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Incompatibility of unbiased qubit observables and Pauli channels

Teiko Heinosaari
Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland

Daniel Reitzner, Tomáš Rybár, and Mário Ziman
RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia

(Received 9 October 2017; published 21 February 2018)

A quantum observable and a channel are considered compatible if they form parts of the same measurement
device, otherwise they are incompatible. Constrains on compatibility between observables and channels can
be quantified via relations highlighting the necessary tradeoffs between noise and disturbance within quantum
measurements. In this paper we shall discuss the general properties of these compatibility relations and then fully
characterize the compatibility conditions for an unbiased qubit observable and a Pauli channel. The implications
of the characterization are demonstrated on some concrete examples.
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I. INTRODUCTION

The paradigm of quantum incompatibility stands behind
many quantum phenomena and quantum information no-go
theorems [1]. One of the most paradigmatic manifestations
of incompatibility is the no-information-without-disturbance
theorem. It states that a unitary channel, i.e., a channel that
does not cause an irreversible disturbance, is compatible only
with trivial observables [2–4]. A trivial observable corresponds
to a coin tossing measurement and hence does not give any
information on the input state. One therefore concludes that
if a measurement gives some information, it must cause
disturbance.

The tradeoff between information and disturbance is rel-
evant at least in two different scenarios. First, suppose an
unwanted disturbance is identified in a communication channel
and it may have been caused by the actions of an eavesdropper.
In this case, it is relevant to know what sort of information the
eavesdropper may have obtained. This means that we want
to know all possible measurements that may have caused the
disturbance. Second, we may plan to perform a measurement
of an observable A. The measurement causes a necessary state
perturbation, but the form of this perturbation can be partly
controlled by choosing the way in which we measure A. In
this case, it is relevant to know all channels that are compatible
with A.

There are several studies in the literature where the
information-disturbance relation is investigated by first quan-
tifying information and disturbance and then deriving an
inequality for those measures. In this work we follow a
structural approach [5,6] that does not commit to any specific
quantifications of information and disturbance. The main idea
is to determine if a channel and an observable can be parts
of the same measurement process or not. After presenting the
general characterization of compatible pairs of observables and
channels (Sec. II), we concentrate on the cases in which the
implemented channel is a Pauli channel (Sec. III). In particular,
we derive a complete criterion when a noisy version of a binary
qubit observable is compatible with a given Pauli channel.

Finally, we demonstrate the consequences of these results on
concrete examples (Sec. IV).

II. INCOMPATIBILITY OF CHANNELS
AND OBSERVABLES

A. Two equivalent definitions of incompatibility

When considering (in)compatibility of channels and ob-
servables, we can start either from the concept of a mea-
surement model or from an instrument [7–9]. The first one
explains the physical meaning of compatibility, while the latter
is more convenient from the mathematical point of view. In
the following we recall these two equivalent ways to define
(in)compatibility.

A measurement model (see Fig. 1) is a formalized descrip-
tion of a measurement process. A measured system, associated
with a Hilbert space H, is coupled to an ancillary system
associated withHa . The composite system undergoes a unitary
evolution� ⊗ ξ �→ U (� ⊗ ξ )U ∗, which is called measurement
coupling. After that the ancillary system is measured with a
pointer observable F. A measurement model is hence specified
by the ancillary Hilbert space Ha , initial state of the ancilla ξ ,
unitary operator U onH ⊗ Ha , and pointer observable F. From
these it is straightforward to determine both the average state
disturbance � and the effective observable A of the measured
system initialized in the state �. In particular, for the probability
of getting an outcome x we need to have

tr[�A(x)] = tr[U (� ⊗ ξ )U ∗(1 ⊗ F(x))]. (1)

This equation is required to be valid for all input states �, so
it in fact determines the observable A. Mathematically, A is a
positive operator valued measure (POVM). The average state
disturbance on the system is given as

�(�) = trHa
[U (� ⊗ ξ )U ∗] . (2)

Mathematically, � is a channel, i.e., a trace-preserving, com-
pletely positive map.
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FIG. 1. A measurement model describes a measurement of a
system via coupling it to an ancillary system. It gives a description
of both the state change �(�) and the effective measurement A on
a given input state �. This model exemplifies the compatibility of
channel � and observable A.

Physically speaking, the observable A is related to the
information that we can extract from the system’s initial state
�, while the channel � describes the average perturbation of
the state caused by the measurement process, i.e., �(�) is the
output state of the system when no postselection took place.

In what follows we are interested in the inverse problem:
given an observable A and a channel �, is there a measurement
model [specified by a quadruple (Ha,ξ,U,F)] such that A is
given by (1) and � is given by (2)? If that is the case, we say
that A and � are compatible; otherwise they are incompatible.

