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Decoherence in quantum searches, and in the Grover search, in particular, has already been extensively studied,
leading very quickly to the loss of the quadratic speedup over the classical case, when searching for some target
(marked) element within a set of size N . The noise models used were, however, almost always global. In this
paper, we study Grover search under the influence of localized partially dephasing noise of rate p. We find that,
in the case when the size k of the affected subspace is much smaller than N and the target is unaffected by
the noise, namely when kp � √

N , the quadratic speedup is retained. Once these restrictions are not met, the
quadratic speedup is lost. If the target is affected by the noise, the noise rate needs to scale as 1/

√
N to keep

the speedup. We also observe an intermediate region, where if k ∼ Nμ and the target is unaffected, the speedup
seems to obey Nμ, which for μ > 0.5 is worse than the quantum, but better than the classical case. We also put
obtained results for quantum searches into perspective of quantum walks and searches on graphs.

DOI: 10.1103/PhysRevA.99.012339

I. INTRODUCTION

Grover search [1] is one of several quantum algorithms
that provide us with speedups when compared with classical
counterparts. Its basic function is searching over a database of
N elements in which no prior structure between the database
elements is known. In this setting, quantum mechanics offers
quadratic speedup over classical (blind) search; Grover search
finds marked element in O(

√
N ) steps, while in the classical

case we need O(N ) steps. It has been proven that the quadratic
speedup is optimal under assumption of unitary evolution
[2–4] with Grover algorithm reaching optimal scaling—we
will call this specific evolution Grover evolution.

Since the unitarity is only an idealized situation, quan-
tum searches have also been studied under various models
of decoherence to determine their functionality under these
more realistic conditions. A recurring observation is that
the quadratic speedup is quickly lost; the decoherence rate
for which this happens is usually of order 1/

√
N . Studying

evolutions under decoherence is typically difficult because
one has to overcome the difficulties arising from the departure
from pure states. In particular, the usual approach in the uni-
tary case—identification of invariant subspaces—is no longer
applicable and different methods have to be employed.

The rapid loss of efficiency is observed not only for Grover
search under various types of decoherence [5–12] but also in
more general quantum search scenarios where the Grover evo-
lution is not set and, for purpose of the search, any evolution
with an arbitrarily large ancillary system that undergoes some
decoherence is considered [13–15]. The works studying noisy
quantum searches typically apply the decoherence on the
whole Hilbert space where evolution happens. This includes
noisy oracle [9,13,14] or global qubit register decoherences
[7,8,12] in various forms, such as depolarization, dephasing,
or some deviations from unitary Grover evolution.

To our knowledge, localized decoherence in a quantum
search has been studied only in Ref. [16], which treats a
specific case of what we do here. Whereas our results are only
approximations, those presented in the reference are exact,
and we will later make a comparison between the two works.
Results of Ref. [17] are also somewhat related—their findings
show that in the case of multiple marked elements, some of
which are faulty, the nonfaulty ones can still be efficiently
found. Our paper does not study this situation, as we consider
only single marked vertex, but their results are in line with
our general observation that if the marked vertex is faulty, it
cannot be efficiently found.

In this paper, we are motivated by a situation in which
only a subspace of the Hilbert space is affected—this might
happen, e.g., if the database is encoded as a (multiple-)qubit
system, where only one qubit (or a few) undergo decoherence.
Such a model was outlined in Refs. [7,8,12]. There the authors
studied a situation where the search is performed on a system
encoded in qubits and these undergo decoherence individu-
ally. However, in all these works, the locally applied noise
was added to all the qubits and so the localization of it was
not studied.

In this paper, we present an approach to the problem of
localized decoherence in the Grover evolution. We focus on
the question of whether the limited localized influence of the
decoherence can loosen the strict bounds on the speedup. We
will make use of a method which is based on identifying
invariant subspaces in which evolution takes place—we will
identify invariant subsace not in the underlying Hilbert space
but in the linear vector space of specific operators. Whereas
in the unitary evolution these subspaces had an operational
meaning of state subspaces through which the evolution was
defined, in our case the invariant subspace is only an abstract
mathematical construct where the usual interpretations no
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longer hold. Nevertheless, the approach we use in the end
provides tangible results.

The paper is organized as follows. In the next section,
we provide a Grover algorithm for reference and setting the
notation. In Sec. II, we define the noise model and provide
technical details on how it affects density matrices. In Sec. III,
we define the method of invariant subspaces on density ma-
trices fit to the problem of Grover evolution. Results are
presented in Sec. IV for several scenarios. As in recent years,
quantum searches have also been heavily studied in quantum
walks setups, in Sec. V we alter the methodology to suit the
framework of quantum walks, which we also introduce in that
section. The conclusions of the paper are provided in Sec. VI.

A. Invariant subspace in the Grover search

Formally, the Grover algorithm allows for searches on
Hilbert space H of dimension N for an element marked by a
(quantum) oracle, which is represented by a unitary operation

Of : |x〉 ⊗ |m〉 �→ |x〉 ⊗ |m ⊕ f (x)〉, (1)

defined on elements of the canonical basis |x〉 ∈ H, |m〉 ∈ C2

and ⊕ is addition modulo 2. Boolean function f is the clas-
sical oracle associated with Of —in a sense, in the quantum
oracle there is only as much information as in the classical
oracle with the difference being that the quantum oracle can
work also with non-classical state on its input. Since such
oracle provides no further information about the structure of
the marked element(s), it is called unstructured. In this paper,
we will use only such oracle.

The Grover algorithm makes use of two operators. One is
derived from the oracle Of —by observing that states |x〉 ⊗
|−〉 with |x〉 from the canonical basis are eigenstates of Of

with eigenvalues ±1, we define new oracle Rf as the action
of oracle Of on mentioned state. This allows us to drop the
second part of the state and write the action of the oracle
simply without the ancillary system as

Rf : |x〉 �→ (−1)f (x)|x〉. (2)

The second operator used in the Grover search is the inversion
about average,

G = 2|s〉〈s| − I, (3)

where

|s〉 = 1√
N

∑
x

|x〉 (4)

is the equal superposition over all canonical states. Note that
if we define t = 2/N and r = 1 − t , for each canonical state
|x〉 we have G|x〉 = −r|x〉 + t

∑
y �=x |y〉.

As we will not deal with more than one marked element
in this paper, we suppose now that the oracle marks only a
single element. Then the result of Ref. [1] is that by defining
U = GRf , one can express the success probability after m

steps of evolution by formula

psuc(m) = sin2

[
(2m + 1)

θ

2

]
, (5)

where cos θ = r . This probability is maximized when (2m0 +
1)θ = π , which gives the optimal number of steps,

m0  π

4

√
N, (6)

valid for a large number of elements N . This number of steps
will appear multiple times in the rest of the paper, where it
will always be denoted as m0. This number of steps implies
that one needs only m0 ∼ O(

√
N ) repetitions of U , i.e., calls

to the oracle Rf , to transform the initial state |s〉 into the state

|e〉 = |f −1(1)〉, (7)

which is the marked element, or the target. This means that the
quantum search is quadratically faster than the best classical
search, which requires N/2 queries to the oracle f on average.

