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Clocks in Feynman’s computer and Kitaev’s local Hamiltonian: Bias, gaps, idling, and pulse tuning
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We present a collection of results about the clock in Feynman’s computer construction and Kitaev’s local
Hamiltonian problem. First, by analyzing the spectra of quantum walks on a line with varying end-point terms,
we find a better lower bound on the gap of the Feynman Hamiltonian, which translates into a less strict promise gap
requirement for the quantum-Merlin-Arthur–complete local Hamiltonian problem. We also translate this result
into the language of adiabatic quantum computation. Second, introducing an idling clock construction with a
large state space but fast Cesaro mixing, we provide a way for achieving an arbitrarily high success probability of
computation with Feynman’s computer with only a logarithmic increase in the number of clock qubits. Finally, we
tune and thus improve the costs (locality and gap scaling) of implementing a (pulse) clock with a single excitation.
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I. INTRODUCTION

The need to describe and find the properties of many-body
systems in quantum physics has lead to a large collection
of interesting computational problems. Some are easy for
classical computers [1,2], some efficiently verifiable on a
quantum computer [3–5], and others even undecidable [6]. The
development of numerical methods for these problems is a field
to itself with exciting new developments motivated by quantum
information [7,8]. On the other hand, the goal of quantum
Hamiltonian complexity [9] is to theoretically understand the
universal power of models of computation based on local
Hamiltonians [10,11] as well as to characterize the compu-
tational complexity of Hamiltonian-based optimization [12],
rewriting [13], connectivity [14], degeneracy [15], sampling
[16], and other types of problems.

Some of the questions involve static properties of the
Hamiltonians describing the system, for example, the existence
of eigenstates with a certain energy bound [17], the behavior of
quantum correlations [18], or the possibility of finding parent
Hamiltonians given an eigenstate [19]. Other questions involve
dynamics, asking about computational and universality and
simulation [10], or the possibilities of state preparation [20,21].
The roots of some of these questions can be traced back to
Feynman, who devised a computational model based on uni-
tary evolution with a fixed quantum mechanical Hamiltonian
[22]. There is a crucial difference from classical computation:
One can no longer efficiently read out and store (copy) the state
of the system at any point of the computation. Feynman’s com-
puter works with superpositions over snapshots of the compu-
tation, with unitary transformations according to Schrödinger
evolution with a particular Hamiltonian, on a system with two
registers: clock and data. There are many ways one can imple-
ment this by a local Hamiltonian, depending on the intended
application. Our goal is to improve several of these techniques.
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This paper is a collection of results about clocks for
quantum complexity constructions, tied together by quantum
walk techniques. We utilize local interactions to construct
the clock register and couple it to what happens in the data
registers, with improved efficiency (fewer required steps),
complexity requirements (gap promise), success probability
(spatially efficient probabilistic computation with a tunable
success rate), and locality of interactions (few-body terms).

In Sec. II we start with a review of Feynman’s ideas of
computing with a Hamiltonian, Kitaev’s local Hamiltonian
problem, and the clocks that they use. We then present our first
result about a class of Hamiltonians describing a clock biased
towards one end of the computation in Sec. II D. Relying on a
mapping to quantum walks on a line with end-point self-loops,
we show that these Hamiltonians are gapped.

Second, in Sec. III we apply what we learned about clocks
with biased ends to improve the promise bound for Kitaev’s
local Hamiltonian problem. Note that this bound has been
recently independently similarly improved from �(N−3) to
�(N−2) by Bausch and Crosson [23], who have also looked
at tridiagonal Hamiltonians, but used a Markov chain mixing
technique instead of quantum walks. They also showed that this
bound is tight for any clock whose Hamiltonian is tridiagonal
in the time-register basis.

Our third, negative result is an analysis of the efficiency
of universal computation by adiabatic evolution in Sec. III A,
relying on what we learned about gaps of biased clocks.
We find that adiabatic quantum computation with standard
Hamiltonians does not yield a natural quadratic speedup over
quantum computation with a static quantum walk Hamiltonian
and mixing.

Fourth, we present two ways of doing nothing (idling
the engine) to improve the success probabilities for quantum
computation with local Hamiltonians in Sec. IV. Most impor-
tantly, we do it efficiently (with a sublinear increase in the
number of qubits used). The first construction is designed for
static applications in complexity, increasing the overlap of the
ground state of a local Hamiltonian with a state containing the
result of a computation. The second method is less efficient,
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but usable in dynamical constructions (i.e., for building a
computer).

We envision the use of these results in quantum Hamilto-
nian complexity applications. They give one a better starting
position for gap amplification, tighter bounds, and better
understanding of commonly used quantum walks on a line
with boundary terms. Moreover, we provide two methods
to efficiently tune the success probability of a computation
efficiently in terms of space, running time, and locality.

II. FEYNMAN-KITAEV COMPUTER, CLOCKS, AND GAPS

In this section we briefly review universal computation
with the Feynman Hamiltonian and Kitaev’s quantum-Merlin-
Arthur–complete (QMA-complete) local Hamiltonian prob-
lem. Quantum computation is usually viewed in terms of
the circuit model, with a large unitary circuit on n qubits
decomposed into a sequence of unitary gates, each acting on a
few qubits. It is also possible to evaluate some of the gates in
parallel. An equivalent universal quantum computation formu-
lation is possible using time-independent Hamiltonians. There,
an initial state unitarily evolves according to the Schrödinger
equation for some Hamiltonian H built from local interaction
terms, each acting on a few particles. We will first show such a
construction. Second, we will show how it can be translated to a
static construction, where a ground state of a local Hamiltonian
encodes the progress of a computation with a unitary circuit.

Let us clarify some notation and labeling issues. In this
paper we talk about k-local Hamiltonians, built from terms
acting nontrivially only on k particles. This does not necessarily
imply geometric locality, which would mean that the particles
are also spatially close, e.g., for nearest-neighbor interactions
on a lattice. We also use simplified notation for operators O

acting in a larger Hilbert space S, but nontrivially only on
a smaller subspace A as O = AA ⊗ IS−A, writing just AA

instead of the full expression. For example, we will denote
the projector I1,2 ⊗ |00〉〈00|3,4 ⊗ I5,...,N by the shorter and
more readable |00〉〈00|3,4 acting on subsystems 3 and 4,
implicitly understanding that it acts on a larger Hilbert space
with N subsystems. Finally, we utilize the standard asymptotic
(big-O) notation (see, e.g., [24]), where (i) f (n) = O(g(n))
means that f (n) is asymptotically bounded from above by
g(n), i.e., there exist constants c,n0 > 0 such that for all
n � n0 we have 0 � f (n) � cg(n); (ii)f (n) = �(g(n)) means
that f (n) is asymptotically bounded from below by g(n),
i.e., there exist constants c,n0 > 0 such that for all n � n0

we have 0 � cg(n) � f (n); (iii) f (n) = �(g(n)) means that
f (n) is asymptotically bounded by g(n) from both above and
below, i.e., it obeys f (n) = O(g(n)) and f (n) = �(g(n)) at
the same time; and (iv) f (n) = o(g(n)) means that f (n) is
asymptotically dominated by g(n), i.e., for any constant c > 0
there exists a constant n0 > 0 such that for all n � n0 we have
0 � f (n) < cg(n).

A. Dynamical construction: Feynman’s computer

We now present Feynman’s construction for performing a
unitary computation by evolving with a static Hamiltonian.
Consider a quantum circuit U = UNUN−1 · · · U2U1 composed
of N gates. Our playground will be a Hilbert space made from

a clock register holding N + 1 possible states |0〉, . . . ,|N〉
labeling the progress of the computation and a data register
that will hold the qubits we want to compute on

H = Hclock ⊗ Hdata. (1)

When we evolve an initial state |ψ0
0 〉 = |0〉clock ⊗ |0 · · · 0〉data

with Feynman’s Hamiltonian

HF =
N∑

t=1

(|t〉〈t − 1|clock ⊗ Ut + |t − 1〉〈t |clock ⊗ U
†
t ), (2)

the resulting state will exist in the space

H0 = span
{∣∣ψ0

t

〉
= |t〉clock ⊗ (Ut · · · U1|0 · · · 0〉data),t = 0, . . . ,N

}
. (3)

Observe also that HF|ψ0
t 〉 = |ψ0

t−1〉 + |ψ0
t+1〉, so the restriction

HF|H0 is the Hamiltonian of a continuous-time quantum walk
on a line [25] of states |ψ0

t 〉. Using quantum walk techniques,
we can show that when we evolve the initial state |ψ0

0 〉 for
a time randomly chosen between 0 and �(N2) and measure
the clock register, with probability �(N−1) we will obtain the
state |N〉clock and thus UN · · ·U1|0 · · · 0〉 (the result of the
circuit U applied to the initial state |0 · · · 0〉) in the data
register. Therefore, evolution with Feynman’s Hamiltonian is
a universal quantum computer. Below, in Sec. II C, we show
that Feynman’s computer can be built from local terms by
choosing a local implementation of the clock register states
and the Hamiltonian terms inducing transitions terms between
the states.

B. Static construction: Kitaev’s Hamiltonian

Here we show how to turn Feyman’s dynamic construction
(evolve with HF and measure, obtaining the result of a quantum
computation) to a static construction, where the ground state
is a history state, encoding the progress of a quantum compu-
tation. Let us consider the Hilbert space (1) with two (clock
and data) registers. We call∣∣ψϕ

hist

〉 = 1√
N + 1

N∑
t=0

∣∣ψϕ
t

〉

= 1√
N + 1

N∑
t=0

|t〉clock ⊗ UtUt−1 · · · U1|ϕ〉︸ ︷︷ ︸
|ϕt 〉data

(4)

the history state of the computation of the circuitU on the initial
data register state |ϕ〉. Kitaev constructed a Hamiltonian whose
ground states have the form of such history states: uniform
superpositions of successive states of the computation of the
circuit U , along with a clock register labeling the progress of
the computation. This propagation-checking Hamiltonian1 is

Hprop =
N∑

t=1

[(|t − 1〉〈t − 1| + |t〉〈t |)clock ⊗ Idata

− |t〉〈t − 1|clock ⊗ Ut − |t − 1〉〈t |clock ⊗ U
†
t ], (5)

1To avoid repeating many 1
2 ’s later on, in this paper we choose to

omit the usual constant prefactor 1
2 in Hprop.
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built from projector terms and Feynman’s Hamiltonian (2). In
Sec. II C we will see that Hprop|Hϕ

, restricted to the Hilbert
space Hϕ (3) spanned by states |ψϕ

t 〉 (4), is a quantum walk on
a line with self-loops.

Kitaev then used it to give a QMA-complete problem,
the local Hamiltonian [17]. He showed how to construct a
Hamiltonian with a ground-state energy below some bound
only if there exists an initial state |ϕ〉 for which the output
qubit of the state U |ϕ〉 is |1〉 with high probability. If there is
no such state |ϕ〉, the ground-state energy is above some bound.
This is one reason behind why determining with high precision
the ground-state energy of local Hamiltonians is difficult.

This Hamiltonian is made from four terms

HK = Hprop + Hinit + Hout + Hclock. (6)

Each of them “checks” some property of the state, giving
lower energies to states that have this property. The term
Hprop prefers proper propagation of the computation, ensuring
that the low-energy states of (6) are close in form to the
history states (4). The second term in (6) checks the proper
initialization of ancilla qubits at the start of the computation.
The term Hout looks at whether the result of the computation
is “accept,” i.e., whether the state of the designated output data
qubit (labeled out) is |1〉 at the end of the computation, i.e.,
when the clock register reads |N〉. In detail,

Hinit =
∑

ancillas a

|0〉〈0|clock ⊗ |1〉〈1|a,

Hout = |N〉〈N |clock ⊗ |0〉〈0|out. (7)

The final term in (6) is a clock-checking Hamiltonian, checking
the proper form of the states in the clock register. The particular
implementation of the clock register and its interaction with the
data (5) by a local Hamiltonian is crucial for making the Kitaev
Hamiltonian local. In the next section we will see how this can
be done, e.g., by Kitaev’s original domain-wall (unary) clock
(see Sec. II C 2).

C. Clock constructions

The basic building block for Feynman’s computer (and Ki-
taev’s local Hamiltonian construction) is a clock, a register with
N + 1 possible logical states |0〉, . . . ,|N〉, denoting the linear
progress of a computation. Originally, Feynman envisioned it
being a hopping pointer particle. Here we will look at this
construction and other options, their properties, and ways to
make them local.

