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Dipolelike dynamical nuclear spin polarization around a quantum point contact
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We theoretically investigate the dynamical nuclear spin polarization in a quantum point contact (QPC) at finite
magnetic field. We find that when the QPC is tuned to be spin selective, at the conductance of e2/h, a finite bias
induces a dipolelike (spatially antisymmetric) nuclear polarization: at the QPC center the polarization is zero,
while, for GaAs parameters, the nuclear spins down (up) are induced on the source (drain) side. We predict that
the dipolelike polarization pattern can be distinguished from a uniform polarization due to a qualitatively different
response of the QPC conductance to the NMR field.
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I. INTRODUCTION

There are a range of probe techniques based on polarized
nuclear spins inside a solid-state material [1,2]. In mesoscopic
and nanoscopic physics related to spin, the advantage of using
effective magnetic field of polarized nuclei is that it couples
solely to electron spins, without exerting orbital effects, of-
fering a unique local and noninvasive probe [3]. However,
unlike electrons which can be efficiently polarized by magnetic
field, polarized light, ferromagnets, or spin-orbit interactions,
it is not straightforward to polarize nuclei. The standard way
is to transfer the polarization from electrons, known as the
dynamical nuclear spin polarization (DNSP). It is done by
using either nonequilibrium or equilibrium electronic spin
polarization. In the first case, nuclei polarize as a reservoir into
which the nonequilibrium electronic spin is dissipated [4–7].
In the second case, the mutual electron-nuclear spin flip-flop
transition is taken out of thermal equilibrium, by a resonant
field [8] or electrical bias voltage [9–11].

We consider here a prototypical mesoscopic DNSP ex-
periment, where a quantum point contact (QPC) exhibits
spin-selective transport. This arises if a large (several Tesla)
magnetic field is applied, and the QPC is gated to around 1

2
of conductance quantum 2e2/h. We investigate what nuclear
polarization is expected in this case and how it can be detected.
For the latter, we consider the QPC conductance changes
upon applying NMR, so-called resistively detected NMR
(RD-NMR) [12]. Variations of this setup have been already
considered in experiments and theory [3,13–17], focusing on
various phenomena such as conductance hysteresis, nuclear
spin relaxation, the DNSP mechanism, or “dispersive” RD-
NMR line shapes. We, however, feel that despite all these
investigations, certain general aspects remained obscure. Their
clarification is our main goal.

Namely, we deem the considered setup as a generic picture
of the DNSP arising at a spin-sensitive electron scatterer. We
point out that there is a fundamental difference between a
scatterer with leads which themselves do, or do not, contain

electronic nonequilibrium spin polarization. In the first case,
this nonequilibrium polarization flows from electrons to nuclei,
and the scatterer plays a minor role. In the second case, which is
perhaps more often relevant in experiments, and is also of prime
interest for us, the result is different and can be summarized
as the following. An electrically biased spin-selective scatterer
disturbs the electronic spin density, bringing it locally out of
equilibrium, into a spatially nonuniform pattern. The nuclei po-
larize locally according to this local nonequilibrium electronic
spin density. Since, however, the scatterer only redistributes
the electronic spin, but does not create or dissipate it, the total
amount of produced nuclear polarization is zero.

This general behavior is exemplified by a spin-selective
QPC, which we study in detail below. We find that, proviso
certain mild and realistic conditions, it develops a spatially
antisymmetric DNSP pattern, with zero nuclear polarization
at the QPC top. We call this pattern a dipolelike nuclear
polarization. Only with additional rather strong asymmetry
sources, either in the structure geometry or, as we identify
here, in the nuclear relaxation, the polarization on one side
might dominate, resulting in an overall net nuclear polarization.
However, we do not deem such asymmetries to be typically
the case, and expect a dipolelike DNSP around a QPC at
low temperatures. This constitutes our main result. We also
note that it is a spin analogy of the charge resistivity dipole
of Ref. [18]. The theory of DNSP, and the elucidation of the
conditions for the polarization spatial symmetry, is the content
of Sec. II.

The second rather complicated issue has to do with the
detection of the established nuclear polarization. With its
volume being too small to be seen directly as a standard
NMR signal, we consider the QPC itself as a probe [17].
The detection proceeds by monitoring the QPC conductance
upon scanning the microwave frequency. At a resonance, the
NMR field depolarizes nuclear spins, which decreases the
Overhauser field contribution to the total Zeeman energy. If
the QPC conductance is sensitive to it, the presence of nuclear
polarization can be detected, forming the basis for RD-NMR

2469-9950/2018/97(7)/075440(16) 075440-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.97.075440&domain=pdf&date_stamp=2018-02-26
https://doi.org/10.1103/PhysRevB.97.075440


PETER STANO, TOMOSUKE AONO, AND MINORU KAWAMURA PHYSICAL REVIEW B 97, 075440 (2018)

methods. To infer something about the nuclear polarization
beyond its presence is, however, highly nontrivial. Indeed, the
response of the conductance to a change in the Overhauser
field can have both signs, depending on the applied bias,
gate voltage, external field, and electron-electron interactions
[3,16,19]. It is clearly even more so if the Overhauser field is
spatially inhomogeneous, which is the case here.

We derive the QPC conductance response analytically for a
simple model of noninteracting electrons at zero temperature
and zero bias in Sec. III. We find that the conductance response
differs qualitatively for a uniform and a dipolelike nuclear
polarization, if observed both below and above the 1

2 conduc-
tance. We then compare this prediction with the experiment
of Ref. [17] and find a sign discrepancy. By modeling the
detection of a nuclear dipole numerically, we find that the
discrepancy can be resolved by including strong electron-
electron interactions. We then arrive at a qualitative, but
not quantitative, agreement with that experiment in Sec. IV.
Finally, we note that the presence of the nuclear dipole could
be revealed as a “dispersive line shape” of the conductance
response if probed as a function of the NMR frequency. This
is discussed in Sec. V.

To smoothen the text flow, we delegate several auxiliary
results to appendices. In Appendix A we present our numerical
model. In Appendix B we demonstrate that a sign reversal due
to Coulomb interactions is robust. In Appendix C we derive the
electron-nuclear spin flip-flop rates [Eqs. (17)]. In Appendix D
we derive the microscopic equilibrium relation (26). Finally,
in Appendix E we estimate the asymmetry of the polarization
around the QPC due to difference in electron velocities, and
leads’ cross sections.

II. DNSP DIPOLE

In this section, we construct the theory of the DNSP for a
one-dimensional spin-selective scatterer.

A. Model of the coupled electron-nuclear system

We consider dynamical nuclear spin polarization arising in
a biased QPC in the presence of a finite magnetic field. To
this end, we consider electrons moving in a one-dimensional
potential

V (x) =
⎧⎨
⎩

VS if x < xS,

VQ(x) if xS < x < xD,

VD if xD < x,

(1)

separating the space into the source lead, scatterer, and the
drain lead, respectively.1 While the potential of the scatterer
is in general unknown, the observed conductance quantization
of a typical well-behaved QPC [20] can be described by the

1Rather than by a flat potential, the leads are defined as regions
where electronic states are in equilibrium, with occupations given by
the Fermi functions [see Eq. (5) below]. For noninteracting electrons,
which are not backscattered once they reach the flat region, the
scatterer can be shrunk to the space between xS and xD . For an
interacting model, one should include also enough space for the
equilibration.

0 xDxS

V(x)

x
VS VD

V0

eV

QPC“lead S” “lead D”

FIG. 1. Illustration of the setup we consider to model transport
through a QPC. The thick line shows the potential V (x) as a function
of position. To the left of xS , and the right of xD , the potential
is constant, defining the left and right leads, respectively. The part
between these two points represents the scatterer. The shaded areas
denote the states occupation in the two leads, up to the respective
chemical potentials, which differ by the applied bias. For illustration,
by a sharp, and shaded occupation around the chemical potential
we distinguish, respectively, the equilibrium and nonequilibrium
electronic distributions (see text for explanation). The nonequilibrium
distributions of electron spins extend from the QPC over the distance
given roughly by the spin diffusion length.

quadratic model [21]

VQ(x) = V0 − 1
2mω2x2, (2)

with V0 the energy at the potential maximum (the center of the
QPC) located at x = 0, m the electron effective mass, and h̄ω

an energy parametrizing the potential curvature, alternatively
expressed using length lQPC = √

h̄/mω. The QPC conduc-
tance is tunable through the gate voltageVg , which shifts the top
of the barrier, δV0 = αeδVg . Here, α is the lever arm converting
the gate voltage to the potential energy, typicallyα ∼ 0.01–0.1.
The considered geometry is depicted in Fig. 1.

