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Efficiency of a cyclic quantum heat engine with finite-size baths
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In this paper we investigate the relationship between the efficiency of a cyclic quantum heat engine with
the Hilbert space dimension of the thermal baths. By means of a general inequality, we show that the Carnot
efficiency can be obtained only when both the hot and cold baths are infinitely large. By further introducing
a specific model where the baths are constituted of ensembles of finite-dimensional particles, we further
demonstrate the relationship between the engine’s power and efficiency, with the dimension of the working
substance and the bath particles.
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I. INTRODUCTION

An understanding of the fundamental limitations of heat
engines was the initial impetus for the development of ther-
modynamics. Indeed, in one of its earliest formulations due to
Carnot [1], the second law of thermodynamics sets an upper
bound to the efficiency of a cyclic heat engine, in which a
working substance S extracts work by transferring heat from
a hot bath, of temperature Th, to a cold bath of temperature
Tc < Th. The efficiency of average work, defined as the ratio
of average work output to the average heat extracted from the
hot bath, is limited by the Carnot efficiency ηC := 1 − Tc/Th.

Recent advances in the technological ability of engineering
nanoscale devices demands extending such thermodynamic
principles to small scales where thermal and quantum fluc-
tuations dominate. Extensions of the second law of thermo-
dynamics in the form of fluctuation theorems have success-
fully accounted for thermal fluctuations [2–5], allowing for
the fluctuating behavior of small-scale heat engines to be
addressed [6–9]. The extension of these results to account
for quantum fluctuations has led to a growing interest in the
thermodynamic properties of quantum systems [10–12] and
the development of stochastic quantum thermodynamics so
as to extend fluctuation theorems into the quantum domain
[13–18]. A number of works have addressed the role of quan-
tum mechanical phenomena such as coherence, entanglement,
and measurement-induced back-action on the thermodynamic
properties of systems [19–23], while the properties of quan-
tum heat engines in particular have received much attention
[24–29].

In most quantum mechanical treatments of heat engines,
only the working substance is assumed to be a small, mi-
croscopic system, while the thermal baths are assumed to
be infinitely large. It is known that the size of the thermal
bath introduces correction terms in the second law of ther-
modynamics [30] and imposes limitations on thermodynamic
operations such as cooling [31–33]. Similarly, several works
have analysed the finite-size effects of the thermal bath on the
performance of heat engines [34–38]. However, these studies
have understood the size of the thermal bath to be the number

of particles that constitute it, the volume of the bath, or the
heat capacity of the bath. A description of how the Hilbert
space dimension of the bath affects the performance of the
engine, in a manner similar to how the dimension of the bath
affects Landauer’s principle in Ref. [32], remains an open
problem. Therefore, in this paper we attempt to close this gap
by investigating how the Hilbert space dimension of the hot
and cold baths affects the performance of a cyclic quantum
heat engine in terms of its efficiency.

Specifically, in Sec. II we describe a cyclic quantum heat
engine in general terms and quantify how the dimension of
the thermal baths limits the efficiency of average work for
such an engine in terms of an inequality [Eq. (8)]. This shows
that the efficiency of average work can approach the Carnot
efficiency only when both the hot and cold baths have an
infinite-dimensional Hilbert space. Subsequently, in Sec. III
we introduce a specific model for a cyclic quantum heat en-
gine, inspired by the collision model approach to open system
dynamics [39–41]. Here the hot and cold baths are considered
as ensembles of particles with equally spaced energy levels,
and the collision between the working substance and each
of these particles is described by a joint unitary evolution
that conserves the total excitation number. We then proceed
to show how the efficiency of average work will approach
the Carnot limit when the number of ensembles goes to
infinity, corresponding with a smooth change in the particle
energy gaps. This will result in the dimension of the baths
approaching infinity. In Sec. IV we quantitatively explore the
relationship between the dimension of the working substance
S and that of the baths, with the power and efficiency of
the engine. We consider two classes of collision interactions:
(1) a swap operation and (2) a unitary generated by a Jaynes-
Cummings Hamiltonian. Finally, in Sec. V we analyze the
stochastic efficiency of this engine. We show that the effi-
ciency of the most likely trajectory per cycle will approach
the Carnot efficiency from below as the dimension of the
cold bath becomes infinitely large; the size of the hot bath
does not affect this. Meanwhile, the most likely stochastic
efficiency per cycle (distinct from the efficiency of the most
likely trajectory, since multiple trajectories can have the same
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efficiency) can be the Carnot efficiency when both hot and
cold baths are small, finite-dimensional systems.

II. GENERAL CONSTRAINTS ON WORK EXTRACTION
AND EFFICIENCY

The system we are interested in is a cyclic engine operating
between two thermal baths at different temperatures. The
engine is a working substance S with Hilbert space HS , and
the two thermal baths, R and E , have Hilbert spaces HR
and HE , respectively. The compound system is described by
the time-dependent Hamiltonian H (t ) := HS + HR + HE +
V (t ), which changes smoothly with t . The time dependence of
the Hamiltonian is to be understood as effecting an exchange
of work with an external work storage device, which we do
not explicitly include within the quantum description. At time
t = 0 the working substance is decoupled from the thermal
baths, V (0) = 0, and the compound system is in the product
state ρ(0) := ρS (0) ⊗ ρR(0) ⊗ ρE (0), such that E and R are
at thermal equilibrium with respect to their bare Hamiltonians,
i.e., for X ∈ {R, E}, ρX (0) := e−βX HX /tr[e−βX HX ] with inverse
temperature βX . We assume that E is warmer than R, i.e.,
βE < βR. The time dependence of the total Hamiltonian lets
the compound system evolve as ρ(t ) := U (t )ρ(0)U †(t ) with
the unitary time-evolution operator U (t ) := T←−e−i

∫ t
0 dτH (τ ).

Here T←− denotes the time-ordering operator. The reduced state
of each subsystem X ∈ {S,R, E} at time t is thus given by
ρX (t ) := trX̄ [ρ(t )], where trX̄ denotes the partial trace over all
systems other than X .

The average work extracted from the compound system,
during the time interval [0, T ], can be calculated [42] to be

〈W 〉 =
∫ 0

T
dt tr

[
dH (t )

dt
ρ(t )

]

=
∫ 0

T
dt

d

dt
tr[H (t )ρ(t )] − tr

[
H (t )

dρ(t )

dt

]

= tr[H (0)ρ(0)] − tr[H (T )ρ(T )]. (1)

Here the last step is obtained by noting that the
compound system evolves unitarily, and hence dρ(t )

dt =
i[H (t ), ρ(t )]. Therefore, by the cyclicity property of the trace
we have tr[H (t ) dρ(t )

dt ] = itr{H (t )[H (t )ρ(t ) − ρ(t )H (t )]} =
0. Recall that ρ(T ) := U (T )ρ(0)U †(T ), and so Eq. (1) shows
that the average work extracted is simply the change in inter-
nal energy of the compound system S + R + E as it unitarily
evolves by U (T ).

