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Abstract Can one considerably shorten a proof for a quantum problem by using a
protocol with a constant number of unentangled provers? We consider a frustration-
free variant of the QCMA-complete ground state connectivity (GSCON) problem for
a system of size n with a proof of superlinear size. We show that we can shorten this
proof in QMA(2): There exists a two-copy, unentangled proof with length of order n,
up to logarithmic factors, while the completeness–soundness gap of the new protocol
becomes a small inverse polynomial in n.

Keywords Quantum complexity · QMA(2) · Unentanglement · Short proofs · Ground
state connectivity problem (GSCON)

1 Introduction: unentangled provers and short proofs

While entanglement is essential for quantum algorithms, unentanglement can also be
an interesting resource. In quantum complexity, such a guarantee about a purported
proof can significantly improve the power of a verifier. Blier and Tapp [3] discovered
that two unentangled copies of a short witness of the type
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1√
n

n∑

i=1

|i〉|ci 〉, (1)

can be used to prove the existence of a solution for the NP-complete graph coloring
problem. All one needs is ci to be the color of the vertex i in the solution. Listing the
color for each vertex would normally take space on the order of n, while the two-copy,
unentangled quantum proof takes space only 2 + log n, as we need 2 qubits to encode
the three possible colors. We (the verifier) can check this proof as follows. First, let
us measure |i〉|ci 〉 from one witness and |i ′〉|ci ′ 〉 from the other witness. Sometimes,
we get results for neighboring vertices i, i ′, so we can check if ci �= ci ′ , verifying the
validity of the coloring. However, we also need to thwart cheating provers by a swap
test [5] and a color-measuring test checking the consistency of the two copies of the
witness and well-defined vertex colors, and another to make sure the superposition
contains info about all vertices. Only when we are sure that the two witnesses are
unentangled, these tests are sound, while an entangled state could easily fool the
swap test.

The new quantum proofs are exponentially shorter, so one might think we could
use a quantum computer to quickly find them (in BQP). However, there is no straight-
forward way for this, e.g., using variants of Grover’s search, as one needs to keep the
proofs unentangled. Therefore, this result does not imply anything about the contain-
ment of NP in BQP. On the other hand, it is connected to interesting questions about
the nonexistence of perfect disentanglers [1] or the strong NP-hardness of separability
testing for density matrices [10,12,16].

The main price we pay for shortening the proof in [3] is that the completeness–
soundness gap is small—the probability of detecting cheating provers and thus the gap
is �(n−6). However, there are also independent results that analyze the possible trade-
off between the proof length and the (completeness–soundness) gap. The protocol of
Aaronson et al. [1] looks at the balanced 2-out-of-4-SAT problem, relies on Dinur’s
proof of the PCP theorem [8], and produces constant soundness and perfect complete-
ness, while using Õ

(√
n
)

unentangled copies of the proof. Also, instead of (1), it uses
a phase encoding |ψ〉 = 1√

2n
∑

j (−1)c j | j〉 of the witness. Next, Beigi [2] also has

a protocol for two provers sending O(log n) qubits, with gap �(n−3−ε). Meanwhile,
the product test of Harrow and Montanaro [13] applied to [1] has led to a two-prover
protocol sending Õ(

√
n) qubits with a constant gap. Investigating unentanglement

further, Chen and Drucker [6] found a protocol for 2-out-of-4-SAT using unentangled
measurements with Õ(

√
n) provers sending O(log n) qubits. Next, Le Gall et al. [9]

gave an improved protocol for 3-SAT with only two log-size, unentangled quantum
proofs and a �(1/n polylog(n)) completeness–soundness gap. Chiesa and Forbes [7]
provided a tighter soundness analysis leading to �(n−2) completeness–soundness
gap for [3] and a smooth trade-off between K provers and a gap �(K2n−1) for [6]. A
similar gap improvement for [3] was proved by Nishimura and Nakagawa in [17].

These results mainly concern short proofs of classical problems. Inspired by
them, we choose to look at a naturally quantum problem, ground state connectiv-
ity (GSCON), and ask whether we could rely on unentanglement to make its proof
shorter. This is indeed what we find, for a particular QCMA-complete variant of
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GSCON. However, our result has two shortcomings. First, the shortening is signif-
icant only if the original proof is superlinear. Second, the completeness–soundness
gap becomes very small. It should thus serve as a proof of principle that opens the
door to other more effective unentanglement-based constructions of proof systems for
quantum problems.

We call for a general investigation of when and how much proofs for quantum
complexity classes could be shortened, when relying on unentanglement. Note that
the relationship of the class QMA(2) to classes without unentanglement is not fully
understood yet. One of the things we know is that if the verifier could only perform
one-way LOCC measurements on a constant number of unentangled proofs, his power
would diminish, in particular QMALOCC

�(n) (2)c,s ⊆ QMAO(�2(n)ε−2),c,s+ε , as shown by
Brandão et al. [4]. On the other hand, adding the unentanglement requirement does not
allow one to freely shorten proofs of QMA. Unless a subexponential-time quantum
algorithm for 3-SAT exists, the size of a QMA witness cannot be shortened to less
than its squareroot in QMA(2) with a constant completeness–soundness gap, i.e.,
QMAn(2) � QMAo(n2).

Let us now present our results. We start with a review of the GSCON problem in
Sect. 2 and present a high-level view of our protocol, and we state the main theorem
in Sect. 3. In Sect. 4.1, we give the details of the proof verification procedure, and
we prove our main result in Sects. 4.2 (soundness), 4.3 (completeness), and 4.4 (gap
lower bound).

2 The ground state connectivity problem (GSCON)

Let us start with the definition of the QCMA-complete ground state connectivity
(GSCON) problem [11] about the possibility of traversal between two low-energy
states for a local Hamiltonian, using local unitary transformations, while remaining in
a low-energy sector.

Definition 1 (The ground state connectivity (GSCCON) problem [11]) Ground state
connectivity (GSCON) with parameters H, n, k, R, η1, η2, η3, η4,�,m,Uψ,Uφ is a
promise problem defined as follows. Consider

1. a k-local Hamiltonian H = ∑R
i Hi acting on n qubits with R terms Hi ∈

Herm((C2)⊗k) satisfying ||Hi ||∞ ≤ 1,
2. real numbers η1, η2, η3, η4,� ∈ R, and an integer m ≥ 0, such that η2 − η1 ≥ �

and η4 − η3 ≥ �,
3. descriptions of polynomial size quantum circuits Uψ and Uφ generating the

starting and target states |ψ〉 and |φ〉 from the initial state |0〉⊗n , satisfying
〈ψ |H |ψ〉 ≤ η1 and 〈φ|H |φ〉 ≤ η1, respectively.

Decide which of the two cases is true:

YES: There exists a sequence of 1 and 2 qubit1 unitaries {Ui }mi=1 such that

1 In general, this could be also l-local unitaries; we choose l = 2. This variant of the problem is still QCMA
complete [11].
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(a) intermediate states remain in low-energy space, i.e., for all i ∈ [m] and inter-
mediate states |ψi 〉 := Ui · · ·U2U1|ψ〉, one has 〈ψi |H |ψi 〉 ≤ η1, and

(b) the final state is close to the target state, i.e., ‖Um · · ·U1|ψ〉 − |φ〉‖2 ≤ η3.
NO: For all 1 and 2 qubit sequences of unitaries {Ui }mi=1, either

(a) some intermediate state has a high energy, i.e., there exists an i ∈ [m], for
which the intermediate state |ψi 〉 := Ui · · ·U2U1|ψ〉 obeys 〈ψi |H |ψi 〉 ≥ η2,
or

(b) the final state is far from the target state, i.e., ‖Um · · ·U1|ψ〉 − |φ〉‖2 ≥ η4.

In this paper, we consider a specific version that we call frustration-free GSCON.
It has an at least inverse-polynomial promise gap � = �(1/poly(n)) and requires a
positive semidefinite, frustration-free Hamiltonian, with η1 = 0. We choose this for
a technical reason, as we are presently unable to devise a strong enough low-energy
testing procedure for the witnesses. However, this variant of GSCON is still QCMA
complete.

We know that in general, GSCON (deciding whether a low-energy state |ψ〉 can be
transformed to a low-energy state |φ〉 using a sequence ofm = poly(n) (2-)local gates,
while remaining a low-energy state) is a QCMA complete problem. The frustration-
free GSCON variant still belongs to QCMA, as the local transformations can be easily
communicated classically, and their properties tested on a quantum computer. On the
other hand, it is QCMA1 hard, as it also has instances that can be constructed (as in
[11]) for a Hamiltonian related to the verification procedure for aQCMA1 proof—with
perfect completeness. However, thanks to QCMA = QCMA1 [14], this must also be
QCMA hard. Therefore, frustration-free GSCON is also QCMA complete.

We assume the circuitsUψ andUφ are given in terms of 1- and 2-qubit unitary gates.
All input parameters are specified with rational entries, each using O(poly(n)) bits of
precision. We expect the same for the gates Ui that are chosen out of G = poly(n)

possible gates (including the target qubit specification), encoded as bit strings of length
at most O(log n), with polynomial-precision entries.

The standard proof for GSCON is the list of unitary transformations that generate
the low-energy states traversing from |ψ〉 to |φ〉. In the next section, we devise a
different type of proof involving superpositions.

For completeness, let us also recall the definitions of the complexity classes
QCMA,QCMA1,QMA, QMA(k), and QMAm(k)c,s . These classes of problems have
witnesses easily verifiable (in polynomial time) on a quantum computer; each class
has a different requirement on the witness. First, Quantum Classical Merlin Arthur
(QCMA), also called MQA (with a classical Merlin and Quantum Arthur) [18], works
with a classical witness.

Definition 2 (QCMA) A promise problem A = (Ayes, Ano) is in QCMA, if there
exists a quantum algorithm Q, such that for all inputs x ∈ {0, 1}n :

1. (Completeness) If x ∈ Ayes, there exists a polynomial size classical witness w ∈
{0, 1}poly(n), such that Q accepts |x〉 ⊗ |w〉 with probability at least 2/3.

