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Orbital effects of a strong in-plane magnetic field on a gate-defined quantum dot
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We theoretically investigate the orbital effects of an in-plane magnetic field on the spectrum of a quantum
dot embedded in a two-dimensional electron gas (2DEG). We derive an effective two-dimensional Hamiltonian
where these effects enter in proportion to the flux penetrating the 2DEG. We quantify the latter in detail for
harmonic, triangular, and square potential of the heterostructure. We show how the orbital effects allow one
to extract a wealth of information, for example, on the heterostructure interface, the quantum dot size and
orientation, and the spin-orbit fields. We illustrate the formalism by extracting this information from recent
measured data [L. C. Camenzind et al., arXiv:1804.00162; Nat. Commun. 9, 3454 (2018)].
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I. INTRODUCTION

The two-dimensional electron gas (2DEG) is a versatile
platform for a host of devices and applications of nanotech-
nology [1]. In experiments with spin qubits realized in gated
quantum dots based on 2DEGs [2–4], it is usual to use
magnetic fields which are applied parallel to the 2DEG plane
(in-plane fields), and which are large, of the order of Tesla.
The former is because, unless the quantum Hall effect physics
is aimed at, strong orbital effects of the Lorentz force are
undesirable. The second is because many tasks require an
appreciable energy contrast (say, with respect to the temper-
ature) of the spin opposite states, relying on the inherently
small Zeeman splitting.

Necessarily, the assumption of the electron gas being
quasi-two-dimensional breaks down once the in-plane field
becomes too large, roughly when the magnetic length

√
h̄/eB

becomes comparable to the width of the 2DEG. To give an
example, for the 2DEG width of 8 nm, this occurs at about
10 T. The typical field strengths of a few Tesla are therefore
not negligibly small compared to this crossover field, and
one expects sizable effects which go beyond the quasi-two-
dimensional model [5,6]. Quantification of such orbital effects
of an in-plane field on spectra of quantum dots is what we
pursue here.

We find that these effects are well captured by a renor-
malization (increase) of the effective mass along the axis
which lies within the 2DEG plane and is perpendicular to
the magnetic field. We give the renormalization factor as a
function of the flux corresponding to the in-plane component
of the magnetic field penetrating an area expressed as a square
of an effective 2DEG width. We relate the latter to the nominal
width for 2DEGs with the most typical confinement profiles,
namely, harmonic, triangular, and rectangular.

We propose a two-dimensional effective model which re-
mains reliable even for very large fields, well beyond the
crossover field. The corresponding Hamiltonian is given in

Eq. (42) and it reduces the presence of the third dimension
to a single parameter, the above-mentioned effective 2DEG
width. It gives essentially exact results if the magnetic field
is purely in plane and the heterostructure confinement is har-
monic, and compares well with a fully 3D description in other
cases, including an appreciable out-of-plane component of the
magnetic field, which is, for example, typical for designs with
micromagnets [7,8].

Perhaps the most important point we want to make in this
work is that the orbital effects of in-plane fields should not
be viewed as a nuisance, invalidating the simple model being
a 2DEG with a zero width. Namely, as the direction of the
external magnetic field can be experimentally well controlled,
these effects can reveal the quantum dot orientation within
the 2DEG plane, as well as its size in all three directions
[9]. This, so far missing, spectroscopic tool is essential for a
quantitative assessment of, for example, the spin-orbit fields
[10] or the hyperfine electron-nuclear interaction, and the
related limits on the spin relaxation [11,12], dephasing [13],
or measurement fidelities [14]. To illustrate the power of
these tools, we use them here to fit the strengths of the spin-
orbit interactions in a GaAs quantum dot. We find excellent
agreement with values extracted from an independent fit based
on the directional variation of the spin relaxation time done in
Ref. [11]. It demonstrates an unprecedented level of control
over, and understanding of, spin qubits in quantum dots.

The paper is structured as follows. In Sec. II, we introduce
a three-dimensional effective-mass model of a quantum dot.
In Sec. III, we derive the effective 2D Hamiltonian which in-
cludes the effects of the in-plane field in the leading order by a
perturbation theory. Here, we also give details on the effective
width for various 2DEG profiles. In Sec. IV, we discuss the
effects expected in the dot spectra. In Sec. V, we generalize
the Hamiltonian beyond the perturbative regime of modest
magnetic fields. In Sec. VI we illustrate the usefulness of our
results by extracting the 2DEG interfacial electric field from
experimental data, with which one can calculate the spin-orbit
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fields. Several auxiliary results are given in three Appendices.
Appendix A contains details on the matrix elements needed to
convert the spectroscopic data to the heterostructure-interface
characteristics. Appendix B gives, for reference, the spectrum
of a general quadratic Hamiltonian, which then includes also
our effective 2D Hamiltonian. Appendix C contains the eval-
uation of the formulas for the strengths of the linear spin-orbit
interactions.

II. MODEL

We consider a quantum dot defined by gates on top of
a two-dimensional electron gas created by a semiconductor
heterostructure. Since we are interested in effects which go
beyond the lowest-order approximation, being that of a quasi-
two-dimensional dot, we need a three-dimensional model to
start with. The k · p theory based on the envelope-function
approximation is an established method to obtain models
which are simple enough for analytical calculations, yet reli-
able in treating the effects of the band structure and the sharp
interface of the heterostructure.

A. Zeroth-order effective mass Hamiltonian

The leading-order term for the conduction band of a zinc-
blende semiconductor, such as GaAs, is

H = P2

2m
+ V (R). (1)

It describes particles with a quadratic energy dispersion which
move in the externally imposed confinement potential V (R),
created by gates and the heterostructure composition. Here, R
is the three-dimensional position vector, and

P = −ih̄(∂x, ∂y, ∂z ) + eA (2)

is the canonical momentum, with e the absolute value of the
electron charge, and A the vector potential of the magnetic
field B, through which the orbital effects enter. On this level,
the only effect of the crystal is that the effective parameter, the
mass m, differs from the value of the electron mass in vacuum.

Before continuing, let us make a comment. Here, we
analyze the magnetic field effects on the orbital energies of the
dot. The magnetic field influences, similarly, the spin structure
of the dot states. The latter effects are smaller than the former,
analogously to the Zeeman energy being smaller than the
orbital energy. We do not include the spin-dependent effects
in Eq. (1) and report on these elsewhere [15].