The states |e〉 and |s〉 define an invariant subspace in
which the evolution happens. Specifically, defining S =
span {|s〉, |e〉} for any |ψ〉 ∈ S , also U |ψ〉 ∈ S . This method is
also employed in more involved cases, commonly in quantum
walks, where a precise identification of invariant subspaces is
essential and leads to similar speedups; see, e.g., Refs. [18,19]
for graph-specific definition (see also Sec. V of this paper).

As a side note, let us mention that for the purpose of
estimating the efficiency of the search, the requirement on
the oracle is just its computational complexity being low. For
example, in the classical case of an unstructured search one
can think of a search for a name belonging to a known number.
The phone book works as an oracle—it takes O(log N ) steps
to find whether a queried person belongs to the particular
number if the phone book has N entries). Similarly, in the
quantum case the oracle may be just a subroutine of a more
complex algorithm, such as in the case of the algorithm for
element distinctness in Ref. [20].

II. NOISE MODEL

Global noise in Grover search, and in quantum searches in
general, has a strong degrading effect on the efficiency of the
algorithm. Typically, already with noise rates stronger than
1/

√
N the quadratic speedup is lost and quantum searches

offer only linear speedup at best. The question stands whether
this undesirable property can be lifted if we consider only
localized noise, as it seems unrealistic for a noise to be de-
pendent (in this way) on the number of the database elements.

A consequence of the fact that the noise destroys coherence
in the system is that we need to switch from the pure state
formalism to the density matrix formalism, in which the
state is described by a trace-one operator, typically labeled �.
The unitary evolution described in the previous section now
reads U (�) = U�U †. The noise Dp is parametrized by its
strength p ∈ [0; 1] and will affect the state between any two
applications of the unitary. The evolution of the state � under
decoherence will now be described as

�(m) = (U ◦ Dp )m(�), (8)

where m is the number of performed steps of the evolution and
the “exponentiation” is in the sense of concatenation of the
operations. This type of evolution is standard in the literature.
Here, however, the noise Dp will not affect the whole Hilbert
space H, but rather only a small subset of it.
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For such a noise model, we consider partially dephasing
localized noise, where the dephasing is defined via partial
projection into a subspace of a Hilbert space. More concretely,
let us consider a Hilbert space H of dimension N and suppose
we can split it into two subspaces H0 and H1 such that H =
H0 ⊕ H1 with the dephasing acting on the whole subspace
H0. Denoting the projection onto H0 as �0 and the projection
onto the orthogonal complement as �⊥

0 = I − �0, the partial
dephasing with rate p has the form

Dp(�) = p�0��0 + p�⊥
0 ��⊥

0 + (1 − p)�. (9)

Note that since �⊥
0 = �1 is a projection onto H1, the previous

equation treats the two subspaces symmetrically. This noise
thus performs dephasing between the two subspaces, while
keeping the coherence within them intact. We will consider
only noise where the dephasing is in the canonical basis with
a specific focus on two cases of this type of noise.

A. Coupled noise

In the first case, which we shall call coupled noise, the
H0 = span A0 where A0 ⊆ {|j 〉}j is some subset of canonical
basis states. This is, for example, the case of a register
consisting of qubits, when one of the qubits is affected by
the dephasing—let j be the qubit that undergoes decoherence,
then A0 is the set of all canonical states that have in their
binary notation the same value, let us say 0, on j th position.
Considering the more general case of multiple dephasing
qubits is beyond the scope of this paper and studied cases will
not cover it; some results for globally (on all qubits) applied
noise on qubit registers can be found in Refs. [7,8,12].

Mathematically, applying Eq. (9), the coupled noise splits
the density matrix for a system state into four blocks with the
split corresponding to the two subspaces, and affecting only
the nondiagonal blocks,

Dp(�) = Dp

([
�̂00 �̂01

�̂10 �̂11

])
=

[
�̂00 (1 − p)�̂01

(1 − p)�̂10 �̂11

]
.

(10)

Here the �̂ij are submatrices of the original state on respective
subspaces H0 and H1. The effect of Dp can be written for
density matrix elements |j 〉〈k| also as

Dp(|j 〉〈k|) =

⎧⎪⎨
⎪⎩

|j 〉〈k| if |j 〉, |k〉 ∈ H0

or |j 〉, |k〉 ∈ H1,

(1 − p)|j 〉〈k| otherwise.

(11)

B. Decoupled noise

In the second case, the dephasing within the set of elements
from the canonical basis A0 ⊆ {|j 〉}j will be decoupled (we
shall denote [A0] = {j : |j 〉 ∈ A0} and, similarly, [A1]). Un-
like in the previous case, for each canonical state of A0 the
dephasing shall act independently, while subspace determined
by A1 stays unaffected (i.e., has a coupled decoherence with
H0). This removes the symmetrical treatment of H0 and H1

from the previous case. The decoherence on H0 is separated
here into the canonical decoherences on each vector of A0. In
particular, for each j ∈ [A0] we define local dephasing D(j )

p as

given by Eq. (9) with �0 = |j 〉〈j |. From now on we suppose
the same noise rate p for all j ’s.

An important property is that the canonical dephasings
with respect to different j ’s commute,

D(j )
p ◦ D(k)

p = D(k)
p ◦ D(j )

p (12)

for j, k ∈ [A0]. This can be confirmed by a simple calculation.
The overall (but localized to H0) dephasing is defined as
composition of all the canonical dephasings,

Dp = ©
j∈[A0]

D(j )
p . (13)

Invoking Eq. (11), we can now describe action of decoupled
noise Dp for all density matrix elements |j 〉〈k|.

If j = k or j, k ∈ A1, then

Dp(|j 〉〈k|) = |j 〉〈k|. (14)

If j ∈ A0, k ∈ A1 or j ∈ A1, k ∈ A0, then

Dp(|j 〉〈k|) = (1 − p)|j 〉〈k|. (15)

And, finally, if j, k ∈ A0 and j �= k,

Dp(|j 〉〈k|) = (1 − p)2|j 〉〈k|. (16)

The density matrix is then affected in the following way:

Dp(�) = Dp

([
�̂00 �̂01

�̂10 �̂11

])
=

[
�̂′

00 (1 − p)�̂01

(1 − p)�̂10 �̂11

]
,

(17)

where

�̂′
00 = (1 − p)2�̂00 + p(2 − p) diag[�̂00], (18)

which is �00 with unchanged diagonal elements and off-
diagonal elements scaled by factor of (1 − p)2.

Practically, this type of noise can be present when per-
forming, e.g., a quantum-walk search where some of the
corresponding vertices might be “damaged.” In Ref. [21], an
interferometric interpretation of quantum walks is presented
and this view can have a literal meaning in realization,
where noises affecting laterally close states (vertices) might
be present (see also Fig. 5).

III. GROVER SEARCH WITH DEPHASING

In this section, we shall expand the model presented in
Sec. I A by introducing the noise into the pure unitary search.
In our studied case, the oracle f marks only a single element,
which we refer to as the target. Without loss of generality this
element will be the very first one. The rest of the elements will
be called normal. Some of these elements will be affected by
noise; these will be numbered from 2 to k + 1, so there will
be k such elements. The target element might, or might not be
affected by the noise and we will consider both possibilities.
The rest M = N − k − 1 elements will be normal ones that
are unaffected by the noise.