2. (Soundness) If x ∈ Ano, for all polynomial size classical witness w, Q accepts
with probability at most 1/3.
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Meanwhile, when x ∈ Ayes for a problem inQCMA1, one must be able to accept some
good witness perfectly, with probability exactly 1. Next, the class Quantum Merlin
Arthur (QMA) works with a quantum witness and a quantum verification circuit for
Arthur. Finally,QMA(k) asks for a collection of quantum witnesses, which are guaran-
teed to be unentangled. Moreover, we useQMAm(k)c,s to denote aQMA(k) class with
m-qubit unentangled witnesses (not necessarily polynomial in the input size n), com-
pleteness c and soundness s. We define the classes QMA(k) = QMApoly(n)(k)2/3,1/3
and QMA = QMA(1).

Definition 3 (QMAm(k)c,s) A promise problem A = (Ayes, Ano) is in the complexity
classQMAm(k)c,s if there exists a polynomial time algorithm Q such that for all inputs
x ∈ {0, 1}n :

1. (Completeness) If x ∈ Ayes, then there exist k unentangled witnesses |ψ1〉,
. . . , |ψk〉, each with m qubits, such that Q accepts |x〉 ⊗ |ψ1〉 ⊗ · · · ⊗ |ψk〉 with
probability at least c.

2. (Soundness) If x ∈ Ano, for all k unentangled, witnesses |ψ1〉, . . . , |ψk〉 with m
qubits each, Q accepts with probability at most s.

Throughout the paper, we use the following asymptotic (big-O) notation:

f (n) = O(g(n)): [at most] f (n) is asymptotically bounded by g(n) from above,
i.e., there exist constants c, n0 > 0 such that for all n ≥ n0

0 ≤ f (n) ≤ c g(n).

f (n) = �(g(n)): [at least] f (n) is asymptotically bounded by g(n) from below,
i.e., there exist constants c, n0 > 0 such that for all n ≥ n0

0 ≤ c g(n) ≤ f (n).

f (n) = Θ(g(n)): [same order] f (n) is asymptotically bounded by g(n) both from
above and below, i.e., it obeys

f (n) = O(g(n)), and f (n) = �(g(n)).

f (n) = o(g(n)): [lower order than] f (n) is asymptotically dominated by g(n),
i.e., for any constant c > 0 there exists a constant n0 > 0 such that for all n ≥ n0

0 ≤ f (n) < c g(n).

We also use the soft-O notation:

f (n) = Õ(g(n)): is O(·) that ignores logarithmic factors, i.e., there exists a
constant c > 0 such that f (n) = O(g(n) logc n).
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Fig. 1 A cycle of states |ψ1〉, . . . , |ψm+1〉, . . . , |ψ2m 〉, connected via the unitaries

U1, . . . ,Um ,U†
m , . . . ,U†

1

3 Shorter proofs for ground state connectivity relying on
unentanglement

3.1 A shorter proof: the sequence of states in superposition

The original proof has size m logG = O(m log(n)), as it holds the information about
the m gatesUi applied to the initial state (eachUi is a 1- or 2-qubit unitary gate chosen
from a set of size G, including the target qubits specification). We want to shorten it
to

(logm) × (n + logG) = O(n log n), (2)

at the cost of a smaller completeness–soundness gap, and asking for four unentangled
proofs. Later in Corollary 1, we show that only two unentangled proofs suffice.

We ask for two unentangled copies of the two-register (label and gate) state

|U 〉 = 1√
2m

2m∑

i=1

|i〉|ui 〉, (3)

encoding a cycle of local transformations as in Fig. 1, with each ui a classical string
describing the gate Ui (chosen from a gate set of size G = poly(n), including which
qubits it acts on).

We also ask for two unentangled copies of the two-register (label and data) state

|S〉 = 1√
2m

2m∑

i=1

|i〉|ψi 〉, (4)

encoding a cyclical sequence of labeled low-energy states |ψi 〉, illustrated in Fig. 1.
The sequence should start with the initial state |1〉|ψ1〉 = |1〉|ψ〉 for |ψ〉 from the
definition of GSCON and obey Ui |ψi 〉 = |ψi+1〉, with U2m |ψ2m〉 = |ψ1〉 at the
end. The first half of the sequence corresponds to the traversal from |ψ〉 to |φ〉 using
the gates Ui . The second half should be its inverse, with Um+i = U †

m+1−i , so that
U2m · · ·U1 = I.
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Observe that such a state |S〉 is invariant under the action of the unitary

W =
2m∑

i=1

|i + 1〉〈i | ⊗Ui , (5)

where we identify |2m + 1〉 ≡ |1〉 in the first register, and assume Um+i = U †
m+1−i

for i = 1, . . . ,m.

3.2 The main result

Our main, superlinear proof-shortening result for frustration-free GSCON is the fol-
lowing theorem:

Theorem 1 (Shorter proofs for ff-GSCON in QMA(4)) Consider an instance of
frustration-free GSCON (ff-GSCON) combining Definition 1 with the extra assump-
tions of a frustration-free, positive semidefinite Hamiltonian acting on n qubits, with
parameter η1 = 0 and an inverse-polynomial promise gap �. This promise problem
has a proof system in QMA(4), with four unentangled proofs of length O (n log n),
and an inverse polynomial2 completeness–soundness gap.

We present the protocol in Sect. 4.1 and analyze it in detail in Sects. 4.2 and 4.3,
proving Theorem 1. Let us now show how to use this four-unentangled-witness proto-
col as a black box to build a procedure with only two witnesses, putting frustration-free
GSCON into QMA(2) with shortened proofs.

Corollary 1 Ff-GSCON is in QMAO(n log n)(2) with an inverse-polynomial comple-
teness–soundness gap.

Proof Our protocol from Sect. 4.1 uses four unentangled witnesses—two copies of
the state |U 〉 and two copies of the state |S〉. We know how to use the QMA(k) to
QMA(2) transformation [13] to place it in QMA(2) with the same asymptotic witness
length and altered completeness and soundness. The new QMA(2) protocol asks for
two identical witnesses—in our case two copies of the state |U 〉 ⊗ |U ′〉 ⊗ |S〉 ⊗ |S′〉.
The verifier performs two tests with the same probability: (a) The product test or
the (b) the original QMA(k) protocol on one of the states. In [13], the authors showed
the containment QMAw(k)c′,s′ ⊆ QMAkw(2)c′′,s′′ , with completeness c′′ = 1+c′

2 ,

soundness s′′ = 1 − (1−s′)2

100 , and new witness size kw. However, for the resulting
completeness–soundness gap to be positive, there is a requirement on the original
completeness and soundness, which our QMA(4) protocol might not fulfill.

However, this is not a problem. The trick is to use the QMA(k) to QMA(2) con-
version with variable probabilities to run the tests (a) and (b). Let us label c′ the
completeness and s′ the soundness of test (b), the QMA(k) protocol, and denote p the

2 This inverse polynomial is quite small, as shown in Sect. 4.4: c′ − s′ = �
(
�13m−32G−10

)
, with �

from the definition of GSCON and G the gate set size.
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probability to run test (a) and 1 − p the probability to run test (b). Following the proof
of Lemma 5 [13], we find that the resulting QMA(2) protocol has completeness and
soundness:

c′′ = p + (1 − p)c′, (6)

s′′ ≤ max
ε≤ 512

11 δP

{
p (1 − δP) + (1 − p) min{1, s′ + √

ε}} , (7)

with ε a bound on how far the witness is from a product state, and δP ≥ 11
512ε the

probability that the product test rejects it. The maximum in (7) is achieved for√
ε = 1 − s′ =

√
512
11 δP. Therefore, s′′ ≤ 1 − pδP ≤ 1 − p(1 − s′)2 11

512 . With this in
hand, we realize that we can always tune p to create a protocol with a positive, inverse-
polynomial completeness–soundness gap. For example, we can achieve c′′ − s′′ ≥
11

512 p(1 − s′)2 − (1 − p)(1 − c′) ≥ 1
50 (c′ − s′)2, by choosing

p = 1 − c′ + 1
50 (c′ − s′)2

1 − c′ + 11
512 (1 − s′)2

. (8)

Observe that 0 ≤ p ≤ 1, as c′ − s′ ≤ 1 − s′.
Therefore, there exists a way to tune the probability p of running the product

test vs. the QMA(4)-based composite procedure from Sect. 4.1, giving us a QMA(2)

protocol for ff-GSCON, with shorter proofs of size O(n log n), and a completeness–
soundness gap inverse polynomial in n. ��

4 Proof of Theorem 1

The proof of Theorem 1 is spread over four sections. We first describe the proof system
in Sect. 4.1, show its soundness in Sect. 4.2 and completeness in Sect. 4.3, and prove
that the completeness–soundness gap is an inverse polynomial in n in Sect. 4.4.

4.1 The verification procedure

Let us start the proof of Theorem 1 with the tests that we must run on the four
unentangled proofs for GSCON. Note that in Corollary 1 we have shown how to get
away with only two unentangled witness states instead of four, relying on an argument
similar to the product test of Harrow and Montanaro [13], while decreasing the
completeness–soundness gap (but still to an inverse polynomial in n).

The verifier asks the provers to provide two unentangled copies of the states |U 〉 (3)
and |S〉 (4), as described in Sect. 3.1. From now on, let us call these |U 〉, |U ′〉, |S〉, |S′〉.
With probabilities

pi = r−1
i∑
j r

−1
j

, i = 1, . . . , 8, (9)
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where ri are listed in Table 1, the verifier randomly chooses to do perform one of the
following set of eight tests, accepting if the test succeeds. We choose the threshold
parameters ri and test probabilities pi in such a way that in the NO case of the ff-
GSCON instance, it must be true at least one of the tests rejects with probability more
than its ri , so the verifier accepts the proof with probability at most

s′ ≤ 1 − ri pi = 1 − 1
∑

j r
−1
j

, (10)

independent of i . On the other hand, in the YES case, we will show that this results
in completeness c′ that is at least an inverse polynomial in n above s′, as stated in
Theorem 1. Here are the tests:

1. (swap U) Do a swap test on the unitary-encoding witnesses |U 〉 and |U ′〉 and
reject on failure. This test checks basic consistency between the witnesses.

