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Tensor-network study of a quantum phase transition on the Sierpiński fractal
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The transverse-field Ising model on the Sierpiński fractal, which is characterized by the fractal dimension
log2 3 ≈ 1.585, is studied by a tensor-network method known as the higher-order tensor renormalization group.
We analyze the ground-state energy and the spontaneous magnetization in the thermodynamic limit. The system
exhibits the second-order phase transition at the critical transverse field hc = 1.865. The critical exponents β ≈
0.198 and δ ≈ 8.7 are obtained. Complementary to the tensor-network method, we make use of the real-space
renormalization group and improved mean-field approximations for comparison.
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I. INTRODUCTION

The classification of quantum phase transitions remains
one of the major interests in condensed matter physics. Al-
though there are groups of exactly solvable models in physics,
a vast majority of the physical systems call for different
approaches, in particular, for numerical calculations. Some
of them are straightforwardly applicable, such as the Monte
Carlo (MC) simulations, whereas the other ones, including
renormalization group techniques, require development of
novel algorithms.

This work is oriented toward the classification of the
quantum phase transition on a fractal lattice, which is the
infinite-size Sierpiński fractal (triangle or gasket), whose
Hausdorff fractal dimension is log2 3 ≈ 1.585. It is known
that the classical Ising model exhibits no phase transition
on the Sierpiński fractal [1,2]. Substantially less is known
about its quantum counterpart. A couple of recent works
investigated quantum spin models on fractals by means of
real-space renormalization group methods and by classical
MC simulations [3–7].

To shed more light on the quantum fractal system, we
consider a different methodology, which is the higher-order
tensor renormalization group (HOTRG) method [8]. It should
be noted that the tensor-network viewpoint is efficient for
expressing the recursive structure of the fractal lattices [9].
In particular, we focus on the quantum Ising model on the
Sierpiński fractal, and analyze the ground-state energy per site
E0 and the spontaneous magnetization 〈σ z〉 with respect to
the transverse field hx . We first determine the critical field hc,
and then we estimate the critical exponents β and δ from the
calculated 〈σ z〉.

Structure of this article is as follows. In the next section, we
explain the lattice structure and introduce the system Hamilto-
nian. We first consider two conventional calculation methods,
one is the improved mean-field approximations, and the other
is the real-space renormalization group (RSRG) method. The
way of applying the HOTRG method to this fractal system

is presented in Sec. III. We show the numerical result in
Sec. IV. Conclusions are summarized in the last section. In the
Appendix, we discuss the numerical stabilization in the
HOTRG method, which is realized with the correct initializa-
tion of the tensor. Two types of entanglement entropies, the
vertical and the horizontal ones, of the local tensor are com-
pared, since their ratio quantifies the anisotropy in the tensor.
When they are comparable, one can avoid the instability.

II. MODEL AND CONVENTIONAL APPROXIMATIONS

Figure 1 shows the structure of the Sierpiński fractal. The
lattice is recursively constructed by connecting three units, as
shown in Figs. 1(a)–1(d). The black dots represent the lattice
sites, and the full lines represent the nearest-neighboring
connections, the bonds. The x and y axes are used to denote
the two-dimensional plane on which the fractal is located. The
x axis is parallel to the bonds denoted by i, whereas the y

axis is not parallel to j . The z axis is perpendicular to the
plane. For the moment, let us omit the vertical (dotted) lines
and disregard the tensor notations shown in the figure.

The Hamiltonian of the transverse-field Ising model on the
lattice has the form

H = −J
∑
〈a,b〉

σ z
a σ z

b − hx

∑
a

σ x
a − hz

∑
a

σ z
a , (1)

where σx
a and σ z

a represent the Pauli spin operators acting on
the lattice site a. The uniform fields hx and hz, respectively,
are applied to the transverse (x) and longitudinal (z) direc-
tions. The ferromagnetic Ising interaction J > 0 is present
between the nearest-neighboring spin pairs σ z

a and σ z
b . The

interacting pairs are denoted by the symbol 〈a, b〉, and they
are located on bonds in the fractal lattice. Throughout this
article we focus on the ground state of this system and its
quantum phase transition with respect to the transverse field
hx . Hereafter we assume J = 1. The parameter hz is set to
zero unless its value is specified.
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FIG. 1. Structure of the Sierpiński fractal. (a) The smallest unit
consists of a site shown by the black circle, from which the three
bonds i, j , and k emerge. (b)–(d) Connecting the three units, one
can iteratively expand the size of the unit. The vertical dotted lines
correspond to the imaginary-time evolution, which is considered in
Sec. III.