Furthermore, we consider the dephasing rate to be uniform
(either it describes the case of larger affected subspace with
coupled noise or, if it is decoupled, the rate is the same for all
elements). We will, however, set different rates on the target
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and on noisy normal (nontargeted) states in our computations
to be able to distinguish between different cases of target
either being or not being affected by the dephasing.

As noted, the invariant subspace formalism (see
Refs. [18,19]) cannot be used directly, as the dephasing
not only takes the system out of the subspace, but even more,
it destroys the purity of the state. In what we shall present,
we identify an invariant subspace S within the density matrix
formalism. It is similar in spirit to the identification of
decoherence-free subspaces [22,23] but we are not trying
to use the subspace to produce error-free evolution; our aim
is to take it as given and try to understand the effect of the
noise. To this end, the subspace will be defined as a span of
a specific set of operators that will no longer have a clear
physical interpretation. They will, however, still define a
linear space invariant under both the unitary evolution U and
the dephasing D. As the usual initial state Eq. (4) is from the
subspace S , any subsequent state within the evolution will
also lie in this subspace S .

In the generality needed for the full analysis within the
questions addressed by this paper, the subspace S will be
seven-dimensional, S = span {σj : j = 1, 2, . . . , 7}, where

σ1 = |1〉〈1|,

σ2 = 1√
k(k − 1)

k+1∑
j=2

k+1∑
m=2
m�=j

|j 〉〈m|,

σ3 = 1

M

N∑
j=k+2

N∑
m=k+2

|j 〉〈m|,

σ4 = 1√
2k

k+1∑
j=2

(|1〉〈j | + |j 〉〈1|),

σ5 = 1√
2kM

k+1∑
j=2

N∑
m=k+2

(|j 〉〈m| + |m〉〈j |),

σ6 = 1√
2M

N∑
j=k+2

(|1〉〈j | + |j 〉〈1|),

σ7 = 1√
k

k+1∑
j=2

|j 〉〈j |. (19)

We will call this also a σ -basis. The operators σj are depicted
in Fig. 1 as different renormalized subparts of a uniform
operator

∑
j,k |j 〉〈k|. This splitting recognizes the differences

between the various parts of states (target/normal vertices and
noise-affected/-unaffected) and it still allows us to define the
unitary evolution U on this subspace. Similarly, as in the
Introduction, we use

t = 2

N
, r = 1 − t = N − 2

N
. (20)

The unitary evolution U is described by transformation
rules within the subspace S:

U (σ1) = r2σ1 + t2
√

k(k − 1)σ2 + t2Mσ3 − rt
√

2kσ4

+ t2
√

2kMσ5 − rt
√

2Mσ6 + t2
√

kσ7,

FIG. 1. The matrices forming the invariant subspace S . Matrices
σ1, σ3, and σ7 have a nonzero trace, all others are traceless. The action
of dephasing in the basis represented by these matrices is diagonal.
The noise rates are written in the blocks for reference. Where none
is present, a factor of 1 is assumed.

U (σ2) = t2
√

k(k − 1)σ1 + [1 + t (k − 1)(tk − 2)]σ2

+ t2M
√

k(k − 1)σ3 + t (tk − 1)
√

2(k − 1)σ4

+ t (tk − 1)
√

2M (k − 1)σ5 + t2
√

2Mk(k − 1)σ6

+ t (tk − 2)
√

k − 1σ7,

U (σ3) = t2M (σ1 +
√

k(k − 1)σ2 +
√

2kσ4 +
√

kσ7)

+ (1 − tM )2σ3 − (
√

kσ5 + σ6)t (1 − tM )
√

2M,

U (σ4) = tr
√

2kσ1 +
√

2t (1 − tk)(
√

k − 1σ2 + σ7)

− t2M
√

2kσ3 − [r − tk(1 − 2t )]σ4

+ t (1 − 2tk)
√

Mσ5 + t (1 − 2t )
√

Mkσ6,

U (σ5) = t2
√

2Mkσ1 + t (tk − 1)
√

2M (
√

k − 1σ2 + σ7)

+ t (tM − 1)
√

2Mkσ3 + t (2tk − 1)
√

Mσ4

+ (2t2Mk − r )σ5 + t (2tM − 1)
√

kσ6,

U (σ6) = tr
√

2Mσ1 − t2
√

2Mk(
√

k − 1σ2 + σ7)

− t (tM − 1)
√

2Mσ3 + t (1 − 2t )
√

Mkσ4

+ t (1 − 2tM )
√

kσ5 + (1 − tk − 2t2M )σ6,

U (σ7) = t2
√

kσ1 − t (2 − tk)
√

k − 1σ2 + t2M
√

kσ3

+
√

2t (tk − 1)(σ4 +
√

Mσ5) + t2
√

2Mkσ6

+ (1 − 2t + t2k)σ7. (21)

This means that the Grover evolution is restricted to the sub-
space S and the evolution in this subspace can be represented
by a seven-dimensional unitary matrix U .

The noise, incorporated into the evolution as described in
Eq. (8), also keeps the subspace S invariant. Its representation
within the subspace is given by a diagonal matrix described
by the following transformation rules:

D(σ1) = σ1, D(σ2) = (1 − w)σ2,

D(σ3) = σ3, D(σ4) = (1 − s)σ4,

D(σ5) = (1 − p)σ5, D(σ6) = (1 − q )σ6,

D(σ7) = σ7. (22)

The dephasing D is described by four parameters p, q, s,
and w (we drop the index for the dephasing rate at this point
to simplify the notation), which can be further restricted. In
particular, when the noise is coupled, w = 0. If the noise
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furthermore couples with the target element, s = 0 and q = p.
If the target is not coupled to the noisy normal vertices,
q = 0 and s = p. In the case of decoupled noise, we set
w = 2p − p2 so that 1 − w = (1 − p)2. If, in this case the
target is under the influence of the noise, s = w and q = p.
Otherwise, we have s = p and q = 0. By proper choice of the
parameters, we can thus simulate all relevant cases of how the
dephasing affects the system.

Since both the unitary step U and the dephasing D keep the
state from subspace S in the subspace, also their composition,

E (�) = (U ◦ D)(�), (23)

which defines one step of the noisy evolution, will keep the
state in S .

It is worthwhile to note that the seven σj matrices do not
fully describe the whole Hilbert space. First, they have been
chosen so that the symmetry within the sets of elements would
be reflected. But, second, the span of these matrices, restricted
to the state space, describes only real density matrices. This
is enough for our purposes as both the unitary U and the
dephasing D are described by real matrices, but it would not
suffice for a general evolution.