2. (unique) Measure the label and gate register of the states |U 〉 and |U ′〉 in the
computational basis. If the labels do not match, accept. On the other hand, if you
obtain the same label from both copies, check if the gate register measurement
results match. Reject if they do not. Also reject if the results do not encode unitaries
from the expected gate set. This test checks if the unitaries Ui are well defined.

3. (uniform) Do a projective measurement on the gate register of the state |U 〉 and
accept if the result is not the uniform superposition |ḡ〉 of all possible gate-encoding
states. Proceed otherwise and measure the label register. Reject if the result is not
the uniform superposition |0̄〉. Together with swap and unique, this test checks if
the terms |i〉|ui 〉 for various i are nearly uniformly present in |U 〉.

4. (swap S) Do a swap test on the states |S〉 and |S′〉 (the state sequence-encoding
witnesses) and reject on failure. This test checks basic consistency between the
witnesses.

5. (sequence) First, apply the unitary W from (5) to |S〉 in a probabilistic fashion,
consuming the state |U 〉 in the process. Second, compare W |S〉 and |S′〉 using a
swap test, rejecting on failure. In detail,
(a) Combine |U 〉 and |S〉 and apply the encoded unitaries (we assume the states

|ui 〉 are computational basis states) from the gate register to the data register
to form the state

∑
i

1√
2m

|i〉|ui 〉∑ j
1√
2m

| j〉Ui |ψ j 〉.
(b) Project the gate register onto the uniform superposition state |ḡ〉. Accept if the

projection fails, and proceed otherwise.
(c) Here, we expect the state

∑
i

1√
2m

|i〉|ḡ〉∑ j
1√
2m

| j〉Ui |ψ j 〉.
Drop the gate-encoding register with the state |ḡ〉.

(d) Project onto identical label registers. Accept if the projection fails, and continue
otherwise.

(e) We expect to work with the state
∑

i
1√
2m

|i〉|i〉Ui |ψi 〉 at this point. Uncompute
and drop the second label register.

(f) Shift the label register by 1 in a cyclical fashion, with 2m becoming 1, to obtain
the state |T ′〉.

(g) Do a swap test between |T ′〉 and |S′〉 and reject on failure. Note that for honest
provers we expect |T ′〉 = 1√

2m

∑
i |i + 1〉Ui |ψi 〉, identical to the state |S′〉.
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This test checks if all states |i〉|ψi 〉 in |S〉 have significant amplitudes, and whether
|ψi+1〉 = Ui |ψi 〉.

6. (start) Check if the sequence in |S〉 starts with the state |ψ〉 from the problem
instance as follows:
(a) Measure the label register of |S〉. Accept if it is not 1, otherwise continue.
(b) If the label is 1, use another register to prepare |ψ〉, according to the problem

instance.
(c) Perform a swap test between the data register of |S〉 and the prepared state.

Reject on failure.
7. (end) Check if the sequence in |S〉 ends near the state |φ〉 from the problem instance

as follows:
(a) Measure the label register of |S〉. Accept if it is not m + 1, otherwise continue.
(b) In another register, prepare |φ〉, according to the problem instance.
(c) Perform a swap test between the data register of |S〉 and the prepared state.

Reject on failure.
8. (low) Measure the label register of |S〉, and then the energy of its data register.

Reject, if the energy is higher than η2
2 with η2 from the definition of GSCON.

This test checks if the traversed sequence of states is made only from low-energy
states. Note that a weakness of this test makes us talk about ff-GSCON, i.e., a
GSCON instance with η1 = 0, involving a frustration-free, positive semidefinite
Hamiltonian.

Choosing one of the tests at random gives us a reasonable assurance that the state
|U 〉 contains a nearly uniform superposition of the sequence of labeled, computational
basis encoded unitaries, applying these unitaries to the state |S〉 does not change it,
the sequence of states in |S〉 contains each term |i〉|ψi 〉 with a significant amplitude,
the initial and final states |ψ1〉 and |ψm+1〉 are what we asked for, and that the energy
of each state |ψi 〉 is low enough.

We show the detailed soundness proof in Sect. 4.2 and continue with completeness
in Sect. 4.3. Our proof of soundness starts similarly to the one in [3]. In contrast to [3],
we require much stronger guarantees on the uniformity of the sequence |U 〉. We are
also asking for an encoding of 1- and 2-qubit gates instead of three colors for the graph
coloring problem, so the dimension of the gate register has to be G = poly(n). Next,
we have a batch of tests: swap S and sequence, involving the sequence-encoding
state |S〉. These are new and specific for the shortened quantum proof of GSCON.
Finally, the start, end, and low tests check the boundary conditions and the low-
energy condition for the purported traversal of the low-energy space of our ff-GSCON
Hamiltonian.

4.2 Soundness analysis

Thanks to the promise of the ff-GSCON problem, in the NO case, the verifier receives
a description of a GSCON Hamiltonian H , for which there does not exist a sequence
of 1- and 2-qubit unitaries {Ui }mi=1 with m = poly(n), that would transform the low-
energy state |ψ〉 to a state close to |φ〉, while staying in the low-energy subspace.
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Table 1 The lemmas in the soundness Sect. 4.2 assume that if we ran test i , it would pass with probability
at least 1 − ri . Here, we list the rejection threshold ri for each of the eight tests. We choose the probability
to run test i as pi = r−1

i /
∑

j r
−1
j , so that pi ri = 1 − s′, where s′ is the final soundness parameter.

The thresholds ri are expressed using the parameters of the GSCON instance (m, R, η2, . . . , η4), as well

as parameters set in (15), (55), (62), and (63): δ = cx
2G , c = 1

Gm2t2
, x = 1

m2t
, z = μ2

m3 , t = 848Gm2

μ2 ,

h = min
{

η4−η3
4 , 1

6

√
η2
R

}
, and μ = h2

144m(η3+h)

Test Rejection threshold ri Required onwards from

1. swap U r1 = δ2

8 = 1
32G4m8t6

Lemma 1

2. unique r2 = cx2

4 = 1
4Gm6t4

Lemma 2

3. uniform r3 = 1
5Gm4t2

Lemma 5

4. swap S r4 = z
4 = μ2

4m3 Lemma 6

5. sequence r5 = 1
8mG

z
4 = μ2

32Gm4 Lemma 8

6. start r6 =
(

1
2m − 6μ

)
h2

4 Lemma 9

7. end r7 =
(

1
2m − 6μ

)(
(η3+h)2

2 − (η3+h)4

8

)
Lemma 10

8. low r8 = η2
8Rm Lemma 11

Let us see what happens in the case of dishonest provers. Our goal is to find an
upper bound on the probability that the verifier accepts a proof from two malicious,
but still unentangled provers. We will prove a sequence of lemmas that together imply
that when the provers try to cheat, there is a high enough chance that one of the tests
from Sect. 4.1, chosen at random would detect this.

4.2.1 Verifying consistency and fullness of the sequence |U 〉

Our first test (swap U) is a swap test on the states |U 〉 and |U ′〉. Because we know
that these states come from unentangled provers, they can be written as

|U 〉 =
2m∑

i=1

αi |i〉
∑

j

βi, j | j〉, (11)

|U ′〉 =
2m∑

i=1

α′
i |i〉

∑

j

β ′
i, j | j〉, (12)

where
∑

i |αi |2 = 1 and ∀i , ∑ j |βi, j |2 = 1, and the same holds for α′
i and β ′

i, j .
We will start with showing that passing test 1 (swap U) with high enough proba-

bility implies the distribution of outcomes when measuring the states |U 〉 and |U ′〉 in
the computational basis must be very similar.
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Lemma 1 (Consistency of unitaries) Let |U 〉 and |U ′〉 be as defined earlier. If there
exist a k and an l such that3

∣∣|αkβk,l |2 − |α′
kβ

′
k,l |2

∣∣ ≥ δ, then test 1 (swap U) will fail

with probability at least r1 = δ2

8 .

Proof This is Lemma 3.3 from [3], and we repeat the proof.
Let Pi, j = |αiβi, j |2 and Qi, j = |α′

iβ
′
i, j |2 be the probability distributions when |U 〉

and |U ′〉 are measured in the computational basis. For any von Neumann measurement,
the distances defined below are such that D(|U 〉, |U ′〉) ≥ D(P, Q), where P and Q
are the classical distributions of the measurement outcomes. Then,

√
1 − |〈U |U ′〉|2 def= D(|U 〉, |U ′〉) ≥ D(P, Q)

def= 1

2

∑

i j

∣∣∣|αiβi, j |2 − |α′
iβ

′
i, j |2

∣∣∣

≥ 1

2

∣∣∣|αkβk,l |2 − |α′
kβ

′
k,l |2

∣∣∣ ≥ δ

2
, (13)

assuming there exist k, l with
∣∣|αkβk,l |2−|α′

kβ
′
k,l |2

∣∣ ≥ δ. It implies |〈U |U ′〉|2 ≤ 1− δ2

4

and test 1 (swap U) will fail with probability at least δ2

8 . ��

Therefore, if test 1 (swap U) would pass with probability at least 1 − δ2

8 , thanks
to Lemma 1, we get a guarantee on the closeness of |U 〉 and |U ′〉:

∣∣|αkβk,l |2 − |α′
kβ

′
k,l |2

∣∣ < δ. (14)

Let us call r1 = δ2

8 the rejection threshold for test 1. We will choose the probability
p1 to run test 1 so that it is tied to the final soundness parameter as s′ = 1 − p1r1. We
set the parameter δ below in (15) and list r1 in Table 1.

Let us look at the second test, armed with the guarantee (14). We will prove that
passing test 2 (unique) with high probability means nodes with a high enough proba-
bility of being observed encode a well-defined unitary. In particular, there is one βi, ji
that dominates, and the other βi,...’s are small.

