1/2

, (B2b)

g′
s = gsg0

gc

[(
g2

0 + g2
c

) + (
g2

c − g2
0

)
cos(2θ ) − g0g2

c
δv
vF

sin(2θ )(
g2

0 + g2
s

) + (
g2

0 − g2
s

)
cos(2θ ) − g0g2

s
δv
vF

sin(2θ )

]1/2

, (B2c)

u′
c = vF

2g0gcgs

[(
g2

0 + g2
c

) + (
g2

0 − g2
c

)
cos(2θ ) + g0g2

c
δv

vF
sin(2θ )

]1/2

×
[(

g2
0 + g2

s

) + (
g2

s − g2
0

)
cos(2θ ) + g0g2

s
δv

vF
sin(2θ )

]1/2

, (B2d)

u′
s = vF

2g0gcgs

[(
g2

0 + g2
s

) + (
g2

0 − g2
s

)
cos(2θ ) − g0g2

s
δv

vF
sin(2θ )

]1/2

×
[(

g2
0 + g2

c

) + (
g2

c − g2
0

)
cos(2θ ) − g0g2

c
δv

vF
sin(2θ )

]1/2

, (B2e)

with the parameters

g0 =
√

2gcgs√
g2

c + g2
s

, (B2f)

θ = 1

2
arctan

(
δv

vF

√
2gcgs

√
g2

c + g2
s

g2
s − g2

c

)
. (B2g)
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In the absence of the SOI, we have (δv, θ ) → (0, 0), and
therefore (g′

c, g′
s, u′

c, u′
s ) → (gc, gs, uc, us ). Using the model in

Ref. [58], we have estimated that for the parameters relevant to
our experiments, the value of δv/vF is at most around 0.1 and
becomes vanishingly small when the system is close to being
depleted. We remark that Ref. [20] obtains a similar estimate,
of δv/vF ≈ 0.1–0.2.

With the diagonalized Hamiltonian Eq. (B2a), we are able
to compute the tunnel current and the conductance of the
quantum wires. Leaving the details for a separate publication
[51], here we state our results and discuss their relevance to
our experiment.

As mentioned in the main text, we consider several sce-
narios in which different types of resistance are present. We
first consider a single tunnel barrier in the bulk, modeled as
a TLL-TLL junction, and compute the current through it. For
relevant strength of SOI, we obtain Eq. (2) in the main text,
with the parameters γ = 1 and α replaced by

αbulk (g′
c, g′

s, θ ) =
(

1

g′
c

+ 1

g′
s

)(
cos2 θ + g2

0 sin2 θ
) − 2,

(B3)

where the arguments (g′
c, g′

s, θ ) are themselves functions of
(gc, gs, δv). The exponent Eq. (B3) is given in Eq. (3) in
the main text. In the presence of several bulk barriers with
comparable resistances, the tunnel current through the wire is
given by Eq. (2) with the same αbulk as Eq. (B3) and with γ

equal to the inverse of the barrier number.
An alternative approach based on the renormalization-

group tools [59,60] can be employed to compute the power-
law conductance in the high-temperature (kBT � eV ) and
high-bias (eV � kBT ) limits. In the presence of a single bulk
barrier, the power-law conductance can be summarized as

Gbulk (T,V ) ∝ Max(kBT, eV )αbulk , (B4)

which is characterized by the same parameter αbulk. Similar
to the tunnel current, the above formula can be generalized
for several bulk barriers upon replacing V → γV with 1/γ

being the barrier number. It can be shown that Gbulk (T,V ) is
consistent with the current-voltage characteristics [Eq. (2) in
the main text] in the high-temperature and high-bias limits,
demonstrating the compatibility of the two approaches.

We now analyze how the SOI influences the current-
voltage characteristics through the parameter αbulk. It is useful
to define an effective interaction parameter gc,eff , such that all
the effects of δv/vF are incorporated into a single parameter.
To be specific, we define gbulk

c,eff by the following relation:

αbulk (g′
c, g′

s, θ ) ≡ αbulk
(
gbulk

c,eff , 1, 0
) = 1

gbulk
c,eff

− 1. (B5)

This leads to the following definition for gbulk
c,eff ,

1

gbulk
c,eff

≡
(

1

g′
c

+ 1

g′
s

)(
cos2 θ + g2

0 sin2 θ
) − 1, (B6)

which describes the relation between the apparent interaction
parameter gc,eff (corresponding to the extracted gc from our
experimental observation) and the intrinsic parameters gc,
gs, and δv. We remark that the exponent of the power-law
conductance does not depend on the number of barriers, so the

Δ
Δ
Δ
Δ

g c
,e
ff

bu
lk

Δ
Δ
Δ
Δ

gc

g c
,e
ff

im
p

FIG. 8. Effective interaction parameter gc,eff as a function of the
actual interaction parameter gc for various values of the ratio δv/vF .
(Top) In the case of tunnel barriers, gbulk

c,eff is defined in Eq. (B6).