Our heat engine will be cyclic (with cycle time T ) if it satis-
fies two conditions: (1) H (T ) = H (0) = HS + HR + HE and
(2) ρS (T ) = ρS (0). Condition (1) means that the interaction
between the subsystems is switched on at time t = 0+ and
switched off at time t = T −. Since the Hamiltonian H (0) =
H (T ) is additive, Eq. (1) will reduce to

〈W 〉 = tr{H (0)[ρ(0) − ρ(T )]}
=

∑
X∈{S,R,E}

tr{HX [ρX (0) − ρX (T )]}

= 〈�ES〉 + 〈QE 〉 − 〈QR〉. (2)

Here we identify 〈�ES〉 as the average decrease in internal
energy of S , while 〈QE 〉 (〈QR〉) is the average heat absorbed
from (by) the thermal bath E (R). Condition (2), meanwhile,
implies that the internal energy of the working substance is
the same at the start and end of the cycle, i.e., 〈�ES〉 = 0.
Therefore, we are left with

〈W 〉 = 〈QE 〉 − 〈QR〉. (3)

Since the initial states of the baths are given by Gibbs
states, we may express the heat terms as

〈QE 〉 = 1

βE
{�SE − D[ρE (T )‖ρE (0)]},

〈QR〉 = 1

βR
{D[ρR(T )‖ρR(0)] − �SR}. (4)

Here �SX := S(ρX (0)) − S(ρX (T )) is the decrease in von
Neumann entropy, S(ρ) := −tr[ρ ln(ρ)], of system X ∈
{R, E}, and D[ρ‖σ ] := tr[ρ{ln(ρ) − ln(σ )}] is the entropy of
ρ relative to σ [43]. As the relative entropy is non-negative, it
follows from Eq. (3) and Eq. (4) that

〈W 〉 � 1

βE
�SE + 1

βR
�SR. (5)

Moreover, due to the subadditivity of the von Neumann
entropy, and its preservation under unitary evolution [44],
it follows that �SE + �SR := −Sirr � 0, where Sirr denotes
the irreversible entropy production. Consequently, by Eq. (5)
and the restriction on the irreversible entropy production, the
average work extraction will be positive only if −�SR �
�SE > − βE

βR
�SR. Since βE < βR by construction, therefore,

this inequality will be satisfied only if �SE > 0 and �SR < 0.
Finally, these inequalities in conjunction with Eq. (3) and
Eq. (4) indicate that a cyclic heat engine produces positive
work on average only if

〈QE 〉 > 〈QR〉 > 0. (6)

How the bath dimension restricts the efficiency

The efficiency of converting heat from the hot bath into
work is given by Eq. (3) as

η := 〈W 〉
〈QE 〉 = 1 − 〈QR〉

〈QE 〉 . (7)

Given Eq. (6), therefore, it is impossible for a cyclic heat
engine to operate at unit efficiency, i.e., to fully convert heat
from the hot bath into work; there will always be some
residual heat that is transferred to the cold bath. This is in
accordance with the second law of thermodynamics.

In order to explore how the dimension of the heat baths
affects the efficiency of a cyclic heat engine, we use the
results of Ref. [45], which showed that D[ρ‖σ ] � �S2

3ln2(dim(H))
,

where �S := S(σ ) − S(ρ), and dim(H) is the dimension of
the Hilbert space on which ρ and σ act. Therefore, by Eq. (4),
and the definition of the irreversible entropy production Sirr ,
we show that the efficiency of a cyclic heat engine producing
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positive work on average obeys the inequality

η = 1 − βE
βR

{
Sirr + �SE + D[ρR(T )‖ρR(0)]

�SE − D[ρE (T )‖ρE (0)]

}

� 1 − βE
βR

⎧⎨
⎩

Sirr + �SE + �S2
R

3ln2[dim(HR )]

�SE − �S2
E

3ln2[dim(HE )]

⎫⎬
⎭

� 1 − βE
βR

=: ηC, (8)

where ηC denotes the familiar Carnot efficiency. The require-
ment that the average work be positive demands that both
the numerator and denominator in the fraction appearing on
the first line of Eq. (8) must be positive. Consequently, since
�SE > 0 and Sirr > 0, the inequality in the second line follows
from taking the lower bounds of the relative entropy terms,
which effectively determines the maximum value of 〈QE 〉 > 0
and the minimum value of 〈QR〉 > 0 given the corresponding
entropy changes. The equality in the third line is achieved by
taking the limits dim(HX ) → ∞ and Sirr → 0.

The inequality in the second line of Eq. (8) quantifies how
finite bath dimensions limit the efficiency of average work. In
order to better understand this relationship, we shall turn to a
specific model which we introduce in the next section.

III. A CYCLIC HEAT ENGINE WITH FINITE-SIZED BATHS

In order to quantitatively study how the finite dimensions
of HE and HR affect a cyclic heat engine, we turn to a
simple example where the hot and cold baths are described
as ensembles of “particles” with a finite-size Hilbert space,
which interact sequentially with the working substance S akin
to collision models [39–41]. Moreover, we shall restrict the
collision model to one where each bath particle has equally
spaced energy levels (such as a truncated harmonic oscillator),
and the interaction between S and the bath particles conserves
the total excitation number. While not essential, we shall show
that such a restriction leads to interesting consequences such
as the ability of defining stochastic work, heat, and efficiency
by only performing projective measurements on the working
substance, and constructing an engine that approaches the
Carnot efficiency arbitrarily well with minimal control of the
system-bath interactions.