Lemma 2 (Well-defined unitaries) Assume that the quantum proof would fail test

1 (swap U) with probability below r1 = δ2

8 , and fail test 2 (unique) with prob-

ability below r2 = cx2

4 (see also Table 1). Then ∀i : |αi |2 ≥ x, there exists a
j such that |βi, j |2 ≥ 1 − c, with

c = 1

Gm2t2 , x = 1

m2t
, δ = cx

2G
= 1

2t3G2m4 , (15)

where G is the number of possible gates and t is a parameter to be chosen later in
(55).

3 Note that there are squares in the expression, while [3], Lemma 3.3, has a typo, missing the squares.
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Proof This is a more general version of Lemma 3.4 from [3], with stronger conditions
and implications.

First note that with the particular string ui we receive, we can easily test if it encodes
some unitary Ui from the expected gate set. We reject on failure.

Now suppose for the sake of contradiction that there exists an i with |αi |2 ≥ x ,
for which the largest of the βi, j ’s (without loss of generality, let it be βi,0) obeys
|βi,0|2 < 1 − c. Let us then calculate the probability of failing the unique test. It is
surely bigger than

pfail
unique ≥ ∣∣αiβi,0

∣∣2 ∑

j>0

∣∣∣α′
iβ

′
i, j

∣∣∣
2
. (16)

Because of Lemma 1, we know that
∣∣α′

iβ
′
i, j

∣∣2 ≥ ∣∣α′
iβ

′
i, j

∣∣2 − δ. Therefore, we have

pfail
unique ≥ x |βi,0|2

(∑

j>0

∣∣∣α′
iβ

′
i, j

∣∣∣
2 − (G − 1) δ

)
(17)

= x2|βi,0|2
(

1 − |βi,0|2
)

− x (G − 1) δ|βi,0|2 (18)

≥ x2(1 − c)c − x (G − 1) δ(1 − c) (19)

≥ (1 − c)x (cx − δG) . (20)

We set the parameters c, x, δ according to (15), with a large t chosen later in (55).
This gives us a bound

pfail
unique ≥

(
1 − 1

Gm2t2

)
cx2

2
≥ cx2

4
, (21)

proving the lemma. ��
The rejection threshold r2 and the probability p2 to run test 2 are listed in Table 1

and chosen so that if the combined probability of passing the unique test is at least
s′, we get a guarantee on how well the U ’s are defined in |U 〉 from Lemma 2:

∀i, for which |αi |2 ≥ x , ∃! j such that |βi, j |2 ≥ 1 − c, (22)

with c = (Gm2t2)−1 for t from (55).
Armed with (22), let us look at the third test. The next three lemmas quantify what

passing the tests up to and including test 3 (uniform) with high probability implies:
The state |U 〉 contains a nearly uniform superposition of states of the form |i〉|Ui 〉.
We start by showing that the probability to find a uniform superposition in the gate
(second) register of |U 〉, when performing the first measurement of test 3, is very well
defined.

Lemma 3 (Projection onto the uniform superposition of gates) Assume the quantum
proof would fail test 1 (swap U) and test 2 (unique) with probabilities below r1 and
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r2 from Table 1. Then, the probability of measuring |ḡ〉 = FG |0〉 in the Fourier basis
on the gate register is at least 1

G

(
1 − 6

mt

)
for large enough m. Moreover, for each i

with |αi |2 ≥ x, the individual probability of this projection satisfies |pFGi − 1
G | ≤ 4

Gmt .

Proof This lemma is based on Lemma 3.5 from [3] and has much stronger conditions
and implications.

Thanks to the assumption on the rejection probability for the previous tests, we can
use Lemmas 1 and 2.

Assume that the first (label) register of the state |U 〉 is measured. If the outcome
is i , then the probability of obtaining |ḡ〉 in the Fourier basis on the gate register is
given by pFGi = 1

G

∣∣∑
j βi, j

∣∣2. For all i with |αi |2 ≥ x , Lemma 2 applies, in which

case we can assume w.l.o.g that |βi,0|2 > 1 − c and
∑

j �=0 |βi, j |2 ≤ c. Using the
Cauchy–Schwarz inequality, we obtain

pFGi = 1

G

∣∣∣∣
∑

j

βi, j

∣∣∣∣
2

≥ 1

G

∣∣∣∣
∣∣βi,0

∣∣−
∣∣∣∣
∑

j �=0

βi, j

∣∣∣∣

∣∣∣∣
2

≥ 1

G

∣∣∣∣
∣∣βi,0

∣∣−
√
G
∑

j �=0

∣∣βi, j
∣∣2
∣∣∣∣
2

≥ 1

G

∣∣∣
√

1 − c − √
Gc
∣∣∣
2 ≥ 1

G

∣∣∣∣1 − 1

m2Gt2 − 1

mt

∣∣∣∣
2

≥ 1

G

(
1 − 4

mt

)
, (23)

for c = (Gm2t2)−1.
Note that in |U 〉 (11), at least one |αi |2 ≥ x , or equivalently, at most 2m − 1 can

obey |αi |2 < x so that Lemma 2 does not apply to them. Therefore, when projecting
the gate register of the whole state |U 〉 onto the uniform superposition, the probability
of obtaining 0 is at least

(1 − (2m − 1)x)
1

G

(
1 − 4

m

)
≥
(

1 − 2

mt

)(
1− 4

mt

)
1

G
≥
(

1 − 6

mt

)
1

G
. (24)

In addition to (23), we can also find an upper bound on the individual probabilities
pFGi . For i with |ai |2 ≥ x , Lemma 3 applies, and one of the βi, j ’s is necessarily
large. The probability for a successful projection onto a uniform superposition is then
bounded from above by a situation where the β’s are as balanced as possible:

pFGi = 1

G

∣∣∣∣
∑

j

βi, j

∣∣∣∣
2

= 1

G

∣∣∣∣βi,0 +
∑

j>0

βi, j

∣∣∣∣
2

≤ 1

G

⎛

⎝(1 − c) + (G − 1)

√
1 − (1 − c)2

G − 1

⎞

⎠
2

≤ 1

G

(
1 + 2

√
Gc
)2 ≤ 1

G

(
1 + 4

mt

)
. (25)
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This concludes the proof of Lemma 3. ��
Thus, if test 1 and test 2 are likely to succeed, Part 1 of test 3 (the Fourier projection

on the gate register) will succeed with probability at least 1
G

(
1 − 6

mt

)
, allowing us to

continue to the second step of test 3. It involves a measurement of the label register
that detects slightly non-uniform states.

Let us look on the state |U 〉 after the projection on the uniform superposition of
gates. We can write this projected and normalized state as

∑
i γi |i〉|ḡ〉. The following

lemma tells us that to successfully pass the Fourier basis projection onto the uniform
superposition of states in the label register, the γi ’s all have to be very close to 1√

2m
in magnitude.

Lemma 4 (A successful Fourier projection implies uniformity) Given a state |X〉 =∑
i γi |i〉 such that there exists an l with

∣∣|γl |2 − 1
2m

∣∣ >
f
m , the probability of not

getting |0〉 = F2m |0〉 when we measure |X〉 in the Fourier basis is greater than f 2

4m2 ,
for f > 0.

Proof This is a stronger version of Lemma 3.6 from [3].
The probability of not getting |0̄〉 when measuring |X〉 depends on the overlap of

these states. Let us call P and Q the probability distributions for a computational basis
measurement of |X〉 and F2m |0〉, respectively. The probability of not getting |0̄〉 then
obeys

1 − |〈X |0〉|2 = (
D(|X〉, |0〉))2 ≥ (D(P, Q))2 =

(
1

2

∑

i

∣∣∣∣Pr[γi ] − 1

2m

∣∣∣∣

)2

≥
(

1

2

∣∣∣∣|γl |2 − 1

2m

∣∣∣∣

)2

>
f 2

4m2 . (26)

��
Lemma 4 allows us to prove a statement about the original coefficients αi in |U 〉:

Passing tests 1–3 with high probability implies a valid encoding of all the required
unitaries Ui for i = 1, . . . 2m, with nearly uniform prefactors, as stated in the next
lemma.

Lemma 5 (A full sequence of unitaries) Assume that test 1 (swap U) and test
2 (unique) fail with probability below r1 and r2 from Table 1. Assume that test 3
(uniform) fails with probability below r3 = 1

5Gm4t2
. Then the coefficients αi in the

state |U 〉 obey ∣∣|αi |2 − 1
2m

∣∣ ≤ 13
2m2t

, for all i .

Note that the parameter t is still free. We will set it to be a large number later (55).

Proof Thanks to Lemmas 1–4, we are now able to show a bound on the coefficients
αi that is much tighter than Lemma 3.7 in [3].

Thanks to the assumption on the rejection probabilities for the previous tests, we
can use the previous lemmas. We also add the assumption that test 3 rejects the proof
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with probability below 1
5Gm4t2

. This rejection can happen only if the first Fourier

projection on the gate register passes (this has probability at least 1
G

(
1 − 6

mt

)
according

to Lemma 3), and then the second Fourier projection on the label register fails. When
we choose f = 1

mt in Lemma 4 we see that the second Fourier basis projection either
rejects with probability at least 1

4m4t2
, or we get a guarantee that no |γl |2 is farther

from 1
2m than f

m . The overall probability of detecting a cheater is now thus either at
least 1

G

(
1 − 6

mt

) 1
4m4t2

≥ 1
5Gm4t2

, a contradiction on the assumption of the lemma, or

we get the guarantee on |γl |2.
Let us then work with this guarantee and analyze what happens after the first

successful projection onto the uniform superposition |ḡ〉 in the gate register of |U 〉,
i.e., the first step of test 3. For the significant αi ’s (|αi |2 ≥ x), Lemma 2 tells us that
they encode a pretty well-defined unitary, and Lemma 3 tells us that the probability
of getting a successful projection onto |ḡ〉 for each of these i’s is at most 4

Gtm far
from 1

G . This projection thus brings down the norm of this part of the state, but not to
something smaller than

‖the large-αi part after the projection‖2 ≥ 1

G

(
1 − 4

tm

) ∑

|αi |2≥x

|αi |2 . (27)