The electron scattering is spin sensitive due to the Zeeman
energy εz = |gμBB| resulting from the applied magnetic field
B, in proportion to the Bohr magneton μB and the electron
g factor g, negative in GaAs. We neglect the effects of the
spin-orbit interaction as, first, intrinsically weak in GaAs,
and, second, its effects being further suppressed in a one-
dimensional geometry in both tunneling [25] and quasiballistic
regimes [26].2 We thus arrive at

H0 = p2

2m
+ V (x) + gμB

2
σ · B, (3)

as the unperturbed Hamiltonian for electrons.
We now define the scattering states as the eigenstates of H0

with the boundary condition being an incoming wave of unit
amplitude in one of the leads. We denote

�εlσ (x) = 〈x|�εlσ 〉, (4)

as the wave-function amplitude of the scattering state with
energy ε, originating in the lead l ∈ {S,D}, with spin σ ∈
{↑, ↓} ≡ {+1,−1}, corresponding, respectively, to spinors

2Combined effects of the spin-orbit interaction and nuclear polar-
ization were considered in Refs. [22–24].
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parallel and antiparallel to B. Below, we use l to denote the
lead opposite to l, and similarly for the spin. The amplitudes
of a scattering state in the leads are described by the scattering
matrix Sσ ′σ

l′l (ε), relating the outgoing current amplitude in lead
l′ with spin σ ′ to the incoming current amplitude in lead l for
electrons with spin σ at energy ε [27]. The system definition
is completed by specifying the scattering state occupations

nlσ (ε) = {exp[β(ε − μlσ )] + 1}−1, (5)

which depend on the temperature T , parametrized by energy
β−1 = kBT , with kB the Boltzmann constant, and the leads’
chemical potentials μlσ . Here, we kept the possibility of differ-
ent chemical potentials for the two spin species, representing a
lead with nonequilibrium spin accumulation [28]. However, we
will consider this option only in Sec. IV B. Everywhere else we
take them spin independent, and for a notational convenience,
symmetrically displaced from the Fermi energy by half of the
applied bias voltage V , μS/D = μF ± eV/2.

The conservation of the spin along the magnetic field yields
the scattering matrix diagonal in the spin index Sσ ′σ

l′l (ε) ∝ δσ ′σ .
In addition, the spin dependence enters only through the
Zeeman energy, by which the kinetic energy differs for the
two spin species at the same total energy ε:

εσ
kin(ε) = ε − σ

2
εz. (6)

Then, the scattering state amplitudes in the leads are

�εSσ (x) =
{

eikSσ x + SSS

(
εσ

kin

)
e−ikSσ x if x < xS,√

vSσ

vDσ
SDS

(
εσ

kin

)
eikDσ x if x > xD,

(7a)

�εDσ (x) =
{

e−ikDσ x + SDD

(
εσ

kin

)
eikDσ x if x > xD,√

vDσ

vSσ
SSD

(
εσ

kin

)
e−ikSσ x if x < xS,

(7b)

where we introduced the wave vectors k and velocities v, both
spin and possibly lead dependent, by

h̄2k2
lσ

2m
≡ 1

2
mv2

lσ = ε − σ

2
εz − Vl, (8)

and we will also use the density of states glσ = 1/2πh̄vlσ .
For spin-preserving and single-subband scattering, all four

elements of the scattering matrix S are given by a single
parameter, the transition probability T [29,30],

|Sll|2 = T , |Sll|2 = R = 1 − T . (9)

This is a key property for the discussion below and we stress
that both the above conditions are necessary. Namely, were the
scattering spin dependent, the elements of the scattering matrix
would be matrices [31], without any symmetry relations in gen-
eral.3 Were the leads not single subband, the unitarity alone is
not enough to reduce the scattering matrix to a single parameter
such as in Eq. (9). We note that for the model given in Eq. (2),
the transition probability can be calculated analytically [21]:

T
(
εσ

kin

) =
{

1 + exp

[
−2π

εσ
kin − V0

h̄ω

]}−1

. (10)

3Namely, in this case, such symmetry relations for the scattering
matrix would require additional symmetry in the Hamiltonian, for
example, the time-reversal symmetry [32,33].

However, below we do not rely on a specific form of T . We will
only use that the transition probability has a form similar to that
given in the previous equation: it is a monotonically increasing
function of the kinetic energy, which at zero bias and tempera-
ture changes from 0 to 1 over an energy of the order of h̄ω. The
latter therefore represents the energy resolution of the QPC.

We are interested in the effects of the electrical current on
nuclear spins. The electrons and nuclei are coupled by the
Fermi contact interaction

HI = v0

∑
n

Anδ(r − rn)σ · In. (11)

Here, the discrete index n labels nuclear spins with the corre-
sponding spin operators In, located at positions rn, An is the
material constant which depends on the nuclear isotope, and v0

is the volume per nuclear spin, in a zinc-blende material equal
to a3

0/8, with the lattice constant a0. In Eq. (11), the positions
of both nuclei and electrons are three-dimensional vectors.
In connection to this, one needs to consider the transverse
wave-function components of the electronic states. Assuming
for simplicity that the three-dimensional wave function can be
factorized4 
(x,y,z) ≈ �(x) × φ(x,y,z), we define a normal-
ized transverse density ρ(r) ≡ |φ(r)|2:∫

dy dz ρ(x,y,z) = 1, (12)

and, using ρn ≡ ρ(rn), write

HI = v0

∑
n

Anρnδ(x − xn)σ · In. (13)

We separate the effects of the transverse coordinates by
defining a dimensionless quantity

tn = ρnS⊥(x = 0), (14)

where a cross section at the longitudinal coordinate x,

S⊥(x) = 1∫
dy dz|φ(x,y,z)|4 , (15)

loosely defines an area within which the electron interacts with
nuclei appreciably [34]. With this

HI = Av0

S⊥

∑
n

tnδ(x − xn)σ · In, (16)

where S⊥ ≡ S⊥(x = 0), and we assumed a homonuclear sys-
tem An = A for simplicity (although a possible variation of
these factors could be accounted for in tn). Equation (16) is
the form for the hyperfine interaction which we use in what
follows.

Unless stated otherwise, we use the parameters of bulk
GaAs, that is, a0 = 0.565 nm, g = −0.44, m = 0.067 me, with

4To adopt this form, we are motivated by the following consid-
eration: We assume that the wave function can be approximated
as separable 
(x,y,z) ≈ �(x) × φ(y,z; ly,lz), where ly and lz are
parameters of the transverse profile (e.g., confinement lengths). They
are assumed to be weakly dependent onx, so that as the electron moves
along x, the changes of these parameters are followed adiabatically.
The x dependence of these parameters results in the x dependence of
the transverse profile φ.
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me the free-electron mass, A = 45 μeV, as an average over
natural isotopes, and I = 3

2 for the nuclear spin magnitude.
We further take h̄ω ∼ 0.5–1.0 meV, corresponding to lQPC ∼
50–30 nm, and S⊥ ≈ 200 nm2 as representative values for a
typical QPC.

B. Electron-assisted nuclear dynamics

With the above definitions, we derive the master equation
for the nth nuclear spin in the lowest order in the hyperfine
coupling A, by treating the hyperfine interaction as a pertur-
bation causing transitions between the unperturbed scattering
states. We get

∂t 〈In〉 = 2
3I (I + 1)(W↓↑(rn) − W↑↓(rn))

−〈In〉(W↓↑(rn) + W↑↓(rn)), (17)

where we assumed a small polarization 〈In〉 � I ,5 defined by
〈In〉 ≡ 〈In · B/B〉, that is as the projection of the spin polariza-
tion on the direction of B. Finally, the angular brackets denote
the average over the system density matrix. Equation (17) gives
two contributions to the nuclear dynamics, the polarization, and
decay, as the first and second terms, respectively. The rates in
Eq. (17) are defined by

Wσσ (rn) =
∑
ll′

∫
dε

h̄
W0(ε)t2

n |�εlσ (xn)|2

× |�ε′l′σ (xn)|2nl(ε)[1 − nl′(ε
′)], (18)

the rate of the electron spin to flip from σ to σ (corresponding
to a nuclear spin change by 2σ ). Further, ε′ = ε + εN

z , with
εN
z = gNμNB being the nuclear Zeeman energy, defined by

the nuclear g factor gN , and the nuclear magneton μN , and

W0(ε) = 2π
(v0A)2

S2
⊥

glσ (ε)gl′σ ′(ε′) (19)

is a dimensionless factor. Neglecting the spin, lead, and bias
dependence of the density of states,

W0 = 1

2π

(
m

2μF

)(
Av0

h̄S⊥

)2

. (20)

Finally, we also define renormalized rates

wσσ (xn) = 1

W0t2
n

Wσσ (rn), (21)

which are stripped of the overall scale, and the transverse
profile dependence, what makes them dependent only on the
longitudinal coordinate.

5The equation is also exact for I = 1
2 and an arbitrary polarization.