The model we consider is sketched in Fig. 1. The working
substance S has a Hilbert space with dimension dS , while the
hot and cold baths E and R comprise N and M ensembles of
identical systems (particles), labeled as {En : n ∈ {1, . . . , N}}
and {Rm : m ∈ {1, . . . , M}}, respectively. The particles of the
ensemble En (Rm) have the same Hilbert space dimension dE
(dR) but generically differ by their Hamiltonians

HEn :=
dE−1∑
k=0

EEn
k P[k],

HRm :=
dR−1∑
k=0

ERm
k P[k]. (9)

Here P[k] ≡ |k〉〈k| is a projection on vector |k〉 denoting k
quanta of excitation. We further assume that for all k, EEn

k+1 −

FIG. 1. Here we sketch a single step of the cyclic heat engine.
Initially, the working substance S is prepared in an eigenstate of
its number operator, denoted | jn−1〉. Subsequently, S sequentially
interacts with αn particles from the ensemble En, with the number-
conserving unitary U . Here U denotes the consecutive applications of
U . For a sufficiently large αn, the resulting state of S will be approx-
imated by the pseudothermal state ρEn

S defined by Eq. (12). Finally,
S is projectively measured with respect to its number operator, being
prepared in the state | jn〉. Due to the number conservation of U , it
follows that the heat absorbed from the ensemble En is ωn( jn − jn−1).

EEn
k = ωn > 0 and ERm

k+1 − ERm
k = 
m > 0. Therefore, we

may equivalently express the Hamiltonians as HEn = ωnNE
and HRm = 
mNR, which are proportional to their number
operators:

NX :=
dX −1∑
k=0

kP[k]. (10)

Before interacting with S , each particle in ensemble En is
in the thermal state ρEn := e−βEωnNE /tr[e−βEωnNE ]. The colli-
sion between S and these particles is described by a unitary
evolution U which conserves the total number, i.e., commutes
with NS + NE , and the corresponding quantum channel on S
is denoted as

�En : ρS �→ trS̄ [U (ρS ⊗ ρEn )U †]. (11)

As shown in the Appendix the stationary state of S , given the
quantum channel �En , is

ρ
En
S := e−βEωnNS

tr[e−βEωnNS ]
. (12)

The interaction with the cold bath ensembles Rm is defined
analogously. Note that, in general, the Hamiltonian of S is
arbitrary and need not commute with its number operator
NS . Consequently, while ρ

En
S and ρ

Rm
S need not be thermal

states of S , for convenience we call them “pseudothermal”
given that they can be written as a Gibbs state with respect
to the number operator [46]. Moreover, the stationary state is
approximated with arbitrary precision by a finite consecutive
application of �En (see the Appendix). Therefore, we say that
S has ε-pseudothermalized to the state ρ

En
S (ρRm

S ), if its trace
distance to this state is less than ε.

Now we may define each cycle of the engine as a sequence
of pseudothermalizations with the bath ensembles. The initial
state of S at the start of the cycle is ρ

RM
S , which can be

obtained by letting S pseudothermalize by interacting with
the cold bath ensemble RM . The cycle then consists of three
steps:

(1) Projectively measure S with respect to the number
operator NS , which prepares the system in the pure state | j0〉.
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(2) For n running from 1 to N : let the system ε-
pseudothermalize to ρ

En
S by αn number-conserving interac-

tions with particles from the hot bath ensemble En, and then
projectively measure the number of S , preparing it in the pure
state | jn〉.

(3) For m running from 1 to M: let the system ε-
pseudothermalize to ρ

Rm
S by αm number-conserving interac-

tions with particles from the cold bath ensemble Rm, and then
projectively measure the number of S , preparing it in the pure
state |km〉 (note that | jN 〉 = |k0〉).

As the trace distance between the initial and final state
of S is smaller than ε, we refer to this engine as ε-cyclic.
Furthermore, the results of the projective measurements of S
by the number operator constitutes a trajectory of the engine,
labeled as γ := ( j0, . . . , jN ≡ k0, k1, . . . , kM ). Since the state
of S at the start of the cycle commutes with NS , the dynamics
ensures that its state will always commute with NS throughout
the cycle (see the Appendix). Consequently, the projective
measurements of S by the number operator will not disturb
the state of the system, and the average evolution of this
system can indeed be seen as a probabilistic evolution along
the trajectories γ .

In the simplest case of N = M = 1, steps (2) and (3) of the
cycle involve interactions with identical particles, namely, ρE1

and ρR1 , respectively. As such, the cycle can be thought of
as being a collision model analog to the classical setup where
S is first brought to thermal equilibrium with the hot bath E
and then brought to thermal equilibrium with the cold bath R.
However, when N = M = 1, the efficiency will necessarily
be sub-Carnot, and the only way to approach the Carnot
efficiency is to produce a vanishingly small amount of work.
However, we shall see that by increasing N and M, resulting
in small increments in ωn and 
m, the engine will approach
the quasistatic limit, allowing for the efficiency to approach
the Carnot limit while still producing a finite amount of work.

A. Work, heat, and efficiency of the engine

The fact that the bath particle Hamiltonians are propor-
tional to their number, and that the interaction between S
and these particles conserves the total number of excitations,
allows us to evaluate heat from the measurements on S alone:
no measurements of the bath particles are required. Indeed,
when the working substance’s number increases as jn − jn−1,
the hot bath ensemble En loses ωn( jn − jn−1) quanta of en-
ergy, and when the working substance’s number increases as
km − km−1, the cold bath ensemble Rm absorbs 
m(km−1 −
km) quanta of energy.

The heat values for each trajectory are thus given as

QE (γ ) =
N∑

n=1

ωn( jn − jn−1),

QR(γ ) =
M∑

m=1


m(km−1 − km). (13)

The decrease in internal energy of the system, meanwhile,
is simply �E (γ ) = 〈 j0|HS | j0〉 − 〈kM |HS |kM〉. Therefore, the
work for each trajectory will be given by the first law of

thermodynamics as

W (γ ) = �E (γ ) + QE (γ ) − QR(γ ). (14)

For the subset of trajectories γ such that W (γ ) �= 0 and
QE (γ ) �= 0, we may define the stochastic efficiency as

η(γ ) := W (γ )

QE (γ )
,

= 1 +
∑M

m=1 
m(km − km−1) + �E (γ )∑N
n=1 ωn( jn − jn−1)

. (15)

Finally, in the limit as ε → 0, wherein the engine is com-
pletely cyclic, the probability of each trajectory γ is given by

p(γ ) =〈 j0|ρRM
S | j0〉

N∏
n=1

〈 jn|ρEn
S | jn〉

×
M∏

m=1

〈km|ρRm
S |km〉. (16)

From Eqs. (16), (14), and (13) we can determine the
average performance of the engine. First, we note that since
the engine is cyclic, the average decrease in the internal energy
of the working substance is

〈�E〉 :=
∑

γ

p(γ )�E (γ ) = tr
[
HS

(
ρ
RM
S − ρ

RM
S

)] = 0.