To describe what happens to the initial state Eq. (4) under
evolution Eq. (8), we need to know how to represent the initial
state in the σ -basis—every state from the subspace S can be
expanded as a linear combination of the σj matrices,

�a =
∑

j

ajσj ≡ a · σσσ (24)

with σσσ being the vector of σj ’s. Conversely, any state ex-
pressed as a combination of σj matrices belongs to the invari-
ant subspace S and, moreover, evolving it using the unitary
U or the dephasing D will again produce a state from the
invariant subspace S . The initial state of equal superposition
of all basis states Eq. (4) is now given by vector

ainit = t

2
(1,

√
k(k − 1),M,

√
2k,

√
2Mk,

√
2M,

√
k).

(25)

In general, we can obtain coefficients aj from any state �a
as presented in Eq. (24) by defining inner product via the usual
formula

(�a, �b) = Tr [�∗
a�b] =

7∑
j=1

a∗
j bj . (26)

The coefficients are extracted by the formula:

aj = (σj , �a )

(σj , σj )
= (σj , �a ). (27)

The last equality holds due to orthonormality of σj ’s under the
inner product Eq. (26).

The success probability we are interested in is given by the
projection to the state σ1 and so psuc = a1. Finally, the trace
in the σ -basis is given as

Tr � = a1 + a3 +
√

ka7, (28)

since only σ1, σ3, and σ7 are not traceless.
As the presented formulation in the seven-dimensional

subspace S is still very demanding and to make an example
of using presented identification of invariant subspaces, we

look at the specific cases of the general evolution with the
decoherence, starting from the simplest.

IV. RESULTS

A. Normal elements treated equally

In this case, we will restrict ourselves to the case when
all the normal elements of the database are the same—either
not affected by the decoherence, or all under the influence
of decoherence. Roughly speaking, we consider here the
situation when k → N − 1 in which case the matrices σ3,
σ5, and σ6 are ill-defined and we do not include them in the
computation any more. The unitary evolution is now described
by transformation rules:

U (σ1) = r2σ1 + t
√

2r (1 + r )σ2 − r
√

2t (1 + r )σ4

+ t
√

t (1 + r )σ7,

U (σ2) = t
√

2r (1 + r )σ1 + (1 − 2rt )σ2 + 2r
√

rtσ4

− t
√

2rtσ7,

U (σ4) = r
√

2t (1 + r )σ1 − 2r
√

rtσ2 + (2r2 − 1)σ4

−
√

2rtσ7,

U (σ7) = t
√

t (1 + r )σ1 − t
√

t (1 + r )σ2 +
√

2rtσ4

+ r (1 + t )σ7. (29)

The dephasing obeys

D(σ1) = σ1,

D(σ2) = (1 − p)2σ2,

D(σ4) = (1 − p)(1 − q )σ4,

D(σ7) = σ7. (30)

We have therefore set 1 − w = (1 − p)2 and 1 − s = (1 −
p)(1 − q ). This allows us to study three different scenarios:

(A) Broken target (p = 0, q �= 0)
(B) Global decoupled dephasing (p = q)
(C) Noisy normal vertices and unaffected target (p �= 0,

q = 0)
While both cases (A) and (C) treat the target in a different

way than the normal vertices, case (C) seems to be rather
unreasonable, as it would indicate, that while all elements
undergo dephasing, the oracle does not. Case (A) is in this
respect more reasonable, as it defines a system that evolves
unitarily up to the oracle-selected element, which is noise-
affected; this might, e.g., mean that the marking of the target
is imperfect.

The initial state �init in the reduced basis is (here, for
simplicity we identify state � with its vector a in the σ -basis)

�init = 1
2 (t,

√
2r (1 + r ),

√
2t (1 + r ),

√
t (1 + r )). (31)

Unlike in the later cases (when the situation is treated
analogously, but with more effort), we provide here a detailed
analysis, starting with the properties of the unitary evolution
and then treating dephasing as a small perturbation.

1. Unitary evolution

In the vector representation, the unitary evolution U
is given by a matrix whose columns are formed by the
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coefficients of corresponding σj evolution. This matrix, U ,
has two double degenerate eigenvalues 1 with eigenvectors

ν1 = 1√
2

(
√

t, 0, 0,
√

1 + r ), (32)

with overlap 1/
√

N with the initial state of equal superposi-
tion, and

ν2 = 1√
2(1 + r )

(
√

r (1 + r ),
√

2, 0,−√
rt ), (33)

with the overlap of
√

r/2 with the initial state of equal
superposition. The two other eigenvalues are two complex-
conjugated eigenvalues e±2iθ , where cos θ = r , with eigen-
vectors

ν± = 1

2
√

1 + r
(
√

1 + r,−
√

2r,±i
√

2(1 + r ),−√
t ) (34)

that have overlap of e±iθ /2 with the initial state of equal
superposition.

All the eigenvectors are normalized and mutually orthog-
onal under the definition of inner product Eq. (26). So, in
the ideal case of no dephasing, the state after m steps can be
expressed as

ρ(m) := Um

⎡
⎣∑

j

(νj , �init )νj

⎤
⎦ =

∑
j

(νj , �init )λ
m
j νj , (35)

where �init is the initial state Eq. (31), j indexes the eigen-
vectors νj , and corresponding eigenvalues λj . Typically, the
overlap (νj , �init ) determines how much effect each eigenstate
has on the evolution. Here the situation requires a more
detailed analysis, as the probability of success is the quantity
we consider. The probability of success is given by the first
element of used vectors and, therefore, the important eigen-
vectors are those having large value of ωj := |(νj , �init )(νj )1|.
In this specific example, eigenvector ν1 has overlap of ω1 ∼
O(1/N ), while all other eigenvectors have overlap ωj ∼ 1/2.
The evolution can be, after some manipulation, expressed by
Eq. (5).

2. Including the noise

Now let us include also dephasing into our discussion. With
respect to the definition of trace in Eq. (28), only eigenvector
ν1 has a nonzero trace. Since both the unitary U and the
dephasing D are trace preserving, ν1 has to be the eigenvector
of D with the eigenvalue 1 as well. This reduces the analysis to
the three remaining eigenvalues—eigenvalue 1 corresponding
to the vector ν2 and eigenvalues e±2iθ .

Already in this simple case, the analysis under full evolu-
tion is difficult and therefore we will restrict ourselves to the
case of small values of p and q and use perturbation theory
to find the corrections to the eigenvalues. As the overlaps of
these eigenvectors with the initial state are of O(1), under
supposition of first-order terms of p and q these overlaps do
not change significantly and we will treat them as constants as
over the studied time of evolution they remain unchanged and
do not change the success probability.

Note also that (even in the full problem) if we have no
noise on normal elements (p = 0), the 1-eigenvectors of U

are also eigenvectors of D, i.e., the corrections to the 1-
eigenvalue terms will depend only on p—the noise rate on the
normal elements, while the dependence on q in the first-order
approximation shall be absent.