(Bottom) In the case of weak impurities, gimp
c,eff is defined in Eq. (B9).

definition of gc,eff is the same for single and multiple barriers
in the wire.

To visualize the effects of the SOI on gbulk
c,eff , we plot it as

a function of gc for several values of δv/vF , as displayed in
the top panel of Fig. 8. Note that we intentionally include
exaggerated values of δv/vF � 0.2 in the plot; a more realistic
value δv/vF � 0.1 leads to barely visible changes. Further,
while rather strong SOI does modify the parameter gbulk

c,eff , we
find two important features relevant to our experiments. First,
gbulk

c,eff increases with an increasing strength of SOI. Therefore,
the SOI cannot make the apparent interaction constant gbulk

c,eff

smaller than gc. Second, the SOI-induced increase of gbulk
c,eff is

sizable in the weak- or moderate-interaction regime (0.5 �
gc � 1), but becomes negligible for the strong-interaction
regime (gc � 0.5). Thus, these features allow us to neglect
the SOI when extracting the value of gc in the case of bulk
barriers. We emphasize that such an approximation is more
accurate (becoming practically exact) in the low-Vg (small gc)
regime, which is our primary interest.

We now move on to the case of a tunnel barrier located
around a boundary of the wire, which acts as a TLL-Fermi
liquid (FL) junction. Again, we compute the tunnel current
for generic temperatures and bias voltages, as well as the
power-law conductance Gend ∝ Max(kBT, eV )αend in the high-
temperature and high-bias limits. In this case, the tunnel
current and the power-law conductance are the same as those
for a bulk barrier, except that the exponent reads

αend =
(

1

2g′
c

+ 1

2g′
s

)(
cos2 θ + g2

0 sin2 θ
) − 1, (B7)
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from which we can define the same parameter gc,eff as in
Eq. (B6). Again, in the presence of several barriers, we have
the same exponent αend and V → γV . Similar to αbulk, a real-
istic value of the ratio δv/vF cause only a minor modification
of the αend values, justifying our procedure on the extraction
of the gc value using the zero-SOI formula [Eq. (7b) in the
main text].

We now turn to the case of weak impurities, modeled as
a backscattering potential. In this case, the calculation for a
tunnel barrier in Ref. [49] is not applicable. We therefore com-
pute the conductance using the method of Refs. [59,60]. The
corresponding exponent in the high-temperature and high-bias
limits is

Gimp(T,V ) ∝ Max(kBT, eV )αimp , (B8a)

αimp = 2 − cos2 θ (g′
c + g′

s) − g2
0 sin2 θ

(
1

g′
c

+ 1

g′
s

)
.

(B8b)

Since the conductance is similar to the tunnel barrier case
(upon replacing the exponent αbulk, αend → αimp), the power-
law conductance can mimic the scaling behavior observed in
our experiment. We therefore take α → αimp in Eq. (2) and
treat it as an interpolation formula for the current-voltage
curve of a TLL in the presence of weak impurities. In this
case, V is the voltage difference across the entire wire, so
γ = 1 regardless of the number of impurities. Equation (B8b)
allows us to define the effective interaction parameter for the
weak-impurity case,

gimp
c,eff ≡ cos2 θ (g′

c + g′
s ) + g2

0 sin2 θ

(
1

g′
c

+ 1

g′
s

)
− 1. (B9)

In the bottom panel of Fig. 8, we plot gimp
c,eff vs gc. We see that

the value of gimp
c,eff is barely changed, so neither in this case the

SOI leads to substantial effects on the extracted value of the
interaction parameter.

In summary, for all the types of resistance sources we
consider here, the effects of SOI on the extracted value of gc

are negligible. Therefore the experimental values of gc can
be extracted using equations without including the spin-orbit
effects, as given in the main text.