The compatibility relation can be concisely expressed in
terms of an instrument. An instrument is a map x �→ �x that
assigns a trace-non-increasing, completely positive map to
each measurement outcome, and such that the sum

∑
x �x is a

trace-preserving map. The instrument related to a measurement
model specified by a quadruple (Ha,ξ,U,F) is

�x(�) = trHa
[U (� ⊗ ξ )U ∗(1 ⊗ F(x))] . (3)

Conversely, for every instrument it is possible to find some
measurement model in this way, and one can even choose ξ to
be a pure state and F to be a projection valued measure [10].
The compatibility of a channel � and an observable A is hence
equivalent to the existence of an instrument x �→ �x such that∑

x

�x(�) = �(�) and tr[�x(�)] = tr[�A(x)] (4)

for all outcomes x and input states �.
It is reasonable to expect that simultaneous unitary trans-

formations of both the observable and the channel should not
change the compatibility relation of the two. This is formalized
in the proposition we present after first fixing some notation.
For a unitary operator V , we denote by Ṽ the corresponding
unitary channel, i.e.,

Ṽ (�) = V �V ∗ . (5)

The functional composition of two channels is denoted by ◦.
Hence, for two unitary operators V,W and a channel �, the
composition W̃ ◦ � ◦ Ṽ denotes the channel

� �→ W�(V �V ∗)W ∗. (6)

Further, if A is an observable, then we denote by V ∗AV the
observable consisting of operators V ∗A(x)V .

FIG. 2. The set CA is a left ideal of the set of all channels, using
some channel �′ after a channel � compatible with A produces a
new channel compatible with A (upper figure). The set CA always
contains completely depolarizing channels � (lower figure), for which
�(�) = �0 for some fixed state �0.

Proposition 1. For any unitary operators V and W , the
following holds: A channel � is compatible with an observable
A if and only if the channel W̃ ◦ � ◦ Ṽ is compatible with the
observable V ∗AV .

Proof. Suppose that x �→ �x is an instrument such that �

and A satisfy (4). In that case, the instrument x �→ �′
x , defined

as �′
x(�) = W�x(V �V ∗)W ∗, demonstrates the compatibility

of W̃ ◦ � ◦ Ṽ and V ∗AV . We can run the same argument for
the inverse operators V ∗ and W ∗; hence the converse holds
also. �

B. Channels compatible with given observable

Every observable A has a collection of compatible channels,
denoted byCA. The setCA specifies what kinds of perturbations
are possible when A is measured. There are many ways (by
means of measurement models, or instruments) to measure A,
and for this reason CA contains many channels. We will limit
CA to channels that have the same input and output spaces,
although generally one could allow arbitrary output spaces [5].
For each observable A, the set CA

(i) is convex, i.e., if �1 and �2 are compatible with A,
then also all their mixtures t�1 + (1 − t)�2, 0 < t < 1, are
compatible with A;

(ii) is a left ideal of the set of all channels (see Fig. 2), i.e.,
if � is compatible with A and �′ is any other channel, then
their concatenation �′ ◦ � is compatible with A as well;

(iii) contains all completely depolarizing channels (see
Fig. 2) � �→ �0, where �0 is an arbitrary fixed state;

(iv) contains the Lüders channel LA of A, which is defined
as LA(�) = ∑

x

√
A(x)�

√
A(x).

The following result, proved in [5], characterizes the set CA
completely.

Theorem 1. There is a channel �A : L(H) → L(K) and a
Hilbert space K such that every channel � compatible with
A is of the form � = �′ ◦ �A, where �′ : L(K) → L(H) is
some channel.
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The “mother channel” mentioned in Theorem 1 is given as

�A(�) =
∑

x

Â(x)T �T ∗Â(x), (7)

where (K,Â,T ) is some minimal Naimark dilation of A, i.e.,
T : H → K is an isometry, Â is a projection-valued measure
(PVM) on K, and A(x) = T ∗Â(x)T for all x ∈ �A. In a finite-
dimensional case we can write a concrete form of the minimal
Naimark dilation as follows. We fix a spectral decomposition
for each operator A(x),

A(x) =
rx∑

k=1

|φx,k〉〈φx,k|, (8)

where rx is the rank of A(x). We then choose K = Cr1 ⊕ · · · ⊕
Crn and we fix orthonormal bases {ex,k}rx

k=1 for each Crx . We
define a linear map T : H → K as T ψ = ∑

x,k 〈φx,k | ψ 〉ex,k .
Its adjoint T ∗ : K → H is given as T ∗ex,k = φx,k . The sharp
observable Â that dilates A is

Â(x) =
rx∑

k=1

|ex,k〉〈ex,k|, (9)

and hence we obtain

�A(�) =
∑

x

rx∑
k,


〈φx,k | �φx,
 〉|ex,k〉〈ex,
|. (10)

By Theorem 1 any � ∈ CA can thus be written as

�(�) =
∑

x

rx∑
k,


〈φx,k | �φx,
 〉�′(|ex,k〉〈ex,
|) (11)

for some channel �′ : L(K) → L(H).