The characteristic polynomial P (λ) of E as defined in
Eq. (23) is of fourth order with one solution 1. The other
eigenvalue 1 of the matrix U is perturbed—setting λ = 1 + δp

we find that

P (1 + δp) = 16p[N + (N − 1)δ] + R2, (36)

where R2 represents terms of higher order; these are of order
p2/N and so are small for all considered p’s. Setting �P (1),
being the first-order variation to P at value 1 we solve for
�P (1) = 0 and get

δ = − N

N − 1
, λ̃ = 1 − N

N − 1
p, (37)

where we marked the approximated eigenvalue by tilde.
For the conjugated eigenvalues, we let λ̃± = e±2iθ (1 +

δ±p + γ±q ), and solving for �P (λ±) = 0 we get

λ̃± = e±2iθ

[
1 − 2N − 3

2(N − 1)
p − q

2

]
. (38)

The higher order terms are smaller than the leading terms if
p, q � 1/

√
N . The full evolution is obtained from a formula

similar to Eq. (35),

ρ(m) = Em

⎡
⎣∑

j

(νj , �init )νj

⎤
⎦ 

∑
j

(νj , �init )λ̃
m
j νj , (39)

which to the first order of approximation gives

psuc(m)  1

N
+ N − 2

2N

(
1− N

N − 1
p

)m

− 1

2
cos[(2m + 1)θ ]

×
[

1 − 2N − 3

2(N − 1)
p − q

2

]m

 1

2

[
(1 − p)m − cos[(2m + 1)θ ]

(
1 − p − q

2

)m]
.

(40)

The second approximation is for N → ∞. We note that this
result is consistent with the noiseless case of the Grover
search, as for p = q = 0 it gives Eq. (5).

Taking now p = 0, q �= 0, i.e., with just the target dephas-
ing (case A, see Fig. 2(b)(i)), the success probability has a
stationary point 1/2. The limiting state in this case is

μ0 = 1

2
√

1 + r
(
√

1 + r,
√

2r, 0,
√

t ), (41)

which, with probability 1/2 gives the target element and with
probability 1/2 projects into the normal subspace with equal
probability to be located in any normal state. This case is
studied also in Ref. [16], where exact results are presented.
The reference contains some slight differences in the action of
the noise, but it is possible to make a direct comparison with
the results here. The noise used there is the same as in this
paper but is used both after the oracle and the Grover unitary,
and instead of reducing off-diagonal elements to 1 − q, it
scales them by factor

√
η. As the noise commutes with the
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(a)

(b)

FIG. 2. Evolutions of the success probability (with N = 500)
under a) coupled noise—(a)(i) the periodic oscillations are pro-
nounced when the target element is part of the (much) larger subset
(p = 0.1, k = 10, q = 0); the approximation works well. (a)(ii) The
fit becomes worse and the probability grows more slowly in the limit
of large times approaching 1/3, when the size of the set where target
belongs shrinks (k increases to N/2). When the number of noisy
elements in the normal set drops to k = 0, we have only a noisy
target, which is the same case as in the decoupled noise scenario
(b)(i), with p = 0, q = 0.05. In this case, the limiting probability is
1/2 and not 1/3, as it is described by Eq. (52). A more general case
is (b)(ii), where k = 10 but without the noise affecting the target,
which still offers a quadratic speedup. Again, the more elements
are affected by noise, the easier it is to destroy the speedup. It gets
even faster when noise affects the target (b)(iii), where we show
the limiting case of all elements under delocalized dephasing with
p = q = 0.05. The dashed grey line corresponds to the number of
steps m0 = π

4

√
N , the dotted gray lines correspond to the linear

terms of the corresponding psuc, and the dot-dashed grey lines to
corresponding psuc without periodic term.

oracle, it can be rearranged to be used as in our case but twice
in succession. Therefore, we deduce identity 1 − η = q. With
this substitution, the results of the reference fits our results.

After m0 steps given by Eq. (6), when the cosine term
becomes positive we have the success probability psuc � 1/2,

which means that the number of oracle calls by Eq. (A6) is
still of order

√
N and we do not lose the quadratic speedup.

However, this works only under given approximation (q �
1/

√
N )—outside this bound, the higher order terms will lead

to the change of the frequency of oscillations and prolong the
computation in a way that might eventually lead to the loss of
quadratic speedup. This is indeed the case, as can be observed
in Fig. 3.

FIG. 3. Scaling properties of the average number of steps m̄

given that a single experiment lasts m0 number of steps (see expla-
nation in the Appendix) for different situations in log-log scale as a
function of the number of elemets N ; these situations are displayed
for coupled noise, however, qualitatively the same discussion holds
also for decoupled noise. Black solid line depicts Grover search
without noise, which has a quadratic speedup; dashed black line
corresponds to the classical search. Cases having target noises q �
1/

√
N and for normal vertices kp � √

N , are retaining quadratic
speedup (shaded region). Any deviation from these bounds leads to
the loss of the speedup. Linear scaling is obtained whenever q is
constant (dot-dashed line); this loss is further pronounced when some
noisy normal vertices are added (dotted line). Dashed gray line, when
k  N 0.7, diverges from quadratic speedup, but within the studied
range it does not lead to linear scaling.

On the other hand, additional dephasing p �= 0 destroys
the success probability quickly and the limiting state is the
completely mixed state that gives probability of success only
of order 1/N . In this setting, the only physically relevant
situation is a global decoupled dephasing with p = q [case B,
see Fig. 2(b)(iii)]. Invoking the results of Ref. [15], we find out
that in this case the quadratic speedup is lost as well and the
number of oracle calls is of order pN , unless p, q � 1/

√
N .

The same analysis holds also for case C.
In this simplest example, the parameter regions for appli-

cability were small and, in turn uninteresting, recovering only
previous results. In the next section, we shall extend the model
and show that in some particular cases the parameters regions
can be extended beyond 1/

√
N bound and provide interesting

results. As the computations get more involved, we remove
lengthy expositions and present only results. Details to all
computations can be found in the Supplemental Material [24].

B. Coupled noise on any subset of elements

Splitting the set of normal elements into those affected by
noise and those that are not increases the dimensionality of the
problem. Considering only coupled noise does, on the other
hand, allow the dimensionality to be only six, as the diagonal
matrix σ7 can be merged with the off-diagonal matrix σ2 of
affected normal vertices into one,

σ̃2 = 1

k

k+1∑
j=2

k+1∑
m=2

|j 〉〈m|. (42)
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This state change affects several definitions from the introduc-
tion. First, the unitary transformation rules Eqs. (21) will be
different; under action of U the matrix σ̃2 evolves as

U (σ̃2) = t2kσ1 + (1 − tk)2σ̃2 + t2kMσ3 − t
√

2k(1 − tk)σ4

− t
√

2kM (1 − tk)σ5 + t2k
√

2Mσ6. (43)

All other transformation rules U (σj ) from Eqs. (21) change
only in the σ2 terms. These changes can be collectively
described by exchange rule

σ2 →
√

k

k − 1
σ̃2. (44)

The initial state is

�init = t

2
(1, k,M,

√
2k,

√
2kM,

√
2M ) (45)

and the trace Eq. (28) is now

Tr � = a1 + ã2 + a3, (46)

where ã2 is the coefficient by σ̃2. The dephasing noise is acting
according to the rules (displaying only those, that do not act
as identity):

D(σ4) = (1 − s)σ4,

D(σ5) = (1 − p)σ5,

D(σ6) = (1 − q )σ6. (47)

This parametrization allows us to discern three particular
physically interesting cases in this discussion (here we assume
small k’s):

(A) In the coupled noise scenario with target lying in the
larger subspace for which q = 0 and s = p

(B) In the coupled noise scenario with target lying in the
smaller subspace for which s = 0 and q = p

(C) A specific case of decoupled noise when k = 1 that
can be obtained by setting q = p and s = 2p − p2

These cases will be analyzed below in separate subsections.
As the difficulty of solving the problem grows beyond the
point when displaying of the intermediate calculations would
be useful, we present only a simplified analysis.