Before we start explaining the details of the HOTRG
method, we briefly introduce the two conventional approxi-
mation schemes. The first one is the mean-field approxima-
tion, which offers a rough insight into the ground state. We
consider three types of the gradually improving mean-field
approximations, beginning from the smallest unit size shown
in Fig. 1(a), followed by an extended unit size with the
three sites in Fig. 1(b), and finally that with the nine sites
in Fig. 1(c). All of the interactions inside each extended unit
are treated rigorously while the inter-unit Ising interaction
through the bonds i, j , and k are replaced by the mean-field
value −J 〈σ z〉. Here, the average of the bond energy and
magnetization is taken over all the sites in the extended unit.
Thermodynamic functions could be estimated with a better
precision if the size of the unit gets larger. We confirm this
conjecture in Sec. IV.

The second approximation scheme we consider is the
conventional RSRG method [10], which shares some aspects
in common with the HOTRG method. The RSRG method con-
sists of an iterative procedure, where the effective intra-unit
Hamiltonian H (�)

a for � = 0, 1, 2, . . . is created recursively.
(The expanded unit contains 3� sites.) Since we intend to
estimate only the critical field hc, we explain the case when
hz = 0. At the initial step, which corresponds to the single site
in Fig. 1(a), we have H (0)

a = −hx σ x
a and the spin operators

σ
(0)
a;i = σ

(0)
a;j = σ

(0)
a;k = σ z

a , where a specifies the site location,

and i, j, k denote the pairing directions of the neighboring
interactions.

Let us consider the three-site extended unit shown in
Fig. 1(b), and label the sites as a (left), b (right), and c (top).
The Hamiltonian of this three-site unit is then written as

H(�) = H (�)
a + H

(�)
b + H (�)

c

− σ
(�)
a;j σ

(�)
b;i − σ

(�)
b;k σ

(�)
c;j − σ

(�)
c;i σ

(�)
a;k (2)

at the initial iteration step � = 0. After diagonalizing H(�), we
keep only those eigenstates that are associated with D lowest
eigenvalues (while the remaining high-energy eigenstates are
discarded). The renormalization group transformation U is
then chosen to the projection to the low-energy eigenstates,
which reduces the dimension down to D. Applying U to H(�),
we obtain the renormalized intra-unit Hamiltonian

H (�+1)
χ = U †H(�) U (3)

for the extended unit labeled by � + 1, where χ = a, b, c is
the site index for the extended unit. In the same manner, we
obtain the renormalized z component of the spin

σ
(�+1)
a;i = U †σ (�)

a;i U ,

σ
(�+1)
b;j = U †σ (�)

b;j U ,

σ
(�+1)
c;k = U †σ (�)

c;k U , (4)

at each corner of the extended unit. At this point, we can return
to Eq. (2) to obtain an effective Hamiltonian H(�+1) for the
nine-site unit shown in Fig. 1(c). As we show in Sec. IV, the
transition point (the critical phase transition field) is obtained
with relatively high numerical precision if a sufficiently large
D, the number of the block-spin state, is taken.

III. HIGHER-ORDER TENSOR
RENORMALIZATION GROUP

We focus on the numerical analysis of the quantum frac-
tal system by means of the HOTRG method [8], which
has yielded a high numerical accuracy for two- and three-
dimensional classical Ising model. The method has also been
applied to one- and two-dimensional quantum Ising mod-
els through the quantum-classical correspondence, which is
a discrete imaginary-time path-integral representation. The
imaginary-time evolution expressed by the density operator
ρ = e−τH is essential, as it behaves as the projection to the
ground state in the large τ limit.

