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Observation of quantum corrections to conductivity up to optical frequencies
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It is well known that the conductivity of disordered metals is suppressed in the limit of low frequencies and
temperatures by quantum corrections. Although predicted by theory to exist up to much higher energies, such
corrections have so far been experimentally proven only for �80 meV. Here, by a combination of transport and
optical studies, we demonstrate that the quantum corrections are present in the strongly disordered conductor
MoC up to at least ∼4 eV, thereby extending the experimental window where such corrections were found by
a factor of 50. The knowledge of both the real and imaginary parts of conductivity enables us to identify the
microscopic parameters of the conduction electron fluid. We find that the conduction electron density of strongly
disordered MoC is surprisingly high and we argue that this should be considered a generic property of metals on
the verge of a disorder-induced localization transition.
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At finite frequencies ω, the optical conductivity of any
material is a complex quantity, σ (ω) = σ ′(ω) + iσ ′′(ω). In
the limit of low frequencies, only the conduction band con-
tributes to σ ′(ω) of a metal; the conductivity of this band is
customarily described by the Drude formula [1,2]

σ (ω) = σ0

1 − iω/�
, (1)

where � = 1/τ is the relaxation rate determined by the
collision time of the electrons τ . Within the model of free
electrons, σ0 = ne2τ/m, where n and m are the electron
concentration and mass, respectively [1].

With increasing disorder strength, � increases and σ0

decreases, until at some critical disorder level the [three-
dimensional (3D)] metal turns into an insulator [3] and σ ′(0)
vanishes in the limit of low temperatures T . If Eq. (1) were
to apply, σ (ω) would vanish identically for all ω. However,
this is unphysical, since at nonzero frequencies the absorption
has to be finite even in the insulating state. Therefore, in the
insulating state, the low-frequency conductivity σ ′(ω) has to
grow with ω and, by continuity, the same behavior has to
be expected also on the metallic side of the metal-insulator
transition.

It is in fact well known that, in weakly disordered 3D
metals, the conductivity in the small-ω and T limit can be
described as σ (ω) = σreg(ω) + δσ (ω), where σreg(ω) ≈ σ0 is
the regular part of the conductivity and δσ (ω) is the quantum
correction which grows with ω. Two mechanisms have been
proposed for the latter: It can be either due to the so-called
weak-localization corrections [4], or due to interaction effects
[5]. Remarkably, up to numerical prefactors, at T = 0 both
mechanisms yield the same functional form of the quantum
correction [6] and its real part, δσ ′(ω), can be written in a
unified way as

δσ ′(ω) ≈ Q2σ0(−1 +
√

ω/�). (2)

The quantum correction is present only for ω � � and its
magnitude is characterized by a dimensionless number Q, to
be called quantumness. We emphasize that our parametriza-
tion Eq. (2) reflects the fact that the quantum correction has to
diminish the conductivity.

Numerical simulations by Weisse within the weak-
localization scenario at T = 0 have shown that, for not too
high ω, Eq. (2) is qualitatively valid not only for weakly
disordered metals, but in a broad range of disorder strengths
in the metallic phase [7]. Weisse’s data indicate that Q is of
the same order of magnitude as h̄�/εF , where εF is the Fermi
energy: In the limit of weak disorder this result is well known
[6]; in the opposite limit when the metal-insulator transition is
approached, the quantumness Q → 1 and h̄� is comparable
to εF [8].

In order to generalize the formulas for σ ′(ω) to finite T ,
we follow the recipes of Fermi-liquid theory and replace ω

by � =
√

ω2 + γ (T )2, where γ (T ) is a T -dependent scatter-
ing rate which depends on the mechanism for the quantum
corrections: In the case of weak-localization corrections it
is the phase-breaking scattering rate, whereas for interaction
effects γ (T ) = πkBT/h̄. Detailed calculations [6] for weakly
disordered metals do confirm such a procedure, again up to
numerical prefactors.

Motivated by Weisse’s data and analytical theory for
weakly disordered metals, throughout the metallic phase we
postulate the following simple formula for the ω and T
dependence of the real part of the optical conductivity,

σ ′(ω, T ) = σ0[1 − Q2 + Q2
√

�/�], if � < ω∗, (3)

σ ′(ω, T ) = σ0

1 + (�/�)2
, if � � ω∗. (4)

This formula features the Drude behavior Eq. (1) in the high-
frequency limit � � ω∗ and, at the same time, for � < ω∗
takes into account the 3D quantum correction Eq. (2). The
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FIG. 1. Temperature dependence of dc conductivity for a series
of 5-nm-thick MoC films. The sheet resistance of the films at room
temperature is (from bottom to top) R� = 720, 590, 500, and 415 �.
Fits to Eq. (3) are shown as well.

model Eqs. (3) and (4) depends on three parameters: σ0, Q,
and �. Once these are known, the crossover frequency ω∗
follows from assuming that the function σ ′(ω, T ) is contin-
uous. We treat Q and � as independent, while for σ0 we keep
the expression σ0 = ne2/(m�). Note that Eqs. (3) and (4) do
not have to satisfy any partial sum rule for the conduction
band [9].