For the general case of an arbitrary nuclear spin and polarization, the
nuclear-spin-magnitude-dependent prefactors on the right-hand side,
such as the given value 2I (I + 1)/3, depend on the density matrix
of the nuclear spin, so that additional assumptions on its form are
necessary to evaluate these factors. See Appendix C for details. These
complications are of no relevance to us, as the polarizations are indeed
small, and, in addition, we are interested in qualitative properties of
the nuclear polarization, most importantly, its sign and spatial profile,
rather than in its quantitative value.

We delegate the derivation of these equations to
Appendix C, as a straightforward generalization of the Slichter
formula [1,35] to a spatially inhomogeneous system in a finite
magnetic field [15]. Here, instead, we discuss the physical
meaning of Eq. (18): it gives the rate of nuclear spin change
by 2σ as the product of a probability to have an electronic
occupied state with spin σ times the probability of an un-
occupied state with the opposite spin, both evaluated at the
position of the particular nucleus rn. The only dimensionful
expression in Eq. (18) is the integration measure, with units of
a particle current. The strength of the process is parametrized
by a dimensionless quantity W0. Taking GaAs parameters,
W0 × ε0/h̄ evaluates to 9.2×10−6 s−1 for ε0 = kBT at the
temperature of 0.1 K, and to 3.2×10−4 s−1 for ε0 = eV at the
bias voltage of 300 μV. These two values give rough estimates
for the nuclear spin equilibration and polarization rate due to
electrons to be expected in the experiment of Ref. [17].

C. Polarization and equilibration rates

For brevity, we omit the nuclear spin position argument (rn)
from all rates in this section. We now split the rate in Eq. (18)
to two terms

Wσσ = W
(1)
σσ + W

(2)
σσ , (22)

according to whether the incoming leads of the initial and the
final scattering state are the same l′ = l,

W
(1)
σσ = W0t

2
n

∑
l

∫
dε

h̄
|�εlσ (xn)|2

× |�ε′lσ (xn)|2nl(ε)[1 − nl(ε
′)], (23)

or opposite l′ = l,

W
(2)
σσ = W0t

2
n

∑
l

∫
dε

h̄
|�εlσ (xn)|2

× |�ε′lσ (xn)|2nl(ε)[1 − nl(ε
′)]. (24)

Using the identity

n(ε)

1 − n(ε)
= e−β(ε−μ), (25)

we find that, irrespective of the applied bias,

W
(1)
σσ = W

(1)
σσ exp

( − σβεN
z

)
. (26)

Since this is a condition of thermal equilibrium, we interpret
W (1) as the equilibration rate and W (2) as the polarization rate.
We note that such a distinction is only qualitative since, for
example, at zero bias W (2) also fulfills Eq. (26) and therefore
contributes only to the equilibration. We are motivated by
considering the opposite regime eV � kBT ,εN

z . In the limit
εN
z � kBT � eV , the two rates are

w
(1)
σσ = −kBT

∑
l

∫
dε

h̄
|�εlσ |2|�εlσ |2∂εnl(ε), (27a)

w
(2)
σσ =

∑
l

∫ μF+eV/2

μF−eV/2

dε

h̄
|�εlσ |2|�εlσ |2, (27b)
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so that W (1) ∝ kBT has the scaling of the Korringa law, while
W (2) ∝ eV scales with the applied voltage, the distinction
expected for the equilibration, and polarization, respectively.
In this regime, the polarization rate W (2) does not fulfill
Eq. (26), and can become much larger than W (1), leading to
a substantial nonequilibrium polarization (dynamical nuclear
spin polarization).

The possibility of W (2) � W (1) necessitates to consider
additional sources of equilibration for nuclei. Typical examples
are the nuclear dipole-dipole diffusion, and spin-impurity and
-lattice relaxations [36–43]. Assuming that these channels
are not influenced by the applied voltage, the corresponding
rates, which we denote as W (0), also fulfill the microscopic
equilibrium condition (26). We add such rates into Eq. (17)
and obtain the steady-state solution

〈In〉 = 2

3
I (I + 1)

∑
i=0,1,2(W (i)

↓↑ − W
(i)
↑↓)∑

i=0,1,2(W (i)
↓↑ + W

(i)
↑↓)

, (28)

whereW
(0)
↓↑ should be understood as the nuclear spin-increasing

rate, following loosely the notation introduced in Eq. (18), and
analogously for the spin-decreasing rate. For zero bias, where
all rates fulfill Eq. (26), the nuclear polarization is

〈In〉0 = 2

3
I (I + 1)

1 − exp
(−βεN

z

)
1 + exp

(−βεN
z

) ≈ I (I + 1)

3

εN
z

kBT
, (29)

the Curie’s law of magnetization. However, interested in
the nonequilibrium nuclear spin polarization at temperatures
where the equilibrium one is small, we neglect from now on
the nuclear Zeeman energy in all rates, setting ε′ = ε. The
resulting nuclear polarization should be then understood as a
departure from the thermal value

〈δIn〉 ≡ 〈In〉 − 〈In〉0 ≈ 2

3
I (I + 1)

W
(2)
↓↑ − W

(2)
↑↓

�
, (30)

where � = ∑
i,σ W

(i)
σσ is the total equilibration rate, contributed

by the hyperfine and other interactions. We replace it by a
phenomenological value, the nuclear spin equilibration rate
measured experimentally.

We now reinstate the coordinate variable, and for further
convenience, we define the polarization in the middle of the
channel as

〈δI (x)〉 = 〈δI (x,0,0)〉. (31)

It allows us to write

〈δIn〉 ≡ 〈δI (x)〉 ρ2
n

ρ2(x,0,0)
, (32)

relating the polarization along the transverse coordinates to the
polarization in the center.

D. Spatial symmetry of the polarization rates

We now make the crucial observation regarding the sym-
metry of the rates in Eq. (22). From Eqs. (7) and (9), it follows
that the scattering states in the leads fulfill

|�εlσ (x)|2 = |�εlσ (−x)|2, (33)

if the velocities in two leads are, at a given energy, the same,
what we assume,6 and we also drop the interference terms
∝exp(2iklσ x).7 The most simple case to visualize the above
equation is to consider the whole structure (including the
scatterer) as inversion symmetric V (x) = V (−x). In this case,
Eq. (33) holds for any x. However, we stress that for our
purposes we do not require such high symmetry, and allow for
an asymmetric scatterer, in which case we only assume that
both x and −x are within the opposite leads. Equation (33)
follows from the unitarity of the scattering matrix [45], and
therefore holds also in presence of orbital effects of magnetic
field.8

Using Eq. (33), we obtain that the polarization rate in the
leads fulfills

w
(2)
σσ (x) = w

(2)
σσ (−x), (34)

so that it is the same upon switching leads and inverting spins.
There is no such symmetry relation for the equilibration rate.
Indeed, from Eq. (27a) we get a spatial asymmetry (here we
assume x > 0)

w
(1)
σσ (x) − w

(1)
σσ (−x) = −2kBT

∫
dε

h̄

[
R

(
εσ

kin

) + R
(
εσ

kin

)]
× ∂ε[nD(ε) − nS(ε)], (35a)

which is not zero in general. In fact, if the transition probability
is a monotonically increasing function of energy, such as the
one in Eq. (10), it is straightforward to see that the above
asymmetry has the same sign as μS − μD , the bias voltage.
In other words, the equilibration rate is always larger in the
drain lead. For completeness, we also give

w
(1)
σσ (x) + w

(1)
σσ (−x) = −2kBT

∫
dε

h̄

[
1 + R

(
εσ

kin

)
R

(
εσ

kin

)]
× ∂ε[nD(ε) + nS(ε)], (35b)

the symmetric part of the equilibration rate.
We now discuss two cases of interest. First, assume that the

equilibration is dominated by other sources than the electrons
flowing through QPC. We can then take the total rate � ≈ W (0)

6The difference of the velocities is bounded by |vS − vD|/
|vS + vD| � eV/μF, which is very small for typical parameters. For
illustration, in Appendix E we consider the asymmetries due to
different electron velocities, and show that the expected effects are
indeed negligible.

7These oscillatory interference terms do not contribute to the current
[44], but survive in the electron density, which is more important
here. One can consider a spatial average of the rate, or polarization,
over a distance larger than the electron Fermi wavelength, upon
which the interference terms average to zero. Since typically the
nuclear diffusion length is larger than the period of these oscillatory
terms, considering the averaged nuclear polarization is actually more
physical.