Note that one could also construct clocks with a nonlinear
progression of states, without unique forward and backward
transitions. In recent quantum complexity results [12], we have
seen the combinations of several clock registers, blind alley
transitions, railroad-switching paths, and path noncommuta-
tivity, among other ideas. However, there are still interesting
things to be learned about the basic linear approaches and their
relationship to quantum walks, as we will show below.

The clock for Feynman’s computer can be realized by a
hopping Hamiltonian (a quantum walk on a line)

H walk
N = −

N−1∑
t=0

(|t + 1〉〈t | + |t〉〈t + 1|) (8)

acting on a Hilbert space of size N + 1, spanned by the states
|t〉 for t = 0, . . . ,N . We choose the minus sign in front of the
Hamiltonian for convenience so that later the low-energy states
have positive amplitudes. This Hamiltonian is the negative
of the adjacency matrix of a line. Its eigenvectors are then
combinations of plane waves with certain momenta, analyzed
in detail in Sec. II D 2. The gap (difference of two lowest
energies) of such Hamiltonians scales as �(N−2).

In Kitaev’s construction and followup work [26,27], the
clock Hamiltonian is usually written as a sum of projectors.
It is related to (8) as an adjacency matrix is related to a
Laplacian of a graph with edges corresponding to possible
clock transitions. For each transition |t〉 ↔ |t + 1〉 in (8), the
projector 1

2 (|t〉 − |t + 1〉)(〈t | − 〈t + 1|) energetically prefers
a uniform superposition of these states, i.e., 1√

2
(|t〉 + |t + 1〉).

Let us write down the sum of these projectors, and omit the 1
2

prefactor for simplicity. We call this Hamiltonian the Laplacian
quantum walk

H L
N =

N−1∑
t=0

(|t〉 − |t + 1〉)(〈t | − 〈t + 1|). (9)

It is a frustration-free sum of positive semidefinite terms with
a unique zero-energy ground state: the uniform superposition

1√
N+1

∑N
t=0 |t〉. We can also view this ground state as a history

state (4) without a data register, for a circuit made out of identity
gates. Expanding (9), we find its relationship to (8):

H L
N = |0〉〈0| + 2

N−1∑
t=1

|t〉〈t | + |N〉〈N |

−
N−1∑
t=0

(|t + 1〉〈t | + |t〉〈t + 1|)

= 2I − |0〉〈0| − |N〉〈N | + H walk
N . (10)

It is the Laplacian matrix for a line graph of length N + 1. It
can also be interpreted as a shifted quantum walk on a line
(8) with end-point projectors. We analyze such walks in Sec.
II D 1.

Let us now look at how the clock Hamiltonians (8) and
(9) can be implemented in spin systems, in particular, in
spin chains with nearest-neighbor or next-nearest-neighbor
interactions.

1. Pulse clock: Excitation hopping on a line

One can use Hamiltonians with 2-local interactions to
implement a linear clock from the preceding section. One
option is to model (8) by the hopping of a single excitation
in a spin- 1

2 chain of length N + 1. The states |t〉 for H walk
N

correspond to spin chain states |0 · · · 01x0 · · · 0〉 with the |1〉 at
position x = t + 1. In Feynman’s computer, the position of the
|1〉 (the excitation, the pointer) then measures the progress of
the computation. The nearest-neighbor spin chain Hamiltonian
reads

H
pulse
N = −

N∑
x=1

(|01〉〈10| + |10〉〈01|)x,x+1. (11)
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For completeness, a Laplacian walk version of (11) would read

H
pulse,L
N =

N∑
x=1

(|01〉 − |10〉)(〈01| − 〈10|)x,x+1. (12)

To ensure that our pulse clock (in a spin chain) works
in the good subspace with a single excitation, we only need
to initialize it this way. Observe that the Hamiltonians (11)
and (12) keep the number of 1’s in the chain invariant. We
show another option in Sec. V: adding a precisely tuned
local Hamiltonian that prefers the single-excitation subspace
over others (strongly averse to neighboring 11’s, while locally
weakly preferring 1’s over 0’s).

The properties of the eigenvectors and the spectra of (11)
and (12) restricted to the good subspace are the same as the
properties of the quantum walk Hamiltonians (8) and (9). Note
that these are also well known in condensed matter physics.
The Hamiltonian of the walk on a line (8) implemented by the
pulse clock (11) can be mapped to the single-excitation sector
of the ferromagnetic XX-model spin chain

−
∑

x

(|01〉〈10| + |10〉〈01|)x,x+1

= −1

2

∑
x

XxXx+1(I − ZxZx+1)

= −1

2

∑
x

(XxXx+1 + YxYx+1). (13)

On the other hand, the behavior of the projector Hamiltonian
(12) can be mapped to the single-excitation sector of the
ferromagnetic Heisenberg (XXX-model) chain∑

x

(|10〉 − |01〉)(〈10| − 〈01|)x,x+1

=
∑

x

(I − XxXx+1)
1

2
(I − ZxZx+1)

= 1

2
I − 1

2

∑
x

(XxXx+1 + YxYx+1 + ZxZx+1). (14)

2. Domain-wall (unary) clock

The second option for a clock is the domain-wall (unary)
clock. This was the version of the clock used in Kitaev’s
5-local Hamiltonian: The clock itself is 3-local, and adding
two-qubit gates to build (5) makes it 5-local. It involves
a progression of states with a single domain wall, like
|100000〉,|110000〉,|111000〉,|111100〉,|111110〉. It can be
implemented by a 3-local (next-nearest-neighbor) Hamiltonian
on a spin- 1

2 chain of length N + 2. First, we can model the
hopping (8) as

H
dw,walk
N = −

N∑
x=1

(|110〉〈100| + |100〉〈110|)x,x+1,x+2, (15)

while being restricted to the good subspace spanned by the
states |1 · · · 1x0 · · · 0〉 with x = t + 1 ones corresponding to
the clock state |t〉. We can easily construct a clock-checking

Hamiltonian

H dw
clock-check =

N+1∑
x=1

|01〉〈01|x,x+1 + |0〉〈0|1 + |1〉〈1|N+2 (16)

that energetically favors the good subspace, because only the
single-domain-wall states have no neighboring 01’s, start with
a 1, and end with a 0.

Again, we can also write down a Laplacian version (9) of
the domain-wall clock

H
dw,L
N =

N∑
x=1

(|100〉 − |110〉)(〈100| − 〈110|)x,x+1,x+2. (17)

Adding clock checking (16), we find that the positive-
semidefinite Hamiltonian H

dw,L
N + H dw

clock-check has a unique,
frustration-free (annihilated by all projector terms), zero-
energy ground state |ψdw〉 = 1√

N+1

∑N+1
x=1 |1 · · · 1x0 · · · 0〉.

The Hamiltonians described in this section do not introduce
or delete domain walls. The Hilbert space thus splits into the
invariant good subspace spanned by states with a single domain
wall, and other invariant subspaces. In those, all states have
energy at least a constant E � 1, because each such state is
“detected” by at least one of the clock-checking terms in (16).

By construction, (17) restricted to the good subspace be-
comes (9), a rescaled and shifted quantum walk (8) on a line
of N + 1 states, with extra end-point projector terms that can
be interpreted as end-point loops. The eigenvectors of (9) are
again combinations of plane waves. We show in Sec. II D 1 that
the gap (the difference between the two lowest eigenvalues) of
this Hamiltonian again scales like �(N−2).

The pulse and domain-wall clocks are the simplest con-
structions, where we have complete understanding of the
invariant subspaces, the good subspace, the eigenvectors and
eigenvalues, the dynamics, and the gap. Let us turn to slightly
more complicated cases, modifying the walk on a line of states.
First, we will introduce a bias towards one side in Sec. II D
and then analyze what happens in a more general case with
varying strength of attraction or repulsion at the end points in
Sec. II D 1.

D. Clocks as walks on a line

We now delve into a more general investigation of clocks
that correspond to walks on a line. We would like to get a
faster computation, larger success probability, larger overlaps
with the completed computation, or better spectral properties
for Feynman’s computer or Kitaev’s construction. For this
purpose, we will first investigate a walk biased to one side and
then walks with end-point projectors with varying strength.
It turns out that such walks (clocks) are specific tridiagonal
matrices, whose spectral properties we can analyze. The
main application we find is an improved lower bound on the
required precision for Kitaev’s QMA-complete problem local
Hamiltonian.

In Fig. 1 we depict the types of walks on a line that we
investigate here. First, we depict the adjacency walk (hopping)
from (8), then the Laplacian walk (projector) from (10), and
then a generalization with variable end-point loop projector
terms that we will analyze below (21). We are looking into this
particular generalization because its form encompasses many
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FIG. 1. Quantum walks on a line of length N . (a) The quantum walk on a line (hopping) Hamiltonian H walk
N [Eq. (8)] is the negative of the

adjacency matrix. (b) The Laplacian walk H L
N [Eq. (9)] includes a self-loop on each vertex for each outgoing edge. (c) A more general version

H
(L,R)
N [Eq. (21)] parametrized by a pair L,R includes end-point projectors (loops) −L|0〉〈0| and −R|N〉〈N |.

interesting cases. For example, such Hamiltonians appear in
the quantum walk algorithm for traversing randomly glued
trees by Childs et al. [28] or in adiabatic quantum computation
applications [11,29], where one interpolates between end-point
projector terms and a quantum walk or Kitaev computer term.

The simplest generalization is to start with (9) and bias the
clock towards one side by a parameter B > 1:

H bias
N =

N−1∑
x=0

(B|x〉 − |x + 1〉)(B〈x| − 〈x + 1|). (18)

It is a sum of positive-semidefinite terms (each of them is
proportional to a projector) and thus positive semidefinite.
Instead of the uniform superposition, it energetically prefers
superpositions of the form |x〉 + B|x + 1〉. The ground state
will thus involve an exponential increase in amplitude towards
one of the end points

|ψbias〉 = 1√∑N
x=0 B2x

N∑
x=0

Bx |x〉. (19)

This ground state is unique and fully annihilated by H bias
N ,

making H bias
N frustration-free. We can rewrite the Hamiltonian

(18) as

H bias
N = (1 + B2)I + B

(
− 1

B
|0〉〈0| − B|N〉〈N | + H walk

N

)
(20)

and interpret it as a shifted and rescaled quantum walk on a line
(8) with self-loops of magnitude 1

B
and B. This is a special case

of a walk on a line with general self-loops at the end, which we
will analyze in Sec. II D 1 and prove that its gap is a constant.
Looking at the form of (20), another generalization with fully
tunable end-point loops comes naturally.

1. Walking on a line with tunable end-point loops

Let us now analyze a more general case: a quantum walk
on a line with N links and end-point self-loops of constant
strength L and R. Our Hamiltonian now has the form

H
(L,R)
N = −L|0〉〈0| − R|N〉〈N | + H walk

N , (21)

where H walk
N is minus the adjacency matrix of a line with N

links (8). Using this notation, the Laplacian walk (10) can also
be written as

H L
N = 2I + H

(1,1)
N . (22)

The biased walk (18) can be seen as a special case of H (L,R)

with LR = 1 by setting L = B and R = 1
B

, an extra prefactor
and a constant shift, as seen from (20).

Our analysis is similar to that of Childs et al. [28], where
two identical quantum walks on a line are joined by an edge
of different strength. There, the symmetric and antisymmetric
sectors can be mapped to a quantum walk on a single line
with one end-point projector. A similar case is the topic of
[29], where two connected walks on a line include end-point
projectors with strengths s and 1 − s. Here we talk about
general end-point projectors, in particular positive as well as
negative L,R.

Because the geometry of the system is mostly a line, the
eigenvectors there can be of only two types. We call the
first class goniometric; these eigenvectors are combinations
of plane waves

|gp〉 =
N∑

x=0

(ae−ipx + beipx)|x〉, E(g)
p = −2 cos p, (23)

with 0 � p < 2π . Note that −2 � E
(g)
p � 2. We call the

second class of eigenvectors hyperbolic; they are combinations
of hyperbolic functions, obtained by using imaginary momenta
p = iq,

|hq〉 =
N∑

x=0

(ce−qx + deqx)|x〉, E(h)
q = −2 cosh q, (24)

with q > 0. Note that E(h)
q < −2.