Let us consider the Hamiltonian in Eq. (1) and divide
the imaginary-time span τ into m intervals �τ = τ/m. We
express ρ in the form of the product

ρ = (e−�τH)m = [
e−�τ (Hzz+Hx+Hz )

]m
(5)

among imaginary-time intervals, where Hzz, Hx , and Hz,
respectively, correspond to the first, second, and third term in
the right-hand side of Eq. (1). Although Hx does not commute
with Hzz or Hz, a good approximation of ρ can be obtained
by means of the Trotter-Suzuki decomposition [11]

ρ ≈ [
e−�τ (Hzz+Hz ) e−�τHx

]m
, (6)
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provided that �τ is sufficiently small (e.g., �τ ≈ 0.01). Each
imaginary-time interval, which corresponds to e−�τH, plays
the role of the transfer matrix.

Applying a duality transformation, which introduces new
two-state variables in the middle of the connected bonds, we
can express the transfer matrix in terms of the tensor network.
Figure 1 shows the structure of the transfer matrix for the
elementary unit in Fig. 1(a) and for the extended ones in
Figs. 1(b)–1(d). This time, we regard the black dots as local
tensors, which have three legs in the spatial direction shown
by the lines, and two legs in the imaginary-time directions
shown by the vertical dotted lines. Each local tensor is given
by

T
(0)
ijk,st =

∑
σ

WσiWσjWσkPσsPσtGσ , (7)

where the matrix

W =
(√

cosh(J�τ )
√

sinh(J�τ )√
cosh(J�τ ) −√

sinh(J�τ )

)
(8)

originates from the Ising interaction in Hzz between the
neighboring spins. The other matrix

P = 1√
2

(
exp(hx�τ/2) exp(−hx�τ/2)
exp(hx�τ/2) − exp(−hx�τ/2)

)
(9)

corresponds to the spin-flipping effect by the transverse field
hx in Hx , and the column vector

G =
(

exp( hz�τ )
exp(−hz�τ )

)
(10)

represents the effect of external field hz along the z direction
in Hz. All the indices i, j, k, s, and t of T

(0)
ijk,st thus carry two

degrees of the freedom.
The transfer matrices T

(1)
ijk,st , T

(2)
ijk,st , and T

(3)
ijk,st for the ex-

tended units, respectively, shown in Figs. 1(b), 1(c) and 1(d),
can be obtained by contracting horizontal legs in a recursive
manner. Actually, we do not directly treat these extended
transfer matrices. Our aim is to obtain the local thermody-
namic quantities

〈O〉 = Tr ( Oρ )

Tr (ρ)
= Tr ( O e−τH )

Tr (e−τH)
, (11)

where O represents a local operator, for a sufficiently wide
system when τ is large enough. For this purpose, we do not
have to construct ρ in a faithful manner, but we only need to

consider a series of finite-size clusters represented as a stack
of the extended transfer matrices, i.e.,

[
T

(1)
ijk,st

]2
,
[
T

(2)
ijk,st

]4
,
[
T

(3)
ijk,st

]8
, . . . ,

[
T

(�)
ijk,st

]2�

, . . . .

By use of these tensors and another series of tensors that
contain the operator O inside, the following ratio

lim
τ→∞

〈φ| e−τH/2 O e−τH/2|φ〉
〈φ| e−τH/2 e−τH/2|φ〉 (12)

can be obtained, which coincides with 〈O〉 in Eq. (11) for
a wide choice of the boundary conditions and the trial state
represented by |φ〉. The HOTRG method is appropriate for
this purpose. Alternatively, the value in Eq. (12) can be
obtained by use of the tensor product state [12,13] and also
the projected entangled pair state [14], but the computational
cost is much higher.