8The orbital effects of magnetic field can influence the scattering
states inside the leads, for example, by shifting them by the Lorentz
force [46] according to their velocity direction. This has no effect
on the relation in Eq. (33), if these shifts are absorbed as the
corresponding changes of the transverse part of the scattering state
φ(x,y,z), defined above Eq. (12).
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lQPC

lcross

FIG. 2. Illustration of the DNSP with a nuclear dipolelike profile.
Electrons at an energy within the bias window are impinging from the
left lead towards the scatterer (blue bar in the middle). The spin up
(red) is transmitted, spin down (blue) is reflected. The electron-nuclear
spin flip flops can happen at positions where an occupied initial state
and empty final state with opposite spins exist. Therefore, the nuclear
spin flop ↑→↓ can happen on the source side of the scatterer, the
opposite one on the drain side. It leads to nuclear polarization (fat
arrows) of equal magnitude and opposite sign on the opposite sides.
Around the scatterer, the nuclear diffusion smoothens the polarization
profile into a linear crossover over the distance lcross. The polarization
in the leads, of both electrons and nuclei, will decay to zero beyond
the spin diffusion length away from the scatterer (this effect is neither
reflected in this figure nor in our model).

as spatially uniform, and, for a scatterer with symmetric leads,
we get

〈δI (x)〉 = −〈δI (−x)〉, (36)

an antisymmetric nonequilibrium dynamical nuclear spin po-
larization around the scatterer. The nuclear spin diffusion
smearing the polarization allows us to extend the validity of
this equation from x in the leads to all x. The second case,
if the equilibration through the QPC electrons is a substantial
part of the total rate �, the latter is asymmetric on the two
sides, and makes the nuclear spin polarization larger in the
source compared to the drain. Again, due to the nuclear spin
diffusion, around the QPC center one expects to find a surplus
of nuclear spin polarization from the source lead. With the g

factor negative in GaAs, this will be the nuclear spin down

〈δI (0)〉 < 0. (37)

The symmetry relations in Eqs. (34) and (35), and their
consequence for the polarization, Eqs. (36) and (37), constitute
our main results.

The physical origin of these relations is easy to understand.
Concerning the symmetry of the polarization, consider an
electron impinging on the scatterer from the source at an
energy inside the bias window and such that the scattering
is, for simplicity, fully spin selective, as illustrated in Fig. 2.
The electron with spin ↑ is transmitted, with ↓ is reflected.
Both incoming and outgoing waves in the source lead are
thus occupied for spin ↓, while for the spin ↑, the incoming
wave is occupied in the source lead and the outgoing wave is
occupied in the drain lead. Under these conditions, in the source
lead, the only spin-flip elastic scattering that the electron can
make is ↓→↑, with two options concerning the propagation

(a) (b)

(c) (d)

FIG. 3. Illustration of the equilibration asymmetry. (a) Shows
the energy dependence of the lead occupations derivative −∂εnl(ε)
and the sum and product of reflection probabilities Rσ = R(εσ

kin), for
εz � eV and V0 = μF . (c) Shows the symmetric and antisymmetric
parts of the equilibration in the leads w± = w(xD) ± w(xS), according
to Eq. (35), in common arbitrary units. The asymmetry factor
w(xD)/w(xS) is plotted in black. The maximal asymmetry is a factor
of 5 and arises in the configuration shown in (a). (b) and (d) are
analogous to (a) and (c) for εz = 8, eV = 6, V0 = −2, and [in (b)]
μF = 2, in common arbitrary units. The maximal asymmetry is 3,
corresponding to the configuration on (b).

direction: incoming → outgoing, and outgoing → outgoing. In
the drain lead, one finds also two options, this time outgoing →
outgoing, and outgoing → incoming for the spin-flip scattering
in the opposite direction. If the leads are identical, the surplus
of the spin density created by the spin-selective scatterer in
the occupied states in one lead is exactly compensated by
the surplus of the unoccupied states in the other lead. This
compensation is the reason for the exact symmetry relation in
Eq. (36). As we already stated, this result is not conditioned
on the time-reversal symmetry, and is therefore valid also at
strong magnetic fields. It will be also immune to the effects of
electron-electron interactions, if they can be described as an
effective mean-field potential,9 included in the potential of the
scatterer VQ(x). We therefore conclude that a spin-selective
scatterer is generally accompanied by an electron spin density
dipole, which results in the dipolelike spatial profile in the
dynamically created polarization of nuclei. This is analogous
to the charge density dipole accompanying a charge scatterer
[18].

Turning now to the asymmetry of the equilibration,10 we
first note, e.g., looking at Eq. (27a), that the equilibration is
related with the states emanating from a lead at its Fermi
surface. Considering again a simplified situation, where the
applied voltage is such that all states at the chemical potential

9The requirement is that the electron scattering can be still con-
sidered elastic. On the other hand, the effective potential can be an
arbitrary function of the applied voltage and position, without any
symmetry relations required.

10By the asymmetry we mean the ratio r = w
(1)
σσ (xS)/w(1)

σσ (xD). It
is given by r = (A + B)/(A − B), where A is the right-hand side of
Eq. (35b) and B is the right-hand side of Eq. (35a).
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of the source are transmitted, they contribute equally for the
equilibration in the source and in the lead. The fully reflected
states at the chemical potential of the drain do not reach
the source, and since the electron density is doubled by the
reflection, these states contribute by a factor 4 times bigger to
the equilibration in the drain. The resulting asymmetry between
the leads would be a factor of 5 (see the left column of Fig. 3),
a maximal possible asymmetry. Similar considerations in the
opposite regime eV � εz show that in this case the maximal
asymmetry is a factor of 3 (see the right column of Fig. 3).

III. EFFECTS ON QPC CONDUCTANCE:
RESISTIVELY DETECTED NMR

We now turn to possible experimental signatures of the
dynamically created nuclear spin polarization analyzed in
the previous section. To this end, we consider the resistively
detected NMR, where the conductance through the QPC is
monitored upon scanning the microwave frequency around
one of the NMR frequencies of the material. On resonance,
the NMR field couples to nuclear spins, adding W (3) among
the rates entering Eq. (17). Since this rate fulfills W

(3)
σσ = W

(3)
σσ ,

in Eq. (28) it contributes only to the depolarization �. The
resulting decrease in nuclear polarization decreases the Over-
hauser field contribution to the total energy splitting of the spin
opposite electrons. The essence is to tune the QPC such that it
becomes sensitive to this change.

With the aim of confronting the theory against the data
measured in Ref. [17], we calculate the NMR response from
our theory analytically, using a simple perturbation theory, and
rely on numerics for more quantitative and robust statements.
We begin with the analysis of the system without electron-
electron interactions. As we will see below, this approach
predicts a conductance change upon applying the NMR de-
polarization �G with a sign opposite to what is observed in
the experiment. This does not seem to be an issue of the adopted
approximations, as numerics shows the same discrepancy. We
then proceed to the interacting case where, using numerics,
we indeed observe a sign reversal for strong enough electron-
electron interactions. With this outlook for the section contents,
we now proceed to details.

A. Expected NMR conductance signal

In the experiment, the nuclear polarization and its detec-
tion proceed under separate conditions. The first is done by
applying a large current through the QPC, so that eV � kBT .
As described in Sec. II, it results in a buildup of the nonequilib-
rium polarization 〈δI (x)〉 according to Eq. (30). It is spatially
dependent, mainly due to the spatial dependence of the pump-
ing rate, given in Eq. (24). The detection is done under a much
lower bias eV � kBT ,εz, at possibly a different value of the
gate voltage, chosen to maximize the signal. In this regime,
the current I through the QPC is contributed by the two spin
species,

I = e

2πh̄

∫
dε

∑
σ

Tσ (ε)[nS(ε) − nD(ε)], (38)

according to the spin-resolved transition probabilities Tσ (ε) =
T (εσ

kin). Because of the small bias, we can assume linear

response, where the differential conductance G = ∂V I is

G = − e2

2πh̄

∫
dε

∑
σ

Tσ (ε)∂εn(ε). (39)

The nuclear spin polarization influences this conductance
through the induced Overhauser field as a position-dependent
contribution to the Zeeman energy

δεz(x) = A

∫
dy dz ρ(x,y,z)〈δI (x,y,z)〉 = A′(x)〈δI (x)〉.

(40)

We used Eqs. (24) and (30) to perform the integration over
the transverse coordinates, and introduced an effective cross
section

A′(x) = A ×
∫

dy dz|φ(x,y,z)|6
|φ(x,0,0)|4 , (41)

and we also use A′(0) ≡ A′ in what follows.
The change of the conductance upon nuclei depolarization

by microwave field constitutes the signal extracted experimen-
tally. Assuming that the NMR pulse decreases the nuclear
polarization to some fraction 1 − p ∈ [0,1] from its initial
value 〈δI 〉, the signal is

�G = G{(1 − p)〈δI 〉} − G{〈δI 〉}, (42)

where p depends on the NMR field amplitude and duration.
In this equation, the conductance is a functional of the dy-
namical nuclear polarization. Since it is difficult to evaluate
this equation analytically exactly even in the simplest cases,
we do it numerically. We adopt a model which includes the
electron-electron interactions, as described in Appendix A.
To understand the results obtained from the model, we also
perform some rough estimates.

