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The electrons in the edge channels of two-dimensional topological insulators can be described as a helical
Tomonaga-Luttinger liquid. They couple to nuclear spins embedded in the host materials through the hyperfine
interaction, and are therefore subject to elastic spin-flip backscattering on the nuclear spins. We investigate the
nuclear-spin-induced edge resistance due to such backscattering by performing a renormalization-group analysis.
Remarkably, the effect of this backscattering mechanism is stronger in a helical edge than in nonhelical channels,
which are believed to be present in the trivial regime of InAs/GaSb quantum wells. In a system with sufficiently
long edges, the disordered nuclear spins lead to an edge resistance which grows exponentially upon lowering the
temperature. On the other hand, electrons from the edge states mediate an anisotropic Ruderman-Kittel-Kasuya-
Yosida nuclear spin-spin interaction, which induces a spiral nuclear spin order below the transition temperature.
We discuss the features of the spiral order, as well as its experimental signatures. In the ordered phase, we identify
two backscattering mechanisms, due to charge impurities and magnons. The backscattering on charge impurities
is allowed by the internally generated magnetic field, and leads to an Anderson-type localization of the edge states.
The magnon-mediated backscattering results in a power-law resistance, which is suppressed at zero temperature.
Overall, we find that in a sufficiently long edge the nuclear spins, whether ordered or not, suppress the edge
conductance to zero as the temperature approaches zero.
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I. INTRODUCTION

The helical edge states are the essential feature of two-
dimensional topological insulators (2DTIs), whose examples
include HgTe/(Hg,Cd)Te quantum wells [1–8] and InAs/GaSb
quantum wells [9–23]. Since elastic backscattering of the
helical edge states must be accompanied by spin flips, the edge
channel conductance is insensitive to perturbations that respect
time-reversal symmetry. However, it remains to be clarified
whether alternative backscattering mechanisms, arising from
the broken time-reversal symmetry or inelastic processes,
can still cause a substantial resistance to destroy the edge
conductance quantization. Among other proposed mechanisms
[24–51], in Ref. [52], we pointed out that in general nuclear
spins could be such a resistance source of 2DTIs.

Nuclear spins, typically present in usual 2DTI host ma-
terials, couple to the electrons in the edge channels via
the hyperfine interaction, and thus result in elastic spin-flip
backscattering. It is therefore necessary to examine whether the
nuclear spins are detrimental to the edge states. Furthermore,
because the edge states in InAs/GaSb heterostructure persist
even in the regime where the energy band is not inverted
[19,22], the topological (helical) character of the edge states
in the band-inverted (nominally topological) regime remains
to be verified.

This work extends results obtained in Ref. [52], the main
findings of which are summarized as follows. First, as in non-
topological systems [54,55], the electron-electron interaction

strongly enhances the backscattering effects in one dimension.
Therefore, in strongly interacting systems, the effects of the
nuclear spins on edge resistance become prominent in spite of
the typically weak hyperfine couplings in 2DTI host materials
[56–59]. Second, the resistance caused by randomly oriented
nuclear spins is bigger for a longer edge, a lower temperature,
and stronger electron-electron interactions. Third, a nuclear
spin order is stabilized by the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction. Finally, the transport properties of the
edge states are influenced by the ordering of the nuclear spins.
The impurities1 and magnons enable additional backscattering
processes in the ordered phase. The resistance due to the
impurities ultimately dominates over the one from the magnons
as the temperature approaches zero, leading to our conclusion
that in general the nuclear spins suppress the edge conductance
at very low temperatures.

The topic is, however, rather complex due to the intertwin-
ing of electron and nuclear subsystems. Therefore a separate
account is necessary. Specifically, here we additionally provide
the details of our renormalization-group (RG) analysis on
the nuclear-spin-induced backscattering in the bosonization
framework, giving the reader a comprehensive understand-
ing of various backscattering mechanisms in the disordered

1To avoid possible confusion, we will use the term “impurity” when
we refer to charge (nonmagnetic) impurity, and reserve the term
“(dis-)order” for the (dis-)ordering of the nuclear spins.
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and ordered phases. We also compare the effects of the
nuclear spins in various materials, including InAs/GaSb and
HgTe/(Hg,Cd)Te quantum wells, and GaAs quantum wires.
Remarkably, this provides signatures to reveal the helical
nature of the edge states, since disordered nuclear spins lead
to a stronger effect in a helical edge in InAs/GaSb than in
nonhelical channels in a GaAs wire or in the trivial regime of
InAs/GaSb, despite comparable values of material parameters.
Further, we investigate the RKKY-induced nuclear spin order,
whose elaborate description was not included in our previous
work. Here we show how the helical edge states mediate
an anisotropic RKKY interaction,2 inducing a spiral nuclear
spin order.3 We also explain in detail the differences between
the order in a helical edge and the one in a spin-degenerate,
nonhelical wire. Remarkably, the helical character of the
edge states enhances the instability toward the nuclear spin
ordering. In addition, we discuss experimental signatures of
the spiral nuclear spin order in optical and charge transport
measurements, which gives guidance for possible experimental
verifications of the formation of the spiral order predicted in
our work.

The additional backscattering mechanism due to the spiral
order also deserves further elucidation. Since a macroscopic
magnetic (Overhauser) field originating from the nuclear spin
order admixes the edge states with the opposite spins, the edge
states do not retain perfect helicity anymore, becoming suscep-
tible to the backscattering on impurities [52]. Here, we present
the derivation of the Overhauser-field-assisted backscattering
action, and show that the form can be understood from the spin
rotational symmetry of electron-electron interaction. Finally,
here, we give the derivation of the effective action due to
the magnon-mediated backscattering, including the emission
and the absorption processes. Whereas the efficiency of these
processes depends on the magnon energy and the magnon
occupation, thus leading to rich temperature dependence of the
resulting edge resistance, the derived effective action allows
us to intuitively visualize the effects of the magnon-mediated
backscattering on the resistance.

This paper is organized as follows. In Sec. II, we introduce
the Hamiltonian, including the edge-state electron Hamiltonian
and the hyperfine interaction between the electron spins and
the nuclear spins. In Sec. III, we investigate the backscattering
caused by disordered nuclear spins and compare the local-
ization effect in various materials and experimental setups.
Using an RG analysis we calculate the edge resistance in
the short-edge, the high-temperature, and the strong-coupling
regimes, as well as the differential resistance in the high-bias
regime. In Sec. IV, we investigate the RKKY-induced spiral
nuclear spin order. We first compare the spiral order in a

2Whereas here we focus on the RKKY interaction mediated by
the edge states of a 2DTI, we note that the behavior of the RKKY
interaction on the surfaces of three-dimensional topological insulators
can also be very rich [60,61].

3The term “spiral nuclear spin order” is used to distinguish the order
in a 2DTI edge from the nuclear spin helix in a nonhelical channel, as
will be explained in Sec. IV A. Moreover, we adopt this term also in
order to avoid possible confusion between the ordering of the nuclear
spins and the helicity of the edge states.

2DTI with the nuclear spin helix in a spin-degenerate wire
in Sec. IV A and then discuss its experimental signatures
in Sec. IV B. In addition, we examine the self-consistency
condition of the RKKY approach in Sec. IV C. In Sec. V,
we examine the effects of the magnons and the impurities
on the 2DTI edge states in the ordered phase. In Sec. V A,
we analyze the resistance due to the Overhauser-field-assisted
backscattering on impurities, and find that it gives rise to a
resistance that is comparable to the one due to the disordered
nuclear spins. We then discuss the features to distinguish the
two resistance sources. In Sec. V B, we calculate the resistance
due to the magnon-mediated backscattering, including both the
emission and the absorption processes. Finally, in Sec. VI,
we summarize the resistance from all these backscattering
mechanisms and discuss the relevance of nuclear spins to the
observed edge resistance in experiments. The technical details
are presented in the appendices.

II. HAMILTONIAN

We begin by modeling the edge states and the nuclear spins
with the Hamiltonian, H = Hel + Hhf. Throughout the paper
we assume that the edge states consist of the right-moving
down-spin R↓ and the left-moving up-spin L↑ electrons (see
Fig. 1; the opposite edge of the 2DTI is assumed to be far
away, and decoupled from the edge under consideration). In
the bosonization framework, we describe these edge states as

FIG. 1. In a 2DTI of rectangular shape, electrons propagate along
the edges. In this work, without loss of generality, we focus on one of
the four edges (labeled by the coordinate r), where the up-spin electron
L↑ (blue) moves in the left direction, and the down-spin electron R↓
(red) moves in the right direction. The electron spin quantization axis
is defined as the z axis, which is perpendicular to the 2DTI plane.
Nuclear spins (indicated by the green arrows) are randomly oriented
(displayed at the top edge) above the transition temperature T0, and
form a spiral order below T0. In the ordered phase, the nuclear spins
align ferromagnetically within each cross section, and rotate along
the edge, as demonstrated at the bottom edge. For clarity, the spins
are drawn only for two opposite edges, and the spin up and spin down
edge states are separated spatially.
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a helical Tomonaga-Luttinger liquid [24,25],

Hel =
∫

h̄dr

2π

{
uK[∂rθ (r)]2 + u

K
[∂rφ(r)]2

}
, (1)

where the bosonic fields θ and φ relate to the original R↓ and
L↑ fermionic fields through

R↓(r) = UR√
2πa

eikF rei[−φ(r)+θ(r)], (2a)

L↑(r) = UL√
2πa

e−ikF rei[φ(r)+θ(r)], (2b)

with the Klein factors UR and UL, the Fermi wave number kF ,
and the edge coordinate r . The electron-electron interaction
is parametrized by the Luttinger liquid parameter K . Here,
u = vF /K is the renormalized velocity with the Fermi velocity
vF . The short-distance cutoff a, required by the bosonization
prescription, is taken as the transverse decay length of the wave

function of the edge states, a = h̄vF /�, with the 2DTI bulk
gap �.4 The Fermi energy is given by εF ≡ h̄vF kF /2. The
helical Tomonaga-Luttinger liquid action can be obtained by
integrating out the θ field in Eq. (1),

Sel

h̄
≡
∫

drdτ

2πuK
{[∂τφ(r,τ )]2 + u2[∂rφ(r,τ )]2}, (3)

with the imaginary time τ and the bosonic field φ(r,τ ).

4Since the energy bands of the edge states merge into the bulk energy
bands above the 2DTI gap �, the helical Tomonaga-Luttinger liquid
description of the edge states breaks down above � (here the energies
are measured from the Dirac point). Therefore, for our bosonization
procedure, we choose � as the high-energy cutoff, below which the
edge states retain their linear energy dispersion and helical nature. The
corresponding short-distance cutoff is thus given by the evanescent
decay length of the edge-state electron wave function into the bulk
[26,47].

TABLE I. Physical parameters and estimated quantities for InAs/GaSb quantum wells, HgTe/(Hg,Cd)Te quantum wells, and GaAs
nanowires. We also include the nonhelical edge channels in the trivial regime of the InAs/GaSb quantum wells.