We create the stack of the transfer matrices in a renormal-
ized form, through the recursive contraction processes,

A
(�)
ii ′kk′,ab =

∑
jss ′t t ′

T
(�)
ijk,st T

(�)
ji ′k′,s ′t ′ Uss ′,a Utt ′,b, (13a)

B
(�)
ijk,st =

∑
mn

aa′bb′

A
(�)
ijmn,ab T

(�)
knm,a′b′ U

′
aa′,s U ′

bb′,t , (13b)

T
(�+1)
ijk,st =

∑
umm′
nn′oo′

B (�)
mno,suB

(�)
m′n′o′,utU

′′
mm′,iU

′′
nn′,jU

′′
oo′,k. (13c)

which are depicted by diagrams in Fig. 2. The projectors
U, U ′, and U ′′, which are also called isometries, are qua-
siunitary rectangular matrices of the size D2 × D, with D

being the degree of freedom for a tensor index. These matrices
are obtained from the higher-order singular value decomposi-
tion, whenever two tensors are combined and consequently
reshaped into a matrix form [8]. We keep the states that
correspond to D largest singular values. Hence, the larger
the D, the better the approximation is [9,15]. The expansion
procedure is stopped after all of the thermodynamic functions
(normalized per site) completely converge.

In this manner the HOTRG method, applied to the discrete
path-integral representation of the quantum fractal system,
enables us to built up a sufficiently large finite-size system.
Note that during the recursive extension of the system, we can
obtain thermodynamic functions such as the ground-state en-
ergy E0 per site, as has been done for the transverse-field Ising
model on the square lattice. Further details on the calculation
of E0 can be found in Refs. [8,9]. One-point functions, such as

u=
i

s

t

k
i

j
=

s

t

k
i

j

(a) (b)

=
j

i
k

s

t
t

s

k

i

(c)

j

s’

o’b’ b

aa’ o n
m

m’

n’

m

n

l(  )Aii’kk’,ab
l(  )Bijk,st

l(  )Tijk,st

k

i i’

k’t t’

s

j

a

b

a

b
k’

i’

k

FIG. 2. Graphical representation of the processes in the HOTRG method in Eqs. (13a)–(13c). We use the large symbols to indicate the
tensors T (�) (circles), A(�) (diamonds), B (�) (squares), and the projectors U, U ′, and U ′′ (triangles).

062114-3



ROMAN KRCMAR et al. PHYSICAL REVIEW E 98, 062114 (2018)

magnetization 〈σ z〉, can also be calculated by introducing an
impurity tensor, as discussed in Ref. [9]. In the Appendix we
discuss the choice of �τ and the stabilization of the numerical
calculation by means of an appropriate choice of the initial
tensor.

IV. NUMERICAL RESULTS

The mean-field approximation (MFA) offers a rough in-
sight into phase transitions. As we have introduced in Sec. II,
we consider a series of the three approximations, MFA1,
MFA3, and MFA9, respectively, where the interactions inside
the (extended) units shown in Figs. 1(a)–1(c) are treated
exactly. We have also introduced the RSRG method, which
can capture critical behavior of the model, provided that a
sufficiently large number of block-spin states D are kept.
However, the improvement in expectation values with respect
to D is rather slow. In contrast, the numerical precision in the
HOTRG method significantly improves with D. We have con-
firmed that D = 8 is large enough to obtain well-converged
results on this fractal lattice. We present the numerical results
up to D = 20 in the HOTRG method.

We first compare the three types of mean-field approxima-
tions with the HOTRG method when D = 8. The ground-state
energy per site E0 with respect to the transverse field hx is
shown in Fig. 3. The ground-state energy obtained by the
HOTRG method is always the lower than those obtained by
the mean-field approximations. This is more visible when
comparing E0 around the phase transition hx = hc as shown
in the top inset. The bottom inset shows the spontaneous
magnetization 〈σ z〉. Since the fractal lattice is not homoge-
neous, the expectation value is calculated by averaging three
independent impurity operators [16] contained in T (1), cf.
Fig. 1(b). From 〈σ z〉 obtained by the HOTRG method, the
critical field is determined as hc = 1.865.