C. Observables compatible with a given channel

Let us look at the converse to the previous consideration;
we fix a channel � and denote by O� the set of all observables
compatible with �. Also the set O� has some elementary
properties, namely,

(i) O� is convex, i.e., if A1 and A2 are compatible with
�, then also all their mixtures tA1 + (1 − t)A2, 0 < t < 1 are
compatible with �,

(ii) O� is closed under postprocessing, i.e., if A ∈ O�,
then also μ ◦ A ∈ O� for all postprocessings μ. A postpro-
cessing μ is given by the formula

(μ ◦ A)(x) =
∑

y

μxyA(y), (12)

where μxy is a stochastic matrix,
(iii) O� contains all trivial observables T, T(x) = p(x)1

for some probability distribution p.
The structure of O� can be inferred from the results

presented in [11]. However, we find it useful to give a
self-contained derivation of the characterization of O�. To
formulate it, we recall that any channel � : L(H) → L(H)
has a Stinespring dilation (K,V ), where V : H → H ⊗ K
is an isometry and �(�) = trK[V �V ∗]. The dilation also
gives another channel �̄ : L(H) → L(K) by formula �̄(�) =
trH[V �V ∗]. This channel is called a conjugate channel (or

FIG. 3. Every channel � has a Stinespring dilation expanding the
Hilbert space H to H ⊗ K by using an isometry V . In this way we
can define the conjugate channel �̄ of �.

complementary channel) of � (see Fig. 3). We further say that
a conjugate channel of � is minimal if it is related to a minimal
Stinespring dilation of �.

Theorem 2. Let � : L(H) → L(H) be a channel. Observ-
able A is compatible with channel � if and only if the
observable can be written in the form A(x) = �̄∗(A′(x)), where
�̄∗ : L(K) �→ L(H) is a fixed (minimal) conjugate channel of
� in the Heisenberg picture and A′ is some observable on K.

Proof. Assume that A is compatible with �. By the defini-
tion, this means that the conditions (1) and (2) hold for some
Ha, U, ξ , and F, where ξ is a pure state, i.e., ξ = |φ〉〈φ|. We
then define an operator W : H → H ⊗ Ha as

Wψ = U (ψ ⊗ φ) . (13)

This operator satisfies

W ∗W = 1H and W�W ∗ = U (� ⊗ ξ )U ∗ (14)

for all states � onH. We conclude that (Ha,W ) is a Stinespring
dilation of � and

A(x) = W ∗(1H ⊗ F(x))W . (15)

Let us then fix the minimal Stinespring dilation (K,V ) for the
channel �. From the minimality it follows that W = (1H ⊗
V ′)V , where V ′ : K → Ha is an isometry. Therefore,

A(x) = V ∗(1H ⊗ V ′∗F(x)V ′)V . (16)

Denoting A′(x) = V ′∗F(x)V we obtain the claimed form.
Conversely, assume that A′ is some observable on K and

A(x) = �̄∗(A′(x)) for some (minimal) Stinespring dilation
(K,V ) of �. Then we define an instrument

�x(�) = trK[V �V ∗(1H ⊗ A′(x))] . (17)

This instrument fulfills the conditions in (4), hence showing
that A and � are compatible. �

Let us note that the condition on the minimality of the
dilation in Theorem 2 is not necessary. However, we found it
convenient to use a concrete form of the minimal Stinespring
dilation (K,V ) of �. In particular, fix an orthonormal basis
{ek}Nk=1 for K and for each k we define an operator Mk ∈ L(H)
via

〈 ψ | Mkϕ 〉 = 〈 ψ ⊗ ek | V ϕ 〉, ψ,ϕ ∈ H . (18)
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Then the operators Mk form a minimal set of Kraus operators
for the channel � and we obtain

A(x) =
∑
k,l

〈 ek | A′(x)el 〉M∗
k Ml. (19)

Here again A′ is some observable on K.

III. INCOMPATIBILITY OF UNBIASED QUBIT
OBSERVABLES AND PAULI CHANNELS

A. Unbiased qubit observables and Pauli channels

An observable A, acting on a Hilbert space H, is called
unbiased if it maps the maximally mixed state 1

d
1 to the

uniform probability distribution of outcomes x, i.e., tr[A(x)] =
d
n

, where n is the number of outcomes and d is the dimension of
H. In the case of qubit observables the unbiasedness condition
implies that effects have the form A(x) = 1

n
[1 + a(x) · σ ],

where a(x) ∈ R3 and σ = (σ1,σ2,σ3) is the vector of Pauli
operators. In what follows we will use the notation σ0 = 1.