(17)
As such, the average work is given by Eq. (14) as 〈W 〉 =
〈QE 〉 − 〈QR〉, in concordance with Eq. (3). Here the average
heat absorbed from the hot bath is

〈QE 〉 = ω1tr
[
NS

(
ρ
E1
S − ρ

RM
S

)]

+
N∑

n=2

ωntr
[
NS

(
ρ
En
S − ρ

En−1

S
)]

= 1

βE
(�S − DE ), (18)

while the average heat transferred to the cold bath is

〈QR〉 = 
1tr
[
NS

(
ρ
EN
S − ρ

R1
S

)]

+
M∑

m=2


mtr
[
NS

(
ρ
Rm−1

S − ρ
Rm
S

)]

= 1

βR
(�S + DR), (19)

where �S := S(ρEN
S ) − S(ρRM

S ), DE := D[ρRM
S ‖ρE1

S ] + ∑N
n=2

D[ρEn−1

S ‖ρEn
S ], and DR := D[ρEN

S ‖ρR1
S ] + ∑M

m=2 D[ρRm−1

S
‖ρRm

S ]. Therefore, we may express the average work and
efficiency as

〈W 〉 =
(

1

βE
− 1

βR

)
�S − DE

βE
− DR

βR
(20)

and

η = 1 − βE
βR

(
�S + DR
�S − DE

)
. (21)
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FIG. 2. Relationship between average work and efficiency when
the hot and cold baths comprise single ensembles, with frequencies
ω1 and 
1, respectively. Here we fix βR = 1, 
1 = 1, βE = 10−2,
and vary only the value of ω1. The maximum work increases with
the dimension of the working substance, dS , whereas the efficiency
at maximum work decreases with dS .

Note the similarity between Eq. (21) and Eq. (8) except that,
in the former, the entropic quantities pertain to S and not
the thermal baths. Given the positivity of the relative entropy
terms DE and DR, we immediately arrive at the inequality
〈W 〉 � ( 1

βE
− 1

βR
)�S, implying that positive work extraction

is possible only when �S > 0, which, in turn, requires that
βEωN < βR
M . Additionally, given a fixed value of �S, both
the average work and the efficiency are maximized by taking
the limits DE → 0 and DR → 0. In this limit the efficiency
approaches the Carnot value.

B. Limiting case 1: Baths comprising single ensembles

Let us consider the limiting case where the hot and cold
baths comprise single ensembles, i.e., when N = M = 1. In
this special case, the average work and efficiency obtain the
simple expressions

〈W 〉 = (ω1 − 
1)tr
[
NS

(
ρ
E1
S − ρ

R1
S

)]
,

η = 1 − 
1

ω1
. (22)

The expression for the efficiency obtained above is similar to
that of Ref. [26], except that the frequencies here pertain to
the thermal baths and not the working substance. Equation
(22) shows that the efficiency approaches the Carnot value
when ω1 = (βR/βE )
1, implying that ρE1

S = ρ
R1
S . This results

in a trivial engine with �S = 0 and hence zero average work
extraction. We may also make this observation by directly
appealing to Eq. (21), where the Carnot efficiency is achieved
only when DE = D[ρR1

S ‖ρE1
S ] = 0 and DR = D[ρE1

S ‖ρR1
S ] =

0. This can be achieved only when ρ
E1
S = ρ

R1
S , resulting in

�S = 0.
In Fig. 2 we report the relationship between the efficiency

and the average work for different dimensions of the working

substance. Here we fix the parameters βR = 1, 
1 = 1,
βE = 10−2, and vary only the value of ω1. When ω1 = 
1,
both the work and efficiency vanish. Conversely, when ω1 =
(βR/βE )
1, the efficiency approaches the Carnot value, but
the work vanishes, as we discussed previously. The work is
maximized when ω1 takes a value between these extreme
ranges. Meanwhile, the work obtained for a given efficiency
increases with the dimension of the working substance, con-
verging as

lim
dS→∞

〈W 〉 = (ω1 − 
1)(eβR
1 − eβEω1 )

(eβR
1 − 1)(eβEω1 − 1)
. (23)

However, the efficiency at maximum work decreases with the
dimension of the working substance.

C. Limiting case 2: Baths comprising infinitely many ensembles

Equation (21) states that the only way in which a cyclic
heat engine can operate close to the Carnot efficiency is if
the relative entropy terms DE and DR become vanishingly
small. In the previous section we saw that the only way this
is possible with a small number of bath ensembles is if the
engine operates trivially, with �S = 0. However, as shown in
Eq. (20) such an engine cannot produce positive work. We
shall now see that it is possible to take the terms DE and
DR arbitrarily close to zero, while still obtaining a positive
�S and, hence, work extraction, if we use a large number of
bath ensembles. This is made possible because a large number
of bath ensembles allows the bath frequencies ωn and 
m to
change smoothly, thus allowing for the engine to operate in
the quasistatic limit [47].

Let us therefore define the bath particle frequencies as

ωn := ω0 + n(ωN − ω0)

N
,

(24)


m := 
0 + m(
M − 
0)

M
,

such that ω0 := (βR/βE )
M and 
0 := (βE/βR)ωN . Given
the previously established constraint of βEωN < βR
M ,
Eq. (24) results in ωn linearly decreasing as n runs from 1
to N , while 
m linearly increases as m runs from 1 to M.
It is clear that for large N , ωn − ωn−1 becomes vanishingly
small, which ensures that the terms D[ρEn−1

S ‖ρEn
S ] in DE also

vanish. The same holds true for the corresponding terms in
DR as M grows large. What is more crucial is that, when
both N and M are large, we have ω1 ≈ ω0 and 
1 ≈ 
0.
This ensures that the remaining terms in DE and DR, namely,
D[ρRM

S ‖ρE1
S ] and D[ρEN

S ‖ρR1
S ], will also become vanishingly

small. Note that �S = S(ρEN
S ) − S(ρRM

S ) is independent of N
and M. Consequently, given a sufficiently large N and M, it is
possible for the heat engine to produce a positive amount of
work per cycle, with an efficiency that is arbitrarily close to
the Carnot value.