Physical parameter InAs/GaSb a HgTe/(Hg,Cd)Te b InAs/GaSb (trivial) c GaAs d

Hyperfine coupling constant, A0 50 μeV 3 μeV e 50 μeV 90 μeV
Nuclear spin, I 3 f 0.3 g 3 3/2
Fermi velocity, vF 4.6 × 104 m/s 5.1 × 105 m/s 4.6 × 104 m/s 2.0 × 105 m/s
Fermi wave number, kF 7.9 × 107m−1 7.3 × 107m−1 7.9 × 107m−1 1.2 × 108m−1

Lattice constant, a0 6.1 Å 6.5 Å 6.1 Å 5.7 Å
Transverse decay length, a 9 nm 14 nm 9 nm –
Quantum well width, Wqw 15 nm 9 nm 15 nm –
Cross section area 9 × 15 nm2 14 × 9 nm2 9 × 15 nm2 10 × 10 nm2

Number of nuclei per cross section, N⊥ 3900 3200 3900 2500
Bulk gap, � = h̄vF /a 3.4 meV 24 meV 3.4 meV –
Bandwidth, �a = h̄vF /a0 – – – 0.23 eV
Luttinger liquid parameter(s) K = 0.2 K = 0.2 Kc = 0.2, Ks = 1 Kc = 0.2, Ks = 1
Mean free path, λmfp 0.1–1 μm 0.1–1 μm 0.1–1 μm 0.1–1 μm

Estimated quantity
Backscattering on disordered nuclear spins

Localization length, ξhf 17 μm 3.7 mm 42 μm 0.17 mm
Localization temperature, Thf 100 mK 5.3 mK 19 mK 20 mK
Electronic gap, �hf 1.2 μeV 64 neV 0.79 μeV 0.86 μeV

Nuclear spin ordering
Transition temperature, T0 42 mK 1.4 mK 35 mK 29 mK
Electronic gap at T = 0, �m(T = 0) 0.36 meV 50 μeV 1.2 meV 2.1 meV

Nuclear-spin-order-assisted backscattering on impurities
Localization length at T = 0, ξhx(T = 0) 7.9–19 μm 3.2–7.7 mm 0.93-2.5 μm 4.7–13 μm
Characteristic temperature, Thx 92–220 mK 2.5–6.1 mK 0.32–0.85 K 0.27–0.72 K
Electronic gap at T = 0, �hx(T = 0) 1.1–2.7 μeV 31–74 neV 10–27 μeV 8.7–23 μeV

aFrom Refs. [10,17,24,26,56–58,64,70,71].
bFrom Refs. [2,3,26,59,72–75].
cFor the trivial regime of InAs/GaSb, we take the same parameters as in the footnote a except that in this case there are two Luttinger liquid
parameters Kc and Ks for the two conducting channels.
dFrom Refs. [57,58,64,76–82].
eHere we take the arithmetic average of the hyperfine coupling over all the nuclei, weighted by their natural abundance. The average value of
HgTe/(Hg,Cd)Te is small because only ∼19% of the naturally abundant nuclei in this material possess nonzero spins.
fThe given value is an approximate average over the stable isotopes, defined by I (I + 1) ≡∑m ρ iso

m Im(Im + 1) with the natural abundance
ρ iso and the index m labeling the isotopes. We used I (113In) = I (115In) = 9/2, I (75As) = 3/2, I (69Ga) = I (71Ga) = 3/2, I (121Sb) = 5/2 (with
ρ iso ∼ 57%), and I (123Sb) = 7/2 (with ρ iso ∼ 43%).
gSimilarly as for the footnote f. Here we used I (123Te) = I (125Te) = I (111Cd) = I (113Cd) = 1/2, I (199Hg) = 1/2 (with ρ iso ∼ 17%), and
I (201Hg) = 3/2 (with ρ iso ∼ 13%).
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Before continuing, we comment on the Luttinger liquid
parameter K . In existing experiments, its value is largely
unknown, and only few attempts have been made to extract
it experimentally. In Ref. [17], deduced values for InAs/GaSb
2DTIs are K = 0.21–0.22, indicating strong electron-electron
interaction in that sample [53]. To be able to make quantitative
predictions, we therefore use K = 0.2 (see Table I) throughout
this paper, unless stated otherwise. It represents the nuclear-
spin-induced effects on the edge transport in the presence of
strong electron-electron interactions.

The hyperfine interaction is given by

Hhf = A0

ρnuc

∑
n

[
�

†
el(xn)

σ

2
�el(xn)

]
· In, (4)

which describes the coupling of an electron spin σ/2 ≡
(σx,σ y,σ z)/2 to nuclear spins In (with magnitude I ) with the
coupling constant A0 at positions xn with the nuclear index n.
Here σμ denotes the μ component of the Pauli matrix vector in
spin space. We take the nuclear density to be ρnuc = 8/a3

0 with
the lattice constant a0 [62,63], and write the electron operator
�el as the product of the transverse (x⊥) and the longitudinal
(r) parts,

�el(x) = ψ⊥(x⊥)ψ||(r). (5)

In the above, the transverse part of the edge electron wave
function ψ⊥ is a complex scalar, while the longitudinal part is
a two-component spinor, ψ|| = (L↑,R↓)T. For simplicity, we
assume that the system is homonuclear and take the average
values for the nuclear spin I and the hyperfine coupling
constant A0. We also assume the electron wave function to
be uniform in the transverse direction such that it is approxi-
mated as a constant |ψ⊥|2 = 1/(Weffa), with Weff denoting the
effective width of the wave function perpendicular to the 2DTI
plane.5 With these approximations, the hyperfine interaction
can be written in a one-dimensional form,

Hhf ≈ A0

N⊥

∑
j

S(rj ) · Ĩj , (6)

with the number of nuclei per cross section N⊥ = Weffaa0ρnuc.
Here, rj denotes the common value of the edge coordinate of
the nuclei belonging to the j th cross section. In the above, we
define the effective spin operator,

S(r) ≡ N⊥
ρnuc

|ψ⊥|2
∑
α,β

ψ
†
||,α(r)

σ αβ

2
ψ||,β(r), (7)

5Assuming that the electrons are confined by a square potential
well along the z direction (perpendicular to the 2DTI plane), the
inhomogeneous hyperfine coupling is then proportional to the electron
density ∝ sin2(πz/Wqw) with the lithographic quantum well thickness
Wqw. In order to incorporate such inhomogeneity, we define the
effective width Weff by averaging the hyperfine coupling over z,
such that 1/Weff ≡ (1/Wqw)

∫ Wqw

0 dz sin2(πz/Wqw)p(z), weighted
by the probability distribution p(z) = (2/Wqw) sin2(πz/Wqw). As a
result, we find that Weff = 4Wqw/3, which is used to approximate the
transverse electron wave function.

which interacts with a classical spin Ĩj ≡∑n∈j In composed
of N⊥ nuclear spins within the j th cross section. In Fig. 1,
the composite spins Ĩ are plotted as the green arrows along
the edges, in which the cross sections are drawn as yellow
blocks, demonstrating the three-dimensionality of the nuclear
subsystem. A summary of the adopted parameters is given in
Table I. We will examine various backscattering mechanisms
arising from Eq. (6), and their contributions to the edge
resistance.

As a remark, the dipolar interaction between the nuclear
spins is much weaker than the hyperfine interaction [64], and
is not explicitly included in the above. In the disordered phase,
however, it leads to the dissipation of the accumulated nuclear
spin polarization during the backscattering process due to the
accompanied electron-nuclear flip-flops [31,63,65]. In order to
incorporate the effect of the dipolar interaction, we assume that
the nuclear spin polarization is destroyed by such a dissipation
channel, and adopt unpolarized nuclear spin orientation for
our analysis in the disordered phase [see Eq. (11)]. On the
other hand, the RKKY interaction between the nuclear spins
dominates the dipolar interaction, so the latter is neglected
in our analysis of the nuclear spin ordering. In addition, the
Kondo temperature associated with a single nuclear spin is
TKondo = �e−εF /A0 [66], so the Kondo physics should not be
relevant, as εF � A0 under typical experimental conditions
(see also Refs. [67–69] for discussions on the limitations of
the RKKY description).

III. ELASTIC BACKSCATTERING ON RANDOMLY
ORIENTED NUCLEAR SPINS

We first consider the disordered phase, where the nu-
clear spins are randomly oriented, and cause elastic electron
backscattering via the hyperfine interaction Eq. (6). Since the
forward scattering [the Sz term in Eq. (6)] has no influence
on the transport properties [54,55], it can be dropped. In the
continuum limit, the remaining components of the electron spin
operator can be written in terms of the right and left movers,

Sx(r) = 1

2
[L†

↑(r)R↓(r) + R
†
↓(r)L↑(r)], (8a)

Sy(r) = −i

2
[L†

↑(r)R↓(r) − R
†
↓(r)L↑(r)], (8b)

and then bosonized using Eq. (2). This gives rise to the
backscattering Hamiltonian,

Hhf,b =
∫

dr

2πa
Vhf,2kF

(r)e2iφ(r) + H.c., (9)

where we keep only the slowly varying terms, and define the
2kF component of the random potential caused by the nuclear
spins as

Vhf,2kF
(r) ≡ A0

2N⊥
[Ĩ x(r) + iĨ y(r)]e−2ikF r . (10)

Assuming that the nuclear spins are independent and unpolar-
ized, we have

〈V †
hf,2kF

(r)Vhf,2kF
(r ′)〉rs = Mhfδ(r − r ′), (11)

with the strength Mhf ≡ aA2
0I (I + 1)/(6N⊥). Here, 〈· · · 〉rs

denotes the expectation value with respect to the random
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nuclear spin state. Using the replica method [55] and the
average from Eq. (11), we obtain the contribution to the
imaginary-time action from Eq. (9),

δShf

h̄
= −Dhfu

2

8πa3

∫
u|τ−τ ′|>a

drdτdτ ′

× cos[2φ(r,τ ) − 2φ(r,τ ′)], (12)

with the dimensionless coupling constant Dhf ≡
2aMhf/(πh̄2u2). With the effective action composed of
Eqs. (3) and (12), we perform the RG analysis to investigate
how the disordered nuclear spins affect the transport properties
of the edge states.

Following the procedure in Appendix A, we build the RG
flow equations by first evaluating the correlation function,

〈ei[φ(r1)−φ(r2)]〉Sel+δShf , (13)

with respect to Eqs. (3) and (12). Then, upon changing the
cutoff a → a(l) = ael with the dimensionless scale l, we find
the RG flow equations,

dDhf(l)

dl
= [3 − 2K(l)]Dhf(l), (14a)

dK(l)

dl
= −K2(l)

2
Dhf(l), (14b)

du(l)

dl
= −u(l)K(l)

2
Dhf(l), (14c)

from which we see that the backscattering on disordered nu-
clear spins Eq. (12) is RG relevant for K(l) < 3/2. Assuming
that the change in K can be neglected, we integrate the RG flow
of the effective coupling to get Dhf(l) = Dhf(l = 0)e(3−2K)l ,
which allows us to find the localization length,

ξhf = aD
−1/(3−2K)
hf , (15)

and the corresponding localization temperature Thf ≡
h̄u/(kBξhf). For an edge longer than ξhf, the conductance gets
exponentially suppressed below Thf. For the parameters of
InAs/GaSb 2DTIs (see Table I), the estimated values of ξhf

and Thf suggest that the localization-delocalization transition
is within an experimentally accessible regime. In contrast, the
spinful nuclei in HgTe/(Hg,Cd)Te are naturally less abundant,
possess smaller spins, and have weaker hyperfine coupling
[59], leading to a much bigger localization length and much
lower localization temperature.