B. Signal for a constant polarization

To proceed, we assume that Eq. (42) can be linearized (the
Overhauser effects on the electron scattering, and/or its NMR
induced change, are small)

�G = −p

∫
dx

∂G

∂〈δI (x)〉 〈δI (x)〉, (43)

and approximate the complicated functional dependence of the
conductance by the sensitivity to the energy at the QPC center
only ∂G/∂〈δI (x)〉 ∝ δ(x). We get

�G ≈ p〈δI (0)〉A′∂ε

(
e

2πh̄

∑
σ

σ Tσ (ε)

)∣∣∣∣∣
ε=μF

. (44)

The signal is proportional to the nuclear polarization at the
QPC center and the energy derivative of the spin-polarized
transmission probability, in other words, to the derivative of
the spin current in the QPC. Using the specific conductance of
Eq. (10), which gives

∂εT (ε) = 2π
h̄ω

T (ε)[1 − T (ε)], (45)

we can also write

�G ≈ p〈δI (0)〉 A′

h̄ω

e

h̄
S(z), (46)
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FIG. 4. Illustration of the signal for different nuclear spin po-
larization patterns. In all panels, we plot quantities as a function
of the gate voltage V0 measured relative to the Fermi energy μF.
We take parameters comparable to the experiment of Ref. [17]:
B = 4.5 T, h̄ω = 0.5 meV, and T = 0 for simplicity. The system is
interacting, with the Coulomb energy parameter U = 6.4 meV (see
Appendix A). (a) The conductance G. Note that a finite value of
the electron-electron interaction parameter is necessary to produce
a noticeable conductance plateau at G = e2/h, as observed in the
experiment. (b) �G calculated according to Eq. (42) for p = 0.5 and
a uniform initial nuclear polarization (shown in the inset). (c) The
spin shot noise [Eq. (47)]. (d) �G calculated according to Eq. (42)
for p = 0.5 and a dipolelike nuclear polarization (shown in the inset).
(e) The charge shot noise [Eq. (54)].

which states that the signal is proportional to the spin polar-
ization of the current noise

S(z) =
∑

σ

σ Tσ (μF)[1 − Tσ (μF)]. (47)

These formulas predict a signal which has opposite sign on the
flanks of the two spin-resolved plateaus. Assuming a negative
nuclear polarization at the QPC center, 〈δI (0)〉 < 0, following
Eq. (37), �G is negative for G < e2/h and positive for G >

e2/h. Figures 4(b) and 4(c) illustrate this case.
In the experiment of Ref. [17], the NMR response was

measured on the flank of the spin-down plateau G > e2/h,
where a robust negative signal was found, �G < 0. This is the
opposite behavior that we obtain from Eq. (37). However, as
already noticed in the above, the nuclear spin equilibration in
that experiment is most probably dominated by other channels
than electrons, so that Eq. (36) applies for the profile of the
dynamical nuclear polarization. The latter, however, leads to
〈δI (0)〉 = 0, and a zero response follows from Eq. (46).

C. Signal for a dipolelike polarization pattern

To estimate the NMR response in the case of the dipolelike
dynamical nuclear polarization, one has to go beyond the
approximations adopted to arrive at Eq. (44). We will do it

in the following way. We first linearize the Overhauser field
around the QPC center

〈δI (x)〉 ≈ x
〈δI (xD)〉 − 〈δI (xS)〉

2lcross
, (48)

where 〈δI (xl)〉 is the nuclear polarization in lead l, and lcross

is the length over which the polarization crosses from the
saturated value at the source lead 〈δI (xS)〉 to its saturated value
in the drain lead 〈δI (xD)〉 = −〈δI (xS)〉. The lead polarizations
can be obtained from Eq. (30), evaluating Eq. (23) at the
corresponding lead putting xn = xS/D . Assuming the QPC
is gated to be spin selective at the Fermi energy, we get an
order-of-magnitude estimate (V > 0)

〈δI (xD)〉 ∼ 4

3
I (I + 1)W0

min(eV,εz)

h̄�
. (49)

The crossover length, on the other hand, is approximately the
sum of the QPC effective width lQPC and the nuclear spin
diffusion length

√
D/�, with D the nuclear spin diffusion

coefficient.11

The linearized Overhauser energy can be included simply
into the scattering potential. Indeed, using Eqs. (2) and (48)
we get

VQ(x) + σδεz(x) = VQ(x − σξlQPC) + 1
2 h̄ωξ 2, (50)

that is, a spin-dependent coordinate shift, and an overall
constant. Both are proportional to the dimensionless factor

ξ = lQPC

lcross

A′〈δI (xD)〉
h̄ω

, (51)

which is small since lcross � lQPC, and typically A′ � h̄ω.
Since the coordinate shift does not change the transmission
probability, we conclude that the influence of the dipolelike
nuclear polarization on the conductance is obtained by the
replacement V0 → V0 + ξ 2h̄ω/2 in Eq. (10). From here we
immediately get

�G ≈ 1

2
ξ 2p(2 − p)h̄ω∂ε

(
e

2πh̄

∑
σ

Tσ (ε)

)∣∣∣∣∣
ε=μF

(52)

or, using Eq. (45), an equivalent expression follows:

�G ≈ 1

2
ξ 2p(2 − p)

e

h̄
S(0). (53)

The most apparent difference is that now the NMR signal is
proportional to the sum (rather than difference) of the current
noises of the two spin species

S(0) =
∑

σ

Tσ (μF)[1 − Tσ (μF)]. (54)

The conductance change will therefore have the same sign on
both flanks of the spin-resolved plateaus �G > 0. Figures 4(d)
and 4(e) illustrate this case. The qualitative difference of
the conductance change as a function of the gate potential
can therefore distinguish the uniform and dipolelike nuclear
polarization.

11Taking a typical value D = 7 nm s−1 [42,43], and �−1 = 100 s
estimated in Ref. [17], we get the diffusion length of 26 nm.
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FIG. 5. (a) G and (b) �G as a function of V0 for U = 7.7 meV.
The remaining parameters are the same as those given in Fig. 4, with
the nuclear polarization as in (e) therein. Inset in (b): the effective
scattering potential Vσ (x), including the mean-field interaction cor-
rection, as seen by the up (red curve) and down (blue curve) electron
spins, at the gate voltage indicated by the triangle. The dotted line
shows the bare potential [Eq. (2)] and the dashed line is the Fermi
energy.

As a final remark, we point out the scaling of the signal
with the basic parameters of the problem: the electron Zeeman
energy does not directly enter to Eq. (51) or (53). It means that
the RD-NMR signal is not directly dependent on the electron
g factor. There is an indirect influence: a larger g factor allows
a higher spin-polarized electronic current, as seen in Eq. (49),
the square of which the RD-NMR signal is proportional to. On
the other hand, there is strong dependence on the nuclear spin
length and especially the electron-nuclear coupling strength
�G ∼ I 4A6/�2. Assuming that the nuclear relaxation rate �

is not due to electrons, it will be independent onA. We therefore
expect the electron-nuclear couplingA to be the most important
parameter for the overall magnitude of the effect.

IV. SIGNAL SIGN REVERSAL

The results of the previous section predict a positive
RD-NMR signal �G > 0 at and beyond the 1

2 conductance
plateau G > e2/h. This is so for both uniform and a dipolelike
nuclear polarization around the QPC center. This picture is
confirmed by the numerical modeling (see Appendix A), with
which we evaluate directly Eq. (42), without any further
assumptions, and include also the effects of the electron-
electron interactions. From extensive numerical investigations
(not shown), we conclude that this prediction is robust with
respect to the model details. Nevertheless, the experiment in
Ref. [17] showed the opposite �G < 0, slightly beyond the 1

2
conductance plateau. We now discuss the possible origins of
the discrepancy.

A. Due to strong electron-electron interactions

During the mentioned numerical investigations, we found
that a signal sign reversal appears for a strong Coulomb
interaction. Figure 5 shows a typical example. The strong
(repulsive) electron-electron interactions first of all pronounce
the half-conductance plateau (widening the gate voltage inter-
val where it is observed) compared to Fig. 4(a). Figure 5(b)
shows that in the regime where the electron-electron exchange
spin polarizes the electrons in the QPC, the RD-NMR signal
becomes negative, �G < 0. Again, this is a robust feature, not
due to parameters’ fine tuning (see Fig. 7 in Appendix B). Even
though the particular mechanism is not obvious, the negative
sign is associated with clear deformations of the scattering
potential: the inset of Fig. 5(b) illustrates how it departs from
the bare inverted parabolic potential near the QPC center.
We find it rather surprising that such seemingly nongeneric
changes do give rise to a robust negative signal. We also note
that strong versus weak Coulomb interactions do not induce
any qualitative changes for the signal from a uniform nuclear
polarization (see Fig. 8 of Appendix B).