2. Extracting the interaction parameters in various scenarios

In this section, we discuss how the theoretically developed
results in the previous section are applied to our experimental
data, in order to extract the interaction parameters of our quan-
tum wires. Since SOI leads to negligible changes in the param-
eter α, in the following we use its zero-SOI form. We express
α as a function of gc considering the resistance contributions
arising from up to two tunnel barriers and many weak impuri-
ties. The former is suggested by the observed value of 1/γ �
2, and the latter is believed to be present since our wires are
relatively long on the scale of the bulk mean free path.

We examine the following scenarios: (A) all barriers are
in the bulk and (B) all are around the boundaries of the
wire (between the TLL and FL). For both we also add the
resistance contributions from weak impurities, and the contact
resistance.

In scenario A, weak impurities, both the tunnel barriers in
the wire and the contact resistance R0 = h/2e2 contribute to
the total resistance,

RA(T,V ) = 1

Gbulk (T,V )
+ 1

Gimp(T,V )
+ R0

=
1/γ∑
b=1

Rb

[
�a

Max(kBT, γ eV )

]αbulk

+ Ri

[
�a

Max(kBT, eV )

]αimp

+ R0. (B10)

Here, 1/γ is the number of bulk barriers, indexed by b, each
with a bare resistance scale Rb. Further, Ri is the bare resis-
tance scale of the disorder potential and �a is the effective
bandwidth introduced in the bosonization scheme. Assuming
that the two bare resistances are of the same order O(Rb) =
O(Ri ), the relative magnitude of the barrier and disorder
contributions is determined by the exponents αbulk and αimp.
Because under experimental conditions �a is much larger
than kBT and eV , the term with the larger exponent dominates
(also over the contact resistance). We therefore consider the
case where the resistance due to the bulk barriers dominates
(that is, when αbulk � αimp), which leads to the following
condition:

αbulk � αimp ⇔ gc � 1, (B11)

where the approximation arises from the assumptions of
O(Rb) = O(Ri ), gs = 1, and negligible effects from SOI.

Therefore, when the tunnel barriers are in the bulk, the
contribution from the barriers dominates over the one from
weak impurities for any repulsive interaction. Consequently,
in scenario A, the impurity-induced resistance is negligible,
and we obtain the conductance

GA(T,V ) = 1

RA(T,V )

≈ Gbulk (T,V ) ∝ Max(kBT, γ eV )αbulk , (B12)

resulting in the universal scaling formula in Eq. (2), with α =
αbulk. In the main text, we therefore use Eq. (5) to extract the
gc value.

We now turn to scenario B, in which there are many weak
impurities coexisting with tunnel barrier(s) around the wire
end(s). We get

RB(T,V ) = 1

Gend(T,V )
+ 1

Gimp(T,V )
+ R0

=
1/γ∑
b=1

Rb

[
�a

Max(kBT, γ eV )

]αend

+ Ri

[
�a

Max(kBT, eV )

]αimp

+ R0. (B13)

The condition for the dominant contribution from the barriers
follows as

αend � αimp ⇔ gc � 1

2
. (B14)

As a result, there is a transition of the dominant resistance
source when varying gc through the top gate voltage. The
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dominant source changes from the tunnel barriers in the
strong-interaction regime (gc � 1/2) to the weak impurities
in the weak-interaction regime (gc � 1/2). We get

GB(T,V ) ∝
{

Max(kBT, γ eV)αend , for gc � 1/2,

Max(kBT, eV )αimp , for gc � 1/2,
(B15)

with the exponents αend and αimp given in Eqs. (B7) and (B8b),
respectively.

Interestingly our calculation also suggests that the param-
eter α should be larger than 0.5 for gc � 1/2, and smaller
than 0.5 for gc � 1/2. Therefore, in scenario B, we are able to
identify the transition of the dominant resistance source based
on the observed α values. When α � 0.5, the resistance is due
to the boundary tunnel barrier(s) in the regime gc � 1/2, and
therefore γ 
 0.5 suggests two barriers. On the other hand,
when α � 0.5, the resistance arises from the impurities, and
γ becomes unity.

Consequently the interpolation formula for scenario B is
given by Eq. (2), with the parameters

(α, γ ) =
{

(αend, γ ), for α � 0.5 (barriers);
(αimp, 1), for α � 0.5 (impurities). (B16)

In the main text we use Eq. (8) to extract the value for gc from
the observed α values. Remarkably, upon increasing Vg, we
observe that α decreases below 0.5 around the same Vg value
at which γ changes from 
0.5 toward unity. This observation
is consistent with scenario B, which provides an explanation
for the change in γ .