Next, we know there cannot be too much of the norm of the state |U 〉 hiding in parts
of the superposition with small |αi |2 ≤ x . The state |U 〉 is normalized, and there are
at most 2m − 1 such i’s, so the norm of that small-αi part of the state is

∑

|αi |2<x

|αi |2 ≤ (2m − 1)x ≤ 2

tm
, (28)

for our choice of x = 1
m2t

in (15).
Even if the projection on the uniform superposition in the gate register kills this

small-αi part, the overall norm squared N 2 of the whole state after the projection is at
least

N 2 ≥ 1

G

(
1 − 4

tm

) ∑

|αi |2≥x

|αi |2 ≥ 1

G

(
1 − 4

tm

)(
1 − 2

tm

)
≥ 1

G

(
1 − 6

tm

)
,

(29)

using (28) and our choice (15).
Let us find a stronger lower bound for |αi |2 ≥ x . We obtain the γi ’s by normal-

izing the state after the projection. Using (29) and recalling the large-|αi |2 terms are
multiplied by at most 1

G

(
1 + 4

tm

)
when projected, we obtain

|γi |2 ≤
1
G

(
1 + 4

mt

)

1
G

(
1 − 6

mt

) |αi |2 ≤
(

1 + 11

mt

)
|αi |2 , (30)
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for large enough m, t . Because we know from Lemma 4 that all |γi |2 must be close to
1

2m , those |αi |2 ≥ x must obey

1

2m
(1 − 2 f ) ≤ |γi |2 ≤

(
1 + 11

mt

)
|αi |2 . (31)

Choosing f = 1
mt in Lemma 4, we have

|αi |2 ≥ 1

2m

(
1 − 2

mt

1 + 11
mt

)
≥ 1

2m

(
1 − 13

mt

)
. (32)

What about the small |αi |2 < x? Even if they do not decrease on projection, they get
multiplied by at most 1

G

(
1 + 4

tm

) ≤ 2
G , which implies |γi |2 ≤ 2x

G . However, because
x = 1

tm2 , such |γi |2 would be much smaller than 1
2m and thus easily detectable by

Lemma 4. Therefore, small |αi |2 < x cannot exist in the superposition |U 〉 without
being detected by our tests with a reasonable probability.

Therefore, all |αi |2 are bounded from below by (32). Moreover, we can also find a
limit on how big they can be. To show this, we start with an upper bound on the norm
of the whole state after the projection.

N 2 = ‖the whole state after the projection‖2 ≤ 1

G

(
1 + 4

mt

) ∑

|αi |2≥x

|αi |2

= 1

G

(
1 + 4

mt

)
, (33)

as there are no small-αi coefficients. This implies for the γi ’s that

|γi |2 ≥
1
G

(
1 − 4

mt

)

1
G

(
1 + 4

mt

) |αi |2 ≥
(

1 − 8

mt

)
|αi |2 . (34)

Recalling the guarantee
∣∣|γi |2 − 1

2m

∣∣ ≤ f
m from Lemma 4 with f = 1

mt , we also
obtain

1

2m
(1 + 2 f ) ≥ |γi |2 ≥

(
1 − 8

mt

)
|αi |2 , (35)

which translates to an upper bound on |αi |2:

|αi |2 ≤ 1

2m

(
1 + 2

mt

1 − 8
mt

)
≤ 1

2m

(
1 + 13

mt

)
, (36)

for large enough m, t .
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Putting together (32) and (36) finishes the proof. Note that all |αi |2 are thus large
enough for Lemma 4, so all of the 2m encoded unitaries must be “well defined.” ��

Therefore, if we chose to run tests 1–3 on |U 〉 and |U ′〉, and each would be likely
to pass, we have a guarantee that the state |U 〉 as well as the state |U ′〉 must have form
very close to what we demand, i.e.,

|U 〉 = 1√
2m

2m∑

i=1

|i〉|ui 〉 + 1√
2m

2m∑

i=1

θi |i〉|θi 〉, (37)

where ui are computational basis states that encode the gates Ui , the second (error)
term is orthogonal to the first one, and

|θi |2 ≤ 2

(
26

tm
+ 1

Gm2t2

)
≤ 53

tm
, (38)

where the first term comes from |αi |2 possibly deviating from 1
2m , and the second

term from the possible imprecision in the definition of the unitaries (the error c in
Lemma 2). This encoding of the unitaries is solid enough to help us verify the state
sequence is also proper and thus prove the soundness of our verifier.

4.2.2 Verifying consistency of the states |S〉

We will now show how to apply the Ui ’s to the state |S〉, in order to test if it is a proper
cyclical sequence connected by 1- and 2-qubit gates. It requires a guarantee on the
consistency of the |S〉 states and a procedure for the probabilistic application of the
Ui ’s.

Let us quantify what the swap S test (test 4) implies for the similarity of two
witness states |S〉 and |S′〉.
Lemma 6 (State consistency) Let |S〉 and |S′〉 be two-register, normalized quantum
states

|S〉 =
m∑

i=1

ai |i〉|ψi 〉, |S′〉 =
m∑

i=1

a′
i |i〉|ψ ′

i 〉, (39)

and label |�S〉 = |S〉 − |S′〉 = ∑
i |i〉|δi 〉, with |δi 〉 = ai |ψi 〉 − a′

i |ψ ′
i 〉. If there exists

a k such that 〈δk |δk〉 ≥ z, the swap S test (test 4) on the states |S〉 and |S′〉 will fail
with probability at least r4 = z

4 .

Proof Without loss of generality, we can assume the phase of |S′〉 is such that 〈S|S′〉 ∈
R, as |S〉 and |S′〉 come from two unentangled provers. This lets us write

〈S|S′〉 = 1 − 1

2
〈�S|�S〉 = 1 − 1

2

∑

i

〈δi |δi 〉 ≤ 1 − 1

2
〈δk |δk〉 ≤ 1 − z

2
, (40)
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instead of having to deal with absolute values or real/imaginary parts. This translates
to |〈S|S′〉|2 ≤ (1 − z

2 )2 ≤ 1 − z
2 and the probability to fail test 4 (the swap S test)

1
2

(
1 − |〈S|S′〉|2) ≥ z

4 . ��
We will later choose z to be a small number (55). Similarly to the previous tests,

we will demand that combined with the probability p4 to run test 4, the probability to
detect a cheating Merlin is at least 1 − s′ = p4r4, or we get the guarantee that for all
i , 〈δi |δi 〉 < z, with z chosen in Lemma 8 (55).

Could we continue with something similar to the uniform test? The size of the
state space for the |ψi 〉’s is too large, and we do not know enough about the states to
ensure a reasonable chance of success for the projection onto a uniform superposition.
Instead, we will use the state |U 〉 to probabilistically apply the unitary W (5) to the
state |S〉 and compare it with |S′〉. This sequence test (test 5) checks whether |S〉 and
|S′〉 contain a balanced enough superposition corresponding to a cyclical sequence of
states connected by the 1- and 2-local gates Ui .

Let us look at the probabilistic procedure described in detail in the definition of test
5. We apply the gates from |U 〉 to |S〉, project onto an uniform superposition in the
gate register, drop it, project onto identical label registers, uncompute and drop one of
them, and shift the remaining label up by one. This should prepare

|T 〉 = 1√
2m

∑

i

|i + 1〉Ui |ψi 〉, (41)

which we want to swap test with the state |S′〉. However, we need to deal with dishonest
Merlins. We know that if the previous tests pass with high enough probability, the
unitaries are pretty uniformly encoded and pretty well defined. Let us now prove a
series of lemmas: If further tests are very likely to pass, the projections in the cycle
consistency test will succeed with reasonable probability, the state |T ′〉 we get in reality
is close to the expected state |T 〉 (41), and the final swap test in test 5 (sequence) is
strong enough to guarantee proper form of the cyclical sequence, connected by 1- and
2-qubit gates.

Lemma 7 (Probabilistic gate application) Let us assume all previous tests (swap U,
unique, uniform, swap S) would fail with respective probabilities below r1, . . . , r4,
as listed in Table 1. Consider the above procedure that starts with |U 〉|S〉, applies
the gates from |U 〉 to |S〉, projects onto the uniform superposition in the gate register,
and projects onto identical labels. The joint probability of success for the projections
is at least 1

8mG . Moreover, after dropping the extra registers and shifting the label
register, the resulting state |T ′〉 is close to the state |Ta〉 = ∑

i ai |i + 1〉Ui |ψi 〉, with
the coefficients ξ j in |T ′〉 − |Ta〉 = ∑

j ξ j a j | j + 1〉|ξ j 〉 obeying |ξ j |2 ≤ 848G
tm .

Note that the parameter t is still free, we set it later in (55).

Proof Assuming the previously discussed tests would pass with high enough prob-
ability allows us to use the previous Lemmas. In particular, the state |U 〉 must obey
(37) and (38).
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Let us follow the procedure for test 5 from Sect. 4.1. We apply the gates encoded
in |U 〉 to the second register state of the state |S〉 and obtain

1√
2m

2m∑

i=1

|i〉|ui 〉
∑

j

a j | j〉Ui |ψ j 〉 + 1√
2m

2m∑

i=1

θi |i〉|θi 〉
∑

j

a j | j〉Θi |ψ j 〉, (42)

where Ui are the gates described by the computational basis states |ui 〉, and the pref-
actor in the error term obeys |θi |2 ≤ 53

tm .
Note that we here assume perfect application of the gates Ui . This is possible, if

they come from a specific universal gate set under our control. The GSCON problem
remains QCMA complete also under this assumption (as QCMA verification circuits
can come from a specific universal gate set). On the other hand, what if we only have
access to a smaller universal gate set? We would then have to decompose the Ui ’s into
this set (on the fly) and would get a small error along the way. However, this error can
be controlled to whatever inverse polynomial in n we require, so we do not need to
consider it here.