Since the Luttinger liquid parameter K and the number of
nuclei per cross section N⊥ vary with materials and setups,
we also investigate the dependence of the localization temper-
ature and length on these parameters. In Fig. 2, we plot the
localization temperature of InAs/GaSb and HgTe/(Hg,Cd)Te
2DTIs, in addition to nonhelical states in the trivial regime
of InAs/GaSb and a spin-degenerate quasi-one-dimensional
GaAs wire, as a function of the interaction parameter. The lo-
calization temperatures of these materials drastically increase
with stronger interactions, a feature that can be tested through
the sample preparation, e.g., by varying the quantum well
width, or the distance between a screening metallic gate and the
quasi-one-dimensional channel. In addition to the difference
between the InAs/GaSb and the HgTe/(Hg,Cd)Te 2DTIs due to

InAs GaSb
HgTe Hg,Cd Te
InAs GaSb trivial)
GaAs

N
102 103 104
1

102

104

Ξ h
f
Μm

0.2 0.4 0.6 0.8
10 2

1

102

104

K, Kc

T h
f
m
K

FIG. 2. Dependence of the localization temperature Thf on the
strength of electron-electron interactions for various materials. For
the horizontal axis, we take the Luttinger liquid parameter K for
2DTI helical edge states, and Kc (while fixing Ks = 1) for nonhelical
channels in GaAs wires and in the trivial regime of InAs/GaSb. The
other parameters are listed in Table I. (Inset) The localization length
ξhf as a function of the number of nuclei per cross section N⊥.

material parameters, there is a pronounced difference in the lo-
calization temperatures between a helical edge of InAs/GaSb,
and nonhelical channels in the trivial regime of InAs/GaSb and
a GaAs conductor, in spite of their comparable nuclear spins
and hyperfine couplings. This difference arises from the fact
that in a spin-degenerate wire the effective Luttinger liquid
parameter is Kwire = (Kc + 1/Ks)/2, an average of values for
the charge (Kc) and spin (Ks ≈ 1) channels, and thus bounded
by 1/2, whereas such averaging is absent in a helical edge.
Consequently, in 2DTIs, the interaction leads to a stronger
effect on the nuclear-spin-induced localization, which may
reveal the helical nature of the edge states in the band-inverted
regime of InAs/GaSb. The dependence of ξhf on the interaction
can be inferred from Fig. 2, using the fact that ξhf is inversely
proportional to Thf, and therefore not displayed here. In the
inset of Fig. 2, we plot the dependence of ξhf on N⊥, which
depends on the quantum well width and the transverse decay
length, and can also vary for different samples. Since the
dependence of ξhf (and therefore Thf) on N⊥ is a fractional
power law, its value does not change much even if N⊥ varies
by an order of magnitude. From now on we shall adopt the
parameters of InAs/GaSb 2DTIs, in which we expect the most
significant effects from the nuclear spins.

Before continuing, we note that other possible backscat-
tering mechanisms may cause edge resistance, and there-
fore contribute to the total resistance Rtotal, in addition to
the contact resistance from the leads and the nuclear-spin-
induced resistance R. However, since here we want to find out
whether the nuclear-spin-induced resistance is observable, i.e.,
whether R is comparable to the resistance quantum R0 ≡ h/e2,
throughout the paper we discuss and plot R/R0, instead of
Rtotal.

We now investigate the resistance Rhf caused by disordered
nuclear spins, Eq. (12). Using the effective coupling Dhf(l),
we compute the edge conductivity as in Refs. [54,55], and
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therefore the edge resistance,

Rhf ∝ R0
MhfL

h̄2v2
F

e(2−2K)l∗ . (16)

Here, the dimensionless scale l∗ arises from the cutoff a(l∗) =
ael∗ , at which the RG flow stops, and thus depends on the exper-
imental conditions. We identify four possible physical cutoffs,
being the edge length L, the thermal length λT ≡ h̄u/(kBT ),
the bias length λV ≡ h̄u/(eV ), and the localization length
ξhf, corresponding to the short-edge, the high-temperature,
the high-bias, and the strong-coupling regimes, respectively.
First, if the edge length is the shortest among all these scales,
L < λT , λV , ξhf, we obtain

Rhf(L) ∝ R0
πDhf

2K2

(
L

a

)3−2K

. (17)

Second, if the temperature is so high that λT < L, λV , ξhf, we
get

Rhf(T ) ∝ R0
πDhfL

2K2a

(
KkBT

�

)2K−2

. (18)

Third, at high bias such that λV < L, λT , ξhf, the differential
resistance depends on the bias voltage as(

dV

dI

)
hf

∝ R0
πDhfL

2K2a

(
KeV

�

)2K−2

. (19)

Finally, if ξhf < L, λT , λV , the RG flow reaches the strong-
coupling regime, so the edge states are gapped, displaying a
thermally activated resistance [55],

Rhf(T ) ∝ R0
πDhfL

2K2a
e�hf/(kBT ), (20)

with the gap�hf = �(2KDhf)1/(3−2K). The formulas (17)–(20)
were given in Ref. [52] (with slightly different notations), and
are repeated here for reference. Further, here we additionally
check that the edge resistance due to the disordered nuclear
spins in the trivial regime of InAs/GaSb is much smaller
than the one in the topological phase (by two orders of
magnitudes), consistent with our conclusion from Fig. 2.
We also note that in the localized regime, the temperature
dependence of the resistance may be affected by the tunneling
between the instanton/kink states. For nonhelical systems, the
conductivity/conductance due to such tunneling events has
been investigated [83,84]. Since it is beyond the scope of
this paper, here we only note that the variable-range-hopping
behavior σ (T ) ∝ exp[−√

C/(kBT )] with a constant C due to
the tunneling between the kink states in the localized regime
[83] may be relevant to the observation in Ref. [19].

Figure 3 summarizes the dependence of the resistance on the
most relevant and accessible parameters, as given, depending
on the regime, by Eqs. (17)–(20). In panel (a) of Fig. 3, we
show how the resistance scales with the edge length. The kink
in the curve signifies the transition from the L3−2K power law
for a short edge [Eq. (17)] to the linear L dependence for a
long edge [Eq. (18)]. The temperature dependence is shown in
panels (b) and (c). The resistance initially increases as a T 2K−2

upon decreasing the temperature T . After that the resistance for
a short edge L < ξhf saturates [panel (b)] because the RG flow
stops at the edge length. In contrast, for a long edge L > ξhf it
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e
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1
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V ΜV

FIG. 3. Dependence of the resistance Rhf on different system
parameters in the disordered phase for the parameters of InAs/GaSb.
(a) Rhf vs length (L) at the temperature T = 0.3 K. (b) Rhf vs T for
L = 10 μm. (c) Rhf vs T for L = 20 μm. (d) Differential resistance
as a function of the bias voltage (V ) for L = 10 μm at T = 0.3 K.
In all the panels we take the Luttinger liquid parameter K = 0.2. The
other parameters are listed in Table I.

evolves into an exponential [panel (c)] due to the electronic gap
in the spectrum. As a result, for an edge of the length longer
than ξhf, the localization of the edge states caused by disordered
nuclear spins is observable below the localization temperature
Thf. Finally, the differential resistance in the presence of a finite
bias voltage V is plotted in the panel (d) for an edge shorter
than ξhf. Starting from the high-bias regime, the differential
resistance initially increases with a decreasing voltage as a
power law [Eq. (19)], and then saturates due to the cutoff given
by the shorter of L and λT , Eqs. (17) and (18), respectively.

We conclude here that the power law dependencies of
the resistance are symptomatic for our theory. Recently, such
fractional power laws were reported [17] in short InAs/GaSb
2DTI samples as a function of the temperature and the bias
voltage. Similar measurements with longer samples can be
therefore used to examine and distinguish various theories,
including ours, proposed for the origin of the edge resistance.
For such comparison, an independently extracted value of
the parameter K for the edge states [85,86] would be highly
desirable.

IV. SPIRAL NUCLEAR SPIN ORDER

In addition to the backscattering effects, the interplay
between the nuclear spins and the strong electron-electron
interaction leads to the formation of a spiral nuclear spin order,
which will be discussed in this section.

A. RKKY interaction and spiral nuclear spin order

We now discuss the nuclear spin order stabilized by the
edge electron-mediated RKKY interaction. Since the energy
scale of the hyperfine coupling is much smaller than the Fermi
energy, we can integrate out the electron degrees of freedom in
the hyperfine interaction defined in Eq. (6) to obtain the RKKY
interaction, a pairwise coupling between the static nuclear
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spins [62,66,81,82,87–91],

HRKKY = 1

N2
⊥

∑
i,j,μ

J
μ

ij Ĩ
μ

i Ĩ
μ

j , (21)

with μ = x, y, z in the spin space. Here, the RKKY coupling
J

μ

ij is proportional to the electronic spin susceptibility, and can
be calculated along the line of Ref. [55]. Since the z component
of the electron spin operator is marginally relevant in the helical
Tomonaga-Luttinger liquid, the z component of the RKKY
coupling J z

ij decays as 1/(ri − rj )2 [55], negligible compared
to the x and y components. This is a consequence of the
broken SU(2) spin rotational symmetry of the edge states, and
it leads to an anisotropic RKKY coupling |J x

q | = |J y
q | � |J z

q |
in momentum space, where the x and y components of the
RKKY coupling are given by

J x
q = J y

q = − sin(πK)

8π2

KA2
0

�

(
λT

2πa

)2−2K

×
∑
κ=±

∣∣∣∣�(1 − K)�[K/2 − iλT (q − 2κkF )/(4π )]

�[(2 − K)/2 − iλT (q − 2κkF )/(4π )]

∣∣∣∣
2

,

(22)

with the Gamma function �(x). In addition to the anisotropy,
the helicity of the electrons also leads to a stronger RKKY
coupling, compared to the nonhelical case, because of the
difference in the effective Luttinger liquid parameters (Kwire

versus K), as explained in Sec. III.
The RKKY coupling given by Eq. (22) develops a dip at

q = ±2kF , and therefore gives rise to an instability toward a
nuclear spin order in a finite-size system. Even though a similar
RKKY-induced nuclear spin order also arises in nonhelical,
spin-degenerate systems such as GaAs quantum wires and
13C nanotubes [62,81,82,89,90,92–94], we note four important
differences regarding to the nuclear orders between a helical
edge and a nonhelical wire.

First, the ordered nuclear spins align ferromagnetically
within each cross section. Along the edge (x axis), they rotate
in the xy plane with a spatial period π/kF . For illustration, the
nuclear spin order is displayed in Fig. 1. The plane within
which the nuclear spins rotate is fixed by the 2DTI plane,
due to the broken SU(2) symmetry in the edge states. This is
different to the nuclear spin helix formed in a spin-degenerate
system [62,81,82,89,90], where the nuclear spins rotate in a
plane which can have arbitrary orientation.

Second, the remaining U(1) symmetry in a helical edge,
corresponding to the rotation of nuclear spins around the spin
quantization (z) axis, leads to one Goldstone mode in the
magnon spectrum in an infinitely long system (cf. below). This
is in contrast to nonhelical systems, where multiple Goldstone
modes associated with the SU(2) symmetry emerge in the
magnon spectrum [62,81,82,89,90].

Third, the tendency toward the nuclear spin order is typi-
cally higher for a 2DTI edge, as a result of the stronger RKKY
coupling. This is essentially due to, again, the difference in
the effective Luttinger liquid parameters, and it leads to a
higher transition temperature T0 [see Eq. (26) and Table I].
In other words, the helical nature of the edge states promotes
the formation of the nuclear spin order.