In particular, for binary (i.e., two outcome) qubit observ-
ables the unbiasedness condition means that observables are
of the form

As,n(±) = 1
2 (1 ± sn · σ ) (20)

for s ∈ [0,1] and n ∈ R3, ‖n‖ = 1. We will also use the nota-
tion Xs , Ys , and Zs for observables As,n with n = (1,0,0), n =
(0,1,0), and n = (0,0,1), respectively.

We notice that an observable At,n is a postprocessing of
another observable As,n if and only if t � s. Namely, if s �= 0,
then for any t ∈ [0,1] the operator At,n(+) can be written as a
linear combination of As,n(+) and As,n(−) in a unique way:

At,n(+) = s + t

2s
As,n(+) + s − t

2s
As,n(−) . (21)

This is a valid postprocessing if and only if

0 � (s ± t)/2s � 1, (22)

which is equivalent to t � s. We can therefore interpret the
parameter s as the degree of noise inherent in As,n.

Let us note that the set of effects As,n(±) (thus also the set
of unbiased binary qubit observables) is convex. Indeed, the
effects As,n(±) are positive operators of unit trace; hence, they
formally correspond to density operators and as such, can be
visualized as points inside the Bloch ball. An unbiased binary
qubit observable thus corresponds to a pair of points inside the
Bloch ball, and the points are symmetric with respect to the
origin.

Using the analogy with observables, we say that a channel
� is unbiased if it keeps the maximally mixed state invariant,
i.e., �( 1

d
1) = 1

d
1. This property is obviously equivalent with

unitality; thus, the notion of unbiased channels is just a
synonym for unital channels. In the case of qubits it is further
known that the set of unital channels coincides with the set of
random unitary channels [12,13]. A prominent class of random
unitary qubit channels are the so-called Pauli channels, and in
the following we shall concentrate on that class.

FIG. 4. Pauli channels can be parametrized by the points inside
the tetrahedron. The identity channel corresponds to the origin. The
three Pauli unitaries correspond to the remaining three vertices of the
tetrahedron. The edges correspond to Pauli channels having two of
the probabilities zero. Special classes of Pauli channels are: (1) the
class of partially depolarizing channels (dot-dashed line), including
the totally depolarizing channel (solid point) and the quantum NOT
(hollow point); (2) the class of measure-and-prepare channels (dashed
line), here shown for measurements in the z direction.

A Pauli channel  p is a qubit channel of the form

 p(�) =
3∑

j=0

pj σj�σj , (23)

where p ∈ R4 is a probability vector, i.e., 0 � pj � 1 and∑3
j=0 pj = 1. Due to the normalization of p, a Pauli channel

 p is determined already by three of the components, e.g.,
p1,p2,p3. We can therefore visualize the set of Pauli channels
as a tetrahedron in R3; see Fig. 4. We denote by � the
completely depolarizing channel on the maximally mixed state
1
21, and it corresponds to the probability vector p = ( 1

4 , 1
4 , 1

4 , 1
4 ).

B. Compatibility condition

Let A be a qubit observable compatible with a Pauli channel
 p. By concatenating  p with a Pauli unitary channel we
generate three new Pauli channels that are compatible with
A. Using Proposition 1 with W = σi and U = 1 we conclude
the following:

Proposition 2. Let A be a qubit observable compatible
with a Pauli channel  p, p = (p0,p1,p2,p3). Then A is also
compatible with Pauli channels with the following probability
vectors:

(i) (p1,p0,p3,p2),
(ii) (p2,p3,p0,p1),
(iii) (p3,p2,p1,p0).
In conclusion, for a fixed qubit observable A, the probability

vectors p = (p0,p1,p2,p3) that correspond to Pauli channels
 p compatible with the observable form a convex region
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FIG. 5. Compatibility region for Pauli channel  p and observable
As,n is in general described as an ellipsoid for allowed Bloch vectors
of the observable (left figure). In specific cases it collapses to a line
(right figure), as e.g., in the case of phase-damping channels.

inside of the tetrahedron in Fig. 4, and this region has the
permutational symmetry described in Proposition 2.

Let then � be a qubit channel compatible with an unbiased
qubit observable As,n. As we have seen earlier, any observable
At,n with t � s is a postprocessing of As,n. It follows that
also At,n is compatible with �. For any unit vector n, it thus
makes sense to seek for the largest s such that As,n and � are
compatible.