B. In-plane and perpendicular coordinates

We assume that the heterostructure is grown along the
[001] crystallographic axis, which is further called the perpen-
dicular direction, with the unit vector ẑ, and the corresponding
coordinate z. The remaining two crystallographic directions
are denoted as x̂ = [100] and ŷ = [010], and we call them
in plane. The separation to perpendicular and in-plane co-
ordinates is motivated by strong anisotropy of the three-
dimensional confinement. Namely, it is a sum of a harder
perpendicular (heterostructure) part v(z) and a softer in-plane
(quantum dot) part V2D(x, y). Correspondingly, we resolve
the three-dimensional (3D) position vector as R = (r, z). For

further convenience, we introduce the in-plane magnetic field
component b = (Bx, By). If the magnetic field is constant,
which we assume, it is useful to choose the following vector
potential:

A = (z − z0)b × ẑ + 1
2 Bzẑ × r, (3)

corresponding to the in-plane and out-of-plane magnetic field
components, respectively. Dropping the zero z component
from these two vectors, we introduce

a‖ = (z − z0)(By,−Bx ), (4)

with the constant z0 specified below, and

a⊥ = 1
2 Bz(−y, x). (5)

Both a‖ and a⊥ are in-plane vectors. Finally, we write the
momentum as P ≡ (p + e a‖, pz ), introducing

p = −ih̄(∂x, ∂y) + e a⊥ = −ih̄(∂x, ∂y) + eBz

2
(−y, x), (6a)

pz = −ih̄∂z, (6b)

as the in-plane and out-of-plane kinetic-momentum operators
[16], respectively. The former includes the effects of the per-
pendicular component of the magnetic field, which is the only
way the orbital effects of the magnetic field enter in the
quasi-two-dimensional limit.

C. Mixing due to orbital effects of in-plane field

With the above definitions, the Hamiltonian in Eq. (1) can
be written as

H = H2D + Hz + H ′
B. (7)

The first term contains only in-plane coordinates

H2D = p2

2m
+ V2D(r), (8)

and the second one only the perpendicular coordinate

Hz = p2
z

2m
+ v(z). (9)

The two sets of coordinates are coupled by the in-plane
magnetic field

H ′
B = e

m
a‖ · p + e2

2m
a2

‖ ≡ H ′
1 + H ′

2, (10)

where we denoted separately the term linear and quadratic in
the in-plane magnetic-field components as H ′

1 and H ′
2, respec-

tively. Before continuing, it is useful to note the following
identity:

H ′
1 =

[ e

ih̄
a‖ · r, H2D

]
, (11)

which can also be written as
e

ih̄
a‖ · r = L−1

2D (H ′
1), (12)

using L2D(X ) ≡ [X, H2D] as the definition of the Liouville
operator L2D corresponding to H2D, the in-plane Hamiltonian.

085308-2



ORBITAL EFFECTS OF A STRONG IN-PLANE MAGNETIC … PHYSICAL REVIEW B 99, 085308 (2019)

D. Symmetries of the confinement potentials

In the following, we derive results in a general form which
does not refer to the specifics of the confinement potentials.
However, it is useful to consider certain typical cases. Con-
cerning the dot, we take an anisotropic harmonic confinement

V2D(r) = h̄2

2m

(
x2

d

l4
x

+ y2
d

l4
y

)
, (13)

parametrized by two confinement lengths lx and ly or, al-
ternatively, the associated energies h̄ωx,y = h̄2/ml2

x,y. If the
two are equal, the quantum dot has rotational symmetry in
the plane and the eigenstates of H2D form the Fock-Darwin
spectrum. If lx �= ly, the dot has two reflection axes x̂d , ŷd

which are in general misaligned from the crystallographic
axes x̂, ŷ by angle δ. Apart from symmetry, the in-plane
excitation energies are of interest. We denote them by E∗

x
and E∗

y . For the harmonic confinement at zero magnetic field,
E∗

x,y = h̄ωx,y, and we denote the energy of this order as h̄ω.
A finite perpendicular magnetic field will change the value of
this energy compared to its Bz = 0 value [17–19], but we will
not consider cases where this effect would be substantial.

Concerning the heterostructure confinement, we will in-
clude three typical choices. The first is a harmonic confine-
ment

vH (z) = h̄2

2ml4
z

z2. (14)

It represents structures with ẑ-reflection symmetry. Although
it might be realized by modulating the heterostructure compo-
sition [20], rather than being microscopically faithful, its ad-
vantage is that it results in an analytically solvable model (see
Appendix B). The second one is a rectangular confinement

vR(z) =
{

0, if z ∈ 〈−lz/2, lz/2〉
V0, if z /∈ 〈−lz/2, lz/2〉. (15)

It is a more realistic microscopic description than Eq. (14)
for a symmetric quantum well. Here, V0 is the offset of the
conduction bands of the two materials defining the quantum
well and lz is its nominal width. The third choice is a triangular
potential

vT (z) =
{

V0, if z < 0

eEextz, if z > 0
(16)

which represents asymmetric cases, for example, a single
interface heterostructure with the band offset V0, and the
interface electric field Eext, which typically arises from a
remote doping layer. With this choice, the eigenfunctions
can be expressed by Airy functions. They are given, together
with several matrix elements which will be needed below, in
Appendix A. Unlike for previous choices, there is no nominal
length lz in Eq. (16). It is, however, useful to define it by
eEext ≡ h̄2/2ml3

z [see Eq. (A8) in Appendix A].
To allow for comparison of confinements with different

shapes, we use the following common notation. The “nom-
inal” length lz is considered as a parameter defining the
confinement, which is fixed by the fabrication, and therefore
does not change (for example, upon the application of the

b

B

x

yz

yd

lz

xd

x

xz

FIG. 1. Geometry of the setup. The quantum dot is defined at
the heterostructure interface which is perpendicular to the ẑ = [001]
axis, and has nominal width lz. In the interface plane, the main
axis of the quantum dot confinement x̂d makes angle δ with the
crystallographic axis x̂ = [100]. The magnetic field has an out-of-
plane component Bz, and the in-plane component b, the latter making
angle φ with x̂.

magnetic field). This fixed length defines an associated energy
scale h̄ωz = h̄2/ml2

z . These nominal parameters are usually
not directly accessible. Instead, spectroscopy can reveal the
excitation energies. We denote by E∗

z the energy difference
of the lowest two subbands, the subband excitation energy,
and we associate the length l∗

z to it by E∗
z ≡ h̄2/ml∗2

z . These
quantities will change with the magnetic field. Also, at zero
magnetic field, even though for the harmonic potential l∗

z = lz,
these two lengths differ by factors of order 1 for the other two
potentials (see Appendix A).

The ratio of the in-plane and perpendicular confinement
energies η = h̄ω/h̄ωz quantifies how much the dot deviates
from the idealized, purely quasi-two-dimensional case (for
which η = 0). We call this parameter the aspect ratio. As we
are interested in quantum dots that are at least approximately
two dimensional, we will treat this ratio as a small parameter.
The importance of the orbital effects of the in-plane field,
which are the content of this work, are proportional to η. A
typical value in gated dots is η = 1

10 , or smaller. The geometry
of the structure is summarized in Fig. 1.

III. GAUGE-INVARIANT PERTURBATION THEORY

We now perform a perturbative calculation of the orbital
effects of the in-plane magnetic field. We will use the second-
order degenerate perturbation theory and pay special attention
to the gauge invariance.