Our goal is to estimate the gap of (21). We will investigate
the outlying energies for the goniometric solutions, as well
as the existence of the hyperbolic solutions. First, let us look at
the goniometric solutions. At the end points of the line (x = 0
and x = N ), the eigenvalue equation H

(L,R)
N |gp〉 = E

(g)
p |gp〉

reads2

− L(a + b) − (ae−ip + beip) = −(eip + e−ip)(a + b),

− R(ae−iNp + beiNp) − (ae−i(N−1)p + bei(N−1)p)

= −(eip + e−ip)(ae−iNp + beiNp). (25)

2A quick way to arrive at the equation at the left end point is to
realize that the contribution from the self-loop has to be the same as
if it came from a line continued to x = −1, i.e., from a point with
amplitude aeip + be−ip .
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We can rearrange these to get

a(L − eip) = b(e−ip − L),

a(e−ip − R) = be2iNp(R − eip).
(26)

Let us first deal with special cases, making sure we do
not divide or multiply by zero when simplifying the above
equations. The complex numbers in parentheses in (26) are real
only for p ∈ {0,π}, for which eip = e−ip, so only the a part
in (23) has a distinct meaning and we can just set b = 0. The
option p = 0 then gives a nonzero a if and only if L = R = 1,
when we get a special solution: the uniform superposition

∣∣g(L=R=1)
0

〉 = 1√
N + 1

N∑
x=0

|x〉 (27)

with energy E0 = −2. Similarly, a solution for p = π with
energy Eπ = 2 exists if and only if L = R = −1:

∣∣g(L=R=−1)
π

〉 = 1√
N + 1

N∑
x=0

(−1)x |x〉. (28)

We can also verify that a = 0 (or b = 0) does not work except
in the above special cases. Therefore, we can multiply Eqs. (26)
together, get rid of ab, and obtain a quantization condition for
the momentum p:

ei2Np(R − eip)(L − eip) = (R − e−ip)(L − e−ip). (29)

This condition has the form ei2Np = v
v∗

w
w∗ with v = R − e−ip

and w = L − e−ip. It ties together the arguments of the
complex numbers via

2Np + 2πk = 2 arg(v) + 2 arg(w)

= 2 arctan
sin p

R − cos p
+ 2 arctan

sin p

L − cos p
.

(30)

We can easily calculate the arguments in some special cases,
useful for the proof of a lower bound on the promise gap of
Kitaev’s local Hamiltonian in Sec. III. Setting R = 1 gives us
2 arg(v) = −p + π , while R = 0 means 2 arg(v) = −2p, and
R = −1 results in 2 arg(v) = −p. These special points are of
interest for the calculation in Sec. III.

Recall that we are interested in the eigenvectors and eigen-
values near the bottom of the spectrum. To investigate the
lowest possible values of Ep = −2 cos p, we thus need to look
at p → 0. There, assuming large N and R,L bounded away
from 1, we can expand the arguments in (30) using the Taylor
series and obtain solutions with energies near the bottom and
top of the spectrum, at points

pk = kπ

N − 1
R−1 − 1

L−1

+ o(N−1) (31)

for small integers 0 < k 
 N . The lowest (nonzero) magni-
tude p for a goniometric state is thus �(N−1). It means this
state has energy at least �(N−2) higher than the p = 0 state
(if it exists) or any hyperbolic solution (if it exists) that we find
below.

Second, let us analyze the hyperbolic solutions. Analo-
gously to (25) and (26), we now get

c(L − eq) = d(e−q − L),

c(e−q − R) = de2Nq (R − eq).
(32)

Again, let us first check for special cases. Picking c = 0
implies eq = 1

L
= R, which only works in the special case

LR = 1 discussed in more detail below in Sec. II D 2. Such
an eigenvector has amplitudes falling off exponentially when
moving away from one of the ends. Picking d = 0 is just like
c = 0 but with exchanging L ↔ R or q ↔ −q. Finally, when
one of the terms in parentheses is zero, it implies c = 0 or
d = 0 and reverts to the above. With this in mind, we are free
to multiply the equations together and obtain a quantization
condition for q:

e2Nq(R − eq)(L − eq) = (R − e−q)(L − e−q). (33)

Let us analyze the behavior of this equation for large N .
Without loss of generality, we can assume L � R and q > 0

(eq > 1). Note that choosing q = 0 produces the same state
(27) as p = 0 discussed above, while q < 0 just exchanges c

and d in (24). Let us label y = eq , observe that q > 0 implies
y > 1, and rewrite (33) as

y2N (R − y)(L − y) =
(

R − 1

y

)(
L − 1

y

)
. (34)

What happens when we start near y = 1 (q = 0) and start
increasing y? Exactly at y = 1, the two sides of the equation are
equal to (R − 1)(L − 1). Next, assuming large N , the growth
of y2N with increasing y dominates everything. However,
the terms in the parentheses on the left can become very
small near y = R (and y = L). The left-hand side changes
sign at y = R (or y = L) and again quickly reaches large
magnitude. Thus, it must achieve the value of the right-hand
side (its magnitude is for constant R �= 0 bounded from above
by another constant) very close to the point y = R (and
y = L). This is how hyperbolic eigenvectors appear, with
corresponding eigenvalues

Eq = −2 cosh q = −
(

y + 1

y

)
≈ −

(
R + 1

R

)
= −1 + R2

R
,

(35)

and of course, − 1+L2

L
. Because y > 1, this is possible only if

R > 1 (and similarly L > 1).
In the special case R = L = C > 1, we get two solutions

with energy near − 1+C2

C
. There is an exponentially small (in

N ) energy split between them; the state with lower energy is
symmetric and the other antisymmetric across the middle of
the chain. On the other hand, because we have y > 1, when
both R,L � 1, the left-hand side of (34) is strictly larger even
without the y2N , i.e., (R − y)(L − y) > (R − 1/y)(L − 1/y),
and no hyperbolic eigenvectors exist. Altogether, we have

hyperbolic solutions
R � L > 1 two solutions near eq = R and eq = L

R > 1 � L one solution near eq = R

1 � R � L no hyperbolic solutions.
(36)
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Therefore, there can be at most two hyperbolic solutions,
with eigenvalues (35) for R > 1 and similarly for L > 1. These
are at least a constant below −2 and for R �= L also a constant
away from each other. In that case, the Hamiltonian is gapped.
If both R,L � 1, there are no hyperbolic solutions and the gap
of the Hamiltonian scales as �(N−2). We can say more about
the whole spectrum in the special cases solved below.

2. Biased walk

Up to a constant shift in energy, the biased walk of Sec. II D
is the special case of H

(L,R)
N with R = 1

L
= B > 1. In this

case we can solve the quantization conditions exactly. Labeling
y = eq , the hyperbolic quantization condition (33) becomes

y2N

B
(B − y)(1 − yB) = 1

y
(By − 1)

1

By
(y − B), (37)

which is exactly fulfilled only for y = eq = B. This means a
single hyperbolic solution, falling off away from the right end,
as choosing c = 0 in (24) is viable for eq = B [or d = 0 and
−q, which is the same thing, satisfying (33)]. The energy of
this state is E = −2 cosh q = −B − 1

B
= − 1+B2

B
. Note that

for R = B, we can rewrite H bias
N [Eq. (20)] as (1 + B2)I +

BH
(B,1/B)
N . The energy of this hyperbolic solution for (20) is

thus exactly zero, H bias
N is frustration free, and this eigenvector

is its unique zero-energy ground state.
Furthermore, we can also express the quantization condition

(29) for the goniometric solutions as

ei2Np(B − eip)
1

B
(1 − Beip) = e−ip(Beip − 1)

e−ip

B
(eip − B).

(38)

We know that p = 0 works only for L = R = 1 and p = π

only for L = R = −1. Thus, we can get rid of the nonzero
factors and simplify the condition to ei2(N+1)p = 1, which
means

p = kπ

N + 1
, k = 1, . . . ,N. (39)

Note that for B > 1, the k = 0 solution does not exist. Al-
together, we are getting N + 1 solutions (one hyperbolic, N

goniometric), as we should. All the eigenvalues for H
(B, 1

B
)

N are
thus

E0 = −
(

B + 1

B

)
, Ek = −2 cos

kπ

N + 1
, k = 1, . . . ,N.

(40)

The difference between the highest two eigenvalues of the
R = 1

L
= B special case of (21) is thus �(N−2) (the difference

between two cosines of nearby k values). What is more
interesting is that the gap of (21), the difference of its two
lowest eigenvalues, is lower bounded by a constant for B +
�(1) > 1, as the only hyperbolic solution energy −(B + 1

B
)

is bounded away from −2, the lower bound on the energies
of the goniometric solutions. As we promised to show in the
beginning of Sec. II D, this translates easily to a constant gap
for H bias

N , as it is just a rescaled and shifted version of H
(B,1/B)
N .

We can also use the above result to investigate the spec-
trum of the Hamiltonian H

(2−2s,2s)
N for s close to 1

2 , i.e., the

Hamiltonian H
(1−x,1+x)
N for small x = 1

2 (s − 1
2 ). This will be

useful when planning to use these Hamiltonians for adiabatic
quantum computation. The equation LR = 1 is approximately
fulfilled with error �(x2) and the argument leading to (39) is
valid up to error �(x2) in p. This translates to eigenvalues

E0 = −2 − x2 + �(x3),

Ek = −2 cos
kπ

N + 1
+ �

(
x2

N
+ x4

)
for k 
 N (41)

and a spectral gap with an x-dependent lower bound

� � x2 + π2

(N + 1)2
+ �

(
x2

N
+ x3

)
. (42)

This will be useful later in Sec. III A, when we will employ
Hamiltonians of the form H

(2−2s,2s)
N for adiabatic quantum

computation.

3. Unit strength or no self-loops at the ends

Finally, let us finish with the analysis of a few special
values for L and R. First, we look at the chain (21) with L =
1
R

= R = 1, i.e., the Hamiltonian H
(1,1)
N . As noted above, it

has no hyperbolic (exponentially growing) solution. However,
the point p = 0 in (39) is now also available, producing the
uniform superposition state. The simplest expression for all
N + 1 eigenvalues is then

Ek = −2 cos
kπ

N + 1
, k = 0, . . . ,N. (43)

The smallest one is E0 = −2. The separation of momenta is at
least π

N+1 , so the low-lying as well as the high-lying gap (top

of the spectrum) of the Hamiltonian H
(1,1)
N , as well as of the

rescaled and shifted Hamiltonian (10), are again �(N−2). In
(22), we have seen that the Laplacian walk Hamiltonian H L

N

is a simple shift of H
(1,1)
N . Thus, H L

N has ground-state energy
EL

0 = 0 and a gap on the order of �(N−2).
Second, we can similarly analyze the Hamiltonian H

(−1,−1)
N .

It has no hyperbolic solutions. The momentum p = π is a
solution of (29) and produces the uniformly alternating state.
The simplest expression for all N + 1 eigenvalues is then again
(43), but this time for k = 1, . . . ,N + 1. The smallest one is
E1 = −2 + �(N−2) and the largest isEN+1 = 2, while the gap
at the bottom and top of the spectrum has again size �(N−2).

Third, let us look at H
(1,0)
N . This case is important for

the proof in Sec. III. Because L,R � 1, it has no hyperbolic
solutions. Setting R = 0 and L = 1 and following the argu-
ment below (29) results in ei2Np = −e−ipe−2ip, meaning the
solutions are

p = π (2k + 1)

2N + 3
, k = 0, . . . ,N. (44)

The lowest possible p is thus p0 = π
2N+3 , the ground-state

energy is −2 + �(N−2), and the spacing in p is �(N−1), so
the gap is again �(N−2). Next, plugging p0 into (26) results
in b = −ae2πi/(N+3), which lets us compute the form of the
ground state itself. Here we just present two observations. With
the normalization |a| = �(N−1/2), the left end (where there is
a self-loop) has amplitude of magnitude �(N−1/2) and the right
end (without a self-loop) has amplitude �(N−3/2).
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Fourth, we finally look at H
(0,0)
N , again useful for the proof

in Sec. III. Because L,R < 1, it has no hyperbolic solutions.
Setting R = 0 and L = 0 in (29), using the argument just below
that equation results in ei2Np = e−4ip, meaning the solutions
are

p = πk

N + 2
, k = 1, . . . ,N + 1. (45)

The lowest possible p is thus p1 = π
N+2 , the ground-state

energy is −2 + �(N−2), the spacing in p is �(N−1), and so
the gap is again �(N−2).