The next result gives a sufficient and necessary condition for
an unbiased binary qubit observable As,n and Pauli channel  p
to be (in)compatible. The compatibility properties of a Pauli
channel  p are determined by the vector p, and to formulate
the condition we denote

p±[1] := 2(
√

p0p1 ± √
p2p3),

p±[2] := 2(
√

p0p2 ± √
p1p3), (24)

p±[3] := 2(
√

p0p3 ± √
p1p2).

We observe that |p−[j ]| � p+[j ] for j = 1,2,3. Furthermore
all pj [+] are invariant under the permutations described in
Proposition 2.

Theorem 3. An unbiased binary qubit observable As,n and
a Pauli channel  p are compatible if and only if

s2n2
1

p+[1]2
+ s2n2

2

p+[2]2
+ s2n2

3

p+[3]2
� 1 . (25)

This inequality is understood in a way that if p+[j ] = 0, then
necessarily the whole term vanishes.

Before we present the proof of this statement, let us discuss
the content of inequality (25). First, suppose that a Pauli
channel  p is fixed and that p+[j ] �= 0 for every j = 1,2,3.
For a vector sn, the inequality (25) is a solid ellipsoid (see
Fig. 5). Second, for at least one of p+[j ] to be zero, we need to
have at least two of the components of p zero, which always
makes at least two of p+[j ] zero. In such cases the inequality
(25) does not represent a solid ellipsoid but only a line in
one of the canonical directions. In the most extreme case we
have p+[j ] = 0 for all j = 1,2,3, which occurs when only
one of the pj ’s is nonzero. Then the ellipsoid collapses to a
point sn = 0. This equation is satisfied only when s = 0, and
this is consistent with our earlier discussion that only a trivial
observable is compatible with a unitary channel.

FIG. 6. Compatibility region for Pauli channel  p and observable
Xs with s = 0.8 for allowed p vectors of the Pauli channel. Here,
unlike in Fig. 4, the region of vectors p is depicted as a simplex. The
darkened areas are parts laying on the faces of the simplex, i.e., when
(at least) one of the pj ’s equals zero.

While for constant Pauli channel the set of compatible
unbiased qubit observables is rather simply visualized as an
ellipsoid, the region of Pauli channels compatible with some
given unbiased qubit observable that we get from (25) is
less illustrative. Clearly, for trivial observable (s = 0) the
compatibility region is the whole set of Pauli channels (up
to unitary rotations forming a tetrahedron). For sharp unbiased
observables (s = 1) the compatibility region contains only one
element—the completely depolarizing channel (p0 = p1 =
p2 = p3 = 1/4). For an intermediate value of s = 0.8 the
compatibility region within the Pauli channels is illustrated
in Fig. 6.

C. Proof of Theorem 3

Let  p be a Pauli channel. In the following we will assume
that pj �= 0 for every j = 0, . . . ,3. The required modifications
to the proof in the other cases shall be obvious.

The minimal set of Kraus operators for  p is given as Mk =√
pkσk, k = 0,1,2,3. Using Theorem 2 and the formula (19)

derived from it, we obtain observables compatible with  p by
inserting various choices for A′, which is an observable acting
on C4.

We fix a unit vector n and we seek for allowed s such that
As,n and  p are compatible. It is useful to define a vector
n′ ∈ R3 as

n′
j = nj

p+[j ]

(
n2

1

p+[1]2
+ n2

2

p+[2]2
+ n2

3

p+[3]2

)−1/2

, (26)

and then an operator A′(+) as

A′(+) =1

2

⎛
⎜⎜⎜⎝

1 n′
1 n′

2 n′
3

n′
1 1 −in′

3 in′
2

n′
2 in′

3 1 −in′
1

n′
3 −in′

2 in′
1 1

⎞
⎟⎟⎟⎠, (27)
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and set A′(−) = 1 − A′(+). Since n′ is a unit vector, one can
verify that A′(±) are projections and hence form a binary
observable. Applying Eq. (19) we then get∑

k,l

〈 ek | A′(x)el 〉√pkplσkσl

= 1

2

⎡
⎣1 +

(
n2

1

p+[1]2
+ n2

2

p+[2]2
+ n2

3

p+[3]2

)− 1
2

(n · σ )

⎤
⎦.

(28)

This means that As,n and  p are compatible for

s = smax ≡
(

n2
1

p+[1]2
+ n2

2

p+[2]2
+ n2

3

p+[3]2

)− 1
2
, (29)

and hence also for any value s � smax. We have thus seen that
the inequality (25) is a sufficient condition for the compatibility
of As,n and  p.