In Fig. 3 we numerically evaluate the average work and
efficiency given by the frequency profiles of Eq. (24) and
see how the average work and efficiency are affected by
the magnitude of N and M. Although these parameters are
independent of one another, resulting in an improvement in
both the work yield and efficiency as they grow larger, for
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FIG. 3. Efficiency and average work of a number-conserving
cyclic heat engine. The plots are obtained for N = M, βR = 1, βE =
10−2, ωN = 10, and 
M = 1. Both the average work 〈W (γ )〉 and the
efficiency η increase with N = M. For a given N = M, the average
work (efficiency) increases (decreases) with the dimension of the
working substance, dS . The behavior seen here will be qualitatively
the same even when N �= M; both the average work yield and the
efficiency will increase as both N and M are made to grow larger,
even if they do not do so in unison.

the sake of simplicity we shall assume that N = M. We
see that, as expected, both the average work and efficiency
increase with N = M, with the efficiency eventually reaching
the Carnot value. Moreover, given a fixed value of N = M,
the average work also increases with the dimension of the
working substance, dS , converging to a fixed value as dS →
∞. This is because given a Gibbs state ρ

En
S , as defined in

Eq. (12), S(ρEn
S ) increases with dS , converging as

lim
dS→∞

S
(
ρ
En
S

) = βEωn

eβEωn − 1
+ ln

(
eβEωn

eβEωn − 1

)
. (25)

However, for a fixed value of N = M, increasing dS also
causes DE and DR to grow larger, resulting in the efficiency to
decrease. This is consistent with the known power-efficiency
trade-offs.

IV. DIMENSION OF THERMAL BATHS AND THE
ENGINE’S PERFORMANCE

In Sec. II we addressed how the dimension of the thermal
baths used in a cyclic heat engine limit its efficiency, as
per Eq. (8). To return to such an analysis with our specific
model, we must consider the Hilbert space dimension of the
total baths, as opposed to the dimension of the individual
particles that make them up. Recall that, during each cycle,
the working substance S interacts with αn (αm) particles from
the hot (cold) bath ensemble En (Rm). Given that each of
these particles has the dimension dE (dR), it follows that the
effective dimensions of the total baths involved are

dim(HE ) = d
∑N

n=1 αn

E ,

dim(HR) = d
∑M

m=1 αm

R . (26)

Note that dim(HE ) and dim(HR) are to be understood as
the size of the effective baths within a single cycle of the
engine; the actual baths may indeed be infinitely large, but
since only a small part of these are involved during a single
cycle of the engine’s operation, it is only these dimensions
that are pertinent to our considerations. There are two ways
in which the effective bath dimensions can be large: either the
individual particles have a large dimension, or there are a large
number of such particles involved during the engine’s cycle.
However, as shown above, it is only the second of these that
affects the efficiency and work output of the engine. Indeed,
the size of the bath particle dimensions dE and dR do not
directly appear in any of the analysis we performed above.
However, this does not mean that the particle dimensions do
not affect the performance of the engine at all.

Let us consider the optimal scenario requiring the minimal
number of interactions. This is achieved when dE = dR = dS ,
and the number-conserving unitary interaction for each colli-
sion is a SWAP operator. As such, we only require a single
interaction per ensemble, and so the bath dimensions reduce
to dim(HE ) = dN

S and dim(HR) = dM
S . Since the efficiency

of the engine grows with N and M, while the work output
increases with dS , it follows that increasing the efficiency or
power of the engine results in an increase in the dimension
of the thermal baths. In the following section, we shall see
how the interplay between bath particle dimension, system
dimension, and the effective bath dimensions becomes much
richer when our interactions are no longer SWAP operations.

Pseudothermalization with a Jaynes-Cummings interaction

In the preceding section we discussed how it is possible
to pseudothermalize the system to the desired states required
by the engine with only one interaction per bath ensemble,
resulting in the smallest possible effective bath dimensions.
This procedure relied on the ability to perform a SWAP
operation between S and each bath particle. However, it is
not always practically possible to perform such a feat. In
many situations, we have a very limited way of controlling
the interaction between two quantum systems. The paradig-
matic example of a number-conserving interaction between
S and the bath particles X ∈ {E,R} is the Jaynes-Cummings
interaction Hamiltonian, given as

V (t ) := J (t )(σ−
S ⊗ σ+

X + σ+
S ⊗ σ−

X ), (27)

where for Y ∈ {S, E,R},

σ+
Y =

dY −2∑
k=0

√
k + 1|k + 1〉〈k| = (σ−

Y )†, (28)

and J (t ) is the interaction strength which, for t ∈ [0, Tint],
equals J > 0, and vanishes at all other times. The Jaynes-
Cummings interaction Hamiltonian generally describes the
interaction between two systems obeying the rotating wave
approximation (RWA), valid when the two systems are in
resonance. Examples of systems with such an interaction
are an atom coupled to a harmonic oscillator or two spins
interacting via flip-flop processes.

Since we have modeled our bath particles as a (truncated)
harmonic oscillator, to ensure that the RWA can be made,

012122-6



EFFICIENCY OF A CYCLIC QUANTUM HEAT ENGINE … PHYSICAL REVIEW E 100, 012122 (2019)

we shall bring the system Hamiltonian HS in resonance with
that of the bath particles before they interact via Eq. (27);
namely, we shall set the system Hamiltonian as HS = ωnNS
when it interacts with particles from the ensemble En, and so
forth. We note that since both the state of the system, and
its Hamiltonian, will be the same at the start and end of the
cycle (specifically, ρ

RM
S and HS = 
MNS ), such quenching

of the Hamiltonian will result in a net zero change in internal
energy, and it can be ignored; as before, we shall consider
only the heat exchanged with the bath particles, resulting
in the average work and efficiency to be given by Eq. (20)
and Eq. (21), respectively. Finally, as the reduced state of
S and each bath particle always commutes with its local
Hamiltonian, for simplicity we may consider only the unitary
U = e−iTintV . While this unitary operator will reduce to a swap
operator when dS = dE = dR = 2, and Tint = π/2J , this will
no longer be possible when dS > 2. As such, if we wish
for a larger work yield by using larger dimensions for the
working substance, as illustrated by Fig. 3, we will need many
interactions per bath ensemble. Consequently, it is unclear
how the effective bath dimensions required to achieve a given
efficiency, and the average power of such an engine (work
yield divided by time, or, number of interactions) will depend
on the dimension of the system.

To answer these questions, we numerically simulate the
engine cycle, fixing the interaction time with each particle as
Tint = π/2J , and for simplicity restricting the dimension of
the hot and cold bath particles to be the same, i.e., dE = dR.
Moreover, we shall set the other parameters as βE = 10−2,
βR = 1, ωN = 10, 
M = 1, and N = M = 10 throughout.
Moreover, to ensure that the engine provides the same values
of average work and efficiency as given by Eq. (20) and

FIG. 4. The required total number of interactions between the
working substance S and particles from the ensembles En and Rm,
Nint = ∑

n αn + ∑
m αm, to achieve a pseudothermalization parame-

ter of ε = 10−9 during the first cycle of the engine, as a function of
the bath particle dimension dE = dR. Here we set βE = 10−2, βR =
1, ωN = 10, 
M = 1, and N = M = 10. For a given dimension of the
working substance dS > 2, the total interaction number decreases as
the bath particle dimension dE = dR increases.