Square-root corrections to conductivity in systems close to
the metal-insulator transition have been previously observed
in various materials. The best studied case is amorphous Nb:Si
[10]. In metallic Nb:Si samples, very good agreement with a
slightly modified version of Eq. (3) has been found [11] for
T � 16 K and at frequencies up to 1 THz, both corresponding
to h̄� � 4 meV.

The goal of this Rapid Communication is to check whether
quantum corrections to conductivity are observable even at
optical frequencies. To this end, we have chosen to study the
highly disordered conductor MoC [12,13]. In this material
quantum corrections to transport have been observed up to
300 K [14], corresponding to h̄� ≈ 80 meV. The amount of
disorder in MoC can be increased either by a reduction of the
film thickness or by an increase of the carbon content.

In this Rapid Communication we study two sets of MoC
films prepared on sapphire wafers by means of reactive mag-
netron deposition from a Mo target in an argon-acetylene
atmosphere [15]. In the first set, we prepared films with
thickness d = 5 nm and varying Mo:C stoichiometry, while
in the second set we have studied films at fixed stoichiometry
but with varying thickness [9].

The temperature dependence of dc conductivity σ ′(T ) for
the set of samples with fixed thickness is presented in Fig. 1.
In a transport measurement ω ≈ 0, and therefore � = γ (T ).
As can be seen, σ ′(T ) exhibits very good scaling with the
square root of temperature from Tmin ≈ 50 K up to room
temperature, precisely as expected according to Eq. (3) in the
case of dominant interaction effects with γ (T ) = πkBT/h̄.
The deviations from this scaling below Tmin are caused by
the superconducting transition and the associated fluctuation
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FIG. 2. Frequency dependence of transmission through MoC
thin films on sapphire substrates for the same set of films and with
the same color coding as in Fig. 1.

conductivity. Moreover, a dimensional crossover between 3D
and 2D quantum corrections is expected to occur at tempera-
tures comparable with Tmin [9].

As can be seen from Fig. 1, the two terms in Eq. (3)
exhibit a quite different evolution with stoichiometry: The
extrapolated � = 0 value of the conductivity σ ′(0) decreases
when the metal-insulator transition is approached, whereas
the coefficient in front of

√
T is roughly constant. Similar

behavior has been observed previously in Nb:Si [10,11] and
in TiOx [16]; it is also consistent with our model Eqs. (3) and
(4) [9].

In Fig. 2 we show the optical transmission T (ω) in a
broad frequency range for the same set of films on sapphire
substrates as in Fig. 1. The absence of any spectral features
indicates that interband transitions are absent in this range, a
point we will come to later. Similar featureless transmission
data are also obtained for the set of films with varying thick-
ness. This indicates that the details of the microstructure are
not important for the phenomena we observe and that, for both
sets of samples, the crucial control parameter is the degree of
disorder [9].

The real part of the dimensionless sheet conductance [17]
of the MoC films g(ω) = Z0σ (ω)d , where Z0 is the impedance
of free space, can be calculated from the transmission T (ω)
[9]. The thus obtained conductance g′(ω) of a MoC film with
thickness d = 5 nm and room-temperature sheet resistance
R� = 720 � is shown in Fig. 3. Also shown in Fig. 3 is
the ellipsometry data for both components of g(ω) which
are obtained in a somewhat more narrow frequency range.
Since at optical frequencies ω � γ (T ), we do not have to
distinguish between ω and � . The temperature dependence
of the conductivity for this sample is replotted here from
Fig. 1 as well, assuming γ (T ) = πkBT/h̄. Note the very good
agreement between all three data sets.

Since conductivity σ and dimensionless conductance g
differ only by a multiplicative constant, when talking about
frequency and temperature dependence, from now on we will
use these terms interchangeably.