The unperturbed problem now contains two pairs of
complex-conjugate eigenvalues and a double-degenerate
eigenvalue one. One pair of complex-conjugate eigenvalues
gives the usual periodic behavior. The second pair would
introduce a different period to the evolution, but the two corre-
sponding eigenvectors have zero overlap with our initial state
and are, hence, unimportant in the analysis. In the eigenvalue-
1 subspace, we can find a basis of two eigenvectors, one of
which has trace zero. The other eigenvector is the only eigen-
vector with nonzero trace and, thus, is also an eigenvector for
the dephasing D. Success probability coming from this vector
is 1/3. The problem is now solved by perturbing the remaining
eigenvector for the eigenvalue one and the relevant periodic
part.

1. Coupled noise

A situation (case A), when we have coupled noise and the
target lying in the larger subspace, is obtained by taking q = 0

FIG. 4. Dependence of efficiency exponent β, such that m̄ =
O(Nβ ), as a function of exponent μ for the size of affected subspace,
k  Nμ for coupled dephasing (dot-dashed) and decoupled dephas-
ing (dashed) is roughly linear. Inset shows the convergence of β for
various choices of μ = 0.5, 0.6, 0.7, 0.8, 0.9 from bottom to top.

and s = p. In this case the success probability is

psuc(m)  1

3
+ 1

6

[
1 − 3kM

(N − 1)2
p

]m

− 1

2
cos[(2m + 1)θ ]

×
[

1 − k(2N − k − 2)

2(N − 1)2
p

]m

. (48)

The approximations for the 1-eigenvalue are appropriate for
both p � 1 and k � N and for the periodic term the applica-
bility of the approximation is for kp � √

N . However, in this
case, the former restriction on the 1-eigenvalue term does not
affect the complexity of the search, as with the constant term,
this part of probability will always be O(1); we are, hence,
limitted only by constraint kp � √

N . This is confirmed also
numerically, see Fig. 3.

Within given constraints, after m0 steps given by Eq. (6) the
periodic term is positive as well and the whole probability is
of order one—the quadratic speedup is retained. This situation
is depicted in Fig. 2(a)(i). However, if we, e.g., set k = N/2
[Fig. 2(a)(ii)], which will take us outside the validity of
the approximation, we are not guaranteed to have quadratic
speedup any more.

Interestingly, we can look also at intermediate cases, when
k ∼ Nμ,μ � 0.5, where the numerical simulations up to N ’s
of size around one million show (see Fig. 4) that although the
quadratic speedup is lost, the search can be still faster than the
(linear) classical one, as the efficiency seems to scale as Nμ.

Note that taking k → 0 recovers the Grover search Eq. (5)
and taking k → N − 1 (which requires p � 1/

√
N ) recovers

Eq. (40) in which the p and q have reversed roles, i.e., p :=
0 and q := p. More importantly, comparing to the previous
section we see the extension of validity of our approximations
for small k �

√
N , for which we require only p � 1. That

is, the approximation does not require the noise parameter to
scale with the size of the system whenever k is small.

Due to the symmetry of the coupled noise, the interpreta-
tion is that the quadratic speedup is retained for small noises
whenever the target is in the larger noise-affected set. This
symmetry also offers solution to case B, which is simply case
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A with k �→ N − k − 1 and, hence, it does not require further
analysis.

In both previous cases, the limiting state is the same, the
single eigenvector with eigenvalue 1 of both U and D,

μ0 = 1
3 (σ1 + σ̃2 + σ3), (49)

which has the same probability to be found in either of the
three types of elements—target, noisy normal, and unaffected
normal element.

2. Decoupled dephasing on a target and single normal element

Case (C) is obtained by setting q = p and s = 2p − p2

with k = 1. Here we observe that the success probability is

psuc(m)  1

3
+ 1

6

[
1 − 3(N − 2)

(N − 1)2
p

]m

− 1

2
cos[(2m + 1)θ ]

×
[

1 − N2 − 2

2(N − 1)2
p

]m

, (50)

where the periodic term is a good approximation only for
p � 1/

√
N valid for the periodic term. More interestingly,

the middle term is no longer damped at rate p, but only at
rate p/N , which does not have high importance now, but
becomes valuable for general number of normal elements
under decoupled dephasing.

C. Decoupled noise on any subset of elements

The most general case, as introduced in Sec. III is also
the most difficult to treat. The unitary evolution U obeys the
rules presented in Eqs. (21) and the initial state is given by
Eq. (25). As we have already treated coupled noise in the
previous section, we reduce the number of noise parameters
by setting the D as follows:

D(σ2) = (1 − p)2σ2,

D(σ4) = (1 − p)(1 − q )σ4,

D(σ5) = (1 − p)σ5,

D(σ6) = (1 − q )σ6. (51)

All other rules act as identities. This parametrization allows us
to discern two cases—either target being affected by the noise
(p = q is assumed due to the symmetry considerations) or not
affected (q = 0, which is interesting for the case of small k’s
in particular).

The solution of the unperturbed problem has, in compari-
son to the cases mentioned in Sec. IV B, a threefold degener-
acy of eigenvalue 1, where we can find a third eigenvector for
which the eigenvector has a zero overlap with the initial state
and is not eigenvector for the dephasing D. Interestingly, all
three eigenvectors are for p = 0 eigenvectors of the dephasing
D; the first-order dependence of the eigenvectors is thus
independent of q.

With the analysis of the eigenvectors and known limit for
k = 1 (Sec. IV B 2), we can obtain the first-order approxima-
tion to the success probability in the form

psuc(m)  1

k + 2
+ k

2(k + 2)

[
1 − (N − 2)(k + 2)

(N − 1)2
p

]m

− 1

2
cos[(2m + 1)θ ]

[
1 − k(2N − 3)

2(N − 1)2
p − q

2

]m

. (52)

The strongest restriction on validity comes from the periodic
term approximation, namely, kp � √

N and q � 1/
√

N .
This shows that whenever the target is affected by noise
(q > 0), the quadratic speedup is quickly lost as the threshold
scaling 1/

√
N is very restrictive; this uncovers the destruc-

tiveness of the noise usually observed in the literature on the
topic.

An interesting situation appears when q = 0, i.e., when
the target is in the noise-unaffected subspace. If the affected
subspace is small (k �

√
N ), the approximation to the success

probability Eq. (52) is valid even for larger noise rates p.
In other words, when the previous conditions are met, the
search is robust toward the noise. The evolution in this case
is depicted in Fig. 2(b)(ii).