FIG. 5. The optimal choice for bath particle dimensions dE = dR
so as to minimize the dimension of the full effective baths dim(HE ⊗
HR) = dNint

E , as a function of the dimension of the working sub-
stance dS . The pseudothermalization parameter is set to ε = 10−9,
while βE = 10−2, βR = 1, ωN = 10, 
M = 1, and N = M = 10. The
efficiency of this engine is η/ηC ≈ 0.99, which, as shown in Fig. 3,
decreases as dS increases. As dS > 2 increases, the dimension of the
effective baths is minimized by increasing the particle dimensions
dE , allowing for the total number of interactions Nint to decrease. This
allows for a greater power output. Moreover, for a sufficiently large
dS , the optimal dimension of the effective baths decreases with dS .

Eq. (21), we shall use the smallest number of interactions αn

(αm) so as to ensure that, during the first run of the engine’s
cycle, the trace distance between the state of S after it interacts
with ensemble En (Rm), and the pseudothermal state ρ

En
S (ρRm

S )
defined in Eq. (12), is smaller than ε = 10−9. This means that
the trace distance between the initial and final state of the
engine during its first cycle will be smaller than ε.

For now, let us consider only the first cycle of the engine.
We shall return to the question of many repetitions of the cycle
later. In Fig. 4 we determine the total number of interactions
Nint = ∑

n αn + ∑
m αm required to achieve ε-cyclicity given

a fixed value of dS , and see how this changes with the bath
particle dimensions dE = dR. When dE = dR < dS , a large
number of interactions is required, with this number increas-
ing with dS . However, the required number of interactions
(generally) decreases with dE , plateauing as dE becomes very
large. Interestingly, as shown by the inset of this figure, the
stabilized interaction number for large dE appears to decrease
as dS increases. This suggests that, provided a sufficiently
large dE = dR, by increasing dS the power of the engine
(average work per interaction) will also increase.

Of course, although using larger particle dimensions may
result in a decrease in the number of interactions Nint , this may
come at the expense of a larger dimension of the effective
total bath, which is dim(HE ⊗ HR) = dNint

E . Therefore, for
a given dimension dS , we wish to determine the optimal
choice of dE = dR so that this effective bath dimension will
be minimized. This is shown in Fig. 5. In the main figure,
the blue solid line depicts the smallest effective dimension
of the total bath, dNint

E , as a function of system dimension dS .
The red dotted line, meanwhile, shows the particle dimensions
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dE = dR that achieve this optimal bath dimension. The inset
of the figure shows the total number of interactions Nint , and
the resulting power 〈W 〉/Nint (average work per interaction),
achieved by such particle dimensions chosen to minimize the
size of the full baths. As we can see, the smallest overall bath
dimension is achieved when dS = 2, where given a choice
of dE = dR = 2, U reduces to a SWAP operation and only
one particle per ensemble is required. As dS grows larger,
however, U does not reduce to a SWAP map, and in general
many interactions will be needed to achieve pseudothermal-
ization. Recall from Fig. 4 that as dS increases, a larger
particle dimension dE is required to minimize the number
of interactions Nint, while Nint (given a sufficiently large dE )
decreases with dS . Therefore, as shown in Fig. 5, the optimal
bath particle dimensions dE (generally) increase with dS ,
while for dS > 2, the optimal number of interactions Nint

(generally) decrease with dS . The rate at which dE = dR (Nint)
increases (decreases) with dS results in dNint

E growing with dS
when dS is small, while it decreases with dS when dS is large.

Now let us return to the question of repeated cycles. If we
fix the number of interactions αn and αm for every cycle, then
the final state of S after c cycles, ρfinal

S (c), will diverge from
the initial state ρ

RM
S . However, this does not mean that the

engine will cease to be ε-cyclic, since ρfinal
S (c) will still remain

within ε to ρ initial
S (c), namely, the initial state of S during the

cth cycle. This is shown in Fig. 6(a). Interestingly, however,
the engine becomes less cyclic as the bath particle dimension
increases. Moreover, for a finite ε the engine will degrade after
many cycles. Specifically, both the total average power and the
efficiency decrease with repetitions of the cycle. However, for
the case of ε = 10−9 this degradation is negligible as shown
in Fig. 6(b). Here 〈W 〉c is defined as the average integrated
work after c cycles. Interestingly, we see that while increasing
the bath particle dimension results in the average power to
increase even after 1000 cycles (due to the fewer number of
interactions per cycle), a larger bath particle dimension results
in the efficiency of the engine to degrade at a faster rate.

In conclusion, when U can always be constructed as a
SWAP operator, given a fixed value of N and M, increasing the
dimension of the working substance results in both the power
of the engine, and the dimension of the baths, to increase,
while the efficiency decreases. However, when U is generated
by a Jaynes-Cummings interaction, when dS is sufficiently
large, its increase will result in the power to increase while
both the bath dimension and efficiency decrease. Moreover,
when U is a swap operator the engine is completely cyclic,
with ε = 0. Consequently, the engine’s performance will not
degrade with repeated cycles. However, with the Jaynes-
Cummings interaction for dS > 2, the engine cannot be fully
cyclic, and so for a finite number of interactions per cycle, the
engine’s performance will degrade with time.

V. ACHIEVING THE STOCHASTIC CARNOT EFFICIENCY
WITH FINITE-DIMENSIONAL BATHS

Thus far, we have seen that a cyclic heat engine can achieve
the Carnot efficiency, determined as the ratio of average
work with respect to the average heat absorbed from the
hot bath, only when both the hot and cold baths have an
infinite-dimensional Hilbert space. This is true even when the

FIG. 6. Performance of the engine after c repetitions of the
cycle. Here we set dS = 5, βE = 10−2, βR = 1, ωN = 10, 
M =
1, and N = M = 10. The initial and final states of S during cy-
cle c are denoted as ρ initial

S (c) and ρfinal
S (c), respectively, where

ρ initial
S (1) = ρ

RM
S and ρfinal

S (c) = ρ initial
S (c + 1). The number of inter-

actions αn and αm are fixed for each cycle and chosen to achieve ε-
pseudothermalization with the bath ensembles during the first cycle.
(a) The cyclicity of the engine, characterized as the trace distance
between the initial and final state of S for each cycle c. This remains
within ε, but the engine becomes less cyclic as the bath particle
dimension increases. (b) The integrated average work is defined as
〈W 〉c := ∑c

i=1〈W i〉/c, where 〈W i〉 is the average work evaluated for
cycle i. While 〈W 〉c decreases with c, this is negligible, and the
average integrated power 〈W 〉c/Nint still increases with bath particle
dimension. In the inset, we see that the efficiency decreases with
repetitions of the cycle, with the rate being faster when the bath
particle dimensions increase.