Let us now apply the projection of the gate register onto the uniform superposition
|ḡ〉, and renormalize the state. We know that for basis states |ui 〉, we have 〈ḡ|ui 〉 =
1/

√
G, while the second (error) term will increase in importance the most if we

assume 〈ḡ|zi 〉 = 1 and 〈ψ j |Θ†
i Ui |ψ j 〉 = −1. The norm squared of the state after this

projection is at least

N 2
ḡ ≥ 2m

1

2m

(
1√
G

− θmax

)2

= 1

G

(
1 − θmax

√
G
)2

, (43)

which then translates into a normalized state

1√
2m

2m∑

i=1

|i〉
∑

j

a j | j〉Ui |ψ j 〉 + 1√
2m

2m∑

i=1

νi |i〉|νi 〉, (44)

where |νi |2 ≤ 4G|θmax|2 ≤ 212G
tm , after dropping the gate register, which is in the state

|ḡ〉. We also note that the probability of a successful projection is not smaller than 1
2G .

Next, we can perform a projection onto identical labels i = j . For a fixed j , the

probability of this happening is 1
2m in the first part of the state and

|ν j |2
2m in the second

part of the state. Even if the two parts of the state were not orthogonal for a fixed j ,
we have a guarantee that the probability of a proper projection is (for each j)

∣∣∣∣pi= j − 1

2m

∣∣∣∣ ≤ 4|νmax|2
2m

, (45)

123



Shorter unentangled proofs for ground state connectivity Page 21 of 32  174 

i.e., the norm squared is guaranteed to be within 4|νmax|2
2m of 1

2m . After normalization,
this translates to a new state

2m∑

j=1

a j | j〉| j〉Uj |ψ j 〉 +
2m∑

j=1

ξ j a j | j〉| j〉|ξ j 〉, (46)

with |ξ j |2 ≤ 4|νmax|2 ≤ 16G|θmax|2 ≤ 848G
tm . Let us note that the probability of this

successful projection is surely not smaller than 1
4m . Overall, the probability of passing

both projections successfully is surely no smaller than 1
8Gm .

Uncomputing and dropping one of the label registers is then simple. We also shift
the remaining label register up by one. All in all, with probability at least 1

8mG , the
procedure described above results in the state

2m∑

j=1

a j | j + 1〉Uj |ψ j 〉 +
2m∑

j=1

ξ j a j | j + 1〉|ξ j 〉, (47)

with normalized states |ξ j 〉, and a guarantee |ξ j |2 ≤ 848G
tm , as claimed in the lemma. ��

Therefore, when tests 1–5 are likely to pass (as described in the conditions of the
previous Lemmas), the state |U 〉|S〉 after a successful transformation, projection, label
dropping, and shift can be written as

|T ′〉 =
∑

j

a j | j + 1〉 (Uj |ψ j 〉 + ξ j |ξ j 〉
)
, (48)

with a guarantee |ξ j |2 ≤ 848G
tm on the error terms. With this in mind, we can turn to

the last step in test 5: the swap test between |T ′〉 and |S′〉. The goal of the next lemma
is to show that if this swap is likely to pass, the states |S〉 and |S′〉 must encode a
reasonably uniform superposition of states—the whole sequence of low-energy states
connected by the gates Ui .

Note that we do not (need to) verify that the sequence of unitaries Ui actually
computes and uncomputes the transformation from |ψ1〉 to |ψm+1〉. We only check
if the whole sequence is cyclically invariant under the transformation (5), i.e., that
|ψ j+1〉 = Uj |ψ j 〉 and that U2m · · ·U1 = I.

Lemma 8 Assume the previous tests (swap U, unique, uniform, swap S) would
fail with respective probabilities below r1, . . . , r4, listed in Table 1, with t = 848Gm2

μ2

and z = μ2

m3 . If the sequence test rejects the proof with probability below r5 = μ2

32Gm4 ,
for a small μ to be set later (63), we claim that the original state |S〉 obeys

|a j |2 ≥ 1

2m
− 6μ, and

∥∥|ψ j+1〉 −UjU j−1 · · ·U2U1|ψ1〉
∥∥

2 ≤ 6 jμ

m
. (49)
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Thus also,

‖|ψm+1〉 −Um · · ·U1|ψ1〉‖2 ≤ 6μ. (50)

Note that we choose t, z here, but tie them to another parameter, μ, which we
later in (63) choose as a function of the GSCON problem instance parameters (see
Definition 1). In particular, we set it so that 6μ ≤ h ≤ η4−η3

4 .

Proof We assume the previous tests would fail with probabilities below the ri ’s listed
in Table 1, so the previous lemmas apply. We also assume the sequence test rejects

the proof with probability below r5 = μ2

32Gm4 . Thanks to Lemma 7, we know the
probabilistic preparation of |T ′〉 from |S〉 and |U 〉 according to the description in the
sequence test succeeds with probability at least 1

8mG . Therefore, the subsequent swap

test between |T ′〉 nd |S′〉 must not reject with probability above μ2

4m3 . Let us unravel
what it implies for the state |S〉.

Recall that |S′〉 = ∑
j a

′
j | j〉|ψ ′

j 〉. Lemma 6 with a parameter z about a swap test
between |S〉 and |S′〉, says that the norm squared of |δ j+1〉 = a j+1|ψ j+1〉−a′

j+1|ψ ′
j+1〉

is below z. Similarly, we can apply the procedure from Lemma 6 to a swap test between
|T ′〉 and |S′〉. Recalling the previous result (48), we can write

|T ′〉 − |S′〉 =
∑

j

| j + 1〉
(
a jU j |ψ j 〉 + a jξ j |ξ j 〉 − a′

j+1|ψ ′
j+1〉︸ ︷︷ ︸

|y j 〉

)
. (51)

Thus, if the swap test between |T ′〉 and |S′〉 succeeds with probability at least 1 − z
4 ,

then for any j , we have 〈y j |y j 〉 ≤ z.
Let us combine these facts and use the triangle inequality to derive:

∥∥a jU j |ψ j 〉 − a j+1|ψ j+1〉
∥∥

2 ≤ ∥∥|y j 〉
∥∥

2 + ∥∥a jξ j |ξ j 〉
∥∥

2

+
∥∥∥a′

j+1|ψ ′
j+1〉 − a j+1|ψ j+1〉

∥∥∥
2

≤ 2
√
z + √

κ j , (52)

where κ j = |a jξ j |2 ≤ 848G
tm |a j |2. Note that the left side is the smallest for real

positive a j , a′
j and Uj |ψ j 〉 = |ψ j+1〉, which can be rewritten as

∣∣|a j | − |a j+1|
∣∣ ≤∥∥a jU j |ψ j 〉 − a j+1|ψ j+1〉

∥∥
2. Therefore, when we take into account what we know

about ξ j , we obtain
∣∣|a j | − |a j+1|

∣∣ ≤ 2
√
z +

√
848G
tm |a j |. Now, at least one of the

|a j |’s has to be at least 1√
2m

, as
∑2m

j=1 |a j |2 = 1. Let us see how small could some
other |a j | be, as it must be tied to the neighboring ones by what we proved above. In
m steps away from the specific large ak , all of the a j have to obey (w.l.o.g. assuming
positive |a j | and dropping the absolute values)

a j+1 ≥ a j

(
1 −

√
848G

tm

)
− 2

√
z. (53)
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Doing this m times and assuming a large m, labeling v = 1 − √
848G/tm, we get

a j+m ≥ a jv
m − 2

√
z
(

1 + v + v2 + · · · + vm−1
)

≥ a j

(
1 −

√
848Gm

t

)
− 2m

√
z. (54)

We now choose a small enough z and a large enough t :

z = μ2

m3 , t = 848G

mz
= 848Gm2

μ2 , (55)

parametrized by a new free parameter μ, which we later (63) choose according to
the parameters η2, η3, η4 from the GSCON problem instance. For small μ, we have√

848Gm
t = μ√

m
, and 2m

√
z = 2μ√

m
. When we use it in (54), together with |a j | ≥ 1√

2m
,

we obtain |a j+m | ≥ 1√
2m

(1 − 6mμ). This implies what we wanted to prove for all i :

|ai |2 ≥ 1

2m
(1 − 12mμ) = 1

2m
− 6μ, (56)

i.e., all the coefficients ai have to be very close to 1
2m (for small μ), and thus significant.

We can now prove that the state |S〉 is made from a sequence of states close to
|ψ j+1〉 = Uj · · ·U1|ψ1〉. Combining (52) with (56), and using the triangle inequality
j times, we get

∥∥Uj · · ·U1|ψ1〉 − |ψ j+1〉
∥∥

2 ≤ j

√
2m

1 − 12mμ

(
2
√
z + max

j

√
κ j

)

≤ 3 j

√
2mz

1 − 12mμ
≤ 6 jμ

m
, (57)

where the upper bound on κ j and z comes from (55), and we assume 12mμ � 1. For
j = m, this also means the last claim of this lemma holds:

‖Um · · ·U1|ψ1〉 − |ψm+1〉‖2 ≤ 6μ. (58)

��
The guarantee (56) for the state |S〉 means we have probability at least 1

2m − 6μ to
measure any i , when measuring the label register. Thus, we can obtain any |ψi 〉 with
reasonable probability and use it to check if the whole sequence in |S〉 is properly
initialized and finalized (for i = 1 and i = m + 1, with the start and end test), or to
verify that each state in it has a low energy (with the low test). We will do this in the
following sections.
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| m+1

Um . . . U1| 1

Um . . . U1|Uj . . . U1|

Uj . . . U1| 1| 1

|

|| j+1

h

h h

3 + 3h

< 4

6

Corollary 14

Lemma 13

Lemma 12

Lemma 11

6

Lemma 11

Fig. 2 Our goal is to understand the relationship of the state |ψ〉, its unitary transformations, and |φ〉.
However, the states that we work with are the |ψ j 〉’s. Passing tests 1–7 with high probability gives us upper
bounds on the distance between the states (the black lines). The dashed line is an implication about the
maximum distance of |φ〉 and Um · · ·U1|ψ〉, as h ≤ 1

4 (η4 − η3) (62) and 6μ ≤ h (63). Note also that the

distance between |ψ j+1〉 and Uj · · ·U1|ψ〉 for all j is not larger than 2h ≤ 1
3
√

η2/r (62), which will be
required for Corollary 3

4.2.3 Initial state and final state tests

The role of tests 6 (start) and 7 (end) is to check if the sequence |S〉 (and |S′〉) is
actually relevant to the problem—that it connects to the two states we want to traverse
between in the ground space of the GSCON problem Hamiltonian.