We can observe that the first static term decreases with
growing k, but for small enough k’s still provides a quadratic
speedup with scaling k

√
N as after m0 steps the periodic term

becomes positive; see Appendix for explanation. For larger
k’s approaching

√
N , the first term becomes small and does

not allow quadratic speedup any more. On the other hand,
the second term is damped only at a rate proportional to
kp/N , which still provides a quadratic speedup by Eq. (A10).
For larger k’s, especially when approaching N , we lose the

speedup and the number of oracle calls grows toward pN ;
the solution approaches Eq. (40). In addition, Eq. (50) can be
recovered from Eq. (52) by taking k = 1 and p = q.

Summing up the previous results, we can observe that the
quadratic speedup of the quantum search can be retained when
the noise affects a small number of normal elements, but not
the target. In fact, our numerical simulations in Fig. 3 show
that the bound for the noise rate on the target, q � 1/

√
N ,

and the bound for the noise on normal vertices, kp � √
N ,

is a rather strict one. Any deviation seems to lead to the loss
of quadratic speedup if not any speedup. Probably the most
disastrous is noise on the target, which very quickly leads to
linear scaling. Having noise on the normal vertices then only
intensifies the loss of the speedup.

If, however, the target is unaffected by the noise, the
quadratic speedup is retained even for large noises p and
number of affected normal vertices up to k  √

N . Any larger
scaling of k  Nμ with μ > 0.5 seems to lead to the loss
of the quadratic speedup. As seen in Fig. 4, the efficiency
slowly deteriorates roughly as Nμ. The convergence seems to
be robust as seen in the inset of the figure. Interestingly, these
qualitative results hold irrespective of what type of dephasing
we use, whether it is coupled, or decoupled noise.
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In the following section, we shall make some parallels
with quantum walks, where this method might be applicable
as well.

V. APPLICATIONS TO QUANTUM WALKS

The possibility of applying quantum searches within quan-
tum walks does not provide additional results but the different
point of view might be useful. Quantum walks recently gained
a lot of attention, as they are relatively easy to experimentally
realize and, hence, may pose as a good testing ground for
quantum algorithms that are applicable to them. One of the
more prominent applications of algorithms to quantum walks
are searches that have been described on various forms of
graphs [19,25,26]. Yet again, their results suffer from the
problem of being proven to work only for the ideal unitary
evolutions. The role of noise, which is important in exper-
imental realizations, is only sparsely studied beyond obser-
vation of general properties on lattices [27–29]. Especially
in the mentioned results, the theory of invariant subspaces,
presented in Refs. [18,22] in great depth, plays a deep role
and, in fact, was the original inspiration for this paper. For
these reasons, the paper should not only offer results for the
general quantum searches, but also more specifically for the
community of quantum walks.

Quantum walks are quantum evolutions defined on graphs
of specific structure. Following the interferometric interpreta-
tion of dicrete-time quantum walks introduced in Ref. [21],
the quantum walk is defined on a graph G = (V,E), where
V = {1, 2, . . . , N} is the set of vertices and E is the set of
edges, i.e., pairs of vertices. The graph is considered to be
undirected, meaning, that if (x, y) ∈ E, then also (y, x) ∈
E. Quantum walk is then defined on a Hilbert space H =
span {|x, y〉 : (x, y) ∈ E}. The walker in these types of quan-
tum walks can thus be interpreted as a particle traveling on
edge (x, y) from vertex x to vertex y—we shall call these
states edge states.

The evolution U on such a graph is defined via local
evolutions on all vertices x, Ux : �x → Ax , where

�x := span {|y, x〉 : y ∈ V, (y, x) ∈ E} (53)

is the subspace of H where the walker is traveling toward
vertex x and

Ax := span {|x, y〉 : y ∈ V, (x, y) ∈ E} (54)

is the subspace of H where the walker is traveling away from
vertex x. The overall evolution U is then a direct sum of all
these subevolutions, U = ⊕x∈V Ux .

Quantum walks provide a playground for many quantum
algorithms and quantum searches in particular. When per-
forming a search with quantum walks, a usual assumption
is homogenity of a graph (high symmetry) and also high
homogenity of the quantum evolution. In particular, in con-
nection to the oracle f it is usually assumed that Ux =
(−1)f (x)U0, where U0 is chosen to be the inversion about
average operator G, or the identity I (depending on the setup).
In these cases, the theory of Ref. [18] can be used to show
quadratic speedups in localization of elements (vertices) for
which f gives one.

FIG. 5. Star graph with central vertex 0, spokes’ end-vertices 1
through N . Vertex 1 is marked by the oracle and vertices 2 through
k + 1 are undergoing decoherence. When k is small, the search by
quantum walks can still be quadratically faster than in the classical
case.

If we want to include noise, considering localized decoher-
ence has a straightforward interpretation as a spatially local-
ized region where decoherence acts. Having, for example, a
set of vertices M lying in this region, we can imagine noise
acting on all edge states that originate in this region, e.g.

A0 = {|x, y〉 : x ∈ M, (x, y) ∈ E}.
In the same way as in the Grover search case studied before,
we have a high symmetry imposed by the graph structure and,
additionally, a splitting into noise-affected and noiseless parts.
As in the previous case, we can look for invariant subspace for
both the unitary evolution and the noise.

As an example, let us consider a quantum-walk based
search on a star graph (see Fig. 5) having one central vertex
(labelled 0) and N vertices at the ends of the spokes (num-
bered from 1 to N ) that are connected to the central vertex.
Let the oracle f select one of the outer vertices, which we
can set to be 1 without loss of generality. In an ideal case,
the evolution on this graph is described by three different
local unitaries. The central vertex acts as the inverse about
average Eq. (3), i.e., U0 = G. The unmarked (normal) outer
vertices simply reflect the walker back, i.e., Uj = I for j =
2, 3, . . . , N . The target vertex 1 reflects the particle back as
well, but with an additional phase, U1 = −I. Let us again
use the notation U (�) = U�U †, and let the initial state be the
equal superposition of outgoing walkers,

|ψinit〉 = 1√
N

N∑
j=1

|0, j 〉. (55)

What we shall show is that this problem can be mapped to our
previous results for noisy quantum search.

Defined unitary evolution is an ideal situation, which in
real experiment might be disturbed by noise that will again
be labeled as D. Suppose some subset of vertices, from 2
through k + 1, is faulty and acts similarly as in Ref. [30].
In particular (e.g., due to thermal fluctuations), a random
phase-shift |0, x〉 �→ eiφ|0, x〉 is introduced to each of the
faulty vertices, where φ is sampled from a probability density
function π that is symmetric around 0 and on interval [−a, a].
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TABLE I. Observed speedups for regions of validity in different studied cases. Numerically observed cases do not have validity regions
and their efficiency is conjectured from observation.

Noise Case Efficiency Conditions

target in the larger subspace O(N1/2) kp � √
N

Coupled target in the smaller subspace O(N1/2) p � 1/
√

N

target in the larger subspace with k ∼ Nμ Nμ μ ∈ [1/2; 1] (numerical)

noiseless target O(N 1/2) kp � √
N

Decoupled noisy target O(N1/2) p � 1/
√

N

noiseless target with k ∼ Nμ Nμ μ ∈ [1/2; 1] (numerical)

This phase-shift is considered to be dynamic, i.e., randomly
sampled at each step. This situation is also depicted in Fig. 5.