RL

BOv A0 I

2 vFkF

m

b

R L

BOv A0 I

m

a

FIG. 4. The effect of nuclear helix 〈Ĩ〉± on the electron spectrum.
(a) For the spiral order 〈Ĩ〉+, a gap of the size �m is opened at the Fermi
surface (indicated by red line) by the corresponding Overhauser field.
(b) For 〈Ĩ〉−, the gap is induced below the Fermi surface.

Finally, the nuclear spin ground state is related to the helicity
of the electronic subsystem in a helical edge, unlike in a spin-
degenerate wire. The expectation value of the nuclear spins in
the ordered phase is given by

〈Ĩ(r)〉± = N⊥Im2kF
[cos(2kF r)x̂ ± sin(2kF r)ŷ], (23)

with the sign ± labeling the anticlockwise/clockwise rotation
of the nuclear spins, and m2kF

denoting the order parameter
such that m2kF

(T = 0) = 1 for a complete order. In a nonheli-
cal wire, both orders with the ± signs can be the ground state.
As the temperature is lowered below T0, the nuclear spins form
an order with one of them (within a magnetic domain). The
ordered nuclear spins then generate a macroscopic Overhauser
field, which acts back on the electron spins. Depending on the
sign, either the conduction modes R↓ and L↑, or the other
subbands are gapped out [81,82]. The nuclear spin helix in a
nonhelical wire thus leads to a partial gap at the Fermi surface,
halving the conductance [81,82,84,93].

In a helical edge, however, the position of the electronic gap
opened in the edge state spectrum depends on the ± sign in
Eq. (23). Provided that the edge states consist of R↓ and L↑
electrons and the Fermi level is placed above the Dirac point at
q = 0, the order with the positive sign, 〈Ĩ〉+, would mixR↓(q +
2kF ) and L↑(q), and therefore gap out the electrons at the Fermi
surface [panel (a) of Fig. 4], reducing the RKKY coupling. On
the other hand, 〈Ĩ〉− would mix R↓(q) and L↑(q + 2kF ). In
this case, a gap �m is induced below the Fermi surface, as
shown in panel (b) of Fig. 4. By establishing the nuclear spin
order, the entire system of the nuclei and the electrons may
acquire the magnetic energy gain, in addition to the Peierls
energy (from opening an electronic gap at the Fermi surface)
and the Knight energy (from the electron spin polarization)
[62]. Hence the orders with the opposite signs lead to distinct
energy gains due to the different gap positions. We examine the
two scenarios [positive versus minus signs in Eq. (23)], and find
that the total energy gain of 〈Ĩ〉− is higher, due to the stronger
RKKY coupling and therefore the magnetic energy gain is
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FIG. 5. Magnon energy Emag as a function of the momentum q in
an infinitely long edge. We take the order parameter m2kF

= 1 and an
exaggerated temperature T = 10 K to make the dip at q = 0 visible.
For a realistic temperature, the dips are very narrow, and the magnon
energy is approximately momentum independent Emag(q) ≈ h̄ωmag.
The T dependence of m2kF

(h̄ωmag) given by Eq. (25) [by Eq. (28)] is
shown in the left (right) inset.

larger (typically, the magnetic energy dominates the Peierls
and Knight energies). As a consequence, it is energetically
favorable for the nuclear spins to order without opening a gap at
the Fermi surface. To distinguish from the order in a nonhelical
wire, which respects distinct symmetries, the order in a 2DTI
edge predicted in this work is thus dubbed a spiral nuclear spin
order.

To proceed, we take 〈Ĩ〉− [see Eq. (23), with the minus
sign] as the ground state for our spin-wave analysis (see
Appendix B), from which we obtain the magnon spectrum in
an infinitely long edge,

Emag(q) = Im2kF

N⊥

√
2J x

2kF

(
2J x

2kF
− J x

q−2kF
− J x

q+2kF

)
, (24)

which we plot in Fig. 5. There is a zero-energy Goldstone mode
at q = 0 as a consequence of the U(1) rotational symmetry,
as discussed. Importantly, however, in a finite-size system the
Goldstone mode is gapped out, and the remaining magnon
spectrum is basically dispersionless, as the RKKY resonance
dip is very narrow. We thus approximate the magnon energy
as Emag(q) ≈ h̄ωmag ≡ 2I |J x

2kF
|m2kF

/N⊥, allowing us to an-
alytically compute the temperature dependence of the order
parameter (see Appendix B),

m2kF
(T ) = 1 − 1

2

(
T

T0

)3−2K

, as T � T0, (25)

shown in the left inset of Fig. 5. Here the transition temperature
T0 is defined such that m2kF

(T0) = 1/2, leading to

kBT0 =
[

A2
0I

2

3N⊥

(
�

2πK

)1−2K

C(K)

]1/(3−2K)

, (26)

C(K) ≡ sin(πK)

16π3

∣∣∣∣�(1 − K)�(K/2)

�[(2 − K)/2]

∣∣∣∣
2

, (27)

which depends crucially on the Luttinger liquid parameter K ,
as demonstrated in Fig. 6. As discussed above, in nonhelical

InAs GaSb

HgTe Hg,Cd Te

InAs GaSb trivial

GaAs

0.2 0.4 0.6 0.8
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102

K, Kc

T 0
m
K

FIG. 6. Transition temperature T0 as a function of the Luttinger
liquid parameter for various materials. We take K for 2DTIs and Kc

(with fixed Ks = 1) for nonhelical channels. The other parameters are
listed in Table I.

wires, the effective Luttinger liquid parameter Kwire is bounded
by 1/2, so the feedback effect from the Overhauser field is
essential to enhance T0 to millikelvin range [62,81,82,90]. In
contrast, there is no such lower bound for K for a helical
edge, and we obtain T0 in the order of tens of mK. The helical
character of the edge states thus substitutes for the role of the
feedback effect on boosting T0. Since the fractional power-law
dependence of T0 on N⊥ gives T0 ∝ N−0.38

⊥ (assuming K =
0.2), increasing N⊥ by a factor of 10 only decreases T0 by a
factor of 2.4, suggesting that a moderate change in N⊥ does
not lead to a significant change in the estimated value of T0.

Due to the temperature dependencies of the RKKY coupling
strength [see Eq. (22)] and of the order parameter [see Eq. (25)],
the magnon excitation energy also depends on the temperature.
In the right inset of Fig. 5, we plot the temperature dependence
of the magnon energy, which grows upon decreasing the
temperature as a power law,

h̄ωmag(T ) = 2I

N⊥

∣∣J x
2kF

(T )
∣∣m2kF

(T ). (28)

This temperature dependence affects the efficiency of the
magnon-mediated backscattering, and therefore enters the
magnon-induced resistance [see Eq. (44) below]. In addition,
the gap �m opened in the electron spectrum also depends on
the temperature,

�m(T ) = �

[
2KA0Im2kF

(T )

�

]1/(2−K)

. (29)

We obtained this formula using a self-consistent variational
approach [55]. This gap is, however, below the Fermi surface,
and thus not directly observable in transport experiments. Since
the spiral nuclear spin order has no influence on the electron
subsystem at the Fermi surface, the previously considered
detection methods [81,82,90] are not directly applicable. In a
clean and short system the edge states remain gapless despite of
the formation of the spiral nuclear spin order. Nevertheless, the
gap below the Fermi surface provides an alternative to detect
the spiral nuclear spin order, which we discuss in the following
subsection.
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B. Experimental signatures of the nuclear spin order

The gap �m below the Fermi surface results in experimental
signatures which can reveal the spiral order. Since the nuclear
spin dynamics is much slower than the one of electrons, one
may change the gate voltage quickly to shift the electron Fermi
energy in the gap, while the pitch of the nuclear spin order,
and therefore the position of the gap, remains fixed. Then,
indirect evidences for the spiral order can be searched for by
measuring the dc conductance, which reduces to zero if the
Fermi energy is placed inside the gap. In addition to the gap
position, this measurement can also determine the position of
the charge neutral point, which would otherwise be difficult
to locate due to the constant density of states for the edge
states. Alternatively, one can reach states away from the Fermi
surface with finite-frequency measurements. For instance, the
Drude peak in the ac conductivity shifts from zero frequency
to a finite frequency associated with the gap, when the scanned
Fermi energy is inside the gap.

With these intuitions, we now proceed to explicit formulas.
We first consider the case when the Fermi energy is outside
of the gap. In optical experiments, the ac conductivity can
be measured without the influence of the leads. Following
Ref. [55], we compute the ac conductivity (see Appendix C
for the details),

σ (ω) = e2

h̄
(uK)

[
δ(ω) + i

π
P
(

1

ω

)]
, (30)

with the Dirac delta function δ(x) and the principal valueP(x).
The real part of the ac conductivity shows a Drude peak at
zero frequency with the weight uK(e2/h̄), and the imaginary
part is connected to the real part through the Kramers-Kronig
relations.

When measuring the charge transport through edge states
over the finite length L, however, the effects of the Fermi
liquid leads must be incorporated. To this end, we apply the
Maslov-Stone approach [86,95–98] to compute the nonlocal
conductivity σnl and the dc conductance Gdc by modeling
the leads as a Tomonaga-Luttinger liquid with a different
parameter KL. The nonlocal conductivity σnl relates the charge
current Ic to the external electric field Eext through

Ic(r,t) =
∫ L/2

−L/2
dr ′
∫

dω

2π
e−iωtσnl(r,r

′,ω)Eext(r
′,ω). (31)

In general, the nonlocal conductivity depends on both r

and r ′, and here we give only its expression at the origin
[(r,r ′) = (0,0)], which is related to the dc conductance by
Gdc = limω→0 Re[σnl(0,0,ω)]. With the details of derivation
presented in Appendix C, the real and imaginary parts of the
nonlocal conductivity at (r,r ′) = (0,0) are given by

Re[σnl(0,0,ω)] = e2

h

K2

KL

1

sin2
(

ωL
2u

)+ ( K
KL

)2
cos2

(
ωL
2u

) ,
(32a)

Im[σnl(0,0,ω)] = e2K

h
tan

(
ωL

2u

) (
K
KL

)2 − 1(
K
KL

)2 + tan2
(

ωL
2u

) .
(32b)
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FIG. 7. The dependence of the real part of the nonlocal conductiv-
ity Re[σnl(0,0,ω)] on angular frequency (ω), obtained from Eq. (32).
Here we take the Luttinger liquid parameter K = 0.2 (KL = 1) for
the edge (lead) electrons.

As shown in Fig. 7, the real part Re[σnl(0,0,ω)] oscillates
between the maximal value KL(e2/h) at the angular frequen-
cies ω = 2nπu/L and the minimal value (K2/KL)(e2/h) at
the angular frequencies ω = (2n + 1)πu/L with an integer n,
similar to a fractional helical Tomonaga-Luttinger liquid [98].
Using Eq. (32), we get the following expression for the dc
conductance:

Gdc = e2

h
KL. (33)

Importantly, Gdc is independent of the Luttinger liquid param-
eter K of the edge states. We note that Eq. (33) is valid in a short
edge L � ξhf, where the resistance caused by the nuclear spins
[Eqs. (17)–(20)] is insignificant. Even though Eq. (33) suggests
that measuring Gdc in the gapless regime does not reveal any
feature of the nuclear spin order or the Tomonaga-Luttinger
liquid, it can be used to contrast the measurement when the
Fermi energy is in the gap, as we discuss below.