III. PROMISE GAP BOUND FOR KITAEV’S
QMA-COMPLETE LOCAL HAMILTONIAN

Recall from Sec. II that Kitaev’s local Hamiltonian problem
is QMA-complete if there is a promise that the lowest eigen-
value is below Ea or above Eb, with a promise gap Eb − Ea =
�(N−3). Here we prove that the problem remains QMA-
complete even if the promise gap is Eb − Ea = �(N−2).
Recently, we have learned that this result has been also
independently proved by Bausch and Crosson [23], by Markov
chain mixing techniques. Our approach is different, as we rely
on quantum walks and the results on their spectra that we have
derived in Sec. II D.

Kitaev et al. [17] used a general geometric lemma for a
sum of two positive-semidefinite operators to bound the lowest
eigenvalue of the Hamiltonian (6). However, now that we
understand biased quantum walks, we can calculate bounds on
the eigenvalues directly, getting an improved promise bound
gap.

Theorem 1 (Kitaev’s 3-local Hamiltonian problem with
an improved promise bound). It is QMA-complete to deter-
mine whether the ground-state energy of a Hamiltonian with
poly(N ) constant-norm, 3-local terms for an N -qubit system,
is �E1 or �E0 for E1 − E0 = �(N−2).

Our proof below is based on the original 5-local Hamil-
tonian construction [17]. However, it also works for other
constructions with no inherent bad clock transitions in the
Hamiltonian that need to be energetically punished. In par-
ticular, it works without change for the 3-local Hamiltonian
construction of Mozes and Nagaj [27], resulting in Theorem
1 stated above. Note, though, that it does not work for the
constructions in [3,26,30,31], which all include bad clock
transitions that need to be dealt with by a clock-checking
Hamiltonian and a projection lemma that then implies a smaller
eigenvalue as well as a promise gap.

The proof that the 3-local Hamiltonian with a �(N−2)
promise gap is still QMA-complete is a straightforward plug-in
(just a stronger analysis) within Kitaev’s proof of QMA-
hardness of 5-local Hamiltonian. There, a Hamiltonian is
chosen so that its ground state is related to the history state
of a quantum verification circuit with N gates that has com-
pleteness 1 − ε and soundness ε. In our proof, we will require a
small ε = O(N−2), easily achievable by amplification. When
starting with a verifier circuit with constant soundness, we
can obtain an amplified verifier circuit with ε = O(N−α) by
using at most O(log N ) copies of the circuit [17], by a same
width circuit with O(N log N ) gates of the witness-reusing

alternating-measurement method by Marriott and Watrous
[32], or amplification by phase estimation [33].

What is different in our proof is the lower bound on the
ground-state energy of H in the no instances, i.e., when the
original circuit accepts no state with probability more than ε.
Later, we will also sketch how to get an upper bound on the
ground-state energy when there exists a witness accepted by
U with probability at least 1 − ε. Together, they will mean a
relaxation on the conditions on the promise gap for the local
Hamiltonian problem.

Proof. Let us then look at the no case. The Hamiltonian
(6) is a sum of four terms: Hprop + Hclock + Hinit + Hout. We
choose to look at the standard 5-local implementation of the
domain-wall clock with unique forward and backward clock
transitions. Therefore, the Hilbert space splits into the invariant
good subspace with proper single-domain-wall clock states
and another invariant subspace with bad clock states. The
states in the bad clock subspace have at least one bad domain
wall 01 in the clock register and thus have energy at least a
constant, coming from the term Hclock. However, we know
that the ground-state energy of an ansatz (any history state with
proper ancilla initialization) is lower than �(N−1), because it
is detected only by the readout term, and that part of the state
has amplitude �(N−1/2) Thus, the actual ground state must
come from a state in the good subspace.

If we had no end-point projectors (checking the ancilla
initialization and the readout), the structure of the good
subspace would be simple, given by how Hprop connects states
to each other: as quantum Laplacian walks on a line of the
type (9). However, with the terms Hinit and Hout, we need to
work a bit harder. First, we will find a convenient basis for the
Hilbert space of the data register, due to Jordan’s lemma about
two projectors. Second, we will append the clock register,
find a basis for the whole good subspace, and show how
our Hamiltonian has a simple form. Third, we will analyze
this simplified Hamiltonian and prove a lower bound on the
ground-state energy in the no case (and an upper bound in the
yes case) of the original QMA-complete problem instance.

The initialization term Hinit in Kitaev’s Hamiltonian (6) is
a sum of projectors on the |1〉 states of the ancillas in the
beginning of the computation, under which the states with
more badly initialized ancillas have higher energies. We can
only decrease the ground-state energy if we instead choose an
initialization term that is itself a projector

H ′
init = |0〉〈0|clock ⊗ Pdata,

P = I − |0 · · · 0〉〈0 · · · 0|ancillas,
(46)

where P is a projector acting on the data register only, giving
energy 1 to all states that do not have all ancillas |0〉 at the start
of the computation. We choose to use this modified version
because dealing with the projector H ′

init is simpler than dealing
with the positive-semidefinite (sum of projectors) Hinit.

Let us consider another projector Q acting on the data
register, related to the term Hout in (6):

Hout = |N〉〈N |clock ⊗ (I ⊗ |0〉〈0|out)data

= |N〉〈N |clock ⊗ 
0
out, (47)

Q = U †
0
outU. (48)
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FIG. 2. Special cases of walks with end-point projectors appear-
ing in the proof of the promise gap lower bound. (a) The walk H

(1,0)
N

appears in cases (ii) and (iii) of the 1D invariant subspaces. (b) In
the 2D invariant subspaces, we get two copies of the walk H

(1,0)
N ,

connected by a perturbation (58).

The projector P keeps states with nonzero ancillas intact,
while the projector Q projects on nonaccepted states. These
two projectors give a great deal of structure to the Hilbert
space of the data register. Furthermore, they let us investigate
invariant subspaces of the whole Hilbert space of the clock and
data registers, and the form of the Hamiltonian there will be
amenable to analysis.

According to Jordan’s lemma (see, e.g., [33]) for a pair
of projectors P,Q, a Hilbert space can be split into one-
dimensional (1D) and 2D subspaces invariant under P and
Q. First, let us look at the simpler, 1D subspaces, where the
vectors are simultaneous eigenvectors of P and Q. Because
P,Q have eigenvalues 0,1, there are four possibilities.

(i) The vector |u〉 obeys P |u〉 = Q|u〉 = 0. In the no
instance of the problem, there is no such state both properly
initialized and fully accepted.

(ii) The vector |u〉 obeys P |u〉 = 0 and Q|u〉 = |u〉. It is a
state with proper ancillas that is fully rejected by the circuit U .
Such states might exist. Let us take this state |u〉 of the data
register, append the clock register, and look at the subspace
spanned by the basis

|u〉t = |t〉clock ⊗ Ut · · ·U1|u〉data, t ∈ {0, . . . ,N}, (49)

where the original verifier circuit can be decomposed as U =
Ut · · ·U1. It is clear that this subspace is invariant under the
terms Hclock, Hprop, and H ′

init of Kitaev’s Hamiltonian. Note
that Hout also leaves this subspace invariant, as

Hout|u〉N = Hout|N〉 ⊗ U |u〉 = |N〉 ⊗ 
0
outU |u〉

= |N〉 ⊗ UU †
0
outU |u〉

= |N〉 ⊗ UQ|u〉 = |N〉 ⊗ U |u〉 = |u〉N, (50)

because the vector |u〉 obeys Q|u〉 = |u〉. Thus, we have an
invariant subspace spanned by the basis (49). Let us look at
what form the Hamiltonian gets on the line of states (49). We
have Hclock|u〉t = 0, as we are here talking only about proper
clock states. The term Hprop becomes a Laplacian-type walk
(10) on a line of the states |u〉t . Next we have Hinit|u〉1 = 0, be-
cause P |u〉 = 0. Finally, because the state |u〉 is fully rejected
by the verifier, Hout|u〉N = |u〉N translates to an extra right
end-point projector on the line. Altogether, in the basis (49)
we get the Hamiltonian H L

N + |N〉〈N | = 2I + H
(1,0)
N depicted

in Fig. 2(a). Using the ground-state energy of H
(1,0)
N from

Sec. II D 3 below (44), we get a lower bound on the energy
of the shifted walk: E � 2 − 2 cos π

2N+3 = π2

4N2 − O(N−3) =
�(N−2).

(iii) The vector |u〉 has bad ancillas and is fully accepted,
i.e., P |u〉 = |u〉 and Q|u〉 = 0. It again defines an invariant
subspace of the data plus clock registers spanned by the basis
(49) (a line of states). Similarly to the previous case, on this
line, the Hamiltonian becomes a Laplacian walk with an extra
end-point projector on the left end, H L

N + |0〉〈0|, as we now
have H ′

init|u〉0 = |0〉 ⊗ P |u〉 = |u〉0, and H ′
out|u〉N = 0. The

ground-state energy of this Hamiltonian 2I + H
(0,1)
N is the same

as in case (ii), lower bounded by �(N−2).
(iv) The vector |u〉 has nonzero ancillas and is also fully

rejected, i.e., P |u〉 = |u〉 and Q|u〉 = |u〉. Yet again it defines
an invariant subspace of the whole Hilbert space of the clock
and data registers, spanned by the basis (49). In this basis, the
Hamiltonian is this time a Laplacian-type walk on a line with
extra added end-point projectors at both ends. Adding |0〉〈0|
and |N〉〈N | to (22) gives us 2I + H

(0,0)
N . Using the ground-

state energy of H
(0,0)
N from Sec. II D 3 below (45), we find a

lower bound on the energy here, E � 2 − 2 cos π
N+2 = π2

N2 −
O(N−3), which is again �(N−2).

We conclude that case (i) cannot happen, while for large
enough N , cases (ii)–(iv) give us a lower bound on the ground-
state energy E � 5

2N2 = �(N−2).
Let us now deal with the 2D invariant subspaces that exist

because the projectors P and Q are not orthogonal. For each
such subspace H, we can write down a basis {|v〉,|v⊥〉} made
from eigenvectors of P , with P |v〉 = 0 and P |v⊥〉 = |v⊥〉.
Note that

〈v|Q|v〉 = 〈v|U †
0
outU |v〉 = 1 − pv, (51)

where pv � ε is the acceptance probability of the original
circuit U for the state |v〉 (recall that it has properly initialized
ancillas). Because Jordan’s lemma ensures the subspace is
invariant under P,Q, the unnormalized states Q|v〉 and Q|v⊥〉
must also belong to the subspace H. In particular, using (51)
we can write

Q|v〉 = (1 − pv)|v〉 + a|v⊥〉, (52)

|a|2 = 〈v|Q|v〉 − 2(1 − pv)〈v|Q|v〉 + (1 − pv)2〈v|v〉
= pv(1 − pv) (53)

and choose the phase of |v⊥〉 so that a = √
pv(1 − pv) is real.

We thus get

Q|v〉 = (1 − pv)|v〉 +
√

pv(1 − pv)|v⊥〉, (54)

Q|v⊥〉 = Q
1√

pv(1 − pv)
[Q|v〉 − (1 − pv)|v〉]

=
√

pv

1 − pv

Q|v〉 (55)

=
√

pv(1 − pv)|v〉 + pv|v⊥〉. (56)

In the basis {|v〉,|v⊥〉} the operator Q = U †
0
outU thus reads

Q =
[

1 − pv

√
pv(1 − pv)√

pv(1 − pv) pv

]
= |v〉〈v| − √

pvσpv
.