A. Basis

The orbital effects of the in-plane field arise through H ′
B

[Eq. (10)]. This term is treated as a perturbation, so that the
rest of the Hamiltonian defines the basis. It spans a linear
space defined by basis states

|αi〉 = |α〉 ⊗ |i〉, (17)

with the corresponding energy Eαi. The basis state is a tensor
product of an eigenstate of the heterostructure Hamiltonian Hz

[Eq. (9)], with the corresponding wave function

ψα (z) = 〈z|α〉, (18)
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and an eigenstate of the 2D quantum dot Hamiltonian H2D

[Eq. (8)], with the corresponding wave function

	i(r) = 〈r|i〉. (19)

We will use the Greek and Roman letters, respectively, as
labels of the two sets. Also, we use the standard nomenclature
and call a subset of Eq. (17) with a fixed α a subband.

We note that it might be tempting to include H ′
2, which

is a function of z only, into Eq. (9). Especially for the har-
monic potential, it is simple to find the spectrum of such a
redefined Hamiltonian Hz analytically, and find immediately,
for example, the expected diamagnetic energy shifts of the
subbands. This choice would, however, make the basis gauge
dependent, and this not only for the wave functions but also
the energies. The gauge invariance of the total Hamiltonian
eigenenergies would then be reinstated order by order from
the effects of H ′

1. We therefore find it natural to keep H ′
2 as

a part of the perturbation, making the gauge invariance much
more transparent, as we show shortly below.

B. Second-order perturbation theory

Once the basis has been set, we are ready to evaluate the
effects of H ′

B. We use the degenerate perturbation theory of
Ref. [21], which derives an effective Hamiltonian describing
a quasidegenerate subspace.1 For us, this subspace is the
subband α. Up to the second order in the in-plane magnetic
field, the matrix elements of the effective Hamiltonian for the
αth subband are

H (α)
i j = 〈αi|H ′

1 + H ′
2|α j〉 + 1

2

∑
βk

′〈αi|H ′
1|βk〉

× 〈βk|H ′
1|α j〉

(
1

Eαi − Eβk
+ 1

Eα j − Eβk

)
. (20)

The sum runs over all values of the indices β and k except the
following two pairs: (βk) �= (αi) and (βk) �= (α j).

We now split the sum over the subband index β to the term
β = α and the rest, β �= α. Adding the former to the first term
of Eq. (20) gives, with the help of the identity in Eq. (11), the
following operator:

H (α)
intra = H ′

1

α + H ′
2

α + 1
2

[
H ′

1

α
, L−1

2D (H ′
1)

α]
. (21)

It contains terms with the z-dependent operators averaged over
the given subband profile X

α ≡ 〈α|X |α〉. The first term in the

1The method is known under several names. Our Eq. (20) is taken
from Ref. [21] [see formula (15.46) on p. 138 therein], which calls
it the “method of successive transformations (of the degenerate per-
turbation theory)”. Reference [22] calls it a “method of infinitesimal
basis transformations” (see p. 11 therein), and points out a differ-
ence to the “Löwdin” perturbation theory (see Appendix A, p. 233
therein): while both of these are perturbation theories for the effective
Hamiltonian, they relate similarly as the Rayleigh-Schrödinger to
the Brillouin-Wigner perturbation theory. Namely, the former results
in a linear eigenvalue equation with an involved structure of the
higher-order terms. In the latter, it is simple to generate higher-order
terms in the perturbation expansion, on the expense of getting a
nonlinear equation with the unknown energy in the denominators.

previous equation is

H ′
1

α = e

m
a‖α · p. (22)

This term can be added to Eq. (8) and removed by a con-
venient gauge choice for the vector potential. Specifically,
choosing z0 = zα , it becomes zero. Note, however, that in
general the gauge removal of this term can be done only
within a single subband. This is natural since if wave functions
of two subbands differ in their center of mass along the z
coordinate [which is the case, for example, for the triangular
potential in Eq. (16)], the in-plane field has to result in phases
upon intersubband transitions. If these phases are of relevance
[23,24], H ′

1

α
should be included in Eq. (8) and kept track of

explicitly (in other words, a single choice for z0 has to be
made for all subbands). On the other hand, in a symmetric
heterostructure potential, all subbands have the same center
of mass and a single choice removes H ′

1

α
for all subbands. For

the symmetric confinements given in Eqs. (14) and (15), this
would be the choice z0 = 0.

We also note that such gauge removal is not possible for H ′
1

itself, where z is still an operator. The difference is illustrated
by the following. The remaining two terms from Eq. (21)
produce the subband diamagnetic shift [25]

E (α)
dia = e2

2m
b2 varα (z). (23)

Here, the variance is defined by

varα (z) = (z − z0)2
α − ((z − z0)

α
)2, (24)

and is clearly independent on z0, that is, gauge invariant. The
second term, required for the expression to be invariant to the
choice of z0, comes from the H ′

1 term.

C. Recipe

We summarize the above in the following recipe. Interested
in the in-plane field effects on the lowest subband α, the
choice z0 = zα reduces the effective Hamiltonian for this
subband to the sum of three terms. A purely 2D quantum dot
Hamiltonian (8), the diamagnetic shift (an overall constant)
E (α)

dia [Eq. (23)], and the following correction:

〈i|H (α)
inter| j〉 = 1

2

∑
β �=α

∑
k

〈αi|H ′
1|βk〉〈βk|H ′

1|α j〉

×
(

1

Eαi − Eβk
+ 1

Eα j − Eβk

)
. (25)

The latter is a sum of contributions from all subbands β other
than α, and is expressed through

〈α|H ′
1|β〉 = e

m
zαβ (b × ẑ) · p, (26)

an operator in the in-plane coordinates only. It depends on the
dipole matrix elements of the z coordinate

zαβ = 〈α|z|β〉, (27)

and is therefore also explicitly independent of z0, the choice
of the gauge.
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[ ]

[
]

FIG. 2. The magnitude of the in-plane magnetic field at which
the flux � [Eq. (29)] reaches unity. For fields smaller, corresponding
to � < 1, the expansion in H ′

1 is convergent and Eq. (28) is the
leading correction. For larger magnetic field, this expression is still
of use, if it is corrected by the phenomenological replacement given
in Eq. (41).