The Coulomb interaction effects are essential to explain
the 1

2 conductance plateau in the experiment in Ref. [17].
Indeed, the width of the observed plateau was much closer
to Fig. 5(a) than to Fig. 4(a). It suggests that the electron-
electron interactions could cause the signal sign reversal. On
the other hand, we were not able to match that experimental
data quantitatively: the numerical value for �G that we get
is an order of magnitude smaller than the observed one.
We therefore remain inconclusive, as of whether it was the
interaction effects responsible for the negative signal observed
in the experiment of Ref. [17] and leave it an open question for
further experimental and numerical investigations.

B. Due to nonequilibrium spin polarization in the leads

We now consider a situation with nonequilibrium spin
polarizations in the leads [47]. The latter corresponds to having
spin-dependent chemical potentials

μσl ≡ μl + σδμl, (55)

with the “spin voltage” δμl parametrizing the nonequilibrium
electronic spin accumulation in the lead l [28]. In this case, we
rewrite the occupations from Eq. (5) as

nlσ (ε) = nl(ε) + σδμl δnl(ε). (56)

For a spin voltage smaller than the temperature, the lowest-
order Taylor expansion gives

δnl(ε) = −∂εnl(ε)
T →0−−→ δ(ε − μl), (57)

where the last property holds in the limit T → 0. We note
that, however, the functions δnl(ε) defined by Eq. (56) are
non-negative for any parameters’ values since that property
relies only on the monotonicity of the Fermi distribution.

With this expansion of the model, we now reinstate the spin
voltages into Eq. (18). Neglecting the nuclear Zeeman energy,
for the rate rescaled according to Eq. (21) we get

wσσ =
∑
ll′

∫
dε

h̄
|�εlσ |2|�εl′σ |2nlσ (ε)[1 − nl′σ (ε)], (58)
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where we again omitted the position argument xn of the rate
and the wave functions. Using here Eq. (56), we get the change
in the nuclear spin-flip rate due to the finite spin voltages as

δwσσ =
∑
ll′

∫
dε

h̄
|�εlσ |2|�εl′σ |2{σ δμl δnl(ε)[1 − nl′ (ε)]

− σ δμl′ δnl′ (ε)nl(ε) − σσ δμl δμl′ δnl(ε)δnl′(ε)}.
(59)

The last term in curly brackets is symmetric upon inverting the
spin indices, and therefore contributes only to the equilibration.
We denote it by δw

(I )
σσ , using analogous superscript notation

as in the previous section. The remaining terms represent the
polarization part

δw
(II )
σσ = σ

∑
ll′

∫
dε

h̄
|�εlσ |2|�εl′σ |2{δμl δnl(ε)[1 − nl′(ε)]

+ δμl′ δnl′ (ε)nl(ε)}. (60)

This equation constitutes the main result of this section. It
shows that finite spin voltages induce an additional polariza-
tion, the sign of which is given by the sign of the spin voltage:
a positive spin voltage in a lead, δμl > 0, meaning a surplus
of spin-up electrons, induces a flow of spin up into the nuclear
ensemble. One can see this from Eq. (60), noting that the
functions n, 1 − n, δn, and |�|2 are non-negative.

For illustration, we also consider the limit |δμl| � kBT �
|eV |,h̄ω, which gives

δw
(I )
σσ (xn)6 =

∑
l

(δμl)2

6h̄kBT
|�μllσ (xn)|2|�μllσ (xn)|2, (61a)

δw
(II )
σσ (xn) = σ

∑
ll′

δμl

h̄
|�μllσ (xn)|2|�μll′σ (xn)|2, (61b)

where we reinserted the position argument explicitly. These
equations demonstrate the general properties of the equilibra-
tion and polarization rate contributed by finite spin voltages:
the dominant effect of nonequilibrium electronic spin polar-
ization is a transfer of this polarization into nuclei. In addition,
there is a much smaller increase in the equilibration rate.

V. DISPERSIVE LINE SHAPE

In the previous section, we considered the RD-NMR signal
detected at zero bias voltage. In that case, the electronic spin
density, even though position dependent, is spatially symmetric
around the QPC. The associated Knight field is then also
symmetric, and it is reasonable to assume that the NMR field
depolarizes the nuclei uniformly. Here, we consider effects
at finite bias. Surprisingly, we find that our theory of the
nuclear dipolelike polarization predicts a RD-NMR signal with
a “dispersive line shape,” which has been observed in several
experiments in two-dimensional electron gas (2DEG) in the
quantum Hall regime [19,48–56]. It refers to the RD-NMR
signal which, as a function of the NMR frequency, resembles
the shape of a derivative of a Lorentzian curve, similar to the
one plotted on Fig. 6(b).

The origin of such signal here is the following. At a finite
bias, the nonequilibrium electronic spin accumulation created

FIG. 6. The RD-NMR signal at a finite bias, eV = 0.3 meV, and
μF − V0 = 0.2 meV. The output of the numerical model described
in Appendix A is plotted. (a) The electron spin-polarization density
m(i) = 〈n↑(i) − n↓(i)〉/a as a function of the site index i. (b) �R as a
function of the NMR frequency f calculated according to R = V/I ,
and Eqs. (62) and (63). (c), (d) The DNP rate before (dotted line) and
after (solid line) the depolarization by NMR, for frequency denoted
by the respective colored triangle in (b). Apart from the bias, the
parameters are the same as in Fig. 4 except for the temperature T =
10 mK, adopted to regularize the step functions in the occupations for
reasons related to numerics.

by the QPC gives rise to the dipolelike nuclear polarization, as
explained in Sec. II. If, contrary to the assumptions in Sec. III,
the detection by the NMR field is done also at a finite bias,
the Knight field for the nuclei is asymmetric across the QPC.
The nuclei in the drain see more electrons with spin up, and
therefore their NMR resonance frequency is smaller, compared
to nuclei in the source. If the difference is large enough, the two
sets of nuclei are depolarized selectively. Since these two sets of
nuclei are polarized oppositely, their depolarization is expected
to lead to roughly opposite change in the conductance.

To confirm this qualitative analysis, we resort to numerics.
Adopting the same model as before (see Appendix A), we
get that a finite bias indeed leads to an asymmetric electron
spin accumulation around the QPC, as shown in Fig. 6(a). We
note that electron-electron interactions are essential to achieve
a substantial asymmetry. To comply with the experiments
reporting on the dispersive line shape, the RD-NMR signal
in the resistance R = V/I is considered,

�R = R{[1 − p(x,f )]〈δI (x)〉} − R{〈δI (x)〉}, (62)

where, to include the position-dependent Knight shift, we pro-
mote the depolarization factor p to a position- and frequency-
dependent function

p(x,f ) = p0 exp

(
− [f − f0 − αm(x)S−1

⊥ ]2

2γ 2

)
. (63)

Here, p0 is the overall depolarization scale, f is the frequency
of the NMR field, f0 is the resonance frequency of the given
isotope, and m(x) = n↑(x) − n↓(x) is the one-dimensional
electron spin density. Equation (63) was used to fit experi-
mental data in Ref. [17], showing good agreement for realistic
parameters α = −2.1 × 10−22 kHz m3 (for As atom), and
γ = 1.36 kHz. Using it here, the calculated resistance shown in
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Fig. 6(b) displays a clear dispersive line shape as a function of
frequency. Figures 6(c) and 6(d) confirm that at frequencies
corresponding to the two different line-shape extrema, the
nuclei on opposite sides of the QPC are depolarized predomi-
nantly. This constitutes the main result of this section.

Before moving on, a comment is in place. In the experiments
with 2DEG in the quantum Hall effect regime, the dispersive
line shape (we denote it QHE-DL) was originally conjectured
to signal the presence of a skyrmion crystal [48]. This was
later refuted, as the same feature was observed in parame-
ter regimes where a skyrmion crystal is highly improbable
[49,53]. The current understanding is that the peak and dip
are unrelated [19,50], arising due to the response of nuclei
positioned at different electronic states (spin unpolarized and
polarized) [55]. Even though we believe that a dispersive line
shape connected to the nuclear dipole around a spin-sensitive
scatterer (we denote it dipole-DL) is very general, we do not
suggest that it directly offers an explanation of the mentioned
2DEG experiments because of the following differences. Most
importantly, the dipole-DL requires nonuniform, and therefore
nonequilibrium, nuclear spin polarization. The QHE-DL is, on
the other hand, observed also for uniformly polarized nuclei
(thermal polarization), at a rather small current [48], or without
a dependence on the current [51]. (On the other hand, the
importance of the DNSP for for QHE-DL was pointed out in
Refs. [19,52].) Second, the dipole-DL in GaAs is expected
to show the dip at a frequency smaller than the peak [see
Fig. 6(b)]. Such QHE-DL have been seen too [16,54,56], but
the opposite shape is perhaps more standard [48].