(57)
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It has two terms. The first is the projector |v〉〈v|. The second
term is a

√
pv multiple of a Pauli matrix σ = √

pvZ −√
1 − pvX. We will think of it as a small perturbation (we

know that pv � ε is small)

V = √
εσε = √

ε(
√

εZ − √
1 − εX). (58)

Similarly to what we did for the 1D subspaces, let us now
append a clock register to our states |v〉 and |v⊥〉 and investigate
the subspace spanned by the basis states |v〉t and |v⊥〉t , defined
by (49). The terms of Kitaev’s Hamiltonian (6) take a nice
form within this subspace. First, the clock Hamiltonian is
satisfied, and does not act here, as the clock register has
proper states. Second, the propagation Hamiltonian creates a
Laplacian-type quantum walk H L

N = 2I + H
(1,1)
N on the states

|v〉t for t = 0, . . . ,N , as well as another walk 2I + H
(1,1)
N on the

states |v⊥〉t for t = N, . . . ,0. Third, our modified initialization
term (46) adds a projector onto the state |v⊥〉0 = |0〉 ⊗ |v⊥〉
(this turns the second walk into 2I + H

(1,0)
N ). Fourth, according

to (57), the readout term adds a projector onto the state
|v〉N = |N〉 ⊗ |v〉 (this turns the first walk into 2I + H

(1,0)
N ),

as well as a perturbation term V [Eq. (58)] on the states |v〉N
and |v⊥〉N . Altogether, in this subspace, up to an overall shift
by 2I, we get two weakly coupled quantum walks on a line,
with extra end-point projectors, depicted in Fig. 2(b).

The perturbation V has norm
√

ε, so elementary perturba-
tion theory then tells us that the ground-state energy of Kitaev’s
Hamiltonian in this subspace changes by at most �(

√
ε). In

practice, the situation is even better because of the form of V

as well as the unperturbed ground states. The actual decrease
in energy is −√

ε max|φ〉〈φ|σε |φ〉 for |φ〉 a ground state of the
unperturbed Hamiltonian made from two copies of H

(1,0)
N . The

ground-state subspace of H
(1,0)
N ⊕ H

(1,0)
N is doubly degenerate.

Because σε is close to the Pauli X up to error
√

ε, we can max-
imize 〈φ|σε |φ〉 by choosing |φ〉 so that the amplitudes at |v〉N
and |v⊥〉N are the same. In Sec. II D 3 below (44) we proved that
the amplitudes of the ground state at the ends of oneH

(1,0)
N chain

are �(N−3/2) and �(N−1/2). The normalized combination of
such eigenvectors on the two copies of the walk maximizing
〈φ|σε |φ〉 then has amplitude O(N−3/2) at the connected end
points [see Fig. 2(b)]. This gives us 〈φ|σε |φ〉 = O(N−3/2). The
perturbation in energy is thus at most −O(ε1/2N−3/2) + O(ε).
It is then enough to get an �(N−2) lower bound on the
ground-state energy by choosing, e.g., ε = N−2. We can make
this choice by amplifying the original circuit.

Finally, in the yes case, the history state for a good witness
accepted with probability �1 − ε has energy at most ε

N
, for

our choice ε = 1
N2 . Altogether, the lowest eigenvalues in the

yes and no cases are

Eyes �
ε

N
� 1

N3
, Eno � const

N2
. (59)

Thus, for a circuit amplified to soundness at most ε = O(N−2)
and completeness at least 1 − ε, we obtain a promise gapEno −
Eyes = �(N−2). �

Note that Bausch and Crosson have independently found a
comparable [tight �(N−2) promise gap] result in [23].

FIG. 3. Schedule for universal quantum computation by adiabatic
preparation using Kitaev’s propagation Hamiltonian, and projectors
on the initial and final states of the clock register. The gap is constant
for the first and third sections, while in the middle section it becomes
�(N−2 + x2) around t = 1

2 (T1 + T2) + x.

A. Universal adiabatic computation with a Laplacian
and end-point projectors

We can also use Kitaev’s Hamiltonian to adiabatically
prepare the state U |0 · · · 0〉, i.e., to perform universal quantum
computation [11,34]. Here we present another such scheme
and find how its required runtime scales with N , the number
of gates in the circuit U . It is a straightforward application
of what we have learned about lower bounds on the gaps of
the Hamiltonians that involve a walk on a line and end-point
projectors. The goal is to investigate whether our knowledge
of the gap could help us speed up when far from the small-gap
region, while focusing on going slowly when near it, and thus
cut down the required runtime of the preparation procedure.
However, it turns out that a straightforward local adiabatic
evolution approach of [35] does not help us here because of
the particular way the gap closes down. The gap here does not
grow with an N prefactor when moving around its minimum,
while it did so for the Grover problem that Roland and Cerf
[35] were investigating.

We assume Hclock + Hinit are always on, ensuring our
playground (the low-energy subspace) has proper clock reg-
ister states, and that when the clock register reads |0〉, the
data register is properly initialized to |0 · · · 0〉. We pro-
pose a symmetric three-way adiabatic schedule, illustrated in
Fig. 3, using Kitaev’s propagation, clock, and initialization
terms (6).

(a) Start with

H (0) = Hclock + Hinit + Hends, (60)

where Hends = −|0〉〈0|clock + |N〉〈N |clock prefers the clock
state |0〉. There is a unique ground state of H (0): the initial
state |0〉clock ⊗ |0 · · · 0〉data.

(b) The first section takes constant time T1. We turn on the
propagation Hamiltonian as

H (t) = Hclock + Hinit + Hends + tHprop, 0 � t � T1.

(61)

(c) The second section takes time T2 scaling as �(ε−1N6).
We flip the sign of Hends as

H (t) = Hclock + Hinit + [1 − 2s(t)]Hends + Hprop,

T1 � t � T1 + T2, (62)

with a monotonic parametrization s(t), obeying s(T1) = 0 and
s(T1 + T2) = 1.
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(d) Finally, again in constant time T1, we turn off the
propagation Hamiltonian as

H (t) = Hclock + Hinit − Hends + (2T1 + T2 − t)Hprop,

T1 + T2 � t � 2T1 + T2. (63)

(e) We end with the Hamiltonian

H (2T1 + T2) = Hclock + Hinit − Hends, (64)

at time 2T1 + T2 = �(ε−1N6). We claim the evolved initial
state |0〉clock ⊗ |0 · · · 0〉 will be ε close to the desired state
|N〉clock ⊗ U |φ〉.

Let us analyze the gaps of these Hamiltonians and then use
the adiabatic theorem (Theorem 3 of [36]) to show that our
preparation procedure works as promised.

Because of our choice of initial state and having Hclock and
Hinit always on, the states that our Hamiltonians could possibly
arrive at exist within the subspace spanned by

|φ〉t = |t〉clock ⊗ Ut · · · U1|0 · · · 0〉. (65)

Let us express the Hamiltonians of our procedure in this basis.
They are rather simple:

Hends = −|φ〉0〈φ|0 + |φ〉N 〈φ|N, (66)

Hprop = 2I + H
(1,1)
N . (67)

In the first section, the relevant part of the Hamiltonian is
Hstart + tHprop, a shifted and rescaled Laplacian walk with a
varying left end-point projector. For t = 0, the gap is −2, a
constant, while for t > 0 we have

H (t) = t
(
2I + H

(1+t−1,1−t−1)
N

)
. (68)

Recall from (35) that for R < 1 and L > 1, there is only
one hyperbolic eigenstate of 2I + H

(L,R)
N : the ground state

with energy near 2 − L − 1/L = −(L − 1)2/L. For (68), it
translates to ground-state energy − 1

t+1 � − 1
2 . Because the first

excited state of (68) is a goniometric state, it has energy �0.
Therefore, the gap of this Hamiltonian is at least a constant
1
2 . The same holds for the third section in the schedule, where
after the transformation t ′ = 2T1 + T2 − t , the Hamiltonian
becomes H (t ′) = t ′(2I + H

(1+t ′−1,1+t ′−1)
N ).

The middle section in Fig. 3 is more interesting. There
we have the Hamiltonian 2I + H

(1,1)
N − (1 − 2s)|φ〉0〈φ|0 +

(1 − 2s)|φ〉N 〈φ|N , which can be rewritten in a simplified way
as 2I + H

(2−2s,2s)
N . We have seen this Hamiltonian in Sec.

II D 2 and proven that it has a gap that is lower bounded by
π2

(N+1)2 + x2 + �(x2N−1), where x = (2s − 1)/4. Therefore,
we can see the gap is smallest at x = 0, i.e., at s = 1/2,
has magnitude �(N−2), and grows quadratically as x2 when
going away from this point. We can thus straightforwardly
apply Theorem 3 of [36]. In this case, with a linear schedule,
T2 = �(ε−1N6) is surely enough for the final state to be ε close
to the ground state of the final Hamiltonian. Following the local
adiabatic evolution approach of [35], which uses a specific
slowdown that takes into account the gap dependence near
x = 0, could result in better scaling in N . However, this is not
straightforward here. The calculations involve integrating the
inverse cube or square of the gap (depending on the adiabatic
theorem used). Because the gap dependence on x in [35] was

�(x) = �min + 2�−1
minx

2, this has lead to improvement. This
is not our case, as we have �(x) = �min + x2.

IV. DOING NOTHING (EFFICIENTLY) CAN
IMPROVE A COMPUTATION

In this section we will look at how to modify the unary clock
construction to achieve a high success probability for finding
the computation done for Feynman’s computer and large
overlaps of the ground state with the finished computation for
Kitaev’s Hamiltonian. Most importantly, our methods require
only a few additional qubits (sublinear in the number of gates).

To compute with Feynman’s computer, one needs to mea-
sure the clock register (pointer particle position). There is a
chance to find it at the end of the computation, where all N

gates of the circuit have been performed. This is one of the
model’s drawbacks, as the probability of success is an inverse
polynomial in N . One can choose a random time to measure, as
Cesaro mixing [25] guarantees the average time the computer
spends in the final state is proportional to 1

N
of the total time

we run the computer. Instead of running the computer for a
randomly chosen reasonably long time, one can try to look at
particular evolution times when the computation is more likely
to be done or to involve other tricks [37].

Another straightforward approach is to extend the quantum
circuit with N gates to N + A gates, choosing to do nothing
with the data for A steps at the end of the computation.
When we use gates Ut = I for N < t � N + A, the fraction of
states with the computation done becomes 1+A

N+1+A
. Moreover,

for clock transitions with t � N , the data register remains
unchanged and so the required interactions involve only the
clock register. Thus, all we need to do is to increase the number
of possible clock states in the clock register.

One way to do this is to make the unary clock larger,
adding A clock qubits. In practice, this means we can tune the
probability of finding the computation done as close to 1 as we
want. What is the consequence of this? First, the system size
becomes N + 1 + A. For example, we need A = 99N extra
clock qubits to guarantee a 99% probability of success, which
might be too costly. Second, the spectral as well as the promise
gap of the Hamiltonian (see the calculations in the preceding
section) system closes quadratically with the clock register
size as �((N + A)−2). This is undesirable, if we want our
computation to be resistant to noise. Our answer to this problem
is two solutions that require few additional clock qubits.
We believe these constructions will find their applications in
universality as well as computational hardness results.

First, we present the idling chain construction in Sec. IV,
adding only a logarithmic number of clock qubits and their
local interactions. It is designed for complexity applications,
introducing a large overlap of the ground state with the finished
computation, without a large increase in system size, without
using large norm projectors, and without modifying the gap
significantly. Note that it is not suitable for computation
with Feynman’s computer, because of reflection issues: The
time evolution of a computation does not smoothly transition
between the unary clock and the idling clock.

The second, cogwheel construction in Sec. IV B is bet-
ter suited for dynamical (Feynman computer) applications.
It requires 2

√
N + 1 + A total clock qubits for all of the
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N + 1 + A available clock states. The downside is the gap
scaling as �((N + A)−2), while the clock qubit can be involved
in up to

√
N + 1 + A, 3-local interaction terms. This model

can be viewed as a combination of several wheels, where a full
turn of one cogwheel advances the next wheel by one step.

A. Idling the engine

We now present a Hamiltonian whose ground state involves
a uniform superposition over many clock states while leaving
the data alone. Our idling chain construction does not require
a large number of extra clock qubits, while it can greatly
increase the overlap of the ground state of Kitaev’s Hamiltonian
with the finished calculation (in the data register) while not
decreasing the gap significantly. The detailed statement of the
construction’s properties is the following theorem.

Theorem 2. Consider the 4-local Hamiltonian for a unary
clock with N qubits connected to an idling chain with C extra
qubits and C idling qubits. Let A = 2C+1 − 2 and z = (A +
1)/N .

(a) It has a unique, zero-energy ground state |ψ〉: the
uniform superposition of N + 1 + A legal clock states, labeled
by computational basis states |u〉|e〉|i〉 denoting the state of
their unary, extra, and idling qubits.

(b) The expectation value of the projector 
done =
|1 · · · 1〉〈1 · · · 1| ⊗ I ⊗ I in the ground state is 〈ψ |
done|ψ〉 =

1+A
N+1+A

= z
z+1 . We thus call |ψ〉 the amplified history state.