We can simplify the problem by considering two steps of
evolution. Due to the nature of the initial state Eq. (55) and the
noise not affecting states of form |j, 0〉, the application of the
noise after every use of the unitary U , the noise D will have
no effect half of the time. In particular, when the state � is
described as a particle leaving vertex 0, then we have identity

(U ◦ D)2(�) = (U2 ◦ D)(�). (56)

Furthermore, as we are unaware what the actual phase-shift
is, to our best knowledge the state changes under the channel
that is the average over all phase shifts:

D̃(�) =
∫ a

−a

π (φ)D(�)dφ. (57)

So, in the end, what we are interested in is evolution described
at every step by E = U2 ◦ D̃. Let us now have a closer look at
the introduced noise D̃ in this averaged image.

If we describe the quantum walker state by the density
matrix, then we have three types of coefficients �j,m. First
are those where both j,m are not from the noise-affected
subspace, or when j = m. In this case, the corresponding
density matrix coefficients do not change under decoherence.
If one of j,m belongs to the affected subspace, but the other
does not, the coefficent after the application of the noise D
acquires a phase −φj or φm. In both cases, the averaging gives
a multiplication factor to the coefficient

0 � 1 − p ≡
∫ a

−a

π (φ)eiφdφ = 2
∫ a

0
π (φ) cos(φ)dφ � 1.

(58)

Finally, if both vertices j,m are from the affected subspace
and j �= m, then the density matrix coefficient acquires a
phase φj − φm. Similarly as before, the averaging gives a
prefactor to the coefficient of the form (1 − p)2.

We can observe now that this behavior of the decoherence
D̃ is the same as the dephasing noise used in Eq. (51).
Furthermore, the unitary part of the evolution given by U2

is described by transformation rules Eqs. (21) where in the
definition of the σ basis Eqs. (19) we identify the edge states
|0, j 〉 with states |j 〉. Hence, we have mapped the quantum-
walk search problem with dynamical phase-shifting on some
elements to the case of noisy quantum search from Sec. IV C.
We can now apply the results obtained there also to this case.

VI. CONCLUSION

We have studied a Grover search with one target element
under a local partially dephasing channel using a method of
invariant subspaces in the density matrix formalism. The anal-
ysis shows interesting behavior in several cases that still allow
for a quadratic speedup. The dephasing we considered was of
two sorts—coupled, where the whole subspace was affected
collectively, and decoupled, where the canonical elements of
affected subspace were affected individually. The results are
summarized in Table I.

In the case of decoupled noise, the Hilbert space is split into
two parts, and the noise dephases these two parts. This means
that the two subspaces are in a symmetrical position. If the
target element is in the smaller group, the dephasing has a very
detrimental effect and, to retain a quadratic speedup, its rate
p needs to obey p � 1/

√
N . If, however, the target element

lies in the larger subspace and the size of the smaller subspace
is k, then the condition for retaining a quadratic speedup is
kp � √

N .
In the case of decoupled noise, the symmetry between the

spaces is broken, as the elements in the affected subspace are
affected individually. If the target is part of this subspace,
the noise destroys speedup very quickly and one can have a
quadratic speedup only if p � 1/

√
N . If, however, the target

element is not in the noise-affected subspace, then to retain
a quadratic speedup, it is again sufficient to fulfill condition
kp � √

N .
We have thus found regions of noise where the conditions

are favorable for retaining the quadratic speedup—the condi-
tion is that the size of the subspace affected by noise should
be smaller than

√
N . Numerically, we have also observed that

if the size of this region grows as Nμ with μ ∈ [1/2; 1], the
efficiency of the search tends toward the classical limit as Nμ,
which is worse than the best possible quadratic speedup, but
still better than the classical bound. This has a consequence
for a physically relevant case of a qubit register with one of
the qubits decohering (k = N/2). In such a case, our results
suggest that any speedup might already be lost unless the
noise scales like 1/

√
N .
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APPENDIX: MEASURING THE SPEED OF THE SEARCH

When trying to decide how fast a search is (measured in the
number of oracle calls), in general the usual approach to wait
until the probability hits one may not work as quite commonly
the success probability will be dampened fast enough not to
get close to one. After an unsuccessful search, one needs to
try again, which prolongs the search. In such case, one weighs
different factors in—the smaller number of oracle calls one
makes can lead to smaller success probability (at least right
after the start of the search) but, on the other hand, the longer
we let the system evolve, the higher contribution to the overall
number of oracle calls it has in the end.

A good measure of how an algorithm can search for an
element is then the compromise between the two drawbacks—
the smallest average (expected) time to find a searched item. If
the success probability of finding the item in m steps is p(m),
then the average number of steps one needs to perform is

m̄(m) = p(m)(m + 1)
∞∑

r=1

[1 − p(m)]r−1r = m + 1

p(m)
, (A1)

where r counts the repetitions and we also account for an extra
oracle call at the end, checking whether we have the correct
item. In proving this, we used

1

(1 − q )2
= d

dq

[ ∞∑
r=0

qr

]
=

∞∑
r=1

rqr−1. (A2)

The optimal number of steps is found in the global minimum
of function m̄, which in particular is easy to find in numerical
simulations. To find the optimal number of steps analytically,
we could look at the maximum of m̄(m) when m̄′(m) = 0; this
would give us condition

m + 1 = p(m)

p′(m)
. (A3)

This is usually hard to compute as it often leads to transcen-
dental equations. However, in our cases when the success

probability is given generally as

psuc(m) = α + β(1 − b)m − γ (1 − c)m cos[(2m + 1)θ ],

(A4)

α, β, γ � 0, we can always choose m := m0/2 ≡ π
√

N/8,
which is a point when (2m + 1)θ becomes closest to π/2 and
the cosine contribution becomes positive. Thus, our success
probability is

psuc(m) � α + β(1 − b)m. (A5)

When α is O(1), we can immediately use Eq. (A1) to find

m̄(m) � m + 1

α
= O(

√
N ). (A6)

Once α becomes too small, possibly scaling with N , we
shift our interest to

psuc(m) � β(1 − b)m, (A7)

while we suppose that b = p/Nκ with p ∈ [0, 1] and κ �
1/2. Under these restrictions, the function(

1 − p

Nκ

)√
N

(A8)

is increasing in N and so

psuc(m) � β

(
1 − p

4κ

) π
4

√
4

� β

3
. (A9)

Using Eq. (A1), we see that

m̄(m) � 3

β
(m + 1) = O(

√
N ), (A10)

where the last equality holds for β = o(1).
On the other hand, when we take b, p = O(1) (and when

α is small), which is the usual form of restriction in our paper,
we simply have

m̄(m) � m + 1

2β(1 − p)
√

N
� m

2β
(1 +

√
Np) = O(pN ).

(A11)

This means, that once b is large and does not change with N ,
the search becomes inefficient and the number of oracle calls
becomes linear in both N and p and the quadratic speedup is
lost.
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