The RSRG method provides relatively accurate E0 when
D = 24 block-spin states are kept. Figure 4 shows E0 ob-

0.0 0.5 1.0 1.5 2.0 2.5 3.0
hx

-3.2

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

E 0

HOTRG
MFA1
MFA3
MFA9

0.0 0.5 1.0 1.5 2.0 2.5 3.0
hx

0.0

0.2

0.4

0.6

0.8

1.0

〈σ
z 〉

1.8 1.9 2.0
hx

-2.2

-2.1

-2.0

E 0

hc

FIG. 3. Ground-state energy per site E0 versus transverse field
hx at hz = 0. The data obtained by the HOTRG method are shown
by the thick full lines. The mean-field approximations MFA1, MFA3,
and MFA9 are, respectively, shown by dashed, dotted, and dot-dashed
lines. The top inset shows E0 around the transition point hc. The
bottom inset shows 〈σ z〉.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
hx

-3.0

-2.8

-2.6

-2.4

-2.2

-2.0

-1.8

-1.6

E 0

E0
(HOTRG)

E0
(RSRG)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
hx

10-6

10-5

10-4

10-3

10-2

E 0
(R

SR
G

)
− 

E 0
(H

O
TR

G
)

FIG. 4. Ground-state energies per site with respect to hx calcu-
lated by the HOTRG method (D = 8) and by the RSRG method
(D = 24) when hz = 0. The inset shows their difference.

tained by the RSRG method (D = 24) and by the HOTRG
method (D = 8). The inset shows the difference in the cal-
culated E0, within the range 0 � hx � 3, which is not con-
spicuous. Figure 5 shows the spontaneous magnetization 〈σ z〉
and induced polarization 〈σx〉. The difference between both
of the methods is more visible below the transition point.
The spontaneous magnetization 〈σ z〉 by the RSRG method
gives the critical field hc = 1.864, which is close to the value
hc = 1.865 determined by the HOTRG method. The induced
polarization 〈σx〉 is calculated by making use of the Hellman-
Feynman theorem [17]

〈σx〉 = −∂E0

∂hx

, (14)

which exhibits a weak singularity at the critical field hx = hc,
as marked by the arrow. (We still consider the case hz = 0.)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
hx

0.0

0.2

0.4

0.6

0.8

1.0

〈σ
z 〉  

 &
   

〈σ
x 〉

〈σz 〉 by HOTRG

〈σz 〉 by RSRG

〈σx 〉 by HOTRG

〈σx 〉 by RSRG

0 1 2 3
hx

0.0

0.2

0.4

0.6

0.8

1.0

1.2

χ 
= 

∂〈
σ

z 〉 /
 ∂

h x

hc

hc = 1.865

hc

FIG. 5. Spontaneous magnetization 〈σ z〉 and the induced polar-
ization 〈σ x〉 with respect to hx . The full lines show the calculated
result by the HOTRG method (D = 8) and the dashed ones by
the RSRG method (D = 24). The inset shows the susceptibility χ

defined by Eq. (15).
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0 1×10-5 2×10-5 3×10-5 4×10-5

hz

0

1×10-5

2×10-5

3×10-5

〈σ
z 〉δ

1.83 1.84 1.85 1.86 1.87
hx

0.00

0.01

0.02

0.03

0.04

〈σ
z 〉1/

β

hz = 0

hc = 1.865   (at hz = 0)

β = 0.20  (at hz = 0)

δ = 8.4  (at hx = hc)

hx = hc

FIG. 6. Linear behavior in 〈σ z〉1/0.20 below hc, which means
β = 0.20. The inset shows linear behavior in 〈σ z〉8.7 with respect
to the longitudinal field hz → 0 at the criticality hx = hc; the linear
behavior occurs at δ = 8.7. These values are obtained by the HOTRG
method at D = 20.

The inset of Fig. 5 shows the susceptibility

χ = −∂2E0

∂h2
x

= ∂〈σx〉
∂hx

(15)

for the result of the HOTRG method, where there is a singular
peak at hc.