In order to prove that the inequality (25) is also necessary
for the compatibility of As,n and  p, we will formulate the
problem in terms of a semidefinite program (SDP). Any
feasible instance of primal SDP problem will give us a lower
bound on the largest possible s, while any feasible instance of
the dual SDP problem will give us an upper bound on the largest
possible s. If both bounds coincide, we have found the optimal
solution with the largest possible s. And this will be indeed the
case.

1. Primal SDP problem

For given vectors n and p, we want to find the largest s such
that As,n and  p are compatible. Since As,n(−) = 1 − As,n(+),
we can formulate the question in terms of the effect As,n(+)
only. Further, we will now understand n and s as parameters
of the SDP problem and will omit the subscripts from now
on. We will thus denote A ≡ As,n(+), and we observe that
s = tr[A(n · σ )].

In summary, we are trying to find the maximum of
tr[A(n · σ )] over all effects A such that the corresponding
binary observable As,n is compatible with  p. Using Theorem
2, this is equivalent to

max
1�A′�0

tr[
∗
p(A′)(n · σ )], (30)

where A′ is an effect on the Hilbert space defined by the
minimal conjugate channel 

∗
p of  p. We take the conjugate

channel that is related to the Kraus operators Mk = √
pkσk of

 p and denote �i =  p(σi). Then

�i =
3∑

j,k,n=0

√
pkpntr[σkσiσn]|ek〉〈en|, (31)

and we obtain

�1 = 2

⎛
⎜⎝

0
√

p0p1 0 0√
p0p1 0 0 0
0 0 0 −i

√
p2p3

0 0 i
√

p2p3 0

⎞
⎟⎠, (32)

�2 = 2

⎛
⎜⎝

0 0
√

p0p2 0
0 0 0 i

√
p1p3√

p0p2 0 0 0
0 −i

√
p1p3 0 0

⎞
⎟⎠, (33)

�3 = 2

⎛
⎜⎝

0 0 0
√

p0p3

0 0 −i
√

p1p2 0
0 i

√
p1p2 0 0√

p0p3 0 0 0

⎞
⎟⎠. (34)

We can finally write the primal SDP problem as

sP := max
A′

tr[A′(n · �)] (35)

subject to − A′ � 0,

A′ − 1 � 0,

tr[A′(n1 · �)] = 0,

tr[A′(n2 · �)] = 0.

The vectors n1,2 are orthogonal to n and linearly independent.
The last two constraints ensure that the resulting effect A is
indeed in the direction defined by n.

The solution given in (27) is a feasible solution for this
primal SDP problem and it thus means that sP � smax, where
smax is given in (29).

2. Dual SDP problem

The previous convex optimization problem can be trans-
formed into a dual problem by standard methods [14] (see
Appendix):

sD := min
λ, m

tr[λ] (36)

subject to λ � 0,

λ � m · �,

m · n = 1.

It is always true that sD � sP. Since we have already shown
that sP � smax, the remaining thing is to show that smax � sD.
We do this by providing a corresponding feasible solution for
the dual SDP problem.

We denote by Q the diagonal matrix with entries Qij =
δijpi[+]. With this notation the vector n′ in (26) can be
concisely written as n′ = Q−1n/‖Q−1n‖. We then set

m = Q−2n
‖Q−1n‖2

, λ = A′( m · �)A′, (37)

where A′ = A′(+) is given in (27). This choice of m fulfills
the third dual condition and, moreover, we have

tr[λ] = tr[A′( m · �)A′] = tr[A′( m · �)]

= tr[A′(n · �)] = smax, (38)

where we first used the definition of λ, then in the next equality
we used that (A′)2 = A′, and in the third equality we used the
fact that the trace for components of m orthogonal to n is zero.

It remains to show that λ � 0 and λ � m · �. For this we
will rewrite λ in the basis of eigenvectors of A′. The operator
A′ is a two-dimensional projection, and hence it has doubly
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degenerate eigenvalues 1 and 0. The eigenvalue 1 eigenvectors
can be chosen to be

v± = 1

2
√

1 ± n′
1

⎛
⎜⎜⎜⎝

n′
2 ± in′

3

∓n′
2 − in′

3

1 ± n′
1

±i(1 ± n′
1)

⎞
⎟⎟⎟⎠. (39)

The eigenvalue 0 eigenvectors can be chosen to be

u± = 1

2
√

1 ± n′
1

⎛
⎜⎜⎜⎝

−n′
2 ± in′

3

∓n′
2 + in′

3

1 ± n′
1

∓i(1 ± n′
1)

⎞
⎟⎟⎟⎠. (40)