We now consider the case when the Fermi energy is quickly
tuned into the gap �m, where the action acquires a sine-Gordon
term [see Eq. (C11)]. The dc conductance in this case is absent,
Gdc = 0, instead of being given by Eq. (33). Therefore the zero
dc conductance in the range [−2h̄vF kF − �m/2, − 2h̄vF kF +
�m/2] when scanning the Fermi energy by a back gate can
serve as an experimental signature for the spiral order, as well
as a method to determine the gap value.

An alternative is provided by the ac conductivity probed
optically with the Fermi energy inside the gap,

σ (ω) = e2

h̄
(uK)

[
δ

(
ω − �2

m

h̄2ω

)

+ i

π
P
(

1

ω − �2
m/(h̄2ω)

)]
. (34)

In this case, the Drude peak is shifted to a finite frequency
corresponding to �m. As shown in Fig. 8, the gap �m [see
Eq. (29)] depends on the temperature, so does the position
of the Drude peak. Therefore, tracking the evolution of the
Drude peak position with the temperature can then verify
the temperature dependence of the gap �m, and thus the
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FIG. 8. The dependence of the gap �m opened in the electron
spectrum on temperature T . On the left axis, the gap value is converted
into the frequency �m/h. The Luttinger liquid parameter is taken
to be K = 0.2 (K = 0.25) for the black solid (blue dashed) curve.
The other parameters are listed in Table I. The red shaded region
marks the temperature region within which �m/h � 20 GHz. (Inset)
Zero-temperature gap �m(T = 0) as a function of K .

generalized Bloch law given by Eq. (25). We find that to access
the Drude peak, say, at T = 54 mK, it requires a microwave
source with the frequency, �m(T = 54 mK)/h ≈ 12 GHz,
which is experimentally accessible.

We conclude this section with some remarks on the pro-
posed microwave measurements. First, the maximal frequency
that a microwave source can reach sets a practical constraint
for observing the Drude peaks. Thus, in Fig. 8, we mark the
temperature region in which the corresponding gap value can
be reached by assuming this maximal frequency to be 20 GHz.
Second, the temperature fluctuations near the transition tem-
perature lead to the fluctuation of the gap as indicated in
Fig. 8, so a precise temperature control would be required
for a clear peak in the measurements. Third, it is necessary
for the edge length to be longer than the Fabry-Perot length
defined as LFP ≡ hvF /�m such that the effect of the leads is
negligible. For our parameters, we find LFP to be in the order
of micrometers.

C. Self-consistency of the RKKY approach

In this section we comment on the self-consistency condi-
tion of the RKKY approach, which allows us to derive the
RKKY interaction Eq. (21) from the hyperfine interaction
Eq. (6) [87]. Even though similar discussions are also given
in Refs. [62,82,90] for nonhelical systems, here we point out
the importance of the finite-size effect.

For the self-consistency of the RKKY approach, we ex-
amine the following conditions. First, the RKKY approach
requires the energy scale of the electron subsystem to be larger
than the coupling between the electron and nuclear subsys-
tems, such that the higher-order terms after performing the
Schrieffer-Wolff transformation can be dropped. As mentioned
in Sec. IV A, this is justified by the weak hyperfine coupling
compared to the electron Fermi energy. Second, the separation
of the time scales of the electron and nuclear spin dynamics
can be examined by comparing the Fermi velocity vF and the
magnon velocity [82]. We check that, around T0, vF is larger
than the maximal magnon velocity, computed from the slope

of the magnon spectrum in the vicinity of zero momentum (see
Fig. 5). This verifies that the dynamics of the nuclear spins is
slower than the electrons. Finally, we check that the energy
scale of the RKKY term Eq. (21) is bounded by the original
hyperfine interaction Eq. (6). Since ERKKY ∝ |Ĩq=2kF

|2 while
Ehf ∝ Ĩ2kF

, the ratio ERKKY/Ehf ∝ Ĩ2kF
∝ m2kF

(T ) decreases
with the fraction of the ordered nuclear spins m2kF

. Therefore
ERKKY is bounded by Ehf for T � T0.

At lower temperatures, however, there arise some subtleties
when examining the ratio ERKKY/Ehf . First, the magnitudes
of the RKKY coupling |J x

2kF
| and thus ERKKY diverge at

zero temperature, whereas Ehf does not. As a result, upon
decreasing the temperature, the energy scale of ERKKY in-
evitably exceeds Ehf at some point. This issue arises because
Eq. (22) was derived assuming an infinite system [55], leading
to an unphysical divergence at zero temperature. For a realistic
system, the finite-size effect has to be taken into account.
Since the thermal length λT below T0 is comparable with a
typical edge length of O(10 μm), the finite-size effect becomes
relevant at such low temperatures, and the edge length emerges
as a cutoff for the divergence in Eq. (22). Second, in the
ordered phase, the hyperfine coupling in Ehf is renormalized
by the electron-electron interaction [62,82,90]. Third, the
electron subsystem can also be affected by the ordering of
the nuclear spins. The direct comparison between ERKKY and
Ehf then incorrectly neglects the different contributions from
the electron subsystem before and after applying the RKKY
approach.

To reflect these issues and make a sensible check on the
self-consistency, we introduce the edge length L as a cutoff by
replacing q → q + iπ/L in the zero-temperature expression
of the RKKY coupling, which is given by Eq. (30) in Ref. [82].
This gives ERKKY/Ehf ∼ O(10) for L = 10 μm and K = 0.2.
This value is the upper bound for the ratio, and it will be reduced
by finite temperature and therefore we conclude that the bound
is fulfilled up to a numerical factor of order unity. Using
the finite-size expression of the RKKY interaction, we now
re-estimate the value for T0, which is reduced. Importantly, this
reduction is modest, since T0 depends on the magnitude of the
RKKY coupling only weakly, as indicated by Eq. (26). More
precisely, it is given by a fractional power law (T0 ∝ |J x

2kF
|0.38

for K = 0.2), and for L = 10 μm the reduction is a factor
of ∼0.4. We therefore conclude that at typical parameters
that we use, our approach is self-consistent. Due to analytical
inconveniences accompanying the finite-size regularization,
we use the RKKY interaction of an infinite system, Eq. (22),
elsewhere in the article. This somewhat (by a factor of order
unity) overestimates the transition temperature, an error which
is of little importance here.

V. RESISTANCE IN THE ORDERED PHASE

After discussing the RKKY-induced spiral order, we con-
sider how it modifies the transport properties of the edge states.
We find that there are two additional backscattering mecha-
nisms in the ordered phase. First, the spin-flip backscattering
can arise as a combination of the Overhauser field induced by
the nuclear spin order and the impurities. The former provides
the spin flip, whereas the 4kF component of the random
potential of the latter provides the necessary momentum. This
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BOv

Vimp 4kF

4 vFkF

2kF2kF

FIG. 9. Schematics of Overhauser-field-assisted backscattering
on impurities. The Overhauser field admixes R↓(q) and L↑(q + 2kF ).
The mixedL↑ component can then forward scatter to the Fermi surface
due to the impurity random potential Vimp, giving rise to the effective
backscattering. For clarity, other scattering processes (e.g., electrons
with the opposite velocities) are not shown.

Overhauser-field-assisted backscattering process is sketched
in Fig. 9. Second, magnons, the excitations of the nuclear spin
ground state, can also cause electron backscattering. It differs
from the electron-nuclear spin coupling in the disordered
phase, since now it takes a finite exchange energy, set by the
magnon energy, for the electron and nuclear spins to flip-flop.
Therefore, in the ordered phase it costs energy h̄ωmag for
the electrons to backscatter. In addition, thermally excited
magnons can be absorbed by electrons and cause additional
backscattering. In the following, we show how these backscat-
tering mechanisms arise from the hyperfine interaction Hhf

defined in Eq. (4).
To this end, we perform the Holstein-Primakoff transforma-

tion (see Appendix B for details) on the hyperfine interaction
[see Eq. (6)], which is then written as Hhf = 〈Hhf〉gs + He-mag,
where 〈· · · 〉gs denotes the expectation value with respect to the
nuclear spin ground state [99]. The first term arises from the
ground state of the spiral order,

〈Hhf〉gs = BOv

2πa

∫
dr cos [2φ(r) − 4kF r], (35)

with the Overhauser field given by BOv ≡ A0Im2kF
. The

second term describes the coupling between the electrons and
the magnons,

He-mag ≈ A0

2L2

√
Im2kF

2N⊥

∑
q,q ′

1

i
(b†q ′ + b−q ′ )

×L
†
↑(q)R↓(q + q ′ − 2kF ) + H.c., (36)

where we keep the lowest-order backscattering terms in
magnon operators. In the above, b

†
q (bq) creates (annihilates)

a magnon with momentum q. In the following sections, we
then investigate the edge resistance caused by these additional
backscattering processes defined by Eqs. (35) and (36).

A. Impurity-induced resistance in the ordered phase

The Overhauser field [see Eq. (35)] contains an oscillating
integrand except for the special case 4kF a = integer × π ,
which we do not consider. Therefore Eq. (35) is irrelevant in the
RG sense, and does not cause any electron backscattering at the
Fermi surface on its own. Nonetheless, it causes a mixing of
the right- and left-moving electrons with opposite spins, lifting
the topological protection of the helical edge states against
impurities. To proceed, we model the impurity Hamiltonian as

Himp =
∫

dr Vimp(r)[R†
↓(r)R↓(r) + L

†
↑(r)L↑(r)], (37)

where the Gaussian random potential Vimp(r) satisfies
Vimp(r)Vimp(r ′) = Mimpδ(r − r ′), with · · · denoting the av-
erage over the random potential. We estimate the impurity
strength Mimp = h̄2v2

F /(2πλmfp) with the mean free path of
the 2DTI bulk of λmfp ∼ 0.1 –1μm [2,17], as listed in Table I.
To derive the effective action for the nuclear-order-assisted
backscattering on impurities, we perform a Schrieffer-Wolff
transformation [100,101] and average over impurities [55].
We defer the details of calculations in Appendix D. Here, we
present the result,

δShx

h̄
= − Mhx

(2πh̄a)2

∫
u|τ−τ ′|>a

drdτdτ ′

× cos[2φ(r,τ ) − 2φ(r,τ ′)], (38)

which is identical to Eq. (12) upon replacing the coupling
Mhf → Mhx ≡ MimpB

2
Ov/(64h̄2v2

F k2
F ). Therefore the RG flow

equations can be derived as in Appendix A, leading to a set of
RG flow equations identical to Eq. (14) with the replacement
Dhf → Dhx ≡ 2aMhx/(πh̄2u2). We then find that Eq. (38) is
RG relevant for K(l) < 3/2, which leads to the Anderson-type
localization in an edge longer than the associated localization
length,

ξhx = aD
−1/(3−2K)
hx , (39)

depending on the temperature through m2kF
(T ) [see Eq. (25)].

Since for the above values of the mean free path this backscat-
tering strength is comparable to the strength of backscattering
on disordered nuclear spins, the localization length at zero
temperature ξhx(T = 0) is also comparable to ξhf. We define the
characteristic temperature Thx ≡ h̄u/[kBξhx(T = 0)] through
the zero-temperature localization length, and find that typically
Thx > T0. This means for a sufficiently long edge L > ξhf ≈
ξhx(T = 0), the electrons get localized by the impurities once
the nuclear spins start to order at T0.