D. Small aspect-ratio approximation

The expression for the intersubband correction in Eq. (25)
can be further simplified by using perturbation theory in
the aspect ratio η = h̄ω/h̄ωz. In leading order, neglecting
the in-plane excitation energies with respect to the subband
excitation energies in the denominators, we get

H (α)
inter = −�2 [p · (b̂ × ẑ)]2

2m
+ O(η), (28)

where we denoted b̂ as the unit vector along the in-plane
component of the magnetic field b. Finally,

� = e

h̄
bλ2

z (29)

is the dimensionless flux due to the in-plane magnetic field
through the 2DEG effective width λz squared.2The latter is
defined by [26]

λ4
z = 2

∑
β �=α

h̄2

m

|zαβ |2
Eβ − Eα

(30)

as a sum of contributions from all subbands except α.
The result in Eq. (28) is worth commenting. It states that

the dominant effect of the in-plane field is a renormalization of
the particle mass along the direction perpendicular to the in-
plane component of the magnetic field. In the lowest subband,
the particle becomes heavier along this direction. The effect
is proportional to �2, the second power of the flux due to
the in-plane magnetic field through the area defined as the
square of the effective 2DEG width λz.3 This flux plays also
the role of the small parameter for the perturbation in H ′

1, and
the condition � 
 1 is the condition for Eq. (25) to be the
dominant term. Figure 2 shows the magnetic field at which the
flux becomes one. Finally, all the details of the heterostructure

2The dimensionless flux is usually defined using a flux quantum
h/e, instead of h̄/e which appears in Eq. (29). We opt for this choice
to prevent factors 2π appearing either in Eq. (28) or (30).

3It also means that the kinetic energy is still time-reversal sym-
metric. One has to go to the next order in the perturbation theory to
obtain an asymmetric term, which has importance, for example, for
weak localization effects [27].

TABLE I. The parameters related to the 2DEG effective width
for various confinements. The confinement shape is given in the first
column. The second column gives the effective width λz [Eq. (30)]
in units of the nominal width lz, defined for each potential shape
individually [see Eqs. (14)–(16)]. This equation is therefore to be
used if the microscopic parameters of the confinement are known.
The third column gives the effective width in the units of a length
scale derived from the subband excitation energy E∗

z ≡ h̄2/ml∗2
z and

is therefore useful if the latter is known. The fourth column gives
the relative weight of the lowest excited subband contribution to the
effective width. The last column gives the energy distance to this
subband in units of h̄ωz. The results for the triangular and rectangular
potentials are given in the limit V0 → ∞, and would change very
little upon using a typical value of V0 in GaAs, such as 300 meV,
instead.

Confinement Effective width Lowest Exc. energy
shape λz/lz λz/l∗

z exc. sub. E∗
z /h̄ωz

Harmonic 1 1 100% 1
Rectangular 0.257 0.99 99.9% 14.8
Triangular 1.01 0.943 94.3% 0.875

confinement are reduced to a single parameter λz, the effective
width of the 2DEG.

E. Effective 2DEG width

We calculate λz in Appendix A for the three confinement
choices as a function of their respective natural parameters,
and summarize the results in Table I. From the latter, one can
see that for the choices that we considered, Eqs. (14)–(16),
there is little variation among different confinements, if the
effective length is related to the subband excitation energy E∗

z
or, equivalently, l∗

z . Within the typical precision of Eq. (28),
one can therefore set

λz ≈ h̄√
mE∗

z

, (31)

irrespective of the perpendicular confinement shape.
For completeness, for each confinement we now express

it in its natural parameters given in Eqs. (14)–(16). For
the harmonic confinement, the length lz is defined through
the potential curvature, which results in the exact relations
λz = lz = l∗

z and E∗
z = h̄ωz. Only the lowest excited subband

contributes in Eq. (30); the dipole matrix elements for all other
subbands are zero. Next, the rectangular potential can also
be solved analytically in the limit V0 → ∞, resulting in the
expressions given in Table I. We have checked in Appendix A
that this limit is a very good approximation for realistic values
of the offset V0. Finally, the triangular potential is the only
one for which the contributions from the higher subbands
are sizable, though still small compared to the lowest one.
We conclude that concerning the effective length, the het-
erostructure shape is of little relevance, determined mostly by
the subband excitation energy, and contributed to mostly by
the lowest excited subband. Choosing the triangular potential,
we illustrate the relations between the effective length, the
microscopic parameters (being here the interface electric field
and the conduction band offset), and the subband excitation
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FIG. 3. The 2DEG effective width λz (left y axis) and the sub-
band excitation energy E∗

z (right y axis) for the triangular confine-
ment potential (16), as a function of the interface electric field.
The thick colored lines are obtained from numerical solutions for
the confinement with a typical value for the conduction band offset
V0 = 300 meV, while the thin black lines are analytical results in
the limit V0 → ∞. The two sets of lines are indistinguishable on the
figure resolution, illustrating that one can safely use the infinite offset
approximation when evaluating the two quantities of interest.

energy in Fig. 3. To conclude this section, Eqs. (28)–(31)
allow one to grasp the leading orbital effects of an in-plane
field in a very simple way.

IV. EFFECTS ON SPECTRUM: FINGERPRINTS
OF QUANTUM DOT ORBITALS

The orbital effects of the in-plane field can be exploited
as a tool to characterize the quantum dot. To demonstrate the
principle, we first assume that the magnetic field is purely
in plane, Bz = 0, and that the corresponding flux is small,
� 
 1. The effects of H (α)

inter [Eq. (28)] can then be treated
perturbatively. The eigenstates of the unperturbed subband
Hamiltonian H2D, with the anisotropic harmonic confinement
given in Eq. (13), can be labeled by a pair of non-negative in-
tegers nx, ny. They correspond to the quantum numbers of two
harmonic oscillators with energies h̄ωx and h̄ωy, respectively.
The expectation value of H (α)

inter in such an eigenstate is

δEnx,ny = −�2

2

[
h̄ωx sin2(δ − φ)

(
nx + 1

2

)

+ h̄ωy sin2(δ + π/2 − φ)

(
ny + 1

2

)]
. (32)

As an example, the ground-state energy correction is

δE0,0 = −�2

4

(
h̄ωx + h̄ωy

2
− h̄ωx − h̄ωy

2
cos(2δ − 2φ)

)
.

(33)

The correction oscillates upon changing the in-plane field di-
rection with period π . The magnitude of the variation reveals
the anisotropy of the confinement potential, as the difference
of the two characteristic energies h̄ωx − h̄ωy. The energy
minimum corresponds to a magnetic field being aligned along
the soft confinement axis.

Alternatively, one can look at the changes of the two
excitation energies (that is, the energy offsets of the two lowest
excited states with respect to the ground state)

δE∗
x = −�2

2
h̄ωx sin2(δx − φ), (34a)

δE∗
y = −�2

2
h̄ωy sin2(δy − φ). (34b)

The excitation energy for a given orbital also oscillates
with the same period π , reaching its maximum when the
in-plane magnetic field is aligned with the corresponding
“excitation axis.” Here, it is x̂d , with δx ≡ δ, and ŷd , with
δy ≡ δ + π/2, for the two orbitals, respectively.