The data presented in Fig. 3 are the main result of this
Rapid Communication. It shows that the real part of con-
ductivity of strongly disordered MoC thin films is very well
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FIG. 3. Dimensionless sheet conductance g(� ) of a 5-nm-thick
MoC film with room-temperature sheet resistance R� = 720 �.
Green: Data obtained from the temperature dependence of the dc
conductivity in Fig. 1 assuming γ (T ) = πkBT/h̄. Red: Data from
optical transmission. Blue: Real (positive) and imaginary (negative)
parts of g(� ) determined by ellipsometry. Black line: Fit of the
real part to Eq. (3). The inset shows that the anomalous terms
proportional to

√
� perfectly cancel in g′(� ) + g′′(� ).

described by Eq. (3) in a broad range of frequencies from
h̄� ≈ 14 meV up to at least h̄� ≈ 4 eV. Although this is ex-
pected from the theoretical point of view since the scattering
rate � in dirty metals close to the metal-insulator transition
is huge, we now demonstrate it experimentally. This fact is
not generally adopted and it is often incorrectly assumed that
quantum corrections are not present at room temperature or at
optical frequencies.

The results for the imaginary part of conductivity σ ′′(ω)
are also presented in Fig. 3. It should be pointed out that,
unlike the real part of conductivity which is (in the studied
frequency range) determined only by the contribution of the
conduction band, there exists an additional contribution to
σ ′′(ω) from the bound electrons, σ ′′

bound(ω) = −ε0(ε∞ − 1)ω,
where ε0 is the permittivity of vacuum and ε∞ is the bound-
electron contribution to the static dielectric constant. Thus the
presence of a negative contribution to σ ′′(ω) is by itself not
surprising. However, the experimental data in Fig. 3 clearly
indicate that σ ′′(ω) is not linear in frequency. In fact, the
data contain an anomalous term −Q2σ0

√
ω with the same

magnitude and opposite sign as in the real part Eq. (3). Such a
term is required to be present by the Kramers-Kronig relations
and in the inset to Fig. 3 we demonstrate that, as was to be
expected, the anomalous terms perfectly cancel in the sum
σ ′(ω) + σ ′′(ω).

The next natural question to ask is as follows: What are the
values of the parameters σ0, Q, and � which enter Eq. (3)?
From Fig. 3 we have access to only two parameters: the � =
0 value of the conductivity σ ′(0) and the coefficient in front of√

� . On the other hand, if we could extend our measurements
to higher frequencies and measure the crossover scale ω∗
predicted by Eqs. (3) and (4), this would give us the needed
third data point. Unfortunately, at frequencies above h̄ω ∼
4 eV the transmission of our sapphire substrates is influenced
by impurity absorption and therefore we cannot measure ω∗
directly.

FIG. 4. Results of the prolongation procedure described in the
text for ε∞ = 1 (gray lines) and ε∞ = 1.4 (black lines), applied to
the data from Fig. 3 (with the same color coding). The dashed lines
denote the continuation of the high-frequency behavior (i.e., conduc-
tance in the absence of quantum corrections) to low frequencies.

Nevertheless, one can approximately determine the com-
plex conductivity in the whole frequency range from a mea-
surement of both σ ′(ω) and σ ′′(ω) in a finite interval of
frequencies [18]: Making use of the Kramers-Kronig rela-
tions, one can write down integral equations for the unknown
conductivity outside the measured range. However, since the
solution of these equations is numerically unstable, additional
simplifying assumptions have to be made. We have used the
following procedure for the prolongation of the σ ′(ω) data,
which turned out to be quite robust: We start by choosing a
value of �. Having made this choice, we can unambiguously
find σ0 and Q from fitting the real part of conductivity to
Eq. (3). With known σ0, Q, and �, the real part of conductivity
is known from Eqs. (3) and (4) on the entire real axis. Next,
we calculate, making use of the Kramers-Kronig relations, the
imaginary part of the conductivity σ ′′(ω). Finally, we adjust
the value of � so that good agreement with σ ′′(ω) of the
conduction band is obtained.

Note that in order to obtain σ ′′(ω) of the conduction band,
the contribution σ ′′

bound(ω), parametrized by ε∞, should be
subtracted from the ellipsometric data for the imaginary part
of conductivity in Fig. 3. We estimate [9] that ε∞ satisfies the
bounds 1 < ε∞ < 1.4.

The results of the described prolongation procedure for
ε∞ = 1 and ε∞ = 1.4 are presented in Fig. 4. Both prolon-
gations fit σ ′′(ω) of the conduction band very well and the
variation between them is small. In order to further test the
robustness of our prolongation procedure, we have modeled
the real part of conductivity at high frequencies ω � ω∗ by
the Gaussian formula σ ′(ω) = σ0 exp(−ω2/�2) instead of
Eq. (4); the resulting fits of σ ′′(ω) are equally good as when
Eq. (4) is used. We have also checked that smoothing the cusp
at ω = ω∗ in the frequency dependence of σ ′(ω) results in
only marginal changes of the prolongations. Based on all of
this evidence we conclude that our prolongation procedure is
robust and the extracted parameters are [9] Q ≈ 0.82 ± 0.01,
h̄� ≈ 11.85 ± 1.75 eV, and g0 ≈ 1.26 ± 0.06, implying n =
(4.3 ± 0.8) × 1023 cm−3.
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In what follows we will comment on the values of the
extracted parameters. The large value of the quantumness Q
implies that the T = 0 limit of the dc conductivity, σ ′(0) =
(1 − Q2)σ0, is reduced from the naive value σ0 roughly by a
factor of 3. Therefore, if one were to interpret this limit of the
measured dc conductivity as σ0 (as is frequently done), one
would overestimate the scattering rate � by the same factor
of 3.