Finally, we increase D in the HOTRG method to D = 20,
which is still computationally feasible, in order to precisely
determine the critical field hc and the critical exponents β and
δ. The exponent β is associated with the critical behavior of
the spontaneous magnetization 〈σ z〉 ∝ (hc − hx )β . Assuming
the scaling form and applying the least-square fitting to the
calculated 〈σ z〉, we obtain hc = 1.865 and β = 0.20. For
confirmation, we plot 〈σ z〉1/β with β = 0.20 in Fig. 6, where
the linear behavior below hc is evident. The other exponent δ

is associated with the scaling 〈σ z〉 ∝ h
1/δ
z at the critical field

hx = hc. In the inset, we show 〈σ z〉δ with respect to hz, which
is linear if we assume δ = 8.7.

V. SUMMARY

The transverse-field Ising model on the Sierpiński fractal
was studied by the three methods: (1) the mean-field approxi-
mation, (2) the RSRG method, which can be easily adapted for
the fractal structure, and (3) the HOTRG method, which had
reproduced very reliable results for the transverse-field Ising
model on the square lattice [8]. The numerical algorithm in
the original HOTRG method has been generalized in order
to contract a tensor network with the fractal structure. We
performed the entanglement-entropy analysis in the HOTRG
method at the initial stage, in order to stabilize the numerical
calculation, as shown in the Appendix.

We have confirmed the existence of the second-order phase
transition in the quantum Ising model on the Sierpiński fractal,
whose Hausdorff dimension dH ≈ 1.585. The critical field is
hc = 1.865, and the two critical exponents β = 0.20 and δ =
8.7 are obtained. Our results are in a good agreement with the
MC simulations by Yi [3], which resulted in hc = 1.865(2)

TABLE I. Comparison of hc, β, and δ for the transverse-field
Ising model on the chain (dH = 1), the Sierpiński fractal (dH =
log2 3) by HOTRG (this work) and by MC [3], and the square lattice
(dH = 2) by HOTRG [8] and the coherent-anomaly method (CAM)
[18] applied to the three-dimensional classical Ising model, which
corresponds to its quantum counterpart with dH = 2.

dH hc β δ Method

log2 2 = 1 1 0.125 15 Exact

1.865(5) 0.19(2) – MC
log2 3 ≈ 1.585

1.865 0.20 8.7 HOTRG

3.0439 0.3295 – HOTRG
log2 4 = 2

– 0.327(4) 4.77(5) CAM

and β = 0.19(2). Table I summarizes the transition point hc
and the exponents β and δ for the transverse-field Ising model
on the chain, the Sierpiński fractal, and the square lattice.

Relation between critical behavior and the fractional di-
mensionality has not been fully investigated yet, and there are
open problems to be considered. One of them is the classi-
fication of the quantum phase transition on the fractal lattice
with dH = log4 12 that was recently studied for the classical
system [9]. This particular fractal can be dealt with by the
HOTRG method, as we have considered. It is also possible
to generate a set of fractal lattices, which have the Hausdorff
dimensions 1 < dH < 2, as extensions. The question remains:
How do the hyperscaling relations look on fractal lattices?

Recent studies on neural networks [19,20] have some
aspects in common with the current study, in the point that the
formation of complex network geometry is required. Investi-
gations of the quantum phase transitions on such nontypical
lattices could be of use for the initial parametrization of the
neural networks with complex geometry. So far, in the field of
tensor network, supervised machine learning [21] and quan-
tum machine learning [22] were performed on regular lattices.
We conjecture that tensor networks with fractal structure,
such as the tree tensor network, could lead to an efficient
approximation of a given probability distribution in machine
learning.
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APPENDIX: REMARKS ON INITIALIZATION

It is known that the Trotter-Suzuki decomposition in
Eq. (6) introduces an error of the order of (�τ )2. Thus it is
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more suitable to keep �τ relatively small. We choose �τ of
the order 10−2 in most of the numerical calculations. When
�τ is too small, however, there is a conspicuous anisotropy
between the space and imaginary-time directions. A naive
application of the iterative processes in Eqs. (13a)–(13c)
can cause numerical instabilities, especially near the critical
field hc. This occurs when �τ is very small, because the
local tensor T (0) works as an identity in the imaginary time
direction, and this situation requires that a huge D is kept
in the vertical direction, which is not feasible for realistic
computational resources.