We note that the subband Hamiltonian H2D + H (α)
inter, with

the second term approximated by Eq. (28), can be diagonal-
ized analytically without any further approximations. How-
ever, the full formulas give little insight, and we give them
only in Appendix B. One might be interested in the limit
where the dot is so close to being circularly symmetric that
H (α)

inter is larger than the difference h̄ωx − h̄ωy. In this, nearly
degenerate, case we need to go beyond the nondegenerate
perturbation theory used in deriving Eq. (32). We instead get,
in this limit and again for Bz = 0, the renormalization of the
two excitation energies as

δE∗
1 = h̄ω+ − h̄ω− cos(2δ − 2φ), (35a)

δE∗
2 =

√
1 − �2[h̄ω+ + h̄ω− cos(2δ − 2φ)], (35b)

where h̄ω± = (h̄ωx ± h̄ωy)/2. The magnitude of the oscil-
lation is proportional to the potential anisotropy h̄ω− and
disappears for a circularly symmetric dot, as expected.

Additional useful information about the quantum dot can
be extracted from the dependence of the energy corrections
on the in-plane magnetic field magnitude. Namely, it follows
from Eqs. (29) and (34) that

λ4
z = − 1

sin2(δi − φ)

h̄2

e2

1

E∗
i

∂2E∗
i

∂b2

∣∣∣∣
b=0

, (36)

with i ∈ {x, y}. The effective width of the 2DEG can be found
from the curvature of the excitation energy as a function of
the in-plane magnetic field evaluated at b = 0. The shift is
largest if the field is applied along the direction given by
φ = δi + π/2, where the angle δi denotes the orientation of
the excitation axis of the corresponding orbital. We point
out that it is important that the dot is empty, so that there
are no electron-electron interaction effects. These interaction
effects make the extraction of the width from analogous
measurements in 2DEGs much more involved [28–32].

We note that one could in principle also use the diamag-
netic shift (23) to find the effective 2DEG width. Using the
flux variable, the shift is

E (α)
dia = 1

2�2h̄ωzvarα
(
lzz

/
λ2

z

)
, (37)

where the constants varα (lzz/λ2
z ) are of order one (see

Appendix A). Therefore, the change is larger, by a factor 1/η,
compared to the changes of the in-plane excitation energies.
However, the issue with trying to measure directly, for exam-
ple, the lowest subband shift, is that Eq. (37) gives the “bare”
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FIG. 4. The spectrum as a function of φ, the direction of the in-
plane magnetic field. Unless stated otherwise, we adopt the following
parameters (chosen in line with the experiment in Ref. [11], see
Fig. 7 below) h̄ωx = 2.34 meV, h̄ωy = 2.61 meV, λz = 6.5 nm,
m = 0.067me, in-plane field B = 3 T, and δ = 50◦. (a) The ground
state (black) and the two lowest excited states (red and blue). (b) The
corrections to the three eigenenergies (their value at B = 0 sub-
tracted). (c) The two lowest excitation-energy corrections. (d) The
two lowest excitation-energy corrections for a highly anisotropic dot,
h̄ωy = 10 meV.

shift of the given 2DEG subband. With the chemical potential
fixed, such a subband shift would change the 2DEG density,
resulting in additional electrostatic contributions. In other
words, the bare shift of the band bottom is partially screened
by the 2DEG. The actual shift can be anywhere between
zero and 100% of the bare shift [33], with the ratio (the
screening efficiency) given by the 2DEG capacitances to the
gates and the self-capacitance [34]. If this ratio is not known,
the measured shift gives only the upper limit for the bare shift,
and thus for λz. This problem does not occur for the excitation
energies, where the overall subband shift cancels. One could
therefore instead consider the diamagnetic renormalization of
the subband excitation energy (the equation is valid for the
triangular potential) given by

E∗
dia = E (α=2)

dia − E (α=1)
dia ≈ 1

2�2h̄ωz. (38)

However, due to its relatively large value, the subband ex-
citation energy is not easily accessible; see Ref. [35] for an
example of its determination in a transport measurement.

We illustrate these points in Fig. 4, plotting the en-
ergies and their variations as a function of the in-plane
field orientation described by the angle φ. We first take
a slightly anisotropic dot, with the difference of the two
harmonic-oscillator energies approximately 10% of their aver-
age [though still in the limit |〈H (α)

intra〉| � h̄ω−, so that Eq. (32)
is valid]. Figure 4(a) shows the energies themselves. The
magnitude of the oscillations of the ground state is smaller
than that of excited states, as follows from Eqs. (32) and (33).
One can see it more clearly in Fig. 4(b), which shows only the
variations of the energies, subtracting a constant from each
of them. The orientation of the soft and hard axes of the
confinement potential is revealed as the angle at which the
second and the third energies, respectively, becomes maximal.
A very similar behavior is displayed by the variations of the
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FIG. 5. The excitation energies as a function of the in-plane
magnetic-field [(a), (b)] orientation and [(c), (d)] magnitude. The
parameters are the same as those in Fig. 4 unless stated otherwise.
In (a) and (b), the changes of the two lowest (in red and blue,
respectively) excitation energies are plotted for a field of a constant
magnitude, as given in the figures, corresponding to (a) � ≈ 0.2 and
(b) � ≈ 0.4. In (c), (d), the two lowest excitation energies are plotted
as a function of the field magnitude for a fixed direction, (c) φ = δ

and (d) φ = δ + π/2. In all panels, the solid lines are the exact results
from the 3D model, the dashed lines are the exact results of the 2D
model using Eq. (28), without the replacement in Eq. (41). Once this
replacement is made, the results of the 2D model become identical
to those of the 3D model. See Appendix B for details on the models.

two excitation energies, plotted in Fig. 4(c). This behavior can
be contrasted with the variations of a much more anisotropic
dot, plotted in Fig. 4(d). Here, the two lowest excited states
vary in phase (and their oscillations magnitudes ratio is 2), as
they belong to the same orbital. This characteristic fingerprint
can therefore distinguish different types of dots (1D versus
2D), and allows one to determine the spatial orientation of
each orbital individually [9].

V. ACCURACY OF THE PERTURBATIVE RESULT

We now discuss the range of validity and precision of the
energy corrections calculated using Eq. (28). To this end, we
consider the harmonic heterostructure confinement, Eq. (14).
In this case, the full three-dimensional model has an analytical
solution for arbitrary magnetic field (see Appendix B), which
we can use as a benchmark for the effective two-dimensional
model. We obtain the energies of the latter by solving for
the spectrum of H2D + H (α)

intra exactly (see Appendix B). We
plot the two sets of excitation energies as solid (3D model)
and dashed (2D model) lines in Fig. 5. Figure 5(a) shows
the directional variation of the energy corrections in an in-
termediate magnetic field of a few Tesla. Since the chosen
parameters correspond to a flux � ≈ 0.2 < 1, the effective 2D
model is an excellent approximation to the full 3D model, as
expected. Figure 5(b) shows the energy variations for a larger
flux. Even though the directional dependence becomes quite
different from a simple sine function, the variations are still
correctly reproduced by the 2D model. This model becomes
unreliable only when the flux is close to unity. The reason
for this is that for � = 1, the correction term Eq. (28) is
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FIG. 6. The excitation energies as a function of the in-plane
magnetic-field (a) orientation and (b) magnitude. The figure is anal-
ogous to Fig. 5, with the magnetic field deflected out of the plane by
5◦. The solid lines are the exact results from the 3D model, the dashed
(dotted) lines are the exact results of the 2D model using Eq. (28),
without (with) the replacement in Eq. (41). In (b), the divergence of
the dashed line towards zero happens at flux � = 1.