(c) The eigenvalue gap of the Hamiltonian is asymptotically
lower bounded by �(N−2) for z = poly(N ).

Proof. Let us describe the construction and prove its
properties. Recall from (4) that the history state of a quantum
computation is |ψhist〉 = 1√

N+1

∑N
t=0 |t〉clock ⊗ |ϕt 〉data, where

|ϕt 〉 = UtUt−1 . . . U1|ϕ0〉. Instead of this, we want our ground
state to be an amplified history state

∣∣ψA
hist

〉 = 1√
N + 1 + A

N+A∑
t=0

|t〉clock ⊗ |ϕt 〉data

with |ϕt�N 〉 = |ϕN 〉, (69)

i.e., where we do nothing with the data register for clock
steps t � N , leaving the computation done. Let us start with
the original unary clock register with qubits c0, . . . ,cN and
introduce C extra unary clock qubits. Below these we add
another row of C idling qubits

c1 c2 c3 · · · cN+1 cN+2 cN+3 · · · cN+1+C

i1 i2 · · · iC
.

(70)

This clock register has N + 1 + 2C qubits. We want the legal
clock states to have the form

1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 or

1 · · · 1 1 · · · 1 0 · · · 0
0/1 · · · 0/1 0 · · · 0, (71)

with the first row of qubits holding states with a single domain
wall, while the qubits in the idling row can take any value, as
long as the corresponding domain-wall qubits above are in the
state |1〉.

Let us build the Hamiltonian whose ground state is the
uniform superposition of these legal states. We start with the
clock-checking Hamiltonian, which raises the energy of states
other than with form (71):

Hclock = |0〉〈0|c1 +
N+C∑
k=1

|01〉〈01|ckck+1

+
C∑

j=1

|0〉〈0|cN+1+j
⊗ |1〉〈1|ij . (72)

Just as in (16), the first two terms ensure a single domain-wall
(unary) signal in the top-row qubits c0, . . . ,cN+C . The last term
in (72) allows the bottom-row idling qubits to be on only if the
unary qubit above them is also on.

Next we need terms that energetically prefer a uniform
superposition of these states. First, we add the original 3-local
domain-wall clock interactions

Hdw,L =
N∑

j=1

(|100〉 − |110〉)(〈100| − 〈110|)cj cj+1cj+2 . (73)

Then we add 4-local terms3 involving the additional qubits

Hextra =
C−1∑
j=1

|0〉〈0|ij ⊗ (|100〉 − |110〉)

× (〈100| − 〈110|)cN+j cN+j+1cN+j+2 + |0〉〈0|iC
⊗ (|10〉 − |11〉)(〈10| − 〈11|)cN+CcN+1+C

, (74)

which allows progress from the state | · · · 100 · · · 〉 and return
from the state | · · · 110 · · · 〉 only if the corresponding idling
qubit is off. Finally, we add the freewheeling term energetically
preferring superpositions of idling qubit states if the extra
qubits above are on:

Hidle =
C∑

j=1

|1〉〈1|cN+1+j
⊗ (|1〉 − |0〉)(〈1| − 〈0|)ij . (75)

These terms together ensure that there is a unique, zero-energy
ground state of Hidling chain = Hclock + Hdw,L + Hextra + Hidle:
the uniform superposition of the legal states (71). This con-
cludes proof of point (a) in Theorem 2.

The legal clock state subspace Hlegal spanned by the legal
states (71) is invariant under Hidling chain. In Fig. 4 we illustrate
this subspace and the possible transitions

100 ↔ 110, 100 ↔ 110, 1 ↔ 1,

0 0 0 1

(76)

3Note that if we also couple the data register to the 3-local original
unary clock, adding interaction terms that involve 2-qubit gates, the
interaction becomes naturally 5-local. However, we could keep it
down to 3-local by, e.g., using the construction from [27]. On the
other hand, the extra terms (74) and (75) do not involve the data,
so the whole Hamiltonian including the data register can be made
4-local.
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FIG. 4. Legal clock states for an N = 4 domain-wall clock with
a C = 3 idling chain. A state is labeled by a string made from its N

unary bits (black), extra C unary bits (blue), and C idling bits (red).
Each line is a projector onto the antisymmetric combination of the
clock states at the vertices. The graph is a line (the original clock,
first four vertices), connected to the idling part: a line connected to a
square, to a cube, and so on.

given by (73)–(75). There are N + 1 states of the original unary
clock and

A = 2 + 4 + · · · + 2C = 2(2C − 1) (77)

extra clock states beyond t = N . Altogether, there are 1 + A

states in which the computation can be considered done. The
ground state is a uniform superposition of legal states, i.e., the
desired amplified history state (69). It takes 2C extra qubits
to achieve a finished computation ratio 1+A

N+1+A
, improving

the original 1
N+1 . To achieve a constant ratio of states with

the computation done compared to all states in the amplified
history state, we can choose A = �(N ), for which we need
2C = �(log2 N ) extra unary or idling qubits. This results in
point (b) of Theorem 2.

Concerning point (c) in Theorem 2, recall that the eigen-
value gap for the original domain-wall clock Hamiltonian is
�(N−2). We will now prove a lower bound on the gap for our
the domain-wall clock with an attached idling chain.

Illegal clock states have constant and positive energy from
the term (72), so it is enough to find a lower bound on the gap
in Hlegal. For this, we will first map the Hamiltonian H |legal to
a stochastic matrix P describing a random walk induced by
transition rules. We will then relate the spectral gap �(H |legal)
to the gap 1 − 1(P ) by a similarity transformation. Finally,
we will find a lower bound on 1 − 1(P ) using canonical
paths.

We can map our Hamiltonian to a random walk induced by
the transition rules [38]. We define the matrix

P = I − 1

2(C + 1)
H |legal (78)

acting on legal clock states. Let us prove that it is a stochastic
matrix, has a unique stationary distribution, and forms a
reversible Markov chain with some nice properties. Let us de-
fine π (s) = |〈s|ψ〉|2 = (N + 1 + A)−1. Because the uniform
superposition over legal clock states |ψ〉 = ∑

s

√
π (s)|s〉 is a

zero eigenvector of H |legal,∑
t

Ps,t = 1 − 1

2(C + 1)
〈s|(H |legal)

∑
t

|t〉 = 1 − 0 = 1.

(79)

Therefore, P is a stochastic matrix. Next
∑

s π (s)Ps,t =
π (t) − ∑

s π (s) 〈s|(H |legal)|t〉
2(C+1) = π (t) means the uniform distribu-

tion π (s) is a unique stationary distribution for P . Since H |legal

is real and symmetric, P is also reversible: π (s)Ps,t = π (t)Pt,s .
Finally, Ps,t = [2(C + 1)]−1 if states s �= t are connected by
the Hamiltonian’s transition rules, and P (s,s) � 1

2 , as any state
s is involved in at most C + 1 terms.

The spectral gap of H |legal is related to the gap �P = 1 −
2(P ) of the Markov chain P by

�H |legal = 2(C + 1)�P . (80)

Thus, to find a lower bound on �H |legal , we need to find an
upper bound on 2(P ), the second largest eigenvalue of P [the
largest eigenvalue of P is 1 and corresponds to the stationary
distribution π (s)]. This way we will find a bound on the gap of
P . For this, we will use the canonical path technique [39,40],
which says that for a family of canonical paths {γs,t } connecting
pairs of states s,t ,

1 − 2(P ) � (ρl)−1, (81)

where l = max(s,t) |γs,t | is the maximum length of a canonical
path and ρ (the congestion) is defined by

ρ = max
(a,b)∈E

1

π (a)Pa,b

∑
(a,b)∈γs,t

π (s)π (t), (82)

where (a,b) is an edge in the graph of P . We will now construct
a family of canonical paths between any pair of vertices s,t and
use its properties to bound �P .

Each vertex in Fig. 4 is a computational basis state, so it
can be labeled by a string d|e|i, corresponding to the values of
the original domain-wall, extra, and idling qubits. The vertices
can be ordered by ordering the strings, e.g., 1100|000|000 <

1111|110|010 < 1111|110|100 < 1111|111|001.
Definition 1 (canonical paths). Take two states s and t and

without loss of generality assume s < t , meaning ds |es |is <

dt |et |it for their binary string labels. In the special case es =
is = et = it = 0 · · · 0 (both s,t are not in the idling part yet),
connect s and t through intermediate domain-wall states of
the form 1 · · · 10 · · · 0|0 · · · 0|0 · · · 0 as in (83). Next, when
es = is = 0 · · · 0 but et �= 0 · · · 0 (s is from the original unary
clock, but t has nonzero extra qubits), connect the state s to
the state s ′ = 1 · · · 1|0 · · · 0|0 · · · 0 as above and then continue
by connecting s ′ to t as below. To connect two states from
the idling part, i.e., with the original domain-wall qubits
ds = dt = 1 · · · 1, set k = 1 and change the extra and idling
strings one by one from left to right as follows.

(a) If (es)k = (et )k , change (is)k to (it )k if necessary as in
(84). Increase k. Repeat this point until (es)k �= (et )k , in which
case continue to point (b), or until you reach the end of the
idling chain (k > C).

(b) We now have (es)k �= (et )k . Change (es)k to (et )k as in
(85) and go back to point (a).

Let us find an edge that is included in the highest number
of canonical paths. There are three types of edges. First, let us
look at an edge on the unary part

1 · · · 1 0 0 · · · 0 0 · · · 0
0 · · · 0

0 ←→ 1 · · · 1 1 0 · · · 0 0 · · · 0
0 · · · 0

1
,

(83)
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changing a 0 to a 1 at position a. This edge could be a part of
a path that originated in a − 1 possible vertices s with fewer
1’s in the unary clock. On the other hand, the path could end in
N + 1 + A − (a − 1) states, as we have t > s. The edge load
for this type of edge is thus 2(a − 1)[N + 1 + A − (a − 1)],
with a 2 for paths from t to s. This is maximized for a − 1 =
N+1+A

2 , but we also know that a < N . Assuming A > N , the
maximum within this range of possible a’s is achieved at a =
N , with the value 2(N − 1)(A + 2). We will see that we will
need a larger upper bound for paths through the other types of
edges described below.

Second, we could be changing an idling bit

1 · · · 1 1 · · · 1 1 . . .

α 0 . . .0
←→ 1 · · · 1 1 · · · 1 1 . . .

α 1 . . .1
,

(84)
or, third, an extra bit

1 · · · 1 1 · · · 1 0 0 . . . 0
α 0 0 . . . 0

0 ←→ 1 · · · 1 1 · · · 1 1 0 . . . 0
α 0 0 . . . 0

1
.

(85)

To simplify our expressions, we will only find an upper bound
on the number of paths. Let a = |α|. There are no more than
N + 1 + (

∑a
i=1 2i) + 1 possible starting points (the original

unary states plus states with possibly fewer 1’s in the extra
qubits and different α’s). On the other hand, there are no more
than

∑C−a
j=1 2j possible end points for the paths (α must stay

fixed, the rest of the extra and idling bits can change). Not
forgetting a factor of 2 for path symmetry, we thus obtain an
upper bound on the number of canonical paths that utilize an
edge (a,b),

∑
γs,t�(a,b)

1 � 2

(
N + 2 +

a∑
i=1

2i

)⎛
⎝C−a∑

j=1

2j

⎞
⎠

= 2(N + 2 + 2a+1 − 2)(2C−a+1 − 2) (86)

� 2(N + 2)(2C−a+1 − 2) = 2(N + 2)A, (87)

as this function is decreasing with a, with a maximum at a = 0.
We can loosen this to �4N (A + 1) to get an upper bound
for the edge load of all three types of edges. Recall (82) and
that there are N + 1 + A = (1 + z)N total states, so π (a) =
(N + 1 + A)−1 for any state a. We obtain

ρ � 2(C + 1)4N (A + 1)

N + 1 + A
= 8z(C + 1)N

z + 1
. (88)

The longest canonical path connects 10 · · · 0|0 · · · 0|0 · · · 0
to 1 · · · 1|1 · · · 1|1 · · · 1 and has l = N + 2C < 2N steps, for
z = poly(N ), which gives us 2C = 2 log2(zN + 1) − 2 < N

for large enough N . Plugging this into (81) and (78), the gaps

of the Markov chain P and H |legal must thus obey

�P � 1

ρl
� z + 1

16z(C + 1)N2
, (89)

�H |legal = 2(C + 1)�P � z + 1

8zN2
= �(N−2), (90)

what we wanted to prove. �
Thus, our idling chain construction lets us “amplify” the

result as much as we want. The ground state can have overlap
z

z+1 = 1 − ε with the computation done, while we added only
log(zN ) extra qubits. Moreover, we do not mess up the gap; it
remains �(N−2), even if z = poly(N ). Let us compare this to a
longer-running domain-wall clock. Amplifying the overlap to
1 − ε would mean a unary clock of length N ′ = Nε−1, while
the gap would shrink to �(N−2ε2).

B. Second style of idling: Multicog clocks

In this section we describe another way of idling the
Feynman clock “engine.” In some ways, it is less effective
than the idling chain in Sec. IV; it can require more qubits
and a higher locality and degree of interactions. However, it is
aimed at a different application, a dynamical construction. In
the legal clock subspace, the dynamics of the evolution with
this Hamiltonian are simply a quantum walk on a line, just as
for the original unary clock.

Qutrit surfer on a line

A unary or domain-wall clock is a progression of states on
a line of length L with a single domain wall between 1’s and
0’s (shown here for L = 5):

|10000〉, |11000〉, |11100〉, |11110〉. (91)

These states form the ground-state subspace of the 2-local
Hamiltonian

Hdw check = |0〉〈0|1 + |1〉〈1|L +
L−1∑
i=1

|01〉〈01|i,i+1. (92)

Let us put another state 2 on this domain wall and call it a
surfer. A qutrit surfer on a line of length L is then a linear
progression of quantum states (here for L = 5):

|20000〉, |12000〉, |11200〉, |11120〉, |11112〉. (93)

We can also write down a 2-local Hamiltonian whose ground-
state subspace is made from these configurations. It is made
from terms on successive pairs of qutrits forbidding domain
walls without surfers, as well as double surfers

(|01〉〈01| + |10〉〈10| + |22〉〈22|)i,i+1. (94)

Next we need

(|21〉〈21| + |02〉〈02|)i,i+1, (95)

forbidding surfing · · · 00 2 11 · · · on the other type of domain
walls. Finally, we add end-point terms

|0〉〈0|1 + |1〉〈1|L (96)
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that eliminate the uneventful “dead” states |0 · · · 0〉 and
|1 · · · 1〉. The whole Hamiltonian is then

H surf
check = |0〉〈0|1 + |1〉〈1|L +

L−1∑
i=1

(|01〉〈01| + |10〉〈10|

+ |21〉〈21| + |02〉〈02| + |22〉〈22|)i,i+1 (97)

and its zero-energy states4 have the form 1 · · · 1 2 0 · · · 0, with
a single surfer 2 on the domain wall, as in (93).

Let us now add the “dynamics” of surfer movement (2-local
“rules”) to this model:

· · · 11 20 00 · · · ←→ · · · 11 12 00 · · · , (98)

This rule translates to nearest-neighbor positive-semidefinite
Hamiltonian terms

H surf
dyn = (|20〉 − |12〉)(〈20| − 〈12|)i,i+1. (99)

The unique (and still frustration-free) ground state of the surfer
model (with the dynamics) is then the uniform superposition
over all surfers (93),

|ψ0〉 =
L∑

t=1

|tsurf〉 =
L∑

t=1

|1 · · · 12t0 · · · 0〉. (100)

It is simple to analyze the spectrum of a surfer model; in the
“legal” subspace (single surfer) it is a quantum walk on a line

(
H surf

check + H surf
dyn

)|legal =
L−1∑
t=1

(|t + 1〉 − |t〉)(〈t + 1| − 〈t |),

(101)

which is a tridiagonal matrix with gap [41]

�line
surfer = �

(
1

L2

)
. (102)

Now the “illegal” subspaces contain at least one state directly
detected by H surf

check, with constant energy away from 0. There-
fore, (102) is the gap of H surf

check + H surf
dyn ; it scales like �(L−2).

C. Qutrit surfer on a cycle

Let us now wrap the line with the surfer around and put
the surfer on a cycle. In contrast to the line, we now allow the
surfer to ride on both types of domain walls, i.e.,

· · · 11 2 00 · · · , · · · 00 2 11 · · · . (103)

We will keep the basic terms |01〉〈01| + |10〉〈10| + |22〉〈22|
from (97) implying surfers sitting only on domain walls. First,
we add the dynamics (99) of the surfer riding the domain wall
· · · 120 · · · . Second, we also allow it to move on the other type
of domain wall as

· · · 00 21 11 · · · ←→ · · · 00 02 11 · · · , (104)

4Note that all of the terms in H surf
check are positive semidefinite and

that there exists a state annihilated by all of them at the same time.
The frustration-free states are given by (93); there is a domain wall
somewhere on the line and a single surfer is riding on it.

which translates to a Hamiltonian term

(|02〉 − |21〉)(〈02| − 〈21|)i,i+1. (105)

Instead of constraining the end points with (96), we now
designate a special interaction for the sites 1 and L (they sit
next to each other when we wrap the line into a cycle). The
interaction will consist of

(|00〉〈00| + |11〉〈11| + |22〉〈22|)L,1, (106)

making sure the end points are not equal, as well as special
dynamics across the end points

· · · 11 2|1 11 · · · ←→ · · · 11 1|2 11 · · · , (107)

· · · 00 2|0 00 · · · ←→ · · · 00 0|2 00 · · · , (108)

expressed as the Hamiltonian terms

(|21〉 − |12〉)(〈21| − 〈12|)L,1 + (|20〉 − |02〉)(〈20| − 〈02|)L,1.

(109)

The complete surfer-cycle Hamiltonian is then H
surfcycle
check +

H
surfcycle
dyn with

H
surfcycle
check = (|00〉〈00| + |11〉〈11| + |22〉〈22|)L,1

+
L−1∑
i=1

(|01〉〈01| + |10〉〈10| + |22〉〈22|)i,i+1,

(110)

H
surfcycle
dyn =

L−1∑
i=1

[(|12〉 − |20〉)(〈12| − 〈20|) + (|02〉

− |21〉)(〈02| − 〈21|)]i,i+1 + [(|12〉 − |21〉)(〈12|
− 〈21|) + (|02〉 − |20〉)(〈02| − 〈20|)]L,1. (111)

Let us look at what the allowed states are now. Because of
the condition (106), there has to be at least one domain wall
in the system. Because of (110), there has to be a surfer on
this wall (and thus at least one surfer in the system). Finally,
the dynamical terms (111) imply that surfers must exist in
superpositions of their movement about the cycle. However,
two surfers should not appear next to each other because of
the last term in (110). Thus, there is a unique frustration-free
ground state of the qutrit cycle Hamiltonian: the uniform
superposition of all single-surfer states depicted in Fig. 5.

Let us calculate the gap. First, in the single-surfer proper-
domain-wall subspace, the Hamiltonian is a quantum walk on a
cycle of length 2L, with gap �(L−2) [25]. Second, the surfers
as well as the L,1 boundary “count” the number of domain
walls. We are on a cycle, so the number of such jumps needs
to be even (and the number of surfers needs to be odd) for
a possible zero-energy state. Thus all even-surfer subspaces
(including the no-surfer subspace) are lower bounded in energy
by a constant, as they are made from states immediately
detected by the terms (110) and (106).

What about the subspaces with an odd number of surfers?
We can forget about the states with bad domain walls (across
L,1 or of the 01 and 10 type inside) as their energy is also at
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FIG. 5. The (progression of) allowed clock states of a single-qutrit surfer cycle. Site 1 is to the right of the vertical line and site L is to the
left of it.

least a constant. Thus, we are left with proper states of two
possible types:

· · · 11 2 00 · · · 00 2 11|00 · · · 00 2 11 · · · , (112)

· · · 00 2 11 · · · 11 2 00|11 · · · 11 2 00 · · · . (113)

We will now play the term H22 = |22〉〈22| against the rest of
the terms Hr . There is no common zero-energy eigenstate for
both of the positive-semidefinite terms H22 (it is averse to the
22 sequence) and Hr (it demands uniform superpositions over
all possible states that the surfers can move to). We now use a
geometric lemma [17]

λ
H22+Hr

0 � min
{
λ

H22
1 ,λ

Hr

1

}
sin2 θ

2
, (114)

where θ is the angle between the zero-energy subspaces of
these terms. The ground state of Hr in a subspace with k surfers
is a uniform superposition over all of their positions (with the
rest properly filled with 0’s and 1’s) and the lowest excited state
has energy at least λ

Hr

1 = �( 1
L2 ), which we know from solving

the Heisenberg model on a line [41]. The ground state of H22

is made from (product) states with no 2 surfers next to each
other and λ

H22
1 � 1. We can get a lower bound on the angle

θ from counting the number of detected states (· · · 22 · · · ) in
the uniform superposition of well-walled states in the k-surfer
subspace. There are p = (

L

k

)
possible positions of k surfers.

Out of these, at most

L(L − 2)(L − 4) · · · (L − 2k + 2)

k!
(115)

arrangements do not have two adjacent surfers. Let us estimate
the ratio of these two numbers

#no22

#all
� L(L − 2)(L − 4) · · · (L − 2k + 2)

L(L − 1)(L − 2) · · · (L − k + 1)

� L − 2

L − 1
= 1 − 1

L − 1
, (116)

with the upper bound coming from k = 2. Looking at the angle
between the null subspaces, we get

cos θ =
∑

x∈all

∑
y∈no22

〈x|y〉√
#all

√
#no22

=
√

#no22

#all
�

√
1 − 1

L − 1
,

(117)

sin2 θ

2
= 1 − cos θ

2
� 1

4(L − 1)
= �(L−1). (118)

Therefore, we can put a lower bound on the lowest eigenvalue
of Hr + H22 in the subspaces with k = 2m + 1 surfers, which
will be a lower bound on the gap of the whole surfer cycle

Hamiltonian

�
cycle
surfer � λ

H22+Hr

0 = �

(
1

L3

)
. (119)

D. Multicog clock made from several qutrit surfer cycles

We will now build a clock from multiple coupled qutrit
surfer cycles: cogs. Synchronization is not that difficult: The
next cog can progress only at the moment when the previous
cog has finished its two revolutions (reminiscent of binary
addition). We illustrate the synchronization of C cogs of length
L in Fig. 6.

First, let us see what happens for two cogs. We will add
an interaction term coupling the end of the second revolution
transition of cog 1 with a simple transition of cog 2 as

2|0(1)
L,1 20(2)

i,i+1 ←→ 0|2(1)
L,1 12(2)

i,i+1 (120)

when the second cog is in its first revolution [first line in
Fig. 6(b)], as well as finishing the first revolution of the second
cog with

2|0(1)
L,1 2|1(2)

L,1 ←→ 0|2(1)
L,1 1|2(2)

L,1, (121)

and finally

2|0(1)
L,1 21(2)

i,i+1 ←→ 0|2(1)
L,1 02(2)

i,i+1, (122)

when the second cog is in its second revolution [second line in
Fig. 6(b)]. The interaction is 4-local. These transitions need to
be rewritten to Hamiltonian terms just as we rewrote (98) to
(99).

What will happen when the second cog finishes its second
revolution? We are ready to advance a third cog. If we had three
cogs, we would need another synchronization interaction to
couple the simultaneous end of the second revolution of cogs
1 and 2 with a simple transition of cog 3. First, we have

2|0(1)
L,1 2|0(2)

L,1 20(3)
i,i+1 ←→ 0|2(1)

L,1 0|2(2)
L,1 12(3)

i,i+1, (123)

restarting the first two cogs and advancing cog 3. This inter-
action is 6-local. Of course, we need a special term for when
cog 3 is just finishing its first revolution,

2|0(1)
L,1 2|0(2)

L,1 2|1(3)
L,1 ←→ 0|2(1)

L,1 0|2(2)
L,1 1|2(3)

L,1, (124)

and a class of terms for when cog 3 is inside its second
revolution,

2|0(1)
L,1 2|0(2)

L,1 21(3)
i,i+1 ←→ 0|2(1)

L,1 0|2(2)
L,1 02(3)

i,i+1. (125)

All of these three-cog synchronization terms are 6-local.
Following this line of thinking, we can enforce C-cog syn-
chronization with 2C-local terms.
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FIG. 6. Synchronizing multiple cogs. (a) Cog 1 simply progresses through its first revolution. (b) Cog 1 simply progresses through its
second revolution. (c) When the first cog has finished two revolutions, its transition is coupled to a progression of the second cog. (d) Note that
cog 2 could also be in its second revolution. (e) When the second cog has finished two revolutions and the first cog has finished two revolutions,
they transition together and cog 3 progresses as well.

E. Cost of a clock with C cogs of length L

How long can such a clock run? For C cogs of length L,
the number of available timesteps (if the last cog does not keep
revolving over but stops after its second revolution) is

N = (2L)C. (126)

As noted above, we need 2C-local terms for C-cog synchro-
nization. This is acceptable for constant C. Thus, when we
use C cogs, each needs to have length L = 1

2N1/C and we are
using CL = C

2 N1/C qutrits for this. The space requirement is
thus a constant root of N , i.e., sublinear space, which was our
plan.

How costly are the interactions? We require 2C-local
synchronization interactions. The particles that are involved
the most are the L,1 qutrits of the first cog. They appear in
synchronization interactions with all of the cogs. Their degree
(number of interactions) is

2L4-local + 2L6-local + · · · + 2L2C-local ≈ 2LC = CN1/C.

(127)

Let us calculate the gap. In the proper clock subspace (one
surfer in each cog), it will be

�multicog = �

(
1

N2

)
, (128)

as the Hamiltonian in that subspace is just a quantum walk on a
line of length N . The next lowest energy subspace will be one
with a single cog that is messed up (having several surfers).
We know a lower bound on its energy from the 2-surfer cog
lower bound (119). It is �(L−3), which implies a lower bound
at least �(N−3/C) for the messed-up subspaces. This is larger
than (128) and thus not important.

F. Computation and interaction with data

So far, no interaction with any data was put in. If we want to
compute with our multicog clock, we need interactions of every
cog clock pair (for addressing which unitary to apply) plus the
data, so (2C + 2)-local interactions (simplest counting, using
2-local unitaries).

The simplest implementation would have just two cogs
of length 1

2

√
N , together being able to run for time N . The

interactions would be 4-local for two-cog synchronization,

6-local for implementing two-qubit gates, and 5-local for
initialization and readout terms.

G. Doing something like this with qubits

What if we wanted to do something similar by qubits?
It is entirely possible with domain walls, just the transitions
would be 4-local. We would introduce terms that are averse
to two domain walls near each other, i.e., 101 or 010. Across
the points L,1, we could use a transition like 10|11 ↔ 11|01
that would change a · · · 111000|111111 · · · turn (with a string
of 1’s “growing” into a string of 0’s) of the cog into a
· · · 111111|000111 · · · turn (with a string of 0’s growing into a
string of 1’s). The transition 01|00 ↔ 00|10 could then be the
one that would synchronize with the next cog. The synchro-
nization would then be 4C-local. Everything would remain
frustration-free and would still work. The gaps would remain
�[1/poly(L)] or �[1/poly(N )]. Really, the consequence is
just locality of interactions. However, what if we allowed for
frustration? We could use a pulse-clock then.

H. Idling with a multicog clock

Let us say we are amplifying a computation with a multicog
clock and we want to add A = �(N ) extra clock states. For
the idling, we can choose to append a two-cog clock with L =√

N . The cost (blowup) in size is �(
√

N ) qutrits (we now
also know how to do it with only qubits). Of course, when we
use a two-cog clock for the computation as well, the overall
number of clock states we need remains �(

√
N ). On the other

hand, the gap of the Hamiltonian still scales like �(N−2), as
the Hamiltonian in the legal clock subspace is just a walk on
a line of length �(N ). On the other hand, illegal clock states
are immediately detected by terms in the Hamiltonian, so they
have at least constant energy (and there are no transitions from
legal to illegal clock states).

V. PULSE CLOCKS: LOWER LOCALITY THAT
REQUIRES TUNING

Finally, in this section we present our last result: how to tune
a pulse clock (see Sec. II C 1) by frustration. Using terms that
are not positive semidefinite, we can choose to energetically
prefer a subspace with a single excitation. This way a pulse
clock can also be used in constructions for QMA-complete
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problems, improving on the locality of the required terms
with the consequence of a smaller gap (after rescaling the
Hamiltonian to have norm-1 terms).

This calculation can be useful for constructions in Hamil-
tonian complexity, where 2-local interactions in the clock
register are needed, but one also needs to ensure the proper
clock states are selected. A weaker version of the calculation
can be found in Sec. 4.2 of Ref. [42], where Gottesman and
Hastings investigate the possible dependence of the entan-
glement entropy on the gap of a qudit chain. They also add
a tuning Hamiltonian with a gap �(N−4) that prefers the
single-excitation subspace. It means their whole Hamiltonian
has an �(N−4) gap. Meanwhile, the tuning Hamiltonian we
present here has a gap �(N−3) between the ground-state
energy and the lowest-energy states from subspaces with z �= 1
excitations. Unfortunately, the better bound on the gap of the
tuning Hamiltonian does not improve the lower bound on
the gap of the whole Gottesman-Hastings Hamiltonian, whose
scaling is then governed by other terms, already within the
single-excitation subspace.

Recall from Sec. II C 1 that a pulse clock is a progression of
states on a line with a single excitation |1000 · · · 〉, |0100 · · · 〉,
etc., connected to each other by transitions governed by
the 2-local Hamiltonian H

pulse,L
N [Eq. (12)]. This positive-

semidefinite Hamiltonian conserves the number of excitations
(the 1’s) and thus has N + 1 invariant subspaces with a fixed
number of 1’s. The Hamiltonian energetically prefers symme-
try, so each uniform superposition of states with a particular
number of 1’s is a zero-energy frustration-free ground state of
H

pulse,L
N . We would like |1̃〉, the uniform superposition of states

with a single 1, to be the unique ground state. We will achieve
this by adding local terms to H

pulse,L
N .

Theorem 3 (pulse clock tuning). There exists a 2-local
nearest-neighbor Hamiltonian on a chain of length N , whose
unique ground state is |1̃〉 = 1√

N
(|1000 · · · 〉 + |0100 · · · 〉 +

|0010 · · · 〉 + · · · ), the uniform superposition of states with
a single excitation, which has ground-state energy zero, and
whose gap is �H̃ = �(N−3).

Proof. We start with the 2-local nearest-neighbor pulse
clock, Laplacian-type Hamiltonian (12) on a chain, whose
N + 1 ground states are |z̃〉, the uniform superpositions of
states with exactly z ones for Z = 0, . . . ,N ,

H
pulse,L
N =

N∑
x=1

(|01〉 − |10〉)(〈01| − 〈10|)x,x+1. (129)

Our goal is to raise the energy of the uniform superpositions
with z �= 1 of 1’s. In particular, we need to deal with the dead
subspace that contains only the product state |0 · · · 0〉 as well
as the higher-z subspaces. Let us add

H
tuning
N = V I − V

N∑
x=1

|1〉〈1|x +
N−1∑
x=1

|11〉〈11|x,x+1, (130)

another excitation-number-preserving Hamiltonian. The first
term is a constant shift. The second term prefers excitations.
The third term energetically punishes excitations that sit next
to each other. Let us analyze

H̃ = H
pulse,L
N + H

tuning
N (131)

in each of its invariant subspaces labeled by the number of
excitations z. First, there is only one state |00 · · · 0〉 that exists
in the zero-excitation subspace. The Hamiltonian H

tuning
N gives

it energy V .
Second, the Hamiltonian H

tuning
N is diagonal for all states

from the single-excitation subspace, giving them energy V −
V = 0. The term H

pulse,L
N dictates that the ground state there is

|1̃〉, with energy 0.
Third, let us look at subspaces with z > 1 excitations and

find a lower bound on the lowest eigenvalue of H
pulse,L
N +

H
tuning
N in each such subspace. For a specific z, let us add

a shift to the Hamiltonian and view it as a sum of two
positive-semidefinite terms A and B:

H ′
z = H̃ + (z − 1)V I = H

pulse,L
N︸ ︷︷ ︸

A

+H
tuning
N + (z − 1)V I︸ ︷︷ ︸

B

.

(132)

Restricting B to the subspace Hz with z excitations gives us

B|Hz
=

N−1∑
x=1

|11〉〈11|x,x+1, (133)

with the shift canceling the contribution of the first two terms in
(130). Therefore, B restricted to Hz is a sum of projectors and
thus positive semidefinite. This lets us use a geometric lemma
[17] about the lowest eigenvalue of a sum of two positive-
semidefinite operators A and B whose ground-state subspaces
do not intersect. It says that there is a lower bound

λA+B
0 � min

{
λA

1 ,λB
1

}
sin2 θ

2
(134)

on the lowest eigenvalue of a sum of positive-semidefinite
operators A + B, in terms of the second lowest eigenvalues of
A and B, and the angle θ between the ground-state subspaces
of A and B.

The ground state of A in Hz is the uniform superposition
over all states with z excitations; the first excited state for
A has energy λA

1 = �( 1
L2 ), as we know from the gap of the

Heisenberg model [41]. The ground states of B are states with
z excitations that do not have any 11 substrings. The lowest
excited state of B has energy λB

1 = 1 for z � N+1
2 and even

more for z > N+1
2 .

Let us now calculate θ , the angle between the null subspaces
of A and B. The ground-state subspace of A is a single state:
the symmetric superposition |z̃〉 with z 1’s. The vector from
the ground subspace of B with the largest overlap with |z̃〉
is the uniform superposition of all the states from the ground
subspace of B, as these states all appear in |z̃〉. We thus only
need to count their number #no11 and express

cos θz = 〈z̃|z̃without 11′s〉 =
√

#no11

#all
. (135)

There are #all = (
N

z

)
strings with z ones. What is the number

#no11 of N -bit strings with z ones and no 11 substrings?
It makes sense to count them only for z � N+1

2 , as above
that #no11 = 0. All such strings must have a “backbone,” a
collection of z substrings (10,10, . . . ,10,1) creating z + 1 bins

· · · |10| · · · |10| · · · |10| · · · |10| · · · |10| · · · |1| · · · (136)
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into which we need to distribute the remaining N − (2z − 1) zeros. Therefore,

#no11 =
(

N − (2z − 1) + z

z

)
=

(
N − z + 1

z

)
. (137)

For N+1
2 > z � 2 this implies

cos θ =
√

#no11

#all
=

√√√√(
N−z+1

z

)
(
N

z

) =
√

N − z

N

N − z − 1

N − 1
. . .

N − z − (z − 2)

N − (z − 2)

�
√

N + 2 − 2z

N + 2 − z
=

√
1 − z

N + 2 − z
�

√
1 − z

N
� 1 − z

2N
. (138)

This upper bound gives us a lower bound on sin2 θ
2 = 1

2 (1 −
cos θ ) � z

4N
. Plugging everything into the geometric lemma

[17], for N+1
2 > z � 2 we obtain

λA+B
0 � min

{
λA

1 ,λB
1

}
sin2 θ

2
= �(N−2)

z

4N
= �(zN−3).

(139)

Turning back to our Hamiltonian H̃ before the shift (131), we
find that the ground-state energy in each of the N+1

2 > z � 2
subspaces is

Ez = λA+B
0 − (z − 1)V

� �(zN−3) − (z − 1)V = �(zN−3) (140)

if we choose

V = N−3. (141)

Meanwhile, for z � N+1
2 we have cos θ = 0 and sin2 θ

2 =
1, and λA+B

0 = �(N−2) and Ez = λA+B
0 − (z − 1)V �

�(N−2) − (z − 1)V = �(N−2) for the choice (141). Finally,
recall that for z = 0 we had E0 = V = �(N−3).

Therefore, choosing V = N−3 in the tuning term (130) and
adding it to the pulse clock, Laplacian-type Hamiltonian (129)

does what we wanted to prove. The state |1̃〉 = 1√
N

(|100 · · · 〉 +
|010 · · · 〉 + · · · ) is the unique, zero-energy ground state of
(131) and the gap of H̃ is �H̃ = �(N−3).

Note that the improvement over the calculation in Eq. (73)
in [42] comes from (138). There we add a factor of z, helping
us increase their gap lower bound from �(N−4) to �(N−3).
However, this result may possibly be further improved, as
numerical investigation of V = N−3/2 indicates a gap scaling
as �(N−3/2). �
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