First, we have the start test. Thanks to Lemma 8, we know there is a probability
at least 1

2m − 6μ to measure i = 1 in the label (first) register of |S〉, giving us |ψ1〉
in the data (second) register. When we successfully swap it with the initial state |ψ〉
from the GSCON instance, we get a guarantee on their closeness. The end test works
analogously, for the i = m + 1 case, comparing |ψm+1〉 with |φ〉. However, note that
we put much more emphasis on the start test, as we can rely on perfect completeness
for collaborating Merlins, while the end test has some probability of false rejections
even for good proofs, thanks to the η3 limitation from the problem instance.

We illustrate the following argument in Fig. 2. The second claim of Lemma 8 guar-
antees that |ψm+1〉 is close to Um . . .U1|ψ1〉. This, in turn, is close to Um · · ·U1|ψ〉,
because |ψ1〉 is close to |ψ〉. Thus, when we measure i = m + 1 in the label register
of |S〉 and obtain |ψm+1〉 in the data register, we can swap test it with the final state
|φ〉 from the GSCON instance. Again, a high success rate implies closeness of these
states. Combining these results implies that Um · · ·U1|ψ〉 is strictly closer than η4 to
the final GSCON state |φ〉. Let us prove this.

Our goal is to set test 6 (start) up so that if it fails with probability below p6r6 =
1 − s′, we get a very good guarantee on the closeness of |ψ1〉 and |ψ〉. We then set
test 7 (end) up so that if it fails with probability below p7r7 = 1 − s′, we get a
strong guarantee on the closeness of |ψm+1〉 and |φ〉. Combined with the result on the
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closeness of |ψm+1〉 andUm · · ·U1|ψ1〉, we will thus arrive at a bound on the closeness
of |φ〉 and Um · · ·U1|ψ〉, required to invoke the promise of the GSCON instance.

On the other hand, in the completeness case, good proofs are rejected with prob-

ability at most 1 − c′ = p7
2m

(
η2

3
2 − η4

3
8

)
, and we need to make sure that c′ is at

least an inverse polynomial in m larger than the soundness bound s′, leaving open a
completeness–soundness gap.

Before we turn to the tests in more detail, let us look at the swap test one last time
to discuss a technical issue—freedom of phase. A swap test on |a〉 and |b〉 passes
with the same probability as a swap test on |a〉 and |b′〉 = eiω|b〉 for some phase eiω.
There exists a phase eiωsuch that 〈a|b′〉 is real and nonnegative. Thus, the rejection
probability of the swap test is

1 − |〈a|b〉|2
2

= 1 − |〈a|b′〉|2
2

=
1 −

(
1 − 1

2

∥∥|a〉 − |b′〉∥∥2
2

)2

2
= w2

2
− w4

8
, (59)

where w = ‖|a〉 − |b′〉‖2, as for real and nonnegative 〈a|b′〉 we can write∥∥|a〉 − |b′〉∥∥2
2 = 2 − 2Re(〈a|b′〉) = 2 − 2|〈a|b′〉| = w. Note that the maximum

value of w is
√

2, when we look at two orthogonal states. We also know that (59) is a

growing function of w for 0 ≤ w ≤ √
2, as the derivative of (59) is w

(
1 − w2

2

)
.

Let us consider test 6 (start). When the previous tests pass with high enough
probability, in the NO case, the probability to measure i = 1 in the label register of
|S〉 is at least 1

2m − 6μ. We then perform a swap test between |ψ1〉 and |ψ〉. For
‖|ψ1〉 − |ψ〉‖2 = w (w.l.o.g. assuming real and nonnegative 〈ψ1|ψ〉), this test fails

with probability w2

2 − w4

8 . The provers’ best shot at tricking the verifier is to maximize
w, while keeping the overall probability of test failure below what is asked for in the
test. Formally:

Lemma 9 (start test soundness)Assume the previous tests would fail with respective
probabilities belowr1, . . . , r5 fromTable 1. If test 6 (start) would fail with probability
below r6 = ( 1

2m − 6μ
) h2

4 for some h ≤ √
2, then the states |ψ1〉 and |ψ〉 are close,

i.e., there exists a phase eiωψ such that
∥∥|ψ1〉 − eiωψ |ψ〉∥∥2 < h.

Proof As the previous tests would pass with high enough probability, Lemma 8 guar-
antees that the probability of measuring i = 1 in the label register is at least 1

2m − 6μ.
Let us calculate the failure probability of the start test, using the swap test rejection
probability (59):

(
1

2m
− 6μ

)(
w2

2
− w4

8

)
≥
(

1

2m
− 6μ

)
w2

4
, (60)

because w2

2 − w4

8 ≥ w2

4 for w ≤ √
2. Thus, there must exist a ωψ such that

∥∥∥|ψ1〉 − eiωψ |ψ〉
∥∥∥

2
= w < h, (61)
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in order that the failure probability remains below r6 = ( 1
2m − 6μ

) h2

4 , which we
assumed in the lemma. ��
Lemma 10 (end test soundness) Assume tests 1-6 would fail with respective proba-
bilities below r1, . . . , r6 listed in Table 1. If test 7 (end) would reject with probability

below r7 = ( 1
2m − 6μ

) ( (η3+h)2

2 − (η3+h)4

8

)
, such that η3 + h ≤ √

2, then there exists

a phase eiωφ such that
∥∥|ψm+1〉 − eiωφ |φ〉∥∥2 < η3 + h.

Proof As the previous tests pass with high enough probability, Lemma 8 guarantees
that the probability of measuring i = m+1 in the label register is at least 1

2m −6μ. We
observe that if there did not exist a phase ωφ such that

∥∥|ψm+1〉 − eiωφ |φ〉∥∥2 = w <

η3 + h, the rejection probability of the swap test (59) between |ψm+1〉 and |φ〉 would

be w2

2 − w4

8 ≥ (η3+h)2

2 − (η3+h)4

8 , as this is a growing function of w for 0 ≤ w ≤ √
2.

Thus, the rejection probability of the end test would be at least r7, a contradiction.
Therefore, the claim is true. ��

We will choose h as the minimum of two values calculated from the GSCON
instance parameters, recalling that � ≤ min {η4 − η3, η2}:

h = min

{
η4 − η3

4
,

1

6

√
η2

R

}
= min

{
�

4
,

1

6

√
�

R

}
. (62)

The first value implies η3 + h < η4 ≤ √
2 required for Lemma 10 and Corollary 2.

The second value is required later in Corollary 3. We then choose

μ = h2

144m(η3 + h)
, (63)

so that 6μ ≤ h (required for Table 1 and Corollary 2), μ < 1
36m (required in the proof

of Lemma 11), as well as for a gap result (required in the completeness Sect. 4.3). Let
us we define a parameter γ by

(
1

2m
− 6μ

)(
(η3 + h)2

2
− (η3 + h)4

8

)
= 1

2m

(
η2

3

2
− η4

3

8

)
+ γ. (64)

We can now prove that

γ =
(

1

2m
− 6μ

)(
(η3 + h)2

2
− (η3 + h)4

8

)
− 1

2m

(
η2

3

2
− η4

3

8

)
(65)

= 1

2m

(
(η3 + h)2 − η2

3

2
− (η3 + h)4 − η4

3

8
− 12μm

(
(η3 + h)2

2
− (η3 + h)4

8

))

(66)
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≥ 1

2m

(
h(2η3 + h)

2

h

4

(
2
√

2 − h
)

− 6μm(η3 + h)2
)

(67)

≥ h2(η3 + h)

16m

(√
2 − 48μm(η3 + h)

h2

)
≥ h2(η3 + h)

16m
, (68)

labeling a = η3 + h and b = η3 and utilizing a2 − b2 − 1
4 (a4 − b4) = (a − b)(a +

b)
(

1 − a2+b2

4

)
, which is not larger than 1

4 (a − b)(a + b)h
(

2
√

2 − h
)

, when we

realize that a ≤ √
2 and b ≤ √

2 − h.
With this in hand, we can show that if the tests 1-7 pass with high enough probability,

the state |S〉 contains enough information about the state sequence Uj · · ·U1|ψ〉, with
Uj ’s from the state |U 〉. In other words, the states Um · · ·U1|ψ〉 and |φ〉 must be close
up to a phase.

Corollary 2 (GSCON final state condition) Assume tests 1–7 would fail with respec-
tive probabilities below r1, . . . , r7, given in Table 1. Then, there is a phase eiωφ such
that

∥∥Um · · ·U1|ψ〉 − eiωφ |φ〉∥∥2 < η3 + 3h < η4.

Proof To show this, we combine the previous results, as illustrated in Fig. 2, and recall
that h ≤ η4−η3

4 (62).

1. |ψ j+1〉 is close to Uj · · ·U1|ψ1〉, thanks to Lemma 8 about the sequence test.
2. |ψ1〉 is close to |ψ〉, thanks to Lemma 9 about the start test.
3. |ψm+1〉 is close to |φ〉, thanks to Lemma 10 about the end test.

Combining the previous two results, we realize that |ψm+1〉 has high overlap with
Um · · ·U1|ψ〉. In detail, the triangle inequality tells us that without loss of generality,
we can choose the phases of the vectors so that the overlaps are real and nonnegative,
and

∥∥∥Um · · ·U1|ψ〉 − eiωφ |φ〉
∥∥∥

2
≤ ‖Um · · ·U1|ψ1〉 − |ψm+1〉‖2

+ ‖Um · · ·U1|ψ〉 −Um · · ·U1|ψ1〉‖2

+ ‖|ψm+1〉 − |φ〉‖2

< 6μ + h + (η3 + h) ≤ η3 + 3h < η4, (69)

as guaranteed by results 1–3 described above and our choice of μ (63). ��
Therefore, we now either have one of the tests 1–7 rejecting with probability at

least ri , resulting in overall acceptance at most s′ = 1 − piri , or a guarantee that
the state |S〉 is very close to a sequence of states | j〉|ψ j 〉 with |ψ j 〉 = Uj · · ·U1|ψ〉
and |ψm+1〉 = |φ〉. However, in the NO case this is impossible—so the last test low
should reject the proof. We show this in the next section.