Note that these eigenvectors are valid when n′
1 �= ±1; the

excluded points have a different eigenbasis, however the re-
mainder of the solution is analogous to what follows. The
eigenbasis (v+,v−,u+,u−) is orthonormal and the operator
m · � in this basis has a block-diagonal form,

m · � =
(

M 0
0 −M∗

)
, (41)

where

M = s

2
(1 + g · σ ) (42)

is a qubit operator with

g = 1√
1 − n′2

1

⎛
⎜⎜⎜⎝

p−[2]
p+[2]n

′2
2 − p−[3]

p+[3]n
′2
3(

p−[2]
p+[2] + p−[3]

p+[3]

)
n′

2n
′
3

−n′
1

√
1 − n′2

1
p−[1]
p+[1]

⎞
⎟⎟⎟⎠. (43)

Hence we have

λ =
(

M 0
0 0

)
, λ − m · � =

(
0 0
0 M∗

)
. (44)

Therefore we need to check only the positivity of M . The
positivity of M is in this case equivalent to the condition
‖g‖ � 1. Using the fact that (p−[j ]/p+[j ])2 � 1, this is easily
checked.

To sum up, we have shown that our choices for primary
and dual variables are feasible solutions that lead to the same
values. Hence, this choice is optimal and the boundary given
by smax given in (29) is not only sufficient but also necessary.

IV. EXAMPLES

We will now demonstrate the use of the presented compat-
ibility condition by looking at some concrete classes of qubit
channels.

A. Partially depolarizing channels

A partially depolarizing channel is an example of a Pauli
channel. It is constructed as a mixture of the identity channel
and the completely depolarizing channel � to the maximally
mixed state 1

21. As the mixing weight can vary, we get a one-
parameter class of channels

�p(�) = (1 − 4p)� + 2p1, (45)

where p ∈ [0,1/4]. The channel �p is, in fact, a Pauli channel
with the probability vector (1 − 3p,p,p,p), see also Fig. 4.
Actually, the map �p defined in (45) is a valid channel for
any p ∈ [0,1/3], although the interpretation as a partially
depolarizing channel holds only for p ∈ [0,1/4]. Further, we
can start from any unitary Pauli channel instead of the identity
channel; however, in that case the depolarization is with respect
to a different basis.

For a channel �p we have

p+[j ] = 2[p +
√

p(1 − 3p)] (46)

for every j = 1,2,3. From Theorem 3 we conclude that the set
of unbiased qubit observables compatible with �p corresponds
to the shrunken Bloch ball with the radius 2(p + √

p(1 − 3p)).
The identity channel id = �0 shrinks the compatibility Bloch
ball region to the central point, while the completely depolar-
izing channel � = �1/4 keeps the Bloch ball invariant. This is
consistent with our earlier observations.

An interesting special case is the universal quantum NOT
channel, which transforms any qubit input state to as close as
possible to its orthogonal complement [15]. This operation
cannot be perfect for any input and for general input is
described by a Pauli channel falling under the case presented
in this section, where p = 1/3; in this case s � 2/3.

B. Phase-damping channels and Lüder’s channels

A phase-damping channel is a map that damps the off-
diagonal elements of a density matrix in a specific basis.
We fix the basis to be the eigenbasis of σ3. The action of
a phase-damping channel �p is then such that in the σ3

eigenbasis the density matrices retain their diagonals, but
the off-diagonal elements acquire a factor of 2p − 1. Thus,
we have a one-parameter class of Pauli channels �p and
the corresponding probability vector is (p,0,0,1 − p). For
p ∈ [1/2,1] the action of the channel describes pure damping,
while for p ∈ [0,1/2] the damping is complemented with
the inversion of the off-diagonal elements. The extreme case
p = 0 corresponds to the inversion in the xy plane without any
damping.

For a phase-damping channel �p we have p+[1] =
p+[2] = 0 and p+[3] = 2

√
p(1 − p). Therefore, using The-

orem 3, we conclude that an observable As,n is compatible
with �p if and only if n = (0,0,1) and s � 2

√
p(1 − p).

Specific cases are the identity channel (p = 1) and the NOT
channel (p = 0) for which s = 0. On the other end lies the case
of p = 1/2, which is the completely phase-damping channel
that zeros all off-diagonal elements and conserves the diagonal
which contains all the information about z direction; this means
that all z measurements are compatible with this channel (s �
1)—see Fig. 5 on the right for this example.

An interesting class of channels falling into this category
are Lüder’s channels of Zt , given as

LZt
(�) =

√
Zt (+)�

√
Zt (+) +

√
Zt (−)�

√
Zt (−) . (47)

This is a phase damping channel �p in the σ3-eigenbasis with
p = 1

2 (
√

1 − t2 + 1). One direct consequence is hence that an
observable Xs is compatible with the Lüder’s channelLZt

if and
only if s = 0. This result stands in contrast to the compatibility
at the level of observables, as Xs and Zt are compatible if
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and only if s2 + t2 � 1 [16]. This means that if we want to
implement a joint measurement of Xs and Zt with s,t �= 0, the
joint measurement process cannot contain a Lüders channel
LZt

or LXs
. We remark that it has been earlier shown that a

joint measurement process cannot contain both LZt
and LXs

[17]. Our new result hence strengthens that observation.