individual bath particles have a small size, since the Carnot
efficiency will require an infinite number of them as dictated
by the number of ensembles N and M. However, we shall
now show that the maximum likelihood stochastic efficiency
can approach the Carnot efficiency when the baths are truly
finite dimensional. Specifically, the efficiency of the most
likely trajectory will approach the Carnot value if we take
only the dimension of the cold bath to infinity, while the
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stochastic efficiency that occurs with the largest probability
approaches the Carnot value even when both the hot and cold
baths have a finite dimension. We note that such efficiencies
are evaluated only for a single cycle of the engine and are not
to be confused with the stochastic efficiencies in the long-time
limit, evaluated after many repetitions of the cycle.

Using Eq. (13) and Eq. (24), the heat contributions for each
trajectory of the above protocol can be written as QE (γ ) =
�E (γ )/Nrβ and QR(γ ) = �R(γ )/M, where rβ := βE/βR
and

�E (γ ) := 
M
(
σ

γ

E − N j0
) − ωN rβ

(
σ

γ

E − N jN
)
,

(29)
�R(γ ) := 
M

(
σ

γ

R − MkM
) − ωN rβ

(
σ

γ

R − M jN
)
,

where σ
γ

E := ∑N−1
n=0 jn, σ

γ

R := ∑M−1
m=0 km, and, as assumed be-

fore, k0 = jN . The efficiency for each trajectory [such that
both W (γ ) > 0 and QE (γ ) > 0] will thus be given by Eq. (15)
and Eq. (29) to be

η(γ ) = 1 − rβ

N

M

[
�R(γ ) − M�E (γ )

�E (γ )

]
, (30)

where we recall that �E (γ ) := 〈 j0|HS | j0〉 − 〈kM |HS |kM〉 is
the change in internal energy of S during each trajectory.
Since the probability for each trajectory, in the limit of ε → 0,
is given by Eq. (16), i.e., a product of the probabilities that
the pseudothermal state ρ

En
S occupies the state | jn〉 and so

on, it follows that the trajectory that occurs with the highest
probability is one where km = 0 for all m, and jn = 0 for all n.
However, the resulting work and heat values for this trajectory
will both be zero, and so this trajectory does not have a
well-defined efficiency. Consequently, we must have jn = 1
for at least one value of n. Since ωN is the smallest frequency
from the set {ωn}, it follows that the most probable trajectory
for which an efficiency is defined is one where jn = 1 for
n = N , with all other outcomes being zero—in other words,
the trajectory where S starts off in the state |0〉, and absorbs
one quanta of energy from the ensemble EN , emitting this to
the ensemble R1, and remaining in the state |0〉 thereafter.
The efficiency for this trajectory, which we refer to as γpmax , is
obtained from Eq. (30) to be

η(γpmax ) = ηC − 
M − ωN rβ

MωN
< ηC, (31)

where the inequality follows from the requirement that
ωNβE < 
MβR. Consequently, the efficiency of the most
probable trajectory of the engine approaches ηC from below as
M → ∞. Interestingly, the number of hot bath ensembles N
does not affect this. To see this, we note that QE (γpmax ) = ωN ,
which is a parameter chosen independently of N . On the
other hand, QR(γpmax ) = 
1, which, by Eq. (24), approaches

0 = rβωN in the limit as M goes to infinity. As such, we
have W (γpmax )/QE (γpmax ) = 1 − 
1/ωN , which approaches
the Carnot efficiency as M → ∞. This is shown in Fig. 7,
where we report the dependence of the efficiency of the most
likely trajectory for general N and M.

The efficiency of the most likely trajectory is not to be con-
fused with the most likely efficiency. In fact, generally there
are multiple trajectories with the same efficiency. As such, we
may define the set of unique efficiencies η̃, with probabilities
p(η̃) := ∑

γ :η(γ )=η̃ p(γ ). We normalize these probabilities as

FIG. 7. The efficiency of the most likely trajectory, η(γpmax ) as
a function of the number of hot and cold bath ensembles N and M.
The parameters are set as dS = 2, βR = 1, βE = 10−2, ωN = 10, and

M = 1. η(γpmax ) monotonically increases with M, approaching the
Carnot efficiency. The result does not depend on the number of hot
bath ensembles N .

∑
η̃ p(η̃) = 1, so that only trajectories with a well-defined

efficiency are accounted for, i.e., we exclude trajectories for
which the efficiency is not defined. The most likely efficiency,
which we denote as η̃pmax , is the one for which p(η̃) takes the
maximal value.

From Eq. (30) we see that trajectories satisfying

N

M

[
�R(γ ) − M�E (γ )

�E (γ )

]
= 1 (32)

will have the Carnot efficiency. The simplest (but not exclu-
sive) case where Eq. (32) is satisfied is when N = M, with the
trajectories γ such that σ

γ

R = σ
γ

E and j0 = kM . N = M = 2
are the smallest values that satisfy this; when N = M = 1, the
condition is satisfied only by the trajectory with all outcomes
being the same, so the efficiency will not be defined. However,
having N = M � 2 is neither necessary nor sufficient for
η̃pmax = ηC , as this will also depend on the specific choices of
the parameters ωN , 
M , rβ , and HS . This is shown in Fig. 8(a),
which reports the combinations of N and M which result in
η̃pmax = ηC for dS = 2 given a choice of parameters. We see
that when N = M = 2, the most likely efficiency is not the
Carnot value, while the most likely efficiency is the Carnot
value in some cases where N �= M. In Fig. 8(b) we show the
full distribution of efficiencies for the case of N = M = 10.
As can be seen, this distribution is peaked at η̃ = ηC .