The extracted energy scale h̄� is surprisingly large. This
does make sense, however: Up to 4 eV, the real part of
conductivity is described by Eq. (3) without any noticeable
higher powers of frequency. This must mean that the crossover
scale h̄ω∗ is by a wide margin larger than 4 eV. If one further
observes that for Q ≈ 0.82 we have h̄ω∗ ≈ 0.5h̄�, the large
value of h̄� seems to be inevitable.

Even more surprising is the very large extracted electron
concentration n, which is more than twice as large as in
metallic aluminum. We believe that this is a consequence of
the large value of �: The individual electronic bands which
are separated by energy less than h̄� lose their identity and
merge together. In order to estimate the electron concen-
tration predicted by such a picture, let us consider cubic
MoC which crystallizes in the rocksalt structure with lattice
constant 4.27 Å [19] and concentration of one type of atoms
nat = 5.1 × 1022 cm−3. The valence electron configurations
of the Mo and C atoms are 4d5 5s1 and 2s2 2p2, respectively.
According to band-structure calculations [19,20], the relevant
4d and 5s states of molybdenum as well as the 2s and 2p states
of carbon are within ±h̄� from the Fermi energy. Therefore
it is reasonable to assume that the conduction electron fluid
is formed by all ten valence electrons and the corresponding
electron density is n = 10 × nat = 5.1 × 1023 cm−3, a value
within the error bar of the extracted n. As a matter of fact,
the value of nat in a highly disordered material is expected to
be lower than the value for a perfect crystal which we have
used; this (as well as an excess of carbon atoms which we
also did not take into account) should improve the agreement
between the estimated and extracted values of n. It is also
worth pointing out that the absence of interband transitions
up to 4 eV (see Fig. 2) provides an additional nontrivial
consistency check of our proposal that the conduction electron
“band” is very broad.

We believe that the electron concentration n in the con-
duction fluid of a dirty metal close to a disorder-induced
metal-insulator transition should be generically large. In fact,

e.g., in dirty NbN samples similarly large values of n have
already been observed [9,21].

It is worth pointing out that the large value of n implies a
large Fermi energy εF : Making use of the free-electron esti-
mate εF = h̄2(3π2n)2/3

/(2m) we find εF = 20.65 ± 2.55 eV.
Combining this with the knowledge of �, for the dimension-
less parameter kF  = 2εF /(h̄�) we obtain kF  ≈ 3.5 ± 0.1. A
nontrivial check of this analysis can be performed as follows.
From a comparison of the conventional formulas for the
quantum corrections [6] to our Eq. (3), it follows that the
product Q × kF  should be of the order 1. This constraint
turns out to be well satisfied by our data, since Q × kF  ≈ 2.9.

In conclusion, we have shown that, in strongly disordered
metals on the verge of a disorder-induced localization tran-
sition, quantum corrections to conductivity may be present
up to optical frequencies. This effect should be universal;
therefore quantum corrections should be added to the list of
known reasons [2] why the canonical Drude formula for the
frequency dependence of conductivity is hard to observe. We
speculate that quantum corrections at infrared frequencies and
above may already have been observed previously, but they
were interpreted in a different way. Most notable candidates
are liquid mercury [22] and perhaps also Si:P [23]. It therefore
seems worthwhile to also take the quantum corrections into
account in models used for spectroscopic ellipsometry.

We have likewise demonstrated how the combined knowl-
edge of both the real and imaginary parts of the optical
conductivity can be used to extract microscopic parameters
of the conduction electron fluid in dirty metals, such as
the quantumness Q, the scattering rate �, and the electron
concentration n. In particular, the magnitude of the quantum
correction δσ ′ = −Q2σ0 in the low-T and ω limit is currently
not accessible in any other way. We have found that n is very
large in MoC close to the metal-insulator transition; its value
indicates that the conduction electron fluid is formed by all
valence electrons. We have argued that the large value of n
should be a generic property of dirty metals, since individual
electronic bands which are separated by energy less than h̄�

lose their identity and merge together.
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