so large that the in-plane mass tensor becomes nonpositive
and the corresponding excitation energy becomes zero [see
Figs. 5(c) and 5(d)]. The exact results of the 3D harmonic
model suggest a remedy for this unphysical behavior. Namely,
one finds (see Appendix B) that the renormalization of the
mass in the direction perpendicular to the in-plane field,

1

m⊥(�2 
 1)
≈ 1

m⊥(0)
(1 − �2), (39)

which we derived by arriving at Eq. (28), is in the opposite
limit replaced by

1

m⊥(�2 � 1)
≈ 1

m⊥(0)

(
1

1 + �2

)
. (40)

Since Eq. (39) is the Taylor expansion of Eq. (40) for �2 
 1,
replacing the former by the latter will improve the overall ac-
curacy of the effective 2D model. Explicitly, the replacement
in Eq. (28) should be

�2 →
(

1 − 1

1 + �2

)
. (41)

We find that, interestingly, with this substitution the energies
of the 2D model become exactly equal to the energies of
the full 3D model if the magnetic field is purely in plane
and the confinement potential is harmonic. Once one of these
conditions is not valid, the energies of the two models are
no more identical (see Fig. 6 for an illustration). Never-
theless, we expect that the two-dimensional effective model
with the replacement in Eq. (41) is a quantitatively reliable
representation of the energy effects of the in-plane magnetic
field of arbitrary direction and magnitude and for a general
heterostructure profile.4

VI. DISCUSSION

We have derived an effective two-dimensional model
which quantitatively describes the orbital effects of the in-
plane field on the spectra of quantum dots created in a 2DEG.

4It is conditioned on the assumption that the out-of-plane com-
ponent of the magnetic field is not very large, meaning it does not
destroy the hierarchy of the energies E∗

z � E∗
x ∼ E∗

y , which is the
regime of interest for us.

[ ]

[
]

( )

[ ]

[
]

( )

FIG. 7. The two lowest excitation energies measured in the ex-
periment of Ref. [11], fitted to the exact eigenvalues of H eff

2D [Eq. (42)]
(see Appendix B). The values of the fitting parameters are given with
the error of the last digit in brackets. (a) The directional variation
at B = 8 T resulted in λz = 7.19(5) nm, δ = 25(2)◦, δE∗

x = 2.51(1)
meV, δE∗

y = 2.71(1) meV. The red (black) denotes the excitation
from the ground state to the lowest orbital without (with) a spin
flip. Similarly for the blue and green for the second excited orbital.
Here, a constant Zeeman energy is included in the fit for the spin-flip
terms, resulting in the g factor |g| = 0.33(2). (b) The field magnitude
dependence at φ = δ + π/2 gave λz = 6.49(5) nm, δ = 51(3)◦,
δE∗

x = 2.338(6) meV, δE∗
y = 2.611(6) meV. Converting the value of

λz to electric field using Fig. 3 gives Eext = 2.14(4) V/μm. Here,
each point is the average of a Zeeman split pair. We note that the data
in (a) and (b) were obtained in different cool downs, which might be
the reason for the difference in the extracted parameters, especially δ.

The corresponding Hamiltonian reads as

H eff
2D = (p · b̂)2

2m
+ [p · (b̂ × ẑ)]2

2m (1 + �2)
+ V2D(r), (42)

where the kinetic momentum p is given in Eq. (6a), the flux
� in Eq. (29), and the in-plane unit vectors b̂ and b̂ × ẑ
are parallel and perpendicular, respectively, to the in-plane
component of the magnetic field b. For �2 → 0, Eq. (42)
reduces to Eq. (8), corresponding to a quasi-two-dimensional
electron gas description.

The use of this Hamiltonian is twofold. If the applied fields
are such that the orbital effects can not be neglected and
have to be incorporated into the description, it is a substantial
simplification if one can still use a 2D model, compared
to a fully 3D description. On the other hand, and certainly
more importantly, these effects should be taken as a tool
to probe quantum dot and its single-particle orbitals. As we
have demonstrated, the directional variation of the eigenstate
energy gives direct access to the corresponding orbital shape,
that is the size and the orientation with respect to the crystal-
lographic axes. In addition, looking at the same variation as a
function of the field magnitude allows one to find the effective
width of the 2DEG, and in turn the microscopic parameters
of the interface. For example, for the triangular confinement
of a heterostructure, this would be the interface electric field,
which in turn allows one to determine the spin-orbit constants.

We illustrate these possibilities on the data measured in
the experiment of Refs. [9,11]. We fit the data to the model
in Eq. (42) and plot the result in Fig. 7. Figure 7(a) shows
the directional variations of the excitation energies at B =
8 T. The data clearly demonstrate that the dot was modestly
anisotropic and its main confinement-potential axis was along
δ ≈ 25◦ with respect to the crystallographic [100] axis. Fig-
ure 7(b) shows the excitation energies as a function of the
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magnetic-field magnitude. Compared to Fig. 7(a), this is a
more suitable measurement to determine the effective 2DEG
width. The fitted value λz ≈ 6.5 nm gives, using Fig. 3 (or
Table I), appropriate for a heterostructure with a triangular
potential, the interface electric field Eext ≈ 2.14 V/μm. With
this value specified, we now use the standard results of the
k · p theory for the spin-orbit strengths (using the notation of
Ref. [36]; see Appendix C for details):

h̄2

2mlbr
≡ αbr = α0eEext + (βB − βA)δ(z)

α
, (43a)

h̄2

2mld
≡ αd = γc

h̄2 p2
z

α
. (43b)

Using α0 = −4.7 Å
2
, βB − βA = −1.22 eV Å

2
, and γc =

−10.6eV Å
3

gives the spin-orbit lengths lbr ≈ 2.64 μm and
ld ≈ 3.63 μm (ignoring the overall minus sign for both inter-
actions). This translates into the spin-orbit mixing angle ϑ =
36◦, and the overall scale lso = 2.14 μm. Here, ϑ is defined by
tan ϑ = αd/αbr . An independent fit based on the spin relax-
ation time anisotropy gave ϑ = 31◦ and lso = 2.13 μm [11].
Alternatively, assuming that the relaxation data give a reliable
value for the angle ϑ = 31◦, while the interface electric field
is extracted reliably by the fit shown in Fig. 7(b), we can
estimate the value for the parameter γc from these two values

and Eqs. (43). This procedure results in γc = −8.8 eV Å
3
,

in good agreement with typical values in GaAs obtained by
alternative methods [37].