In Fig. 10, we plot Thx and ξhx(T = 0) as functions of the
Luttinger liquid parameter for various materials. Again, a com-
mon property shared by all the curves is that the backscattering
effects are enhanced by the electron-electron interaction. In
contrast to the disordered phase (see Fig. 2), however, here the
estimated quantities for the helical and nonhelical states are
comparable in the strongly interacting regime, indicating that
the localization effects in the ordered phase are not as markedly
different for a helical and a nonhelical channel as in the
disordered phase. The reason behind this is that the Overhauser
field in a spin-degenerate wire provides a synthetic spin-orbit
interaction in the ordered phase, making the remaining gapless
electrons helical [81,82,89,90,102,103]. After ordering, the
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FIG. 10. Characteristic temperature Thx for various materials as a
function of the Luttinger liquid parameter [K for 2DTI and Kc (with
fixed Ks = 1) for nonhelical channels]. We take λmfp = 1μm, and
the other parameters are listed in Table I. (Inset) Zero-temperature
localization length ξhx(T = 0) as a function of the same variable.

effective Luttinger liquid parameter of the remaining gapless
modes is not bounded by 1/2 anymore. As a consequence,
the estimated values of Thx and ξhx(T = 0) in the helical and
nonhelical systems become similar in the presence of strong
electron-electron interaction.

Since typically Thx > T0, the impurities induce an exponen-
tially growing resistance below T0,

Rhx(T ) ∝ R0
πDhxL

2K2a
e�hx/(kBT ), (40)

with a gap �hx = �(2KDhx)1/(3−2K). Despite its similarity to
Eq. (20), Rhx contains the temperature-dependent Dhx and �hx

while their counterparts Dhf and �hf are independent of T .
As a result, the resistances arising from the two scenarios
[Eq. (20) versus Eq. (40)] are distinct due to the different
temperature dependencies of the gaps and prefactors, as well
as the dependence of Dhx and �hx on εF and Mimp.

Before moving to the magnon-mediated backscattering,
let us comment on two complications not considered in this
work. First, we remark that an applied voltage may lead to the
nuclear spin polarization along the spin quantization (z) axis
[31,63,65], and thus modify the nuclear spin order. While the
z component of the nuclear spin polarization does not directly
cause the spin-flip backscattering, it reduces the xy compo-
nents of the Overhauser field from BOv to BOv

√
1 − P 2

N (T ),
with a temperature-dependent factor, PN (T ). However, unless
the nuclear spins are nearly full-polarized, which requires
a very high applied voltage at very low temperatures, the
residual xy components of the Overhauser field can still
cause the spin-flip backscattering on impurities. Therefore the
voltage-induced dynamic nuclear polarization would not alter
our conclusion qualitatively.

Second, in the ordered phase, the gap �hx reduces the
RKKY coupling, and therefore the strength of the nuclear-
order-assisted backscattering. However, since the effective
range of the RKKY coupling is related to the electron Fermi
wavelength λF ≡ 2π/kF , the gapped electrons can still me-
diate the RKKY interaction within the scale of λF , provided
that it is much shorter than the length scale associated with

the gap, h̄vF /�hx, as discussed in Refs. [62,89,90]. We thus
expect our results to remain qualitatively valid if the condition
λF � h̄vF /�hx holds. We have checked that for our case it is
fulfilled, so that the RKKY interaction remains effective, even
though the coupling strength is reduced by the gap �hx.

B. Resistance due to the magnon-mediated backscattering

We now turn to the electron-magnon interaction described
by Eq. (36) with the magnon dispersion given by Eq. (24).
With the approximated magnon energy [see Eq. (28)], we are
able to reformulate the electron-magnon backscattering as an
electron-phonon backscattering problem. In particular, it is
analogous to a Tomonaga-Luttinger liquid consisting of spin-
less fermions coupled to dispersionless phonons [104,105]. We
then proceed by integrating out the magnons, and obtain the
contribution to the effective action from the magnon-mediated
backscattering. The details of calculations are relegated to
Appendix E, in which we get the following expressions:

δSmag = δSem
mag + δSabs

mag, (41a)

δSem
mag

h̄
= − Mmag

(2πh̄a)2

∫
u|τ−τ ′|>a

drdτdτ ′ e−ωmag|τ−τ ′|

× [1 + nB(h̄ωmag)] cos[2φ(r,τ ) − 2φ(r,τ ′)], (41b)

δSabs
mag

h̄
= − Mmag

(2πh̄a)2

∫
u|τ−τ ′|>a

drdτdτ ′ eωmag|τ−τ ′|

× nB(h̄ωmag) cos[2φ(r,τ ) − 2φ(r,τ ′)], (41c)

with Mmag ≡ A2
0aI/(4N⊥) being the backscattering strength

and the Bose-Einstein distribution given by

nB(E) = 1

eE/(kBT ) − 1
. (42)

In comparison with Eqs. (12) and (38), the magnon-mediated
backscattering acquires extra exponential factors e±ωmag|τ−τ ′| in
the integrand, corresponding to the process where a magnon
is absorbed (+) or emitted (−) because of a finite energy
exchange due to the electron spin flip through a magnon. In
addition, the efficiency of the magnon-mediated backscattering
depends on the magnon occupation nB(h̄ωmag), and therefore
on the temperature.

One can visualize the effects of the magnon-mediated
backscattering on the resistance by examining Eq. (41): if
the magnon energy is much larger than the temperature,
the backscattering is suppressed exponentially by either the
exponential factor in Eq. (41b) (for magnon emission), or by the
Boltzmann factor of the magnon occupation in Eq. (41c) (for
magnon absorption). We then expect that the magnon-induced
resistance to be suppressed in the T → 0 limit. On the other
hand, if the magnon energy is comparable to the temperature
(that is, when T is near T0), the order parameter is small
and there are many thermally excited magnons. Then, the
electron-magnon backscattering events become efficient and
give rise to a resistance similar to the one caused by disordered
nuclear spins [Eqs. (17)–(20)], which can be considered as the
ordered nuclear spins with zero-energy magnons.

We confirm these observations by performing the RG anal-
ysis. In the low-temperature limit, where the contribution from
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magnon emission dominates, we have δSmag ≈ δSem
mag with

nB(h̄ωmag) → 0. When the short-distance cutoff a increases
under the RG flow, the exponential factor in Eq. (41b) de-
creases, and δSem

mag becomes vanishingly small as a > u/ωmag.
Therefore we derive the RG flow equations up to the scale
l∗mag ≡ ln[u/(aωmag)] as in Refs. [104,105] (similar to the
procedure given in Appendix A), which are given by

dYmag(l)

dl
= [3 − 2K(l)]Ymag(l), (43a)

dK(l)

dl
= −K2(l)

2
Ymag(l)

ωmaga

u
e−ωmaga(l)/u, (43b)

du(l)

dl
= −u(l)K(l)

2
Ymag(l)

ωmaga

u
e−ωmaga(l)/u, (43c)

with Ymag ≡ 2Mmag/(πh̄2uωmag). Using Eq. (43), we calculate
the resistance caused by the magnon emission at low temper-
atures T < Tx . The temperature Tx , defined by ωmag(Tx) =
D

1/(4−2K)
mag u/a, gives the limit at which the RG flow reaches the

strong-coupling regime. For T < Tx , we integrate the RG flow
up to l∗mag to obtain

Rem
mag(T ) ∝ R0

πDmagL

2K2a

[
Kh̄ωmag(T )

�

]2K−3

, (44)

with Dmag ≡ 2aMmag/(πh̄2u2). Upon decreasing the tem-
perature, the resistance due to magnon emission decreases
as a power law of the magnon energy, whose temperature
dependence is given by Eq. (28).

On the other hand, in the range Tx � T � T0, the backscat-
tering due to the magnon absorption process Eq. (41c) becomes
efficient. In this case, the magnon energy is so low compared
to the temperature that it can be approximated by zero. We
therefore expect that the associated resistance Rabs

mag(T ) takes
the form of Rhf [Eqs. (17)–(20)], with the strength weighted
by the fraction of the disordered nuclear spins. Since typically
T0 < Thf, the regime corresponding to Eq. (18), which is valid
only for T > Thf, is never reached in the ordered phase. In
addition, we restrict ourselves in the low-bias regime, in which
the high-bias resistance Eq. (19) is not relevant. Both of the
remaining equations [see Eqs. (17) and (20)] then give the
same temperature dependence,

Rabs
mag(T ) ∝ R0

πDhfL

2K2a

[
1 − m2kF

(T )
]
, (45)

decaying as a T 3−2K . In addition to the limit set by Tx , we note
another limit described by Rmag(T ) ≡ Rem

mag(T ) + Rabs
mag(T ) �

Rhf(T ), with Rhf(T ) determined by Eqs. (17) and (20). This
arises from the self-consistency check: the resistance from
the backscattering that requires an energy [see Eq. (41)]
should be bounded by the resistance when such an energy
cost is absent [see Eq. (12)]. This allows us to define Tb

through Rmag(Tb) = Rhf(Tb), and numerically find Tb ≈ Tx

(see Fig. 11), consistent with the limit set by Tx . Overall,
we find the magnon-induced resistance to be dominated by
Eq. (44) for T � Tx ≈ Tb, whereas Eq. (45) also contributes
in the range Tx ≈ Tb � T � T0.

Rhf
Rmagabs

Rmagem

Rhx
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T3 2K

Dhx e k T
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0.6
0.9
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FIG. 11. A summary of the resistance (R) as a function of the
temperature T in both the disordered and ordered phases for the
parameters of InAs/GaSb. We take K = 0.2, the mean free path
λmfp = 0.1 μm, and L = 10 μm, so that ξhx < L < ξhf. The other
parameters are listed in Table I. In the disordered phase (T > T0), R

is given by Eqs. (18) and (17) for T > h̄u/(kBL) and T < h̄u/(kBL),
respectively. In the ordered phase (T < T0), three backscattering
processes contribute to R, including the Overhauser-field-assisted
backscattering on impurities Rhx [Eq. (40)], the magnon emission
Rem

mag [Eq. (44)], and the magnon absorption Rabs
mag [Eq. (45)]. The

gray curve gives the upper limit on the sum of the last two. Inset: T

dependence of the gap �hx.

VI. DISCUSSION

We now summarize our results on the resistance discussed in
Secs. III and V. For the demonstration, we plot the temperature
dependence of the edge resistance of the 2DTI of length L <

ξhf in Fig. 11. The opposite regime, L > ξhf, has been presented
in Ref. [52]. Well above T0, the resistance Rhf (the black solid
curve) initially increases as a power law, which becomes a
plateau in the range T0 < T < h̄u/(kBL) [Eq. (17)]. Below
T0, at which the nuclear spins form an order, the resistance is
initially dominated by the magnon-mediated backscattering.
The resistance Rabs

mag from the magnon absorption drops as
a power law (the black dashed curve). Below Tb ≈ Tx , the
resistance due to the magnon emission is given by Rem

mag, which
decays as a power law (the blue curve) different from Rabs

mag.
Both Rem

mag and Rabs
mag decay to zero as T → 0, as expected.

At very low temperatures, the established Overhauser field
dominates the resistance by allowing backscattering on im-
purities, leading to an exponential form of the resistance Rhx

(the red curve). In addition, in the inset of Fig. 11, we plot the
temperature dependence of the gap �hx, which, as opposed to
the constant �hf, distinguishes the two exponential regions due
to disordered and ordered nuclear spins as T > T0 and T < T0,
respectively. The temperature-dependent gap�hx can therefore
serve as an experimental signature of the spiral nuclear spin
order, in addition to those discussed in Sec. IV B. We conclude
that the nuclear spins, whether ordered or not, suppress the
edge conductance of a sufficiently long 2DTI sample as the
temperature approaches zero.