To avoid the instability, we modify the definition of the
initial tensor T

(0)
ijk,st by implementing the “vertical stacking” of

the original local tensor, before we start the main iterations in
Eqs. (13a)–(13c). As we explain here, the succeeding stacking
process, which is followed by the renormalization group
transformation, gradually makes the local tensor isotropic.
We introduce two quantities, the planar and the vertical en-
tanglement entropies. Identifying all the tensor elements as
a kind of quantum wave function, it is understood that the
relation between these two entanglement entropies quantifies
the anisotropy in the initial tensor.

Let us introduce a new notation T (0,n), where the integer
n = 0, 1, 2, . . . enumerates the number of the stacking pro-
cesses. The first one T (0,n=0) is the original local tensor, whose
element is the T

(0)
ijk,st in Eq. (7). The tensor T (0,n+1) is obtained

recursively by stacking two T (0,n) vertically and performing
the contraction

T
(0,n+1)
ijk,st =

∑
abcd

ef u

T
(0,n)
abc,su T

(0,n)
def,ut U

(n)
ad,i U

(n)
be,j , U

(n)
cf,k, (A1)

which is essentially the same as Eq. (13c). Figure 2(c) shows
the graphical representation of this process. The isometry U (n)

is obtained as follows. We first combine the two identical
tensors T (0,n) vertically

M
(n)
ia,jkbcsv =

D∑
t=1

T
(0,n)
ijk,st T

(0,n)
abc,tv, (A2)

as shown in the graphical representation in Fig. 7 (top). We
perform the singular value decomposition [15] (SVD) that
factorizes M (n) as

M
(n)
ia,jkbsv =

D2∑
ξ=1

U
(n)
ia,ξ ω

(n)
ξ V

(n)
ξ,jkbsv. (A3)

This SVD specifies the isometry U (n) we need in Eq. (A1).
It should be noted that the singular values ω

(n)
ξ � 0 play an

important role in both the renormalization group transforma-
tion and the determination of the entanglement entropy. In the
contraction with U (n), we keep the largest D singular values
from D2 ones, and discard the rest of them. One finds that
T (0,n) corresponds to the stack of 2n numbers of T (0,0), which
is contracted by the tree-tensor network constructed by U (m)

for m = 0 up to m = n − 1.
Let us identify M

(n)
ia,jkbsv in Eq. (A2) as kind of another

quantum wave function �ia,jkbsv in order to define the planar

=
k

i

j

=
s

s

v

t
i

a
b

c

k
j

k

i
=

su

b

c

ikabtv

k jkbc} sviai

v
a

b

a

vt

su

planar:

vertical:

=
j

a

b

s u

t v

Msu,
n(  )

ikabtv

Mia, jkbcsv
n(  )

}

MM

FIG. 7. Graphical representations of Eqs. (A2) and (A6) with the
planar (top) and the vertical (bottom) constructions of the M tensors,
respectively. These tensors can be interpreted as rectangular matrices
of the size D2 × 22D4 (top) and 22 × 22D4 (bottom), respectively,
and the singular value decomposition in Eqs. (A3) and (A7) is
applied.

entanglement entropy

ε
(n)
planar = −

D2∑
ξ=1

[
ω

(n)
ξ

]2

�n

ln

[
ω

(n)
ξ

]2

�n

(A4)

for the division of the index into ia and jkbsv, where we have
used the normalization

�n =
D2∑
ξ=1

[
ω

(n)
ξ

]2
(A5)

for the probability. The entanglement entropy ε
(n)
planar quantifies

how strongly the part of the “quantum” system, specified by
the indices ia, is correlated with the rest of the system, as
specified by the indices jkbsv, cf. Eq. (A3). (It should be
noted that the planar entanglement entropy ε