VII. CONCLUSIONS

We have analyzed the orbital effects of the magnetic field
applied in the plane of a 2DEG, observable in the spectrum
of a gated quantum dot. In the leading order, these effects
can be succinctly described as an anisotropic renormalization
of the electron mass tensor. The renormalization arises due
to the finite width of the 2DEG, and depends on the flux
corresponding to the magnetic field penetrating the area given
as the square of the effective 2DEG width. We have related
this width to common types of heterostructure-interface po-
tentials in detail necessary for a quantitative analysis. Most
importantly, the effects allow one to extract the size and
orientation of the quantum dot single-particle orbitals, as
well as the 2DEG width, thus providing new characteri-
zation methods for gated quantum dots. We illustrated the
usefulness of the method by fitting the strengths of the spin-
orbit interactions, the linear Rashba, the linear Dresselhaus,
and the cubic Dresselhaus terms, from the data measured in
Ref. [11].
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APPENDIX A: HETEROSTRUCTURE POTENTIAL
EIGENSTATES AND MATRIX ELEMENTS

We give here, for reference, the energies and some matrix
elements of the heterostructure eigenstates which are needed
in the main text.

1. Triangular confinement

We consider the potential shape as drawn by the black line
in Fig. 8(a). It represents the spatial dependence of the bottom
of the conduction band of a heterostructure. It displays a finite
offset at z = 0, due to a different material composition to the
left and right of this point, and a linear slope (an electric field)
possibly due to remote doping by impurities. In solving for
the eigenstates, we neglect the potential variation for z < 0
and assume that the linear growth for z > 0 extends to infinity,
by which we arrive at Eq. (16). These simplifications lead to
small effects on the quantities of our interest.

With this, the Schrödinger equation is

(
− ∂

∂z

h̄2

2m(z)

∂

∂z
+ vT (z) − E

)
ψ (z) = 0, (A1)

where we allow for a position dependence of the effective
mass, which takes different values on the two sides of the
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FIG. 8. Illustrations and parameters of the triangular confine-
ment potential model. The band offset is V0 = 300 meV, the interface
electric field is Eext = 2.14 V/μm, A = AlxGa1−xAs with x = 0.3,
and B = GaAs, unless stated otherwise. (a) The potential profile
(black) and the amplitudes of the three lowest wave functions.
(b) The function f (ε), roots of which define the allowed energies.
(c) The nominal length lz and the factor ξ as a function of the
interface electric field. (d) The effective length and the subband
excitation energy in their natural units as a function of the interface
electric field. (e) The ground-state wave function density at the
interface and its weight in the half-space z < 0. (f) The expectation
value of p2

z and ψ (z)2 in the ground state.
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interface

m(z) =
{

mA, if z < 0
mB, if z > 0.

(A2)

We solve Eq. (A1) in the left and right half of the space
separately using the ansatz

ψ (z) = NAψA(z) + NBψB(z), (A3)

with the matching conditions

NAψA(0) = NBψB(0), (A4a)

m−1
A NA∂zψA(0) = m−1

B NB∂zψB(0). (A4b)

For z < 0 the potential is constant, so that

ψA(z) = exp

[
z

(
2mA(V0 − E )

h̄2

)1/2
]
. (A5)

For z > 0 the equation is(
− h̄2

2mB

∂2

∂z2
+ eEextz − E

)
ψ (z) = 0. (A6)

Introducing a dimensionless length s = z/lz, we get(
− ∂2

∂s2
+ 2mBeEextl3

z

h̄2 s − 2mBl2
z E

h̄2

)
ψ (s) = 0. (A7)

We choose lz such that the linear term prefactor is 1 [38]:

lz =
(

h̄2

2mBeEext

)1/3

, (A8)

and introduce the dimensionless energies ε = 2E/h̄ωz, and
ξ = 2V0/h̄ωz, with h̄ωz = h̄2/mBl2

z . With one more dummy
variable, x = s − ε, the Schrödinger equation takes the form
of the Airy differential equation

∂2

∂x2
y(x) − xy(x) = 0. (A9)

The solutions are the Airy functions Ai(x). Using the solutions
normalizable at x → ∞, we have

ψB(z) = Ai(s − ε). (A10)

Using explicit formulas, the matching conditions read as

NA = NBAi(−ε), (A11a)

NA

√
mB

mA
(ξ − ε) = NBAi′(−ε), (A11b)

and can be written as the quantization condition for the
allowed energy values

f (ε) ≡
√

mB

mA
(ξ − ε) Ai(−ε) − Ai′(−ε) = 0. (A12)

This function is plotted in Fig. 8(b), with each root ε < ξ

corresponding to a subband. Once the energy is specified, the
normalization constant follows as

N−2
B = lz

(√
mB

mA

Ai2(−ε)

2
√

ξ − ε
+

∫ ∞

−ε

Ai2(x)dx

)
. (A13)
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FIG. 9. Rectangular confinement potential model. The band off-
set is V0 = 300 meV and the nominal quantum-well width is lz =
12 nm. (a) The potential profile (black) and the amplitudes of the
three lowest wave functions. (b) The function f (k), roots of which
define the allowed energies for the symmetric solutions (red) and
antisymmetric ones (blue).

For parameters typical for GaAs/AlGaAs heterostructures,
for example, V0 = 300 meV and Eext several Volts per mi-
crometer, the parameter ξ � 1. In this case, one can find
useful results in the limit ξ → ∞ (which also makes the
value of mA irrelevant): ε1 ≈ 1.17 h̄ωz, ε2 ≈ 2.04 h̄ωz, λz ≈
1.03 lz (the lowest excited subband contributing by 94.3%),
varα=1(z) ≈ 0.486 l2

z , varα=2(z) ≈ 1.485 l2
z , E∗

z ≈ 0.875 h̄ωz,

and p2
z

α=1 ≈ 0.78h̄2/l2
z . Some of these quantities are plotted

as functions of the interface electric field on Figs. 8(c) to 8(f).

2. Rectangular confinement

We obtain the eigenstates in a way analogous to the
previous section. Since now the potential is piecewise con-
stant, see Fig. 9(a), we skip the details being a textbook
quantum mechanics and only give results. The solutions
have definite inversion symmetry with respect to z = 0. In-
side the well they take form of the trigonometric func-
tions cos(kz/lz ) and sin(kz/lz ), respectively. Figure 9(b)
shows two functions, the roots of which specify the al-
lowed wave vectors k and the corresponding energies E (k) =
h̄2k2/2m. For mA = mB and in the limit V0 → ∞, the so-
lutions become k = (2n + 1)π for the symmetric subbands
and k = 2nπ for the antisymmetric subbands, with n an
integer. It leads to E∗

z /h̄ωz = 3π2/2, the dipole moment be-
tween the lowest two subbands equal to 16lz/9π2, λ4

z = l4
z

(15 − π2)/12π4, varα=1(z)=(1/12 − 1/2π2) l2
z , varα=2(z) =

(1/12 − 1/8π2) l2
z , and p2

z

α=1 = π2h̄2/l2
z . Some of these val-

ues are given in Table I.