In conclusion, Eq. (31) demonstrates that the most likely
trajectory approaches the Carnot value when only M is taken
to infinity, whereas Fig. 8 shows that the most likely efficiency
can be exactly the Carnot value when both N and M are
finite. Since the dimension of the thermal baths are determined
by N and M, and in the simplest case where the collision
interactions effect a SWAP operation are simply given as
dim(HE ) = dN

S and dim(HR) = dM
S , it follows that (1) the

efficiency of the most likely trajectory, η(γpmax ), approaches
ηC when dim(HE ) is finite and only dim(HR) goes to infinity
and (2) the most likely efficiency η̃pmax can equal ηC when both
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FIG. 8. A cyclic heat engine where the working substance is a
qubit (dS = 2), with the parameters βE = 10−2, βR = 1, ωN = 10,
and 
M = 〈1|HS |1〉 − 〈0|HS |0〉 = 1. (a) The choice of N and M such
that the most likely efficiency, η̃pmax , equals the Carnot efficiency ηC .
(b) The full distribution of the stochastic efficiency η̃ for the case
N = M = 10. This distribution is peaked at the Carnot efficiency.

dim(HE ) and dim(HR) have a finite value. This is in contrast
to the efficiency of the average work, which approaches
ηC when both dim(HE ) and dim(HR) approach infinity. Of
course, we note that our definitions of stochastic efficiency,
namely, η(γpmax ) and η̃pmax , are evaluated for just one cycle of
the engine. As was reported in Ref. [6], the Carnot efficiency
is in fact the least likely efficiency when we consider infinitely
many repetitions of the engine’s cycle, which is irrespective of
the dimension of the baths.

VI. CONCLUSIONS

In this work we have analyzed a simple model of a cyclic
heat engine operating between a hot and a cold bath of finite
size. Each bath consists of a finite set of ensembles of identical

particles, each with a finite-dimensional Hilbert space. These
particles can be considered as a truncated harmonic oscilla-
tor, with the different ensembles being characterized by the
oscillator’s frequency. Given a number-conserving interaction
between the working substance and each of the bath particles,
we have shown that the engine can produce positive average
work, with an efficiency that approaches the Carnot value as
the number of bath ensembles tends to infinity, with the corre-
sponding frequencies changing smoothly. This illustrates that,
although the individual particles may have a small dimension,
the dimension of the total baths must become infinitely large
for the efficiency of average work to approach the Carnot
limit.

Moreover, we showed that when the number-conserving
interaction between the working substance and the bath par-
ticles effects a SWAP operation, then increasing the power
(efficiency) of the engine will require a larger particle di-
mension (particle number), resulting in a larger dimension of
the effective baths. In contrast, when the collision is given
by a Jaynes-Cummings interaction, it is possible to increase
the power output of the engine while decreasing the bath
dimensions.

The proposed engine also allows for a simple characteri-
zation of the stochastic efficiency defined for each cycle of
the engine (as opposed to the stochastic efficiency in the
long-time limit or, equivalently, over infinitely many cycles).
In contrast to the consideration of the efficiency of average
work, we demonstrated the possibility for the most likely
stochastic efficiency to equal the Carnot efficiency even when
both hot and cold baths are composed of a finite number of
ensembles and, hence, have a finite-size Hilbert space.
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APPENDIX: PROPERTIES OF THE
PSEUDOTHERMALIZATION QUANTUM CHANNEL

Here we shall discuss some properties of the quantum
channel implemented on S due to a collision with a bath
particle E ,

�E : ρS �→ trS̄ [U (ρS ⊗ ρE )U †], (A1)

where U is a number-conserving unitary operator on HS ⊗
HE and ρE = e−βEωENE /tr[e−βEωENE ] is the thermal state of the
bath particle. To this end, let us decompose the full Hilbert
space as

HS ⊗ HE =
L⊕

l=0

Hl , (A2)

where L = dS + dE − 2, and Hl is the l-number subspace
spanned by the vectors |l − k, k〉 (the left system is S , and

012122-10



EFFICIENCY OF A CYCLIC QUANTUM HEAT ENGINE … PHYSICAL REVIEW E 100, 012122 (2019)

the right is E) and has the dimension

dim(Hl ) = l+1−max(0, l−dS + 1)−max(0, l − dE+1)

≡ 1 + min(l, dS − 1) − max(0, l − dE + 1).
(A3)

Given that the unitary operator U conserves the total number,
we may write it as the direct sum

U =
L⊕

l=0

Ul , (A4)

where Ul is a unitary operator acting on Hl .
First, we show that if ρS commutes with NS , then so too

will �E (ρS ). Let the state of S and E be ρS = ∑
μ pμPS [μ]

and ρE = ∑
ν qνPE [ν], respectively, where |μ〉 and |ν〉 are

eigenstates of NS and NE , respectively. The matrix elements
of the reduced state of S , after a number-conserving unitary
interaction with E , are thus given in the NS representation as

〈i|�E (ρS )| j〉 = 〈i|trA[U (ρS ⊗ ρE )U †]| j〉
=

∑
μ,ν,ν ′

pμqν〈i, ν ′|U |μ, ν〉〈μ, ν|U †| j, ν ′〉

=
∑
μ,ν,ν ′

pμqν〈i, ν ′|U |μ, ν〉〈 j, ν ′|U |μ, ν〉∗.

(A5)

Given that U conserves the total number, it follows that

〈i, ν ′|U |μ, ν〉〈 j, ν ′|U |μ, ν〉∗ = δi, j |〈i, ν ′|U |μ, ν〉|2. (A6)

Consequently, the only nonvanishing matrix elements of
�E (ρS ) are 〈i|�E (ρS )|i〉. In other words, �E (ρS ) commutes
with the number operator.

Now we show that �E (ρE
S ) = ρE

S , where

ρE
S = e−βEωENS

tr[e−βEωENS ]
(A7)

is the pseudothermal state of S with respect to the observable
ωENS , which is not necessarily its Hamiltonian. If the com-
pound system S + E is prepared in the state ρ = ρE

S ⊗ ρE , we
can write this as ρ = ∑

l ρ̃l , where ρ̃l is a subnormalized state
on Hl . It is simple to verify that ρ̃l ∝ 1l . This is because ρ̃l is
diagonal in the |l − k, k〉 basis, and for every k,

〈l − k, k|ρ̃l |l − k, k〉 = e−βEωE l

tr[e−βEωENS ]tr[e−βEωENE ]
. (A8)

Consequently, we have

UρU † =
∑

l

Ul ρ̃lU
†
l = ρ. (A9)

From this, it is apparent that the pseudothermalization of
a generic state will be guaranteed if, in addition to number
conservation, none of the Ul operators are proportional to
the identity, since the channel �E will result in the state to
change, which, by the contractivity of the trace distance under
quantum channels, implies that for any ρS and ε ∈ (0, 1],
there exists an α ∈ N such that 1

2‖�(α)
E (ρS ) − ρE

S‖1 � ε,
where �

(α)
E denotes α consecutive applications of the quantum

channel �E .
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