VI. CONCLUSIONS

We investigated the dynamical nuclear polarization arising
at a quantum point contact gated to conductance e2/h in strong
magnetic field. Our main message is that such a spin-selective
scatterer gives rise to a local imbalance of the electronic
spin polarization, which is transferred into nuclear spins, as
a spatially asymmetric polarization pattern.

To understand the pattern origin, it is useful to consider
a simple example of a spin-filtering QPC, which, within the
bias window, reflects the spin-down electrons and transmits
the spin-up ones. This spin-dependent scattering creates a
local nonequilibrium electronic spin, for parameters of GaAs,
down on the source side and up on the drain side of the
QPC. The actual polarization of the nuclear spins happens in
these regions, somewhere between the QPC potential top and
the leads (defined as where the electrons are in equilibrium,
including their spin). The same pattern is then imprinted into
the nuclear spin polarization, spin down on the source side,
and spin up on the drain side. We have denoted these regions
of substantial nuclear polarization on Fig. 1 by the pairs of
the vertical dashed lines. Interested in the nuclear polarization
close to a symmetric QPC, the nuclear polarization is exactly
antisymmetric around its potential top, with zero DNSP at the
QPC center.

To produce a net nuclear polarization around the QPC
center, an additional asymmetry is therefore necessary. An
obvious possibility is some geometrical asymmetry of the
scatterer, e.g., a difference of the source and drain sides. The
characteristic feature of it is that the net polarization should

swap upon inverting the bias voltage polarity, providing a very
simple criterion straightforwardly testable in experiments. We
identify an interesting additional possibility, an asymmetry
connected to the nuclear spin dissipation. We find that the
electronic contribution to it (the “Korringa relaxation”) is
typically substantially larger on the drain side, and therefore
can lead to a net overall nuclear spin polarization with the
sign given by the nonequilibrium spin on the source side
(electron/nuclear spin down in GaAs). However, since usually
the spin lattice and nuclear diffusion dominate the electronic
contribution to the nuclear spin relaxation at low temperatures,
we predict that the nuclear dipole is the most typical situation
to be expected.

The two scenarios (dipolelike versus uniform DNSP) result
in qualitatively different resistively detected NMR signals,
both as a function of the QPC conductance and as a function
of the NMR frequency. For the former, the RD-NMR signal
is similar to the spin and charge current noise (see Fig. 4) for
the uniform and dipolelike nuclear polarization, respectively.
For the latter, the dipolelike nuclear polarization leads to a
dispersive line shape. We have confronted our theory to the
experiment of Ref. [17], but found that more data would be
needed to confirm our predictions. This issue has to do with
the detection of the nuclear dipole, which is complicated by the
supposedly dominant role of the electron-electron interactions
on the minute changes of the QPC conductance.
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APPENDIX A: NUMERICAL MODEL

To include the effects of electron-electron interactions,
we model the QPC by a one-dimensional (1D) tight-binding
Hamiltonian

H =
∑
j,σ

εσ (j )c†j,σ cj,σ − t
∑
j,σ

c
†
j,σ cj+1,σ +

∑
j

Ujnj,↑nj,↓.

(A1)

Here, c
†
j,σ creates an electron with spin σ at the j th site

(−N � j � N ) of the tight-binding chain which has a hopping
amplitude t = 12.8 meV, the nearest-neighbor distance a =
6.67 nm, and N = 25. The QPC potential energy and the
Zeeman energy are included in the onsite energy εσ (j ) =
ε(j ) + σEZ(j ). We adopt the following potential:

ε(j ) = V0 exp

(
− (h̄ωj )2

4V0

1

1 − (j/N )2

)
, (A2)

which smoothly connects the inverted parabola near the QPC
center (j = 0) with a constant in the leads VS = 0 = VD .
The Zeeman energy is EZ(j ) = gμBB(j )/2, with the total
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magnetic field

B(j ) = Bex + BN(j ), (A3)

contributed by the external field Bex and the Overhauser field
BN(j ). We choose the Coulomb potential strength as position
dependent:

U (j ) = U0 exp

(
− (j/N )6

1 − (j/N )2

)
, (A4)

again to smoothly interpolate between its full strength U0 at the
QPC center and the interaction-free leads. Finally, the 1D chain
is attached to the semi-infinite leads in the local equilibrium
with the Fermi distribution nl(ε) (l = S,D), given in Eq. (5).

The interaction term is treated by a mean-field approxima-
tion neglecting spin fluctuations. The mean-field spin density
〈nj,σ 〉 is determined by a self-consistent Green’s function
method [57] as follows. First, we evaluate 〈nj,σ 〉 for a given
onsite energy εσ (j ) using the correlation functions described
in Chap. 9 of Ref. [57]; at zero bias voltage, 〈nj,σ 〉 is evaluated
using the local spectral function and the equilibrium Fermi-
Dirac function while at finite bias voltages 〈nj,σ 〉 is evaluated
via the partial spectral functions originating from the left and
right leads with the Fermi-Dirac functions (5). Then, εσ (j )
is shifted by Uj 〈nj,σ̄ 〉 with σ̄ the spin opposite to σ . We
then repeat the calculation on 〈nj,σ 〉 until convergence. We
calculate the magnetization density profile mj = 〈nj,↑ − nj,↓〉
and the conductance/current through the QPC using Eq. (38),
the Landauer formula.

FIG. 7. (a) Conductance and (b) its change upon partial depolar-
ization of a dipolelike nuclear polarization versus V0 for different
electron-electron interactions strengths. The red/green/blue corre-
sponds to (U,h̄ω) = (7.7,0.5)/(10.2,1.0)/(12.8,1.0) meV. The other
parameters are the same as in Fig. 5.

FIG. 8. Signal sign reversal for strong Coulomb interaction and
dipolelike nuclear polarization. This figure is an analog to Fig. 4 and
we use the same parameters as there except for U = 7.7 meV. (a)
The conductance G. (b), (c) �G calculated according to Eq. (42)
for p = 0.5 and a (b) uniform and (c) dipolelike initial nuclear
polarization (shown in the insets). Compared to weaker Coulomb
interactions [Figs. 4(b) and 4(d)], a stronger interaction inverts the
signal sign at the G = 1

2 plateau only in (c), but not in (b).

APPENDIX B: �G < 0

Here, we demonstrate that the sign reversal of the RD-NMR
signal by strong interactions is robust. To this end, we repeat
the calculation presented in Fig. 5 for different values of the
electron-electron interaction strength and the QPC potential
curvature. Figure 7 shows the results. One can see that the
region of the negative signal �G < 0 is correlated with the 1

2
conductance plateau, and therefore becomes more pronounced
as the interaction strengths increases. Note that the strong
Coulomb interaction does not induce qualitative changes for a
uniform nuclear polarization as shown in Fig. 8.

APPENDIX C: DERIVATION OF DNSP RATES

Here, we derive Eq. (17). The derivation is a standard
Fermi’s golden rule calculation [see Chap. 5.3 in Ref. [1] and
Eq. (1) in Ref. [35]]. We nevertheless find it useful to provide
it here, as it is necessary to adapt these standard results for our
system in which the electronic states are both spatially and spin
dependent. To this end, let us start with the Fermi’s golden rule
formula

W
(n)
f i = 2π

h̄
|〈{�f }If

∣∣H (n)
I

∣∣{�i}Ii〉|2δ(Ei − Ef ) (C1)

for the rate of transition concerning the nuclear spin n,
between the initial state i and the final state f . Both of these
many-particle states are composed of the electronic subsystem
(described by the set of occupied scattering states {�}) and the
state I of the nuclear spin n. We have accordingly specified to
the part of the electron-nuclear interaction which pertains to
nucleus n only:

H
(n)
I = Av0

S⊥
tnδ(x − xn)σ · In. (C2)

From here on we omit the nuclear spin index n. We rewrite the
spin operator product in the previous as

σ · I = σzIz + 1
2σ+I− + 1

2σ−I+, (C3)
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where we have introduced σ± = σx ± iσy and analogously
for the nuclear spin operators. We notice that the three terms
correspond to transitions which, respectively, do not change
I , decrease it by 1, and increase it by 1. We are interested in
the changes of the nuclear spin probabilities, to which only
the latter two terms contribute. Summing over all initial states,
occurring with probability pi , and all available final states f

(except of the state f = i), the nuclear spin evolution follows
as

∂t 〈I 〉 = Winc − Wdec, (C4)

the difference between rates increasing and decreasing the
nuclear spin. If we now consider independent nuclear and
electronic subsystems, so that pi = pn

i p
e
i , we can split the rates

into their electronic and nuclear constituents

Winc = W↓↑
∑
i,f

pn
i |〈If |I+|Ii〉|2, (C5a)