Finally, we remark that our estimation with realistic material
parameters allows us to discuss the relevance of nuclear spins to

125432-13



HSU, STANO, KLINOVAJA, AND LOSS PHYSICAL REVIEW B 97, 125432 (2018)

the edge resistances of HgTe/(Hg,Cd)Te and InAs/GaSb 2DTIs
observed in experiments. As mentioned in Sec. III, the effects
of nuclear spins in HgTe/(Hg,Cd)Te are insignificant even for
strong interactions, suggesting that the observed finite edge
resistance in HgTe/(Hg,Cd)Te 2DTIs [2,4,5,7] is unlikely due
to nuclear spins.

On the other hand, whether nuclear spins in InAs/GaSb
2DTIs can lead to an appreciable edge resistance depends on
the experimental conditions. To be explicit, we expect our
mechanism to be relevant for strong interactions, long edge
lengths, and low temperatures. Since, however, the interaction
parameter K is typically unknown in real samples, it is
difficult to draw conclusions on the relevance of the nuclear
spins. Recently, a value of K = 0.21–0.22 was extracted in
InAs/GaSb 2DTIs [17], also see Ref. [53]. However, based
on our estimation in Secs. III and V, the corresponding
localization length is much longer than the edge length L ∼
1 μm of the samples in Ref. [17]. We therefore believe that
the observed edge resistance in their experiment is probably
dominated by other sources than nuclear spins. Nevertheless,
we expect the nuclear spins in InAs/GaSb to become relevant
for longer samples with small K at low temperatures.
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APPENDIX A: DERIVATION OF THE RG
FLOW EQUATIONS

In this appendix, we sketch the derivation of the RG flow
equations for the backscattering action Sel + δShf in the dis-
ordered phase. The other backscattering processes [Eqs. (38)
and (41)] can be treated similarly. To this end, we compute the
correlation function as in Refs. [54,55],

〈ei[φ(r1)−φ(r2)]〉Sel+δShf ≡ Z−1
∫

Dφ e−Sel/h̄e−δShf/h̄ei[φ(r1)−φ(r2)],

(A1)

with the bold font denoting the two-dimensional vectors rj ≡
(rj ,yj ) = (rj ,uτj ) and the partition function,

Z ≡
∫

Dφ e−(Sel+δShf)/h̄. (A2)

We expand the correlation function up to the first-order terms
in Dhf, corresponding to the second-order terms in the random
potential Vhf,2kF

. The zeroth-order term gives

〈ei[φ(r1)−φ(r2)]〉Sel = e−KF (r1−r2)/2, (A3)

where we define the function

F (r1 − r2) ≡ 1

2
ln

[
(r1 − r2)2 + u2(τ1 − τ2)2

a2

]

+ t⊥
K

cos
(
2θr1−r2

)
, (A4)

where θr is the angle between the vector r = (r,y) = (r,uτ )
and the spatial coordinate axis r , and the t⊥ term generated by
the RG flow gives the anisotropy between the spatial and the
temporal coordinates. The first-order term in Dhf is given by

Dhf

8πa3

∫
|y−y ′ |>a

drdydy ′

× {〈ei[φ(r1)−φ(r2)] cos[2φ(r,τ ) − 2φ(r,τ ′)]〉Sel

−〈ei[φ(r1)−φ(r2)]〉Sel〈cos[2φ(r,τ ) − 2φ(r,τ ′)]〉Sel}. (A5)

The correlation function can then be computed along the
line of Refs. [54,55], giving Exp[−KeffFeff(r1 − r2)/2], where
Feff(r1 − r2) takes the form of Eq. (A4) with the effective
parameters,

Keff = K − K2Dhf

2

∫ ∞

a

dz

a

( z

a

)2−2K

, (A6a)

t⊥,eff = t⊥ + K2Dhf

4

∫ ∞

a

dz

a

( z

a

)2−2K

. (A6b)

The RG flow equations can be obtained by increasing
the cutoff a → aedl = a + da while keeping the correlation
function the same. Finally, we obtain a set of three equations,

dDhf(l)

dl
= [3 − 2K(l)]Dhf(l), (A7a)

dK(l)

dl
= −K2(l)

2
Dhf(l), (A7b)

dt⊥(l)

dl
= K2(l)

4
Dhf(l). (A7c)

In addition, from Eq. (A4) we see that the renormalization
of t⊥ is equivalent to that of u, leading to

du(l)

dl
= −2u(l)

K(l)

dt⊥(l)

dl
. (A8)

The RG flow equations are then given in Eq. (14) in Sec. III.
Since the RG flow equations are obtained with the perturbation
in Dhf(l), they are valid only below the length scale l∗hf, at which
Dhf(l∗hf) ∼ 1.

APPENDIX B: SPIN-WAVE ANALYSIS

In this appendix, we provide the details of the spin-wave
analysis. For the sake of convenience, we start by locally
rotating the spin axes, (Ĩ x

j ,Ĩ
y

j ,Ĩ z
j ) → (Ĩ 1

j ,Ĩ 2
j ,Ĩ 3

j ) such that in
the new basis (ê1

j ,ê
2
j ,ê

3
j ) the ground state of the nuclear spins is

described as a uniform ferromagnet, i.e., 〈Ĩ(rj )〉 = N⊥Im2kF
ê1
j

[82,87]. In addition, the electron spin operators are also rotated
accordingly. To proceed, we perform the Holstein-Primakoff
transformation [99], in which the nuclear spin operators are
written in terms of the ground state of the spiral order in
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addition to the deviation caused by the magnon excitation,

Ĩ 1
j = N⊥I − a

†
j aj , (B1a)

Ĩ 2
j ≈

√
N⊥I

2
(aj + a

†
j ), (B1b)

Ĩ 3
j ≈

√
N⊥I

2

1

i
(aj − a

†
j ), (B1c)

where aj (a†
j ) is the annihilation (creation) operator of a

magnon at site j . Note that in this appendix, we assume
T = 0 for the ease of notation, so that m2kF

= 1. For finite
temperatures, where the nuclear spins are partially ordered,
the formulas are valid with the replacement, I → Im2kF

.
Using Eq. (B1), we derive the magnon Hamiltonian Hmag

in momentum space from the RKKY interaction given by
Eq. (21),

Hmag = 1

L

∑
q

(a†
q,aq)

(
h11(q) h12(q)
h12(q) h11(q)

)(
aq

a
†
q

)
, (B2)

where we have dropped the constant and the higher-order terms
in the magnon operators. The functions h11(q) and h12(q) are
defined as

h11(q) ≡ I

4N⊥

(
2J z

q + J x
q−2kF

+ J x
q+2kF

− 4J x
2kF

)
≈ I

4N⊥

(
J x

q−2kF
+ J x

q+2kF
− 4J x

2kF

)
, (B3a)

h12(q) ≡ I

4N⊥

(
J x

q−2kF
+ J x

q+2kF
− 2J z

q

)
≈ I

4N⊥

(
J x

q−2kF
+ J x

q+2kF

)
, (B3b)

where we have used the fact that the RKKY coupling is
highly anisotropic |J x

q |,|J y
q | � |J z

q |. The bilinear bosonic
Hamiltonian Eq. (B2) can be diagonalized by the Bogoliubov
transformation,(

a
†
q

a−q

)
=
(

uBT(q) −vBT(q)
−vBT(q) uBT(q)

)(
b
†
q

b−q

)
, (B4)

with the coefficients

[uBT(q)]2 = 1

2

⎡
⎣1 + h11(q)√

h2
11(q) − h2

12(q)

⎤
⎦, (B5a)

[vBT(q)]2 = 1

2

⎡
⎣−1 + h11(q)√

h2
11(q) − h2

12(q)

⎤
⎦. (B5b)

Using Eqs. (B4)–(B5), the magnon Hamiltonian Eq. (B2)
can be diagonalized as

Hmag = 1

L

∑
q

Emag(q)b†qbq, (B6)

with the magnon excitation energy Emag(q) given by Eq. (24)
and shown in Fig. 5. Since the magnon spectrum is almost
dispersionless, we approximate Emag(q) ≈ 2I |J x

2kF
|/N⊥, lead-

ing to uBT(q) ≈ 1 and vBT(q) ≈ 0, and therefore bq ≈ aq . The

transition temperature and the temperature dependence of the
order parameter can be calculated by evaluating the magnon
occupation number [82,90],

N⊥
∑
q �=0

1

e
Emag(q)

kB T − 1
, (B7)

and the results are given in Eqs. (25)–(26) in Sec. IV A.

APPENDIX C: TRANSPORT PROPERTIES OF A HELICAL
TOMONAGA-LUTTINGER LIQUID

In this appendix, we sketch the calculation of the conduc-
tance and the nonlocal conductivity of the helical edge states.
When the Fermi energy is away from the gap, the action is
given by Eq. (3), from which we obtain the Green’s function
in the momentum-Matsubara frequency domain,

Gφφ(q,ωn) = πuK

ω2
n + u2q2

, (C1)

with the momentum q and Matsubara frequency ωn. In optical
measurements, the ac conductivity can be computed as in
Refs. [55,98], leading to

σ (ω) = e2

π2h̄
ωnGφφ(q = 0,ωn)

∣∣∣∣
iωn→ω+i0+

= e2

h̄
(uK)

[
δ(ω) + i

π
P
(

1

ω

)]
, (C2)

as given in Eq. (30) in Sec. IV B.
On the other hand, the nonlocal conductivity and the dc

conductance of a finite-size system (in the presence of the
leads) can be computed by using the Maslov-Stone approach
[95–97], in which the velocity and the Luttinger liquid param-
eter are taken to be spatially dependent, and change abruptly
at the interfaces between the leads and the helical Tomonaga-
Luttinger liquid. The action now takes the form

Sel

h̄
=
∫

dτdr

2π

{
u(r)

K(r)
[∂rφ(r,τ )]2

+ 1

u(r)K(r)
[∂τφ(r,τ )]2

}
, (C3)

where the spatial dependent velocity is defined as u(r) =
vF /K(r) with the Luttinger liquid parameter

K(r) =
{
K, as − L/2 � r � L/2,

KL, otherwise. (C4)

The charge current is related to the external electric field by
Eq. (31), where the nonlocal conductivity is given by [95]

σnl(r,r
′,ω) = e2

π2h̄
ωnGnl(r,r

′,ωn)

∣∣∣∣
iωn→ω+i0+

, (C5)

with the nonlocal propagator Gnl(r,r ′,ωn). It satisfies{
−∂r

[
u(r)

K(r)
∂r

]
+ ω2

n

u(r)K(r)

}
Gnl(r,r

′,ωn) = πδ(r − r ′)

(C6)
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and the boundary conditions

(i) Gnl(r → ±∞,r ′,ωn) = 0; (C7a)

(ii) Gnl(r,r
′,ωn) is continuous at r = r ′, ± L/2; (C7b)

(iii)
u(r)

K(r)
∂rGnl(r,r

′,ωn) is continuous at r = ±L/2; (C7c)

(iv) − u(r)

K(r)
∂rGnl(r,r

′,ωn)

∣∣∣∣
r ′+0+

r ′−0+
= π. (C7d)