C. Measure-and-prepare channels

Let us consider the class of measure-and-prepare channels
related to observables Zt , 0 � t � 1. For each 0 � t � 1, we
define a map �t as

�t (�) = tr[�Zt (+)]Z1(+) + tr[�Zt (−)]Z1(−) . (48)

This is a measure-and-prepare channel, which can be imple-
mented by first measuring the observable Zt and then preparing
either pure state Z1(+) or Z1(−), depending on the outcome
of the measurement. It is easy to see that �t is unital for
any t . Also, this channel is a composition of a partially
depolarizing channel and a completely phase-damping channel
in z direction. Overall, �t is a Pauli channel defined by the
probability vector

p = 1
4 (1 + t,1 − t,1 − t,1 + t). (49)

See also Fig. 4.
When considering the compatibility of �t with an observ-

able As,n, Theorem 3 gives

n2
1 + n2

2

1 − t2
+ n2

3 � 1

s2
. (50)

After some manipulation we get

s2 + t2 − s2t2 cos2 ϑ � 1, (51)

where ϑ is the angle between the Bloch vector n and the z axis.
This condition is equivalent to the compatibility between the
observables given in [16]. Specifically, for observables Xs and
Zt , the previous condition on compatibility gives

s2 + t2 � 1 . (52)

This is what one would have expected due to the physical nature
of �t .

V. SUMMARY

We addressed the question of compatibility of unbiased
qubit channels and observables. Although our analysis was
made explicitly for Pauli channels, i.e., random mixtures of
Pauli unitaries, the conclusions hold for a more general case as
well—without lost of generality [12], any qubit unital channel
� can be expressed as a convex combination of (at most) four
orthogonal unitary channels induced by unitary operatorsUj =
UσjV

∗, where U,V are suitable unitary operators. It follows
that tr[U ∗

j Uk] = 0 for j �= k and �(�) = U p[V ∗�V ]U ∗.
We have derived a compatibility formula [Eq. (19)] for the

case of unbiased qubit channels and observables. We have
shown (Theorem 3) that for a given unital qubit channel the set
of compatible unbiased observables forms an ellipsoid (see
Fig. 5) naturally embedded inside the Bloch sphere represent-
ing the set of binary unbiased observables, while for the inverse

problem the region of unbiased channels compatible with a
given unbiased observable is less illustrative (see Fig. 6).

Let us stress that concerning the observable compatibility
by Proposition 1, the rotation induced by U is irrelevant.
Therefore, the ellipsoid for � is connected to the ellipsoid
for the Pauli channels  p by the unitary rotation V only. For a
given qubit unital channel the sharpest (least noisy) compatible
observable (quantified by parameter s) is oriented along the
main axis of the ellipsoid of compatible observables with a
given channel �.

Because of the mentioned unitary freedom, the least noisy
compatible channel is not unique. However, in accordance with
noise-disturbance qualitative tradeoffs it follows that the more
noisy the fixed observable is, the less noisy the compatible
channel can be.
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APPENDIX: THE DUAL SDP PROBLEM

Let us recall the primal problem

sP := max
A′

tr[A′(n · �)] (A1)

subject to − A′ � 0,

A′ − 1 � 0,

tr[A′( n1 · �)] = 0,

tr[A′( n2 · �)] = 0.

.

The Lagrangian is then

L(A′,λ1,λ2,μ,ν)

= tr[A′(−(n+ μn1 + νn2) · � − λ1 + λ2)] − tr[λ2], (A2)

where λi � 0. The Lagrange dual function g(λ1,λ2,μ,ν) is
then infimum over A′ of the Lagrangian. Since it is linear in A′
we get that

g(λ1,λ2,μ,ν) =
⎧⎨
⎩

−tr[λ2] −(n + μn1 + νn2) · �
−λ1 + λ2 = 0

−∞ otherwise.
(A3)

Thus the function g is nontrivial only when

λ2 − (n + μn1 + νn2) · � = λ1 � 0 . (A4)

Let n + μn1 + νn2 = m. Note that m · n = 1. We can include
this condition into the constraints of the dual problem, which
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is now stated as

sD : = max
λ1,λ2, m

(−tr[λ2])

subject to λ2 � 0,

λ2 − m · � = λ1,

λ1 � 0

m · n = 1, (A5)

or in its simplified form in (36).
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