Wdec = W↑↓
∑
i,f

pn
i |〈If |I−|Ii〉|2, (C5b)

where the electronic rates are

W↓↑ = 2π

h̄

A2v2
0 t

2
n

4S2
⊥

∑
i,f

pe
i |〈{�f }|σ−δ(x − xn)|{�i}〉|2

× δ
(
εi − εf + εN

z

)
. (C6)

Here, we used that the nuclear subsystem energy change
for this transition is always the same, equal to the nuclear
Zeeman energy and the energies ε are energies of the electronic
subsystem. The rate W↑↓ is given by the same equation upon
replacements σ− → σ+ and εN

z → −εN
z . In the many-particle

matrix element, only such pairs of single-particle states con-
tribute in which the initial state is occupied and the final state
is empty, for which the probability pe results in the fermionic
occupation factors

W↓↑ = 2π

h̄

A2v2
0 t

2
n

S2
⊥

∑
a,a′

|�a′↓(xn)�a↑(xn)|2

× na↑[1 − na′↓]δ
(
εa↑ − εa′↓ + εN

z

)
. (C7)

Here, we denote a as all quantum numbers of the state except of
the spin, which has been fixed by the σ− operator in Eq. (C6).
For the scattering states, according to Eq. (7) these indices are
the lead of origin and energy. The summation over the states
is then explicitly

∑
a

=
∑

l

∫
dε glσ (ε), (C8)

with the density of electronic states incoming toward the
scatterer from lead l with spin σ at energy ε being

głσ (ε) = 1

2π

1

h̄vlσ (ε)
. (C9)

We used a unit normalization volume, in accordance with
Eq. (7), and the velocity defined in Eq. (8). Using it in Eq. (C7)

gives

W↓↑ = 2π

h̄

A2v2
0 t

2
n

S2
⊥

∑
l,l′

∫
dε gl↑(ε)gl′↓(ε′)

×|�ε′l′↓(xn)�εl↑(xn)|2nl↑(ε)[1 − nl′↓(ε′)], (C10)

where the delta function gave ε′ = ε + εN
z , which is Eq. (18).

We now move to the evaluation of the nuclear spin-related
factors in Eqs. (C5a) and (C5b), which we denote as p+ and p−,
respectively. Identifying

∑
i |Ii〉pn

i 〈Ii | with the density matrix
ρn of the nuclear spin n, these expressions are

p± = tr(I±ρnI∓). (C11)

Their difference is

p+ − p− = tr([I−,I+]ρn) = −2 tr(Izρn) ≡ −2〈In〉, (C12)

while the sum is

p+ + p− = tr({I−,I+}ρn) = 2 tr
(
I2ρn − I 2

z ρn

)
. (C13)

Here, we make the assumption that the polarization is small,
so that the statistical average of the I 2

z is equal to one third
of the average of I2 = I (I + 1). [The replacement is an exact
identify for I = 1

2 ; alternatively, one could assume a thermal
distribution for the nuclear spin (the nuclear spin temperature
assumption) and calculate the expression analytically.] We get

p+ + p− = 4
3I (I + 1). (C14)

Putting together Eqs. (C4), (C10), (C12), and (C14) gives
Eq. (17).

APPENDIX D: MICROSCOPIC
EQUILIBRIUM RELATIONS

Here, we derive Eq. (26), the microscopic equilibrium
relation for the nuclear relaxation rate, and show that an
analogous equation for the pumping rate is different, in general.
To this end, we start with Eq. (23) in which, for generality, we
keep the possible lead dependence of the density of states and
nonzero spin voltages in the leads:

W
(1)
σσ = W0t

2
n

∑
l

∫
dε

h̄

v2
F

vlσ (ε)vlσ (ε′)
|�εlσ (xn)|2

× |�ε′lσ (xn)|2nlσ (ε)[1 − nlσ (ε′)]. (D1)

Note that here ε′ = ε − σεN
z . Using Eq. (25) we get

W
(1)
σσ = W0t

2
n

∑
l

∫
dε

h̄

v2
F

vlσ (ε′′)vlσ (ε)

×|�ε′′lσ (xn)|2|�εlσ (xn)|2nlσ (ε)[1 − nlσ (ε′′)]

× exp
[−σβ

(
εN
z − 2δμl

)]
, (D2)

where we denoted ε′′ = ε + σεN
z . Except for the term in the

last line, the expression is equal to W
(1)
σσ , the relaxation rate for

flipped spin indices. If there are no spin voltages, δμl = 0,
we obtain Eq. (26). For finite spin voltages, we get from
Eq. (D2) that the relaxation rate is biased, as the electron-
nuclear equilibration is towards a distribution with an effective
nuclear Zeeman energy to which the electron spin voltages
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contribute. This is in line with the results of Sec. IV B. Note,
however, that there we use slightly different meaning for the
upper indices on the rates. Namely, the spin-voltage part of
Eq. (D2) is assigned to the rate “II” in Sec. IV B.

For illustration, we now perform the same steps for the
pumping rate W (2) [Eq. (24)]. Starting with

W
(2)
σσ = W0t

2
n

∑
l

∫
dε

h̄

v2
F

vlσ (ε)vlσ (ε′)
|�εlσ (xn)|2

× |�ε′lσ (xn)|2nlσ (ε)[1 − nlσ (ε′)], (D3)

we transform it into

W
(2)
σσ = W0t

2
n

∑
l

∫
dε

h̄

v2
F

vlσ (ε′′)vlσ (ε)

×|�ε′′lσ (xn)|2|�εlσ (xn)|2nlσ (ε)[1 − nlσ (ε′′)]

× exp
[−σβ

(
εN
z − δμl + δμl

) + β(μl − μl)
]
. (D4)

For zero spin voltages, the relation in Eq. (D4) contains, com-
pared to the one in Eq. (D2), additional factors exp(±βeV ).
If a bias voltage is applied, it typically dominates the nuclear
Zeeman energies. On the other hand, for zero bias and zero spin
voltages, the rate W (2) also fulfills Eq. (26), as we mentioned
below Eq. (26).

APPENDIX E: NET NUCLEAR POLARIZATION
DUE TO THE LEADS’ VELOCITIES OR

CROSS SECTIONS’ ASYMMETRY

We now consider possible asymmetries in the source and
drain leads. We are interested in the degree of violation of the
symmetry relations in Eqs. (34) and (36). Let us first consider
different velocities in the two leads. At a fixed total energy,
such a difference arises if the potential bottom of the two leads
is not the same. The applied voltage naturally leads to such a
potential drop. If the total charge density in a lead is fixed, the
difference of the potential bottoms is the same as the applied
voltage. The difference of the velocities in the two leads is then
of the order of eV/μF. For a typical Fermi energy of 10 meV
and bias voltage 100 μeV, the velocities differ by roughly a
factor of 10−2 on the relative scale.

In this case, Eq. (33) should be replaced by

vlσ |�εlσ (x)|2 = vlσ |�εlσ (−x)|2, (E1)

stating that the scattering matrix unitarity gives relations for
the current densities, rather than the particle densities. Using
this relation in Eq. (24), we would get additional factors

vlσ vlσ

vlσ vlσ

≈ 1 ± 2
εzeV

μ2
F

, (E2)

arising in the equation analogous to Eq. (34). These factors
differ from one by a negligibly small amount, perhaps 10−3 or
10−4, and therefore the velocity effects can be safely neglected.

We now look at the effects of lead geometrical asymmetry,
meaning that the source and drain leads are different. We
estimate such effects roughly by considering the consequences
upon scaling the cross-section profile along one of the trans-
verse directions (having in mind a 2DEG, the growth direction
profile is fixed, while the lateral transverse one might differ)
by a dimensionless factor ξ :

ρ(x,y,z) → ρ ′(x,y,z) = ξ−1ρ(x,y/ξ,z). (E3)

With the chosen prefactor, the new profile is correctly normal-
ized ∫

dy dz ρ ′(x,y,z) = 1. (E4)

We find that the electron-related DNSP rates [Eq. (22)] are
multiplied by ξ−2, due to the change in the cross section S ′

⊥ =
S⊥ξ . Noting that the factors tn [Eq. (14)] and A′ [Eq. (41)] are
not changed by the coordinate rescaling, we get the following:
First, if the nuclear relaxation rate is dominated by electrons,
so that the rates W (0) can be neglected, the rescaling does
not affect the nuclear polarization 〈In〉 [Eq. (28)] nor the
Overhauser energy δεz [Eq. (40)]. If, on the other hand, the
relaxation is dominated by other channels than the electrons,
both the nuclear polarization and the Overhauser energy are
multiplied by factor ξ−2. As an example, if the source lead is
twice wide compared to the drain lead, an approximately four
times smaller polarization and Overhauser energy follows. We
conclude that the geometrical-related asymmetry is expected
to dominate the velocity (in fact, the applied bias) asymmetry.
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