3. Harmonic confinement

The matrix elements of the eigenstates of a harmonic
potential are obtained from the standard representation of the
operators

z =
√

h̄

2mωz
(a† + a), (A14a)

pz = i

√
h̄mωz

2
(a† − a), (A14b)

with h̄ωz = h̄2/ml2
z . The results are given in Table I.
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APPENDIX B: EXACT SPECTRUM OF A BILINEAR HAMILTONIAN

There are several methods to diagonalize a Hamiltonian which is a quadratic function of coordinates r1, r2, . . . , rd and
momenta p1, p2, . . . , pd in any dimension d [17,18,39]. We follow the method used in Refs. [17,19], which is based on solving
for the unknown operator L, linear in r’s and p’s, which fulfills the equation [H, L] = εL. This can be formulated as an eigenvalue
problem, by constructing a 2d × 2d matrix composed of 2 × 2 blocks, where the (i j)th block for i, j = 1, 2, . . . , d is defined
as

�i j = ih̄

⎛
⎝ ∂2H

∂ pi∂r j

∂2H
∂ pi∂ p j

− ∂2H
∂ri∂r j

− ∂2H
∂ri∂ p j

⎞
⎠. (B1)

The eigenvalues of matrix � come in pairs {+εi,−εi}i=1,...,d and give the d characteristic energies εi, the excitation energies of
the d linear harmonic oscillators.

1. Exact spectrum of the 2D effective model

Here, we are interested in using the above-described procedure for the effective 2D model, which treats the in-plane magnetic-
field effects perturbatively. This means that d = 2, and the Hamiltonian is the sum of H2D [Eq. (8)] and H (α)

inter [Eq. (28)]. It results
in the following matrix �:

� = ih̄

⎛
⎜⎜⎜⎜⎜⎝

0 1−�2 cos2(δ−φ)
m −ωc

2 −�2 sin(2δ−2φ)
2m

−m
(
ω2

x + ω2
c

4

)
0 0 −ωc

2

ωc
2 −�2 sin(2δ−2φ)

2m 0 1−�2 sin2(δ−φ)
m

0 ωc
2 −m

(
ω2

y + ω2
c

4

)
0

⎞
⎟⎟⎟⎟⎟⎠, (B2)

where we denoted h̄ωc = h̄eBz/m. The characteristic equation
for the eigenvalues ε of � is

ε4 − bε2 + c = 0, (B3)

where

b = h̄2ω2
x + h̄2ω2

y + h̄2ω2
c − �2

(
A2 + h̄2ω2

c

/
4
)
, (B4a)

c = (1 − �2)h̄4ω2
xω

2
y − �2A2h̄2ω2

c

/
4, (B4b)

and we introduced a confinement anisotropy related parameter

A2 = h̄2ω2
x cos2(δ − φ) + h̄2ω2

y sin2(δ − φ). (B5)

The two solutions for the energies are given by

ε2
1,2 = b ± √

b2 − 4c

2
. (B6)

By Taylor expanding the previous equation in parameter �2,
and setting Bz = 0, we obtain

ε1 = h̄ωx[1 − �2 cos2(δ − φ)] + O(�4), (B7a)

ε2 = h̄ωy[1 − �2 sin2(δ − φ)] + O(�4), (B7b)

which gives Eqs. (34). Similarly, doing a Taylor expansion in
(h̄ωx − h̄ωy) gives Eqs. (35).

2. Exact spectrum of the 3D harmonic model

We now consider the 3D model with a harmonic con-
finement in all three directions, that is the one described
by Eqs. (13) and (14). The energies can be obtained by a
straightforward analogy of the previous subsection applied for
d = 3. We do not repeat the explicit formulas, as they were
given in Ref. [40] as Eqs. (6), (14), (17), and (18) therein.

Using these, we derive the in-plane energies for a symmetric
in-plane potential ωx = ωy and a purely in-plane field. In the
limit �2 
 1 we get

ε1 = h̄ωx, (B8a)

ε2 = h̄ωx

√
1 − �2, (B8b)

while in the opposite limit �2 � 1 we have

ε1 = h̄ωx, (B9a)

ε2 = h̄ωx
1√

1 + �2
. (B9b)

This gives Eqs. (39) and (40).

APPENDIX C: SPIN-ORBIT STRENGTHS

To estimate the strengths of the Rashba spin-orbit inter-
actions, we use formulas from Ref. [41] (see pp. 679–681
therein). The heterointerface electric field Eext contributes by

α
(1)
br = α0eEext, (C1)

with (Ref. [41], Eq. III.105)

α0 = P2
0

3

(
1

(E0 + �0)2
− 1

E2
0

)
. (C2)

For the parameters of GaAs (see Table II), and the electric
field Eext = 2.14 V/μm, it gives

α
(1)
br ≈ −1.0 meV Å. (C3)
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TABLE II. The band-structure parameters used in Appendix C
(see Ref. [41], p. 688). The band gap E0, the split-off energy �0, the
interband matrix element P0, the effective mass m, the conduction
band offset Ec. We interpolate the parameters for Al1−xGaxAs by
linear interpolation using the doping x = 0.3, except for the band-
structure offset, where we use the approximation Ec(Al1−xGaxAs)
≈ 0.773 x meV (see Appendix 3, p. 412, in Ref. [43]).

Parameter E0 �0 P0 m Ec

Unit eV eV eVÅ me eV

GaAs 1.519 0.341 9.88 0.067 0
AlGaAs 3.13 0.3 8.88 0.150 1.12

Using a slightly different prefactor, α0 = −5.15 Å
2
, from

Ref. [42], we would get

α
(1)
br ≈ −1.1 meV Å. (C4)

The abrupt change in the band-structure parameters at the het-
erostructure interface contributes by (Ref. [41], Eq. III.106)

α
(2)
br = (βB − βA)〈δ(z)〉, (C5)

where (Ref. [41], Eq. III.98)

β = P2
0

3

(
1

E0 + �0 − Ec
− 1

E0 − Ec

)
. (C6)

Using the model described in Appendix A, for Eext =
2.14 V/μm we get the wave-function density at the inter-
face |ψα=1(0)|2 ≈ 0.06/lz, out of which approximately 25%
is contributed by the difference in the effective mass (not
shown). With this

α
(2)
br ≈ −1.15 meV Å. (C7)

The Dresselhaus term is given by

αd = γc

h̄2

〈
p2

z

〉
. (C8)

Using again Appendix A we have 〈p2
z〉 ≈ 0.61/l2

z which,

together with γc = −10.6eV Å
3
, finally gives

αd ≈ −1.57 meV Å. (C9)

This value, together with αbr = −2.15 meV obtained from
Eqs. (C3) and (C7), was used in Eq. (43) in Sec. VI.
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