We take the ansatz for the nonlocal propagator,

Gnl(r,r
′,ωn) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ae
|ωn |r
uL ,

B+e
|ωn |r

u + B−e− |ωn |r
u ,

C+e
|ωn |r

u + C−e− |ωn |r
u ,

De
−|ωn |r

uL ,

as r � −L/2,

as − L/2 � r � r ′,

as r ′ � r � L/2,

as r � L/2,

(C8)

which satisfies the condition (i). Here we define uL ≡ vF /KL. The unknowns A, B±, C±, and D are functions of r ′ and ωn, and
can be solved for by applying the boundary conditions (ii)–(iv) [86,95–98]. The solutions for these unknowns are

A = πK

2|ωn|e
|ωn |L
2uL

[
cosh

( |ωn|r ′
u

)
sinh

( |ωn|L
2u

)+ K
KL

cosh
( |ωn|L

2u

) − sinh
( |ωn|r ′

u

)
cosh

( |ωn|L
2u

)+ K
KL

sinh
( |ωn|L

2u

)
]
, (C9a)

B± = πK

4|ωn|e
± |ωn |L

2u

(
1 ± K

KL

)[
cosh

( |ωn|r ′
u

)
sinh

( |ωn|L
2u

)+ K
KL

cosh
( |ωn|L

2u

) − sinh
( |ωn|r ′

u

)
cosh

( |ωn|L
2u

)+ K
KL

sinh
( |ωn|L

2u

)
]
, (C9b)

C± = πK

4|ωn|e
∓ |ωn |L

2u

(
1 ∓ K

KL

)[
cosh

( |ωn|r ′
u

)
sinh

( |ωn|L
2u

)+ K
KL

cosh
( |ωn|L

2u

) + sinh
( |ωn|r ′

u

)
cosh

( |ωn|L
2u

)+ K
KL

sinh
( |ωn|L

2u

)
]
, (C9c)

D = πK

2|ωn|e
|ωn |L
2uL

[
cosh

( |ωn|r ′
u

)
sinh

( |ωn|L
2u

)+ K
KL

cosh
( |ωn|L

2u

) + sinh
( |ωn|r ′

u

)
cosh

( |ωn|L
2u

)+ K
KL

sinh
( |ωn|L

2u

)
]
. (C9d)

For the dc signals the r and r ′ dependence in the nonlocal
conductivity will eventually vanish, allowing us to focus on
the origin [(r,r ′) = (0,0)]. We then get the propagator

Gnl(0,0,ωn) = πK

2|ωn|
1 + K

KL
tanh

( |ωn|L
2u

)
K
KL

+ tanh
( |ωn|L

2u

) , (C10)

and the nonlocal conductivity σnl(0,0,ω), as given in Eq. (32).
The dc conductance is then Gdc = limω→0 Re[σnl(0,0,ω)] =
KLe2/h, as given in Eq. (33).

When the Fermi energy is quickly tuned into the gap, the
action acquires an RG-relevant sine-Gordon term,

δSm = BOv

2πa

∫ βh̄

0
dτ

∫
dr cos [2φ(r,τ )], (C11)

leading to the propagator

Gφφ(q,ωn) = πuK

ω2
n + u2q2 + �2

m/h̄2 . (C12)

The dc conductance and the ac conductivity can then be
computed following the same procedure, and the results are
given in Sec. IV B.

APPENDIX D: SCHRIEFFER-WOLFF TRANSFORMATION

In this appendix, we perform the Schrieffer-Wolff transfor-
mation to obtain the effective Hamiltonian for the Overhauser-
field-assisted backscattering on impurities. In the absence of
the Overhauser field, (nonmagnetic) impurities cannot cause
the spin-flip backscattering, so the helical edge states cannot be
localized by the impurities. The Overhauser field, however, acts
on electron spins as a spatially rotating Zeeman field, which
breaks the time-reversal symmetry. Assuming that the nuclear
spin order is given by 〈Ĩ(r)〉− [see Eq. (23)], the Overhauser
field then causes a mixing of the R↓(q) and L↑(q + 2kF )
particles, inducing a gap �m below the Fermi surface [panel
(b) of Fig. 4]. Whereas Eq. (35) itself does not lead to any
backscattering at the Fermi surface, here we show that a
second-order spin-flip backscattering at the Fermi surface can
still arise as a combination of the Overhauser field and the
impurities, as sketched in Fig. 9. Here, “second order” means
that the effective backscattering potential is determined by the
product of the Overhauser field and the impurity potential.

To proceed, we consider the total Hamiltonian, which
consists of two parts, Htot = Hel + δV , with the perturbation
δV = Himp + HOv. For convenience, we use the fermionic
expression for the electron part, Hel = H0 + H2 + H4, with
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the three terms corresponding to the kinetic energy, g2, and g4

processes, respectively. To be explicit, we have

H0 = −ih̄vF

∫
dr[R†

↓(r)∂rR↓(r) − L
†
↑(r)∂rL↑(r)], (D1a)

H2 = g2

∫
dr R

†
↓(r)R↓(r)L†

↑(r)L↑(r), (D1b)

H4 = g4

2

∫
dr[(R†

↓(r)R↓(r))2 + (L†
↑(r)L↑(r))2]. (D1c)

The impurity Hamiltonian Himp is given by Eq. (37), and the
Overhauser field felt by the electrons is described by

HOv ≡ 〈Hhf〉gs = BOv

2

∑
j

e2ikF rj L
†
↑(rj )R↓(rj ) + H.c.,

(D2)

which is the fermionic form of 〈Hhf〉gs in Eq. (35).
We then perform the canonical Schrieffer-Wolff transfor-

mation [100,101] such that

HSW ≡ eSSW Htote
−SSW

= Hel + δV + [SSW,Hel + δV ]

+ 1
2 [SSW,[SSW,Hel + δV ]] + · · · , (D3)

where we keep terms up to the second order in δV and SSW, and
choose [SSW,Hel] + δV = 0 to eliminate the first-order term in
δV . This gives SSW = L −1

el δV with the Liouvillian superoper-
ator LelO ≡ [Hel,O] [87]. Using the integral representation,
L −1

el = −i
∫∞

0 dt e−ηt+itLel |η→0, we arrive at the effective
Hamiltonian HSW ≈ Hel + Hhx, where the backscattering term
is given by

Hhx ≡1

2
[SSW,δV ] = −i

2

∫ ∞

0
dt e−ηt [δṼ (t),δV ]η→0, (D4)

with the tilde defining an operator in the interaction picture,
δṼ (t) ≡ H̃imp(t) + H̃Ov(t). The commutators can be computed
straightforwardly, and the results can be simplified by ap-
proximating g2 ≈ g4. This approximation can be understood
through the form of Eq. (D1). Namely, for the Hamiltonian
involving only the density-density interaction and therefore
insensitive to the spins and the velocities of the electrons, the
g2 and g4 processes are indistinguishable.

After performing the integral over time, we finally arrive at

Hhx ≈ 1

L2

∑
q,q ′

Vhx(q ′)R†
↓(q + q ′ + 2kF )L↑(q) + H.c.,

(D5)

with the effective coupling for the second-order backscat-
tering process Vhx(q) ≡ BOvVimp(4kF + q)/(8h̄vF kF ). After
performing inverse Fourier transform and bosonizing Hhx,
the q ′ �= 0 components give an oscillating integrand, and
therefore vanish upon integration. Consequently, the effective
backscattering potential is given by the product of BOv/2
[the strength of HOv in Eq. (D2)], and Vimp(4kF ) [the 4kF

component of the random potential in Eq. (37)], divided by
the energy difference between the initial and the intermediate
states, 4h̄vF kF , as expected from Fig. 9. Finally, utilizing the
replica method [55], we can average the random potential Vimp

in Hhx, leading to the effective backscattering action Eq. (38).

APPENDIX E: MAGNON-MEDIATED BACKSCATTERING

In this Appendix, we provide the derivation of the effective
action for the magnon-mediated backscattering process. In the
bosonized form and the continuum limit, the electron-magnon
interaction, described by Eq. (36), can be written as

He-mag =
∫

dr

2πa
[ge-magϕ(r)e−2iφ(r) + H.c.], (E1)

where we introduce the effective electron-magnon coupling,

ge-mag ≡ −i
A0

2

√
ωmagI

h̄N⊥
, (E2)

and the bosonic field

ϕ(r) ≡
√

h̄

2ωmag

1

L

∑
q

bqe
iqr + H.c. (E3)

Here, ϕ is analogous to the displacement field in the electron-
phonon problem [104,105]. With these definitions, the magnon
Hamiltonian [see Eq. (B6)] can be written, up to a constant
term, as

Hmag = 1

2

∫
dr
[
�2(r) + ω2

magϕ
2(r)
]
, (E4)

with � being the canonically conjugate momentum to ϕ. In the
above, we have used the fact that both ϕ and � are Hermitian.
Therefore the terms involving the magnons, Hmag + He-mag,
lead to the contribution to the imaginary-time action δSmag ≡
δS(0)

mag + δS(1)
mag, where

δS(0)
mag

h̄
= 1

2

∫
drdτ

[− 2i�(r,τ )∂τϕ(r,τ ) + �2(r,τ )

+ω2
magϕ

2(r,τ )
]
, (E5)

δS(1)
mag

h̄
=
∫

drdτ

2πah̄
[ge-magϕ(r,τ )e−2iφ(r,τ ) + H.c.]. (E6)

We first integrate out the � field in the term δS(0)
mag. In the

momentum space and Matsubara frequency domain, it is given
by

δS(0)
mag

h̄
= 1

2βL

∑
q,ωn

[δGmag(q,ωn)]−1|ϕ(q,ωn)|2, (E7)

where the magnon propagator is defined as

δGmag(q,ωn) = − 1

(iωn)2 − ω2
mag

, (E8)

which is independent of the momentum, as we are considering
the magnons with dispersionless energy band. Finally, by
integrating out the remaining ϕ field in the action δSmag, we
get

δSmag

h̄
= − |ge-mag|2

(2π )2ah̄

∫
drdr ′dτdτ ′ δGmag(r − r ′,τ − τ ′)

× [e−2i[φ(r,τ )−φ(r ′,τ ′)] + H.c.], (E9)
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with the magnon propagator,

δGmag(r,τ ) = 1

βL

∑
q,ωn

δGmag(q,ωn)ei(qr−ωnτ ). (E10)

The summation over the momentum and the Matsubara fre-
quency can be done straightforwardly [106], which leads to

δGmag(r,τ ) = 1

2ωmag
δ(r)[e−ωmag|τ |

+ 2nB (h̄ωmag) cosh(ωmagτ )]. (E11)

The resulting effective magnon-mediated backscattering ac-
tion is then given in Eq. (41) in Sec. V B.

Since the magnon energy h̄ωmag, see Eq. (28), de-
pends on the temperature, the behavior and the validity of
Eq. (41) also depend on the temperature. First, in the low-
temperature regime where kBT � h̄ωmag, we may approxi-
mate nB(h̄ωmag) ≈ 0 to obtain the effective action dominated
by magnon emission, from which we derive Eq. (44). Second,
in the T � T0 regime, the magnon energy is so low that the
procedure of integrating out the magnon fields is no longer
valid. In this case we compute Eq. (45) using the resistance
in the disordered phase, Rhf, which can be considered as the
resistance due to the ordered nuclear spins, but with zero-
energy magnons.
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