Finally we comment on a third scenario. Namely, one may
consider having both types of barriers, bulk and boundary.
However, in contrast to our experimental observations this
scenario would give conductance with different power laws
in the high-bias and high-temperature limits, as discussed in
Ref. [50]. We therefore conclude that this scenario is not
relevant to our observations.

In summary, the combined experimental and theoretical
results for the considered scenarios indicate that our extracted
value of gc = 0.16–0.28 is not an artifact of the strong SOI in
the InAs wires. This conclusion holds regardless of whether
scenario A or B is realized.

3. Summary of the power-law conductance
in various TLLs

In this section, we give a summary of the parameter α for
various TLL systems. This allows us to compare the interac-
tion parameters in various one-dimensional systems listed in
Table I in the main text. Specifically, the summary includes a
spinless TLL, a spinful TLL (without SOI), and a spinful TLL
with valley degrees of freedom (that is, a carbon nanotube).

In Table II, we list the exponent αbulk/αend/αimp for various
TLLs subject to tunnel barriers and many weak impurities. We
remark that the exponents αbulk/αend are the same for single
and multiple tunnel barriers in the wire. The first column
gives the system type. The second column corresponds to
the scenario in which the tunnel barriers (isolated, strong
impurities) are located in the bulk of a wire (that is, TLL-TLL
junctions), with the references given in the third column.
The fourth column corresponds to the tunnel barriers located
around the boundaries of the wire (that is, TLL-FL junctions),
with the corresponding references in the fifth column. The
sixth column gives the exponent αimp for various TLLs subject
to many weak impurities, with the references in the seventh
column. In contrast to αbulk/αend in the tunneling regime, the
value of αimp is bounded. In the table, we give the allowed
ranges, assuming that the electron-electron interactions only
act on one sector. For example, for a spinful TLL, we assume
that the spin sector is noninteracting, gs = 1. For repulsive
interactions, the interaction parameter of the charge sector is
in the range gc ∈ [0, 1], leading to a bound αimp ∈ [0, 1].

TABLE II. Exponent α of the power-law conductance in various TLLs subject to tunnel barriers and many weak impurities (treated as
weak potential disorder). The first column lists the system types. The second (fourth) column corresponds to the exponent αbulk (αend) for a
TLL-TLL (TLL-FL) junction. The sixth column lists the exponents αimp corresponding to many weak impurities. The references corresponding
to the entries are given in the third, fifth, and seventh columns. The eighth column lists the allowed ranges for αimp, assuming that only one of
the sectors is interacting (with the interaction parameters of the other sectors set to unity). In the entries, the notation g denotes the interaction
parameter in a spinless TLL, while the notation gc/s denotes the interaction parameter of the charge/spin sectors, respectively, in a spinful TLL
(no SOI). For a spinful TLL with the valley degrees of freedom (for example, a carbon nanotube), the notation gνP denotes the sectors of the
charge/spin degrees of freedom (with ν ∈ {c, s}, respectively), and the symmetric/antisymmetric combination of the valleys (with P ∈ {S, A},
respectively). The quantities after the approximation symbols (≈) indicate the values of the exponents with gs, gcA, gsS, gsA set to unity.
Additional references are given in the footnotes below the table.

Bulk barrier Boundary barrier Weak impurities Allowed rangea

TLL type αbulk Refs. αend Refs. αimp Refs. for αimp

spinless 2g−1 − 2 [60,69] g−1 − 1 [60] 2 − 2g [59,60,70] [0, 2]

spinful g−1
c + g−1

s − 2 [59] 1
2 (g−1

c + g−1
s ) − 1 [71] 2 − gc − gs [59,70]b [0, 1]

≈ g−1
c − 1 ≈ 1

2 (g−1
c − 1) ≈ 1 − gc

spinful with 1
2 ginv

sum − 2 [73]c 1
4 ginv

sum − 1 [39,49,75] 2 − 1
2 gsum [75,76]c [0, 1/2]

two valleysd ≈ 1
2 (g−1

cS − 1) ≈ 1
4 (g−1

cS − 1) ≈ 1
2 (1 − gcS)

aAssuming that g, gc, gcS ∈ [0, 1].
bSee also the calculation in the presence of the multibands or multiple channels [72].
cSee also the calculation for multiwall nanotubes or ropes of single-wall nanotubes [74].
dFor this entry, we define gsum = gcS + gcA + gsS + gsA and ginv

sum = g−1
cS + g−1

cA + g−1
sS + g−1

sA .
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