4.2.4 Low-energy testing

We run the final test 8 (low) with probability p8. We will show that if it would pass
with probability ≥ s′, it would mean the states in the sequence Uj · · ·U1|ψ〉 have
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energy strictly below η2. However, thanks to the promise of the GSCON problem, in
the NO case there does not exist a sequence of states Uj · · ·U1|ψ〉 ending < η4 close
to |φ〉, with all states with energy strictly below η2. This will mean that either the final
test rejects with probability at least r8, or one of the previous tests must reject with
probability at least its ri (see Table 1).

We have chosen to analyze the frustration-free variant of GSCON, with positive
semidefinite Hamiltonians and η1 = 0, i.e., exactly traversing a frustration-free ground
space, because we want to avoid a technical4 issue. Since we only have one (two) copies
of the witness, it is difficult to perform a precise enough low-energy test, which would
not disturb the completeness of the procedure.

In practice, we measure the label register of |S〉, obtaining a label i . Thanks to
(49), we know the probability of measuring any is not too small. We then measure
the energy of the state |ψi 〉, and reject or accept depending on the result. With the
guarantees collected so far, we now have a sequence of states Uj · · ·U1|ψ〉 that ends
strictly closer than η4 to |φ〉 (69). Therefore, if we would test the energy of the states
Uj · · ·U1|ψ〉, at least one state in the sequence must have energy above η2. Now,
because the states Uj · · ·U1|ψ〉 are close to the states |ψ j+1〉, testing whether the
energy of the |ψ j+1〉’s is low allows us to test if the energy of the Uj · · ·U1|ψ〉’s is
low enough. In detail,

Lemma 11 (Low-energy testing, frustration-free case) Assume tests 1-7 would fail
with respective probabilities below r1, . . . , r7, listed in Table 1. If the final test (low)
fails with probability below r8 = η2

8Rm , with R the number of terms in the Hamiltonian
of the ff-GSCON instance, then the energy of each state |ψi 〉 must be below η2

2 .

Proof Assuming that tests 1–7 pass with the probabilities denoted in Table 1, Lemma 8
guarantees that the probability of measuring any i in the label register of state |S〉 is
at least 1

2m − 6μ. When we measure the label register of the state |S〉, we obtain some
value i and a state |ψi 〉 in the data register. Using a measurement circuit [15, p. 142–
143] for a local Hamiltonian, we can now measure the energy of |ψi 〉 for our GSCON
Hamiltonian H made from r positive semidefinite terms with norm at most 1. We will
reject if this circuit outputs 0, which happens with probability 1

R 〈ψi |H |ψi 〉.
Now, assume the energy of a state |ψi 〉 was above η2

2 , the rejection probability for
the energy measurement circuit would be above η2

2R . The rejection probability of the
low test would thus be above

(
1

2m
− 6μ

)
η2

2R
>

η2

8Rm
, (70)

as μ < 1
24m thanks to (63). However, this (70) disagrees with the assumption of the

lemma. Therefore, the energy of each |ψi 〉 must not be above η2
2 . ��

4 Our proof would also go through for a very small η1, or could be avoided with more copies of the
proof. However, we have not found a good enough way of performing a single measurement of energy for
non-frustration-free Hamiltonians, that would with high enough probability tell if an energy of a single copy
of a state (a superposition of eigenstates with various energies) is below or above thresholds that could be
very close together.
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We can now finally show that if test 8 passes with high probability, the energy of
each state Uj · · ·U1|ψ〉 must be low enough.

Corollary 3 (Low-energy requirement for GSCON) Assume tests 1–8 would fail with
respective probabilities below r1, . . . , r8, listed in Table 1. Then, the energy of each
state U j · · ·U1|ψ〉 is strictly below η2.

Proof We already know (70). Thanks to Lemma 8 about the sequence test and
Lemma 9 about the start test, we also know that

�ψ j+1 = ∥∥|�ψ j+1〉
∥∥

2
≤ 2h, (71)

when we label |�ψ j+1〉 = Uj · · ·U1|ψ〉 − |ψ j+1〉. Therefore, if Lemma 11 says the
energy of |ψ j+1〉 is at most η2

2 , the energy of the state Uj · · ·U1|ψ〉 is

〈ψ |U †
j · · ·U †

1 HUj · · ·U1|ψ〉 = 〈ψ j+1|H |ψ j+1〉 + 〈�ψ j+1 |H |ψ j+1〉
+ 〈ψ j+1|H |�ψ j+1〉 + 〈�ψ j+1 |H |�ψ j+1〉

≤ η2

2

(
1 + 2�ψ j+1

)+ ‖H‖ �2
ψ j+1

≤ η2

2

(
1 + 2�ψ j+1

)+ R�2
ψ j+1

. (72)

Recall that we chose h (62) so that �ψ j+1 ≤ 2h ≤ 1
3

√
η2
R , which means 2�ψ j+1 ≤ 2

3

and R�2
ψ j+1

≤ η2
9 . The energy of eachUj · · ·U1|ψ〉 is thus upper bounded by 17

18η2 <

η2. This is strictly below η2, as we wanted to show. ��
Let us now combine the results we have proven so far. The argument from Lemma 1

to Corollary 3 collectively says that if the tests pass with high enough probability, we
get guarantees about the sequence Uj · · ·U1|ψ〉. However, all those guarantees are
irreconcilable with the NO case of the GSCON problem—there must be at least one
state Uj · · ·U1|ψ〉 with energy at least η2, if the sequence starts at |ψ〉 and ends near
enough |φ〉. Therefore, at least one of the tests must fail with probability at least the
respective rejection threshold ri listed in Table 1. There, we also set the probabilities
p1, . . . , p8 for running the tests, so that when we combine them with the desired
thresholds for rejection ri , we get piri = 1 − s′ for some s′. This is easily achievable
for the following set of pi ’s:

pi = r−1
i∑
j r

−1
j

, (73)

which obey
∑

i pi = 1, with each pi at least an inverse polynomial in m. Thus, in
the NO case, the probability to pass the tests for cheating provers is at most s′ =
1 −

(∑
j r

−1
j

)−1
(10).

This concludes the soundness part of Theorem 1. It remains to show completeness—
the acceptance probability of the protocol in the YES case must be at least c′, which
needs to be at least an inverse polynomial in n above s′.
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4.3 Completeness

Let us run through how well the tests can run in the YES case, with honest provers
following the protocol, and show a high probability of acceptance if the provers behave
honestly.

The states |U 〉 and |U ′〉 are identical and contain computational basis encoded
unitary gates Ui . The first test, swap U, and the second test, unique, thus pass
perfectly.

Let us look at the third test, uniform, on a state |U 〉 with a proper form. The
probability to pass the gate register projection is exactly 1

G . When this passes, the
probability to pass the label register projection is exactly 1. Therefore, this test also
passes perfectly for honest provers.

We can turn to the tests for the |S〉 states. As before, test 4 (swap S) passes perfectly.
What about test 5 (sequence)? The probabilistic procedure that applies the gates in
|U 〉 to the state |S〉 works with probability at least 1

2m . After the shift in the label
register, the comparison with the state |S′〉 passes perfectly. Altogether, test 5 passes
perfectly again.

The sixth test, start, passes perfectly on a proper witness that has |ψ1〉 = |ψ〉.
The seventh test, end, involves i = m + 1, where we have a problem instance

promise that there exists a state |ψ〉 for which |ψm+1〉 = Um · · ·U1|ψ1〉 =
Um · · ·U1|ψ〉 is at most η3 far from |φ〉. Therefore, when we check this with a swap

test, there is a chance at most 1
2m

(
η2

3
2 − η4

3
8

)
to reject a good witness.

Finally, we chose to look at ff-GSCON instances with η1 = 0, with a frustration-
free, positive semidefinite Hamiltonian, all the states |ψ j 〉 have energy exactly zero
for all of the Hamiltonian’s terms, so the final test, low, passes perfectly. If we did not
choose this variant of GSCON, the ambiguity in the low-energy testing in the YES case
could reduce the completeness unfavorably. We leave as an open question, whether
this requirement can be removed or not.

Altogether, the probability to pass the whole procedure for honest, unentangled
provers is at least

c′ ≥ 1 − p7

2m

(
η2

3

2
− η4

3

8

)
, (74)

thanks to the freedom of the final state |ψm+1〉 to be a little bit away from the expected
final state |φ〉 in test 7.

4.4 The completeness–soundness gap is an inverse polynomial

Let us now compare the completeness bound from Sect. 4.3 with the probability of
acceptance in the NO case from Sect. 4.2. We choose the respective test-running
probabilities p1, . . . , p8 according to (9) so that piri = 1 − s′, where ri is the desired
maximum rejection probability for a given test, listed in Table 1. It means the maximum
acceptance probability in the NO case is s′. Thanks to p7r7 = 1 − s′ and recalling
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(68), the completeness–soundness gap for our four-unentangled-state protocol thus
obeys

c′ − s′ ≥ 1 − p7

(
η2

3

2
− η4

3

8

)
− (1 − p7r7) = p7γ ≥ p7h2(η3 + h)

16m
. (75)

It is at least an inverse polynomial in m and thus n. This concludes the proof of
Theorem 1.

For those wishing to see what a terrible inverse polynomial it is, let us make an
estimate. First, we need a lower bound on p7 = r−1

7 /
∑

j r
−1
j . Looking at Table 1,

we see that the prohibitively dominating term in
∑

j r
−1
j is r−1

1 , and we can upper

bound it by O
(
m32G10�−12

)
, where � is an upper bound on h in (62), coming

from the GSCON parameters. On the other hand, we can estimate r−1
7 to be roughly

m�−2. Plugging these estimates into (75), we conclude that a lower bound on the final
completeness–soundness gap is in �(�13m−32G−10).
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