(n)
planar is obtained

after stacking T (0,n)vertically.)
A way of quantifying the anisotropy in T (0,n) is to observe

the entanglement entropy in the vertical direction. Figure 7
(bottom) shows the horizontal contraction between the two
T (0,n)

M̃
(n)
su,ikabtv =

∑
j

T
(0,n)
ijk,st T

(0,n)
jab,uv. (A6)

Performing the singular value decomposition,

M̃
(n)
su,ikabtv =

22∑
ξ=1

Ũ
(n)
su,ξ ω̃

(n)
ξ Ṽ

(n)
ξ,ikabtv, (A7)

we obtain the singular values ω̃
(n)
ξ . Identifying M̃

(n)
su,ikabtv as

a kind of quantum wave function �su,ikabtv , we obtain the
vertical entanglement entropy

ε
(n)
vertical = −

22∑
ξ=1

[
ω̃

(n)
ξ

]2

�̃n

ln

[
ω̃

(n)
ξ

]2

�̃n

, (A8)
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)

hx = 0
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hx = hc
hx = hc
hx = 3
hx = 3

2ln2

ln2

ε(n)
vertical

ε(n)
planar

FIG. 8. Entanglement entropies ε
(n)
planar and ε

(n)
vertical with respect to

the number of stacking n, at hx = 0 (circles), hx = hc (triangles), and
hx = 3 (squares) for D = 2, when �τ = 0.01 and hz = 0.

where we have used the normalization

�̃n =
22∑

ξ=1

[
ω̃

(n)
ξ

]2
. (A9)

This vertical entanglement entropy ε
(n)
vertical quantifies the quan-

tum correlations carried by the indices su in the vertical
direction.

We have thus defined ε
(n)
planar and ε

(n)
vertical. Figure 8 shows

them with respect to n at hx = 0, hx = hc, and hx = 3. The
tensor T (0,0) works almost as the identity which is applied
to the vertical direction, and there is almost no correlation
to the planar direction. For this reason, ε

(n)
vertical is close to

2 ln 2, which corresponds to two completely entangled pairs,
and ε

(n)
planar is very small. With increasing n, ε

(n)
vertical always

decreases, while the planar one ε
(n)
planar increases. For hx = 0,

both of the entropies are saturated to ln D = ln 2 at larger n

since the calculations are carried out with D = 2.
When ε

(n)
planar and ε

(n)
vertical are close, it is possible to consider

that T (0,n) is almost equally correlated with both the planar

0 2 4 6 8 10 12 14 16 18 20
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ε(n
)

ε (n)
planar    at  Δτ = 0.1

ε (n)
vertical  at  Δτ = 0.1

ε (n)
planar    at  Δτ = 0.01

ε (n)
vertical  at  Δτ = 0.01

ε (n)
planar    at  Δτ = 0.001

ε (n)
vertical  at  Δτ = 0.001

FIG. 9. Entanglement entropies at hx = hc for the three selected
imaginary-time steps �τ = 0.1 (circles), �τ = 0.01 (triangles), and
�τ = 0.001 (squares).

and the vertical directions, and this is the right situation to start
the iterative processes in the HOTRG method. The vertical
double-dot-dashed lines in Fig. 8 show the value of such n.
Within the typical range of the transverse field 0 � hx � 3
we have used, the optimal number of the initial stacking lies
in the interval 5 � n � 8. We have numerically confirmed
that the HOTRG method, following Eqs. (13a)–(13c), can be
performed in a stable manner after they have been started with
T (0,n≈6).

The correct determination of n also depends on the initial
choice of �τ . Figure 9 shows both of the entropies at the
critical field hx = hc for three selected imaginary-time steps
�τ . As it is naturally understood, the smaller the �τ , the
more initial iteration steps n are necessary to satisfy ε

(n)
planar ≈

ε
(n)
vertical. Although smaller �τ lowers the Trotter-Suzuki error

(�τ )2, significantly more iterations are needed in the main
HOTRG algorithm and round-off errors get accumulated for
�τ 
 10−2, which negatively act against the improvement of
numerical precision. Thus we have used �τ of the order of
0.01 for all the